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INTRODUCTION

CliffsQuickReview Precalculus is a comprehensive volume of the topics
usually included within a course intended to serve as a calculus pre-

requisite. Although the collection of skills deemed worthy of inclusion in
such a course may vary slightly from instructor to instructor, this text con-
tains all of the most commonly discussed elements, including:

■ Arithmetic and algebraic skills

■ Functions and their graphs

■ Polynomials, including binomial expansion

■ Right and oblique angle trigonometry

■ Equations and graphs of conic sections

■ Matrices and their application to systems of equations

It is assumed that you have some knowledge of algebra and its concepts,
although nearly all of the foundational algebraic skills you’ll need are
reviewed in the early chapters of this book. If you feel you need to further
review these concepts, refer to CliffsQuickReview Algebra I and Algebra II.

Why You Need This Book

Can you answer yes to any of these questions?

■ Do you need to review the fundamentals of precalculus?

■ Do you wish you had someone else to explain the concepts of pre-
calculus to you other than your teacher?

■ Do you need to prepare for a precalculus test?

■ Do you need a concise, comprehensive reference for precalculus?

If so, then CliffsQuickReview Precalculus is for you!
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2 CliffsQuickReview Precalculus

How to Use This Book

This book puts you in the driver’s seat; use it any way you like. Perhaps
you want to read about the topics you’ll learn in class before your teacher
discusses them, so that you have a leg up on your classmates and stand a
better chance to understand since you’ll already have an idea about what’s
going on. Maybe you want to read the book cover to cover, or just consult
it when you’re having trouble understanding what’s going on in class. Either
way, here are a few ways you can search for more information about a par-
ticular topic:

■ Use the Pocket Guide (the tear-out card in the front of the book) to
find essential information, such as key formulas and concepts.

■ Look for areas of interest in the Table of Contents, or use the index
to find specific topics.

■ Flip through the book, looking for subject areas at the top of each
page.

■ Get a glimpse of what you’ll gain from a chapter by reading through
the “Chapter Check-In” at the beginning of each chapter.

■ Use the Chapter Checkout at the end each chapter to gauge your
grasp of the important information you need to know.

■ At the end of the book, you can test your knowledge more completely
in the CQR Review at the end of the book and look for additional
sources of information in the CQR Resource Center.

■ Use the glossary to find key words quickly. Terms are written in
boldface when first introduced in the book, so their definitions are
always close by. In addition, all of the important boldface terms are
defined in the book’s glossary.

Visit Our Web Site

Make sure to look us up on the Web at www.cliffsnotes.com; we host an
extremely valuable site featuring review materials, top-notch Internet links,
quizzes, and more to enhance your learning. The site also features timely
articles and tips, plus downloadable versions of any CliffsNotes books.

When you stop by, don’t hesitate to share your thoughts about this book
or any John Wiley & Sons product. Just click the “Talk to Us” button. We
welcome your feedback!
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Chapter 1

PRECALCULUS PREREQUISITES

Chapter  Check-In

❑ Defining common number groups

❑ Writing inequalities as intervals

❑ Understanding algebraic properties

❑ Working with exponents, radicals, polynomials, and rational expressions

❑ Finding solutions to equations and inequalities 

❑ Constructing linear equations

A strong algebraic background is essential to success in precalculus.
Before you can begin exploring its more advanced topics, you must

first have a firm grip on the fundamentals. In this chapter, you’ll review
and practice foundational concepts and skills. 

Classifying Numbers

Many times throughout your precalculus course, you’ll be manipulating
specific kinds of numbers, so it’s important to understand how mathe-
maticians classify numbers and what kinds of major classifications exist.
Be aware that numbers can fall into more than one group. Just as an Amer-
ican citizen can also be classified as a North American citizen or a citizen
of Earth, numbers may also belong to numerous categories simultaneously.

The following groups, or sets, of numbers are generally agreed on by math-
ematicians as the most common classifications of numbers. They are listed
here in order of size, from smallest to largest:

■ Natural numbers. The set of numbers you’ve used since you were
very young when counting (as such, the natural numbers can also be
called the counting numbers): {1, 2, 3, 4, 5, 6, ...}.

03 539841 Ch01.qxd  1/26/04  2:47 PM  Page 3



4 CliffsQuickReview Precalculus

■ Whole numbers. The whole numbers include all of the natural num-
bers and, also, the number 0: {0, 1, 2, 3, 4, 5, ...}.

■ Integers. All of the whole numbers and their opposites make 
up the set of integers. In other words, any number without an 
extra decimal or fraction attached to it is considered an integer: 
{..., –3, –2, –1, 0, 1, 2, 3, ...}. Because integers contain no obvious
fractions or decimals, some students are tempted to refer to them as
whole numbers, but that is not completely accurate, because the set of
whole numbers does not include negative numbers.

■ Rational numbers. A number is classified as rational if one of the
following conditions hold true.

The number can be expressed as a fraction. (In other words,
the number can be rewritten as b

a
, where a and b are integers,

and b ≠ 0.)

The number is a terminating decimal, in other words a decimal
that ends (such as 6.25) rather than continues on infinitely.

The number is a decimal that repeats in an infinite pattern
(such as 5.297297297297...).

Basically, any number that can be written as a fraction is rational.

Example 1: Show that any integer must also be a rational number.

Any integer a can also be rewritten as a1, since dividing by 1 will not alter the
value of the integer. Because a can be expressed as a fraction whose numera-
tor and denominator are both integers, a must be rational by definition.

■ Irrational numbers. A number that cannot be written as a fraction
is considered irrational. The most obvious indicator of an irrational
number is a decimal that doesn’t infinitely repeat itself yet never ter-
minates. For example, π is an irrational number whose decimal equiv-
alent 3.14159265359... never ends and never follows any obvious
repeating pattern. Many radicals, like 3, are irrational numbers. 

■ Real numbers. The real numbers are made up of the rational numbers
and the irrational numbers grouped together, as shown in Figure 1-1.

■ Complex numbers. Complex numbers differ from the real numbers
in appearance quite starkly. Complex numbers usually have two dis-
tinct parts and look like a + bi, where a is the real part, bi is the imag-
inary part, where i is equal to the imaginary value 1- . However,
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Chapter 1: Precalculus Prerequisites 5

numbers need not contain both parts to be considered complex. In
fact, any real number is automatically complex. For example, since
the real number 3 can be written as 3 + 0i, 3 is a complex number. It
just contains no imaginary part.

Figure 1-1 The rational and the irrational numbers together comprise the
entire set of real numbers. Note that this drawing is not to scale. Far more
irrational than rational numbers exist.

Interval Notation

Traditional inequality statements can be rewritten using interval nota-
tion, a shorthand method that expresses the same meaning but usually in
a more compact and intuitive manner. This is largely due to the fact that
interval notation clearly defines the boundaries of the inequality with which
you’re working.

Bounded intervals

If you’re given an inequality that is bounded on both sides by a real num-
ber, that statement can be rewritten as a bounded interval. To create a
bounded interval, write the two numerical endpoints of the interval in
order, always from lowest to highest. (The interval will almost look like a
coordinate pair.) Then, indicate whether that point should be included on
the interval. If it should, use a bracket with that endpoint; if it should not,
use a parenthesis.

Rational numbers

Irrational numbers

The
Real

Numbers

The
Real

Numbers
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Example 2: Rewrite the following inequality statements using interval
notation.

(a) –5 ≤ x ≤ 3
Because the inequality signs stipulate less than or equal to, you must
include the endpoints in the interval. Had equality not been a pos-
sibility, you would not include those endpoints. Use brackets to
indicate inclusion: [–5,3].

(b) 1 > x > 0
Even though this interval is written so that the upper boundary
is on the left, interval notation still requires you to write them in
order from lesser to greater. Use parentheses to indicate that the
endpoints are not included in the interval: (0,1).

(c) –2 ≤ x < 4
The lower endpoint is included while the upper is not: [–2,4).

If both endpoints of the interval are included (as in part [a] of Example 2),
the interval is said to be closed. On the other hand, if neither endpoint is
included (as in part [b] of Example 3), it is an open interval. 

Unbounded intervals

Sometimes, only one endpoint of an interval is explicitly defined and the
other is implied. For instance, consider the inequality x > 3. Clearly, the
lower boundary of the interval is 3, but what is the upper boundary?
Because there is no finite value given for the upper endpoint, you use infin-
ity. If one or more of the endpoints of an interval are understood to be
infinite, the interval is said to be unbounded.

You will use two different infinite boundaries:

■ ∞, if the boundary is infinitely positive (it is used as the upper bound
of the interval)

■ –∞, if the boundary is infinitely negative (it is used as the lower bound
of the interval)

Infinity is technically not a real number, which means you can never use
a bracket to indicate its inclusion in the interval. Instead, always use a
parenthesis.
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Chapter 1: Precalculus Prerequisites 7

Example 3: Rewrite the following inequality statements using interval
notation:

(a) x > –1
The lower bound of the interval is –1, and the upper bound is
infinitely large, since any positive number will make this inequality
statement true. The lower boundary should not be included, because
the relationship is “greater than,” not “greater than or equal to”:
(–1,∞).

(b) x ≤ 3
In this interval, 3 is the upper boundary. If the lower boundary of
an interval is infinite, you must indicate this by using negative
infinity: (–∞,3].

(c) All real numbers
Any real number, from the infinitely negative to the infinitely posi-
tive, should be included in this interval: (–∞,∞).

Algebraic Properties

Properties, also called laws or axioms, are foundational mathematical prin-
ciples that are assumed true. Although there is no way to irrefutably prove
properties, they make enough inherent common sense to be universally
agreed on by mathematicians. It’s a good thing they are, because these laws
form the backbone of algebra.

The associative property

Given a string of numbers added together, you may group the numbers in
any order you wish and it will not affect the answer you get. This is the
basic premise of the associative property for addition. In other words, no
matter what numbers are associated together, you will get the same result
in the end.

(1 + 3) + 5 = 1 + (3 + 5)

4 + 5 = 1 + 8

9 = 9

The associative property also holds true for multiplication, but it fails for
both subtraction and division. Here are the official mathematical defini-
tions for its two incarnations:
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8 CliffsQuickReview Precalculus

■ The associative property for addition:

(a + b) + c = a + (b + c)

■ The associative property for multiplication:

(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)

Note that the symbol ⋅ is used here to indicate multiplication rather than
the other traditional symbol for multiplication, ×. This is because it’s easy to
confuse the operation × with the variable x when you’re working a problem.

The commutative property

This property (like its sister, the associative property) works only for addi-
tion and multiplication. In essence, it says that given a string of numbers
being added or a string of numbers being multiplied, the order in which
you complete that operation doesn’t matter.

3 ⋅ 9 = 9 ⋅ 3

27 = 27

■ The commutative property for addition:

a + b = b + a

■ The commutative property for multiplication:

a ⋅ b = b ⋅ a

The distributive property

According to the distributive property, if terms are being added or sub-
tracted within parentheses and a number appears “outside” that group of
terms, you can multiply that outer number through to every number
within those parentheses.

a(b + c) = ab + ac

Example 4: Rewrite using the distributive property:

3(x – 7)

Multiply every term in the parentheses by 3:

3 ⋅ x – 3 ⋅ 7

3x – 21
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Chapter 1: Precalculus Prerequisites 9

Identity elements

Fixed numbers called identity elements exist for both the operations of
addition and multiplication. These elements do not alter a number’s value
(or identity) when the operation is applied to them. The identity element
for addition (also called the additive identity) is 0, because if you add 0 to
any number, you get back what you started with: 

2 + 0 = 2

Similarly, the identity element for multiplication (also called the multiplica-
tive identity) is 1, since multiplying any number by 1 will not change that
number’s value: 

3 ⋅ 1 = 3

These identity elements are important because they are a major compo-
nent in the inverse properties.

Inverse properties

Once again, the operations of addition and multiplication have a property
specific to them. In both cases, an inverse property assures you that no
matter the input, there is a way to “cancel it out.”

■ Additive inverse property: For any real number a, there exists a real
number –a (the opposite of a) so that a + (–a) = 0:

4 + (–4) = 0

■ Multiplicative inverse property: For any non-zero real number a, 
there exists a real number a

1 so that a a
1 1$ = :

7 ⋅ 7
1 = 1

Note that when you “undo” addition and multiplication using these
inverse properties, the result will be the identity element for the corre-
sponding operation.

Exponential Expressions

Repeated multiplication can be rewritten using exponents, small numbers
written above and to the right of the base number, both to clarify and sim-
plify your notation. Rather than write “x ⋅ x ⋅ x,” you can write “x3,” which
is read “x to the third power.” The power of an exponent is the number of
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times the object is multiplied by itself. Therefore, in the expression x3, x is
considered the base and 3 is the power.

There are six important rules you should know when undertaking any
arithmetic involving exponents:

■ Rule 1: x x xa b a b
$ =

+

If two exponential expressions with identical bases are multiplied, the
result is that base raised to an exponent equal to the sum of the two
powers:

x4 ⋅ x7 = x4 + 7 = x11

■ Rule 2: 
x
x xb

a
a b

=
-

If two exponential expressions with identical bases are divided, the
result is that base raised to an exponent equal to the power in the
numerator minus the power in the denominator:

x
x x x5

8
8 5 3

= =
-

■ Rule 3: x xa b a b
=

$
` j

If an exponential expression is itself raised to a power, the result is the
base raised to the product of the two powers:

x x x2 6 2 6 12
= =

$
` j

■ Rule 4: x y x ya b c ac bc
=` j

If numerous exponential factors are raised to a power, multiply the
outer power times each of the inner powers.

x y x y x y2 5 3 2 3 5 3 6 15
= =

$ $
` j

■ Rule 5: x
x x

x1 1anda
a b

b
= =

-

-

A negative exponent indicates that the expression is in the wrong part
of the fraction. To make the exponent positive again (no algebraic
expression is completely simplified until it contains no negative 
exponents), move the exponential expression to the other side of the
fraction bar. For instance, if it is in the numerator, move it to the
denominator, and leave the base alone.

y
x

x
y

3

2

2

3

=-

-
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■ Rule 6: x0 = 1 (if x ≠ 0)

Any real number raised to the 0 power is equal to 1 (with the excep-
tion of 00, which does not have a real number value).

Example 5: Simplify using the exponential rules:

(a)
xy z
x y z

7 2

3 5 2

Rewrite the fraction using Rule 2. Since the x in the denominator
has no visible exponent, it is understood to be 1.

x y z

x y z

3 1 5 7 2 2

2 2 0

- - -

-

A completely simplified solution does not contain negative expo-
nents. Apply Rule 5 to achieve that goal. In addition, rewrite z0 as 1.

y
x

2

2

(b) (x2y3)(x7yz3)
You can rearrange the terms thanks to the commutative propery
and then add exponential powers of like bases, thanks to Rule 1.
Again, since the y in the second group of parentheses has no expo-
nent visible, it is understood to be 1.

x2 + 7  y 3 + 1 z3

x9y4z3

(c)
z

x y
3

2 2 2

-

- -J

L

K
K

N

P

O
O

Begin by applying Rule 4:

z
x y

6

4 4-

Use Rule 5 to eliminate negative exponents:

x z
y
4 6

4
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Radical Expressions

Although most of the time the exponents you’ll see will be integers, you may
run across some fractional powers as well. These types of powers translate
into radicals (also called roots):

x x xor/a b ab b
a

= a k

You can use either notation to rewrite the fractional power as a radical.
In some cases, one form will be more useful than the other when you are
simplifying.

A typical radical, x an contains two parts: the index (the small number in 
front of the radical) and the radicand, the quantity within the radical sym-
bol. It is read “The nth root of x to the ath power.” Note that if no index
is given for the radical, the index is understood to be 2.

Some students find radicals easier to understand if they think of the nota-
tion as a question. For example, the radical 83 asks the question “What
number multiplied by itself 3 times is equal to 8?” The answer is 2, so 

8 23 = .

Properties of radicals

Because radicals are really exponents in disguise (even if they are fractional
exponents), radicals possess the same properties as exponents. In addition,
radicals have these properties:

■ x y x ya bn an bn$=

Factors multiplied together inside of a radical can be broken up and
written as the product of two radicals with the same index as the orig-
inal. That is to say, the root of a product is equal to the product of
the individual roots:

■
y
x

y

x
bn

bn

an

=
a

Just like multiplication, division problems surrounded by radicals can
be broken up into separate, smaller radicals as well. So, the root of
the quotient is equal to the quotient of the individual roots.

Simplifying radicals

The most common task you’ll face in the study of radicals is the need to
simplify radical expressions.
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Chapter 1: Precalculus Prerequisites 13

Example 6: Use the properties of radicals to simplify these expressions:

(a) x y200 2

Your goal will be to break this radical into two different radicals,
one containing all perfect squares and the other containing every-
thing else. Perfect squares are quantities generated by multiplying
some value by itself.

x y

x y

100 2

100 2

2

2

$ $ $

$

Both 100 and x2 are perfect squares (since 100 = 10 ⋅ 10 and 
x2 = x ⋅ x); the leftmost radical will be eliminated.

x y10 2

You might not have expected the absolute value signs. They are rare
but necessary when you have this situation: x nn and n is an even
integer. This precaution ensures that the answer is positive, because
a radical with an even index must always be positive.

(b) x y108 2 83 -

Again, split up the radical, but this time put all of the perfect
cubes (values generated by multiplying the same thing by itself
three times) together:

y x y

y x y

27 4

3 4

63 2 23

2 2 23

$-

-` j

There is no need to worry about absolute value signs because the
index of this radical is odd.

Operations with radicals

It is a bit more complicated to add and subtract radical expressions than
it is to multiply and divide them. In fact, radicals must have the same index
and radicand in order to perform addition and subtraction, but that is not
the case for multiplication and division.

Example 7: Simplify the following expressions:

(a) 5 2 3 8-

While the indices are the same (they are both 2), the radicands
appear different at first glance. That changes when you simplify
the expression:
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14 CliffsQuickReview Precalculus

5 2 3 4 2

5 2 6 2

-

-

Now that they share the same radicand as well, you can combine
the coefficients and get 2- .

(b) x x 23a ak k

Begin by rewriting the radicals as exponential expressions:

x x/ /1 2 2 3
$

Apply Rule 1 for exponential expressions:

x x x x/ / / / /1 2 2 3 3 6 4 6 7 6 76= = =
+ +

You may write your final answer in either exponential or radical
form; they are equivalent.

Rationalizing expressions

Some teachers require that you rationalize your answers, when appropri-
ate. This means they don’t want an answer containing a radical sign in its
denominator.

Example 8: Rationalize the following fraction:
x
3

To eliminate the radical, multiply both the numerator and denominator
by a value of 3. This is the equivalent of multiplying by 1, so it doesn’t
change the value of the fraction, and it creates a perfect square in the
denominator.

x x x

3 3

3

9

3
3

3
$ = =

Polynomial Expressions

Polynomials are strings of terms added to or subtracted from one another.
Each term is made up of numbers and variables (usually raised to whole
number powers) multiplied together. For example, the polynomial

4x3 – 2x2 + x + 7

is made up of four terms. The coefficient is the numerical value preced-
ing the variable in each term. The first term, 4x3, has a coefficient of 4, and
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Chapter 1: Precalculus Prerequisites 15

the second term has a coefficient of –2. The degree of this polynomial,
defined by the highest exponent found in the polynomial, is 3. The lead-
ing coefficient is the coefficient accompanying the variable raised to the
highest exponential value. In this example, the leading coefficient is 4.

Classifying polynomials

Polynomials are typically categorized either according to the number of
terms they possess or according to the degree of the polynomial.

■ Classifying according to number of terms

A polynomial containing only one term is called a monomial. If two
terms are present, the polynomial is considered a binomial, while
three terms indicates a trinomial. No commonly used terms are avail-
able that indicate a polynomial containing four, five, or more terms.

■ Classifying according to degree

It’s easy to categorize a polynomial according to its degree. Simply
look for the highest exponent within the polynomial. Table 1-1 gives
the classifications based on a polynomial’s degree.

Table 1-1 Degree Classifications for Polynomials

Degree Category Example

0 constant 7

1 linear –x + 7

2 quadratic 5x2 + x + 7

3 cubic x3 – 1

4 quartic –7x4 – x3 + 2x2 + 5x – 3

5 quintic x5 – x2 + x

The classifications in Table 1-1 are not the only ones; additional names exist
for polynomials of higher degree, but these are the most commonly used.

Adding and subtracting polynomials

Remember, you can only add or subtract radicals that contain the exact
same radicand and index. Similarly, you can only add or subtract polyno-
mial terms that contain the same variables and exponents. Such terms are
called like terms.
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Example 9: Simplify the following expressions:

(a) (x3 – 6x2 + 3x + 4) + (4x3 + 2x2 – 10x – 5)
According to the commutative and associative properties of addi-
tion, you can reorder the terms and group them differently. Rewrite
them as groups of like terms:

(x3 + 4x3) + (–6x2 + 2x2) + (3x – 10x) + (4 – 5)

5x3 – 4x2 – 7x – 1

(b) (x2 + 2x + 1) – 2(x + 6)
Use the distributive property to simplify before combining like
terms:

(x2 + 2x + 1) – 2x – 12

x2 + (2x – 2x) + (1 – 12)

x2 – 11

Multiplying polynomials

Terms need not be like terms in order to multiply them together. In fact,
to multiply polynomials together, all you need is the distributive property.

Example 10: Multiply the following expressions and simplify your answer:

(a) (2x2 + 1)(x – 3)
You may use the FOIL method to find the product. FOIL is a
mnemonic device meaning “First, Outside, Inside, Last,” describ-
ing which terms must be multiplied together. Figure 1-2 explains
what is meant by each of the four groups in FOIL.

Figure 1-2 Each letter in FOIL stands for a pair of terms that must be
multiplied together.

Multiply the first terms together, then the outer, the inner, and the
last terms, and add the products where possible.

Outside

Inside

First

Last

Outside

Inside

First

Last
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(2x2 ⋅ x) + (2x2 ⋅ –3) + (1 ⋅ x) + (1 ⋅ –3)

2x3 – 6x2 + x – 3

(b) (x – 2)(x2 – 4x + 5)
In order for you to use the FOIL method, both polynomials must be
binomials, and that’s not the case here. When FOIL fails, simply dis-
tribute each term in the first polynomial into the second polynomial:

x(x2 – 4x + 5) – 2(x2 – 4x + 5)

x3 – 4x2 + 5x – 2x2 + 8x – 10

x3 – 6x2 + 13x – 10

You will review how to divide polynomials in Chapter 3.

Rational Expressions

Just as any number that can be expressed as a fraction is called a rational
number, any expression written as a fraction is called a rational expres-
sion. Operations on rational expressions follow the same governing rules
as operations on fractions.

Adding and subtracting rational expressions

All fractions must have common denominators before they can be com-
bined via addition or subtraction.

Example 11: Simplify the expression:

x x
x

x
x3

2
1

5+ +
-

-
-

The least common denominator (LCD) for this expression is x(x + 2)(x – 5),
since that is the smallest expression containing one of each of the pieces of
every denominator. Multiply each fraction by the values necessary to get that
denominator. Remember, multiplying by a fraction which has the same numer-
ator and denominator is the same as multiplying by 1, so you’re not changing
the values of the original fractions. 

x x x
x x

x
x

x x
x x

x
x

x x
x x

x x x

x x

x x x

x x x

x x x
x x

3
2 5
2 5

2
1

5
5

5 2
2

2 5

3 3 10

2 5

1 5

2 5
2

2 2 2

$ $ $
+ -

+ -
+ +

-
-

-
-

- +

+

+ -

- -
+

+ -

- -
-

+ -

+

^ ^

^ ^

^

^

^

^

^ ^

`

^ ^

^ `

^ ^

^

h h

h h

h

h

h

h

h h

j

h h

h j

h h

h
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Now, all the numerators can be written over the LCD.

x x x

x x x x x x x

x x x
x x

2 5

3 9 30 6 5 2

3 10
5 4 30

2 3 2 3 2

3 2

2

+ -

- - + - + - +

- -
- - -

^ ^

` ` `

h h

j j j

Multiplying rational expressions

You do not need common denominators in order to multiply rational
expressions. To find the product of two fractions, simply multiply the
numerator of the first times the numerator of the second; then do likewise
with the denominators.

Example 12: Simplify the expression:

x
x

x

x
x x

x
x x x

5
3

2
1

5 2
3 1

10
3 3

2

2

3 2

$

+ -

+ -

+ - -

c e

^ `

m o

h j

Simplifying complex fractions

When fractions are divided, the result is a complex fraction, a fraction
that itself contains fractions. To simplify such fractions, you will employ
a method that changes the division problem into multiplication.

Example 13: Simplify the complex fraction:

x
x
x

x

2 3

1

2

-

+

Begin by rewriting the complex fraction as a division problem:

x
x

x
x1

2 3

2

'
+

-

Take the reciprocal of the second fraction (turn it upside down) and change
the division sign to multiplication:

x
x

x
x1 2 3

2$
+ -

03 539841 Ch01.qxd  1/26/04  2:47 PM  Page 18



Chapter 1: Precalculus Prerequisites 19

Multiply as you would ordinary fractions:

x
x x2 3

3

2
- -

Equations and Inequalities

Your primary task as a precalculus student will be to solve equations and
inequalities using a variety of techniques, so it’s worthwhile to make sure
you have a good mastery of the techniques you should know thus far.

Solving equations

To solve an equation for a variable (that is, to isolate the variable on one
side of the equal sign), you may do any of the following:

■ Add or subtract the same quantity on both sides of the equal sign.

■ Multiply or divide both sides of the equal sign by the same non-zero
quantity. However, make sure that you do not multiply or divide by
a variable quantity, if at all possible. Doing so could result in addi-
tional or lost solutions, respectively.

■ Cross-multiply to eliminate fractions.

b
a = d

c becomes ad = bc

Example 14: Solve the following equations:

(a) 2x – 4 = 3(x – 9) + 2
Distribute the 3, and then move the variables to the left and the
constants to the right sides of the equation.

2x – 4 = 3x – 27 + 2

–x = –21

Divide both sides by –1 to get the answer: x = 21.

(b) x
x

x
x

1
2

2 2-
+

+ + =

Subtract the second fraction from both sides:

x
x

x
x

x
x

x
x

x
x

1
2 2 2

2
2

1
2

2
4

-
+

= +
+

- +

-
+

= +
+

c m

03 539841 Ch01.qxd  1/26/04  2:47 PM  Page 19



20 CliffsQuickReview Precalculus

Cross-multiply and solve:

(x + 2)(x + 2) = (x – 1)(x + 4)

x2 + 4x + 4 = x2 + 3x – 4

x = –8

(c) x3 1 7+ =

If only the quantity in absolute values appears on the left side of
the equation, you can rewrite it as two different equations, both
without absolute value signs. In one, you simply set the sides equal;
in the other, the right-hand side of the equation is written as its
opposite:

x x

x x

x

3 1 7 3 1 7

3 6 3 8

2 3
8

or

or

or

+ = + =-

= =-

= -

Solving linear inequalities

Linear inequalities are treated almost exactly like equations. The only dif-
ference is that multiplying or dividing both sides of the inequality by a
negative value reverses the inequality sign. For example, ≥ becomes ≤ and
< becomes >.

Example 15: Give the solutions in interval notation:

(a) 3x + 4 < 5x + 7(x – 1)
Distribute the 7 and isolate the x terms as if this were an equation:

3x + 4 < 5x + 7x – 7

3x + 4 < 12x – 7

–9x < –11

To finish, you have to divide by –9, so reverse the inequality symbol:

x > 9
11

In interval form, the answer is ,9
11 3c m

(b) –5 ≤ 2x + 3 < 13
Subtract 3 from all parts of the inequality, and then divide every-
thing by 2 to isolate the x:
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<
<

x

x

8 2

4 5

10#

#

-

-

The answer, in interval form, is [–4,5).

Solving absolute value inequalities

Just as absolute value equations require you to solve two equations, absolute
value inequalities require you to solve two inequalities. The procedures are
different for problems involving less-than signs and those involving greater-
than signs.

Example 16: Give the solutions in interval notation:

(a) | x – 4 | – 3 < 6
Isolate the absolute value quantity on the left side:

|x – 4| < 9

Transform this into a double inequality, removing the absolute
value signs. The quantity on the far left will be the opposite of
the quantity on the far right, and the inequality signs match:

–9 < x – 4 < 9

Solve this just like Example 15(b):

–5 < x < 13

The answer is (–5,13).
(b) |3x + 1| ≥ 4

Inequalities involving the greater-than symbol must be rewritten as
two linear inequalities. In the first, simply drop the absolute value
signs. In the second, reverse the sign and change the constant on
the right to its opposite:

3x + 1 ≥ 4 or 3x + 1 ≤ –4

3x ≥ 3 or 3x ≤ –5

x ≥ 1 or x ≤ – 3
5

In interval form, the answer is [1,∞) or (– ∞, – 3
5]. You can replace

the word “or” with the symbol ,; both notations are correct.
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Special inequality cases

Whenever you are presented with inequality problems containing ratio-
nal expressions or polynomials of a degree higher than one (such as
quadratics or cubics), you must use an altogether different method. Here
are the steps you should follow.

1. Move all terms to the left side of the inequality, leaving only 0 on
the right side.

2. Find the critical numbers, the values for which the left side of the
inequality either equals 0 or is undefined. (Remember, a fraction
equals 0 when its numerator equals 0 and is undefined when its
denominator equals 0.)

3. Draw a number line and mark the critical points on it. Use a closed
dot to represent included points (points that could be a solution)
and an open dot to represent unattainable points (such as places
where the expression is undefined or where the inequality sign does
permit the possibility of equality).

4. Treat those dots as boundaries that split the number line into inter-
vals and choose one value (called a test point) from each segment,
between the critical numbers.

5. Each interval whose test point makes the original inequality true is
a solution.

Example 17: Give the solutions in interval notation:

(a) x
x

2
1 3$-

+

Subtract 3 from both sides and simplify:

x
x

x
x

x
x x

x
x

2
1 3 2

2 0

2
1 3 6 0

2
2 7 0

$ $

$

$

-
+

- -
-

-
+ - +

-
- +

The numerator equals 0 when x = 2
7

, and the denominator equals 0 
when x = 2; both are critical numbers. Since the inequality includes 
the possibility of equality, you use a solid dot for 2

7. However, 2 
makes the fraction undefined and cannot be a solution; use an
open dot for it, as shown in Figure 1-3.
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Figure 1-3 The critical numbers 2 and 2
7 break the number line into three

distinct intervals.

The numbers x = 0, 3, and 5 belong to the pictured intervals, from
left to right. When you plug each into the original inequality, only
x = 3 makes it true. Therefore, the interval in which it belongs is
the solution: (2, 2

7].
(b) 2x2 – 5x – 3 < 0

Wherever the trinomial equals 0, place an open dot critical point
on the number line. You need to factor in order to find these val-
ues. (A brief review of factoring is given in Chapter 3.)

(x – 3)(2x + 1)

Set both factors equal to 0 to get critical numbers of x = 3 and 2
1

- .
Choose test values from the resulting intervals of (–∞, 2

1
- ), ( 2

1
- ,3)

and (3,∞), and test them in the original inequality. The correct
answer is ( 2

1
- ,3).

Finding Linear Equations

You need only two items to write the equation of any line: its slope
(a fraction describing how quickly the line rises vertically compared to
how it rises horizontally) and any point on the line. Once you have that
information, plug it into the correct spots of point-slope form for a 
linear equation:

y – y1 = m(x – x1)

where m is the slope and the point you were given on the line is (x1,y1).

If you do not know the slope of the line but are given two points, (x1,y1)
and (x2,y2), you can calculate the slope using this equation:

m x x
y y

2 1

2 1
= -

-

2 7
2
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Example 18: Find the equations of the following lines:

(a) line l, which has slope –2 and passes through point (–1,5)
Set m = –2, x1 = –1, and y1 = 5; plug these values into point-slope
form:

y – y1 = m(x – x1)

y – 5 = –2(x – (–1))

y – 5 = –2x – 2

If you solve this equation for y, you get the slope-intercept form
for a line (y = mx + b), where m is once again the slope and b is the
line’s y-intercept:

y = –2x + 3

(b) line k, which passes through points (–2,6) and (3,–5)
Begin by calculating the slope:

m x x
y y

3 2
5 6

5
11

2 1

2 1
= -

-

=
- -

- -

=-

^ h

Now use point-slope form with either of the given points:

y y m x x

y x

y x

y x

6 5
11 2

6 5
11

5
22

5
11

5
8

1 1- = -

- =- - -

- =- -

=- +

^

^`

h

hj

No matter which point you choose when plugging into point-slope
form, you’ll get the identical answer when you solve for y and
express your answer in slope-intercept form.

(c) line n, which has y-intercept –3 and is parallel to y = 2x + 1
Lines that are parallel have equal slopes, so the slope of line n will
be 2. (Perpendicular lines have slopes that are negative reciprocals.)
Because you already know the y-intercept for line n, use slope-
intercept form: y = 2x – 3.
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Chapter  Checkout

Q&A
1. True or False: All rational numbers are also real numbers.
2. Express the inequality x ≥ 7 in interval notation.
3. True or False: (1 + 2) + 3 = 3 + (1 + 2) because of the associative prop-

erty of addition.
4. Simplify this radical: x y72 3 .
5. Express the solution in interval notation: |x – 2| + 3 > 5.
6. Express the solution in interval notation: x2 ≤ 9.
7. Find the equation of the line through points (0,–3) and (–2,7), and

write the linear equation in slope-intercept form.

Answers: 1. T 2. [7,∞) 3. F 4. x xy6 2 5. , ,0 4,3 3-^ ^h h 6. [–3,3] 
7. y = –5x – 3
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Chapter 2

FUNCTIONS

Chapter  Check-In

❑ Differentiating between relations and functions

❑ Understanding domain and range

❑ Introducing important functions and their graphs

❑ Stretching, shifting, and reflecting function graphs

❑ Combining multiple functions

❑ Designing inverse functions

The majority of the equations you deal with in precalculus are functions.
Functions are equations with specific properties, and these properties

allow many freedoms. In this chapter, you learn what functions are, how
to recognize them, how to graph them, and then how to manipulate them.

Relations vs. Functions

A function is a special kind of relation. Therefore, before you can under-
stand what a function is, you must first understand what relations are.

Understanding relations

A relation is a diagram, equation, or list that defines a specific relation-
ship between groups of elements. This is a relatively formal definition for
a very basic concept. Consider the relation r defined as:

r:{(–1,3), (0,9), (1,5), (2,7), (3,2)}

Here, r expresses a relationship among five pairs of numbers; each pair is
defined by a separate set of parentheses. Think of each set of parentheses
as an (input, output) pairing; in other words, the first number in each pair
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Chapter 2: Functions 27

represents the input, and the second number is the output r gives for that
input. For example, if you input the number –1 into r, the relation gives
an output of 3, since the pair (–1,3) appears in the definition of r.

The relation r is not designed to accept all real numbers as potential inputs.
In fact, it will accept inputs only from the set {–1, 0, 1, 2, 3}; these num-
bers are the first piece of each pair in the definition of r. That set of poten-
tial inputs is called the domain of r. The range of r is the set of possible
outputs (the second number from each of the pairings): {2, 3, 5, 7, 9}. It
is customary to order the sets from least to greatest.

Defining functions

A function is a relation whose every input corresponds with a single out-
put. This is best explained visually. In Figure 2-1, you see two relations,
expressed as diagrams called relation maps. Both have the same domain,
{A, B, C, D}, and range, {1, 2, 3}, but relation g is a function, while h is not.

Figure 2-1 Two relations, g and h, look very similar, but g is a function and h is
not. To see why, examine the mapping paths that lead from B in the relations.

relation g

A

B
DC

1
2

3

relation hA
B

DC
1 2

3

04 539841 Ch02.qxd  1/26/04  2:47 PM  Page 27



28 CliffsQuickReview Precalculus

Notice that in h the input B is paired with two different outputs, both 1
and 2. This is not allowed if h is to be a function. To be a function, each
input is allowed to pair with only one output element. Visually, there can
be only one path leading from each member of the domain to a member
of the range. You may have noticed that in both relations shown in 
Figure 2-1, the inputs C and D result in the same output, 3. That is
allowed for functions; two roads may lead to a single output, but two roads
cannot lead from a single input. 

A special term is reserved for a function in which every output is the result
of a unique input. That is to say, there is only one road leading out from
each input and only one road leading into each output. Those functions
are said to be one-to-one. 

Writing functions

If all relations were written as ordered pair or visual maps, it would be sim-
ple to tell which of them were functions. However, it would also be tedious
and inconvenient to write functions that had more than a handful of
domain and range elements. Therefore, most functions are written using
function notation. Take, for example, the function y = x2. You know that
y is a function of x because for every number x you plug into x2, you can
get only one corresponding output. Written in function notation, that 
function looks like f (x) = x2.

Function notation is handy for two reasons:

■ It contains the name of the function

■ It’s easy to tell the value you’re plugging into the function

Example 1: Evaluate the function f (x) = 2x2 + x – 3 for x = –1.

Evaluating the function at x = –1 is the same as finding the value f (–1).
Plug in –1 everywhere you see an x:

f (–1) = 2(–1)2 + (–1) – 3

f (–1) = 2 – 4 = –2

Occasionally, you’ll encounter piecewise-defined functions. These are
functions whose defining rules change based on the value of the input, and
are usually written like this:

,

,

<
f x

g x x a

h x x a$
=^

^

^
h

h

h
*
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In f (x), any input that is less than the value a must be plugged into g. For
instance, if c < a, then f (c) = g(c). On the other hand, if your input is greater
than or equal to a, h(x) gives you the correct output for f. Remember that
the inequality restrictions are based on the number you input, not the out-
put of the function.

Example 2: Find the following values for

,

, >
g x

x x

x x a

6 1

3

#
=

+

-
^ h *

(a) g(–2)
The defining rule for g changes from x + 6 to x – 3 once your input
is greater than 1. However, because the input is –2, you should
stick with the first rule: x + 6.

g(–2) = x + 6 = (–2) + 6 = 4

(b) g(1)
Note that g gets its value from the expression x + 6 when the input
is less than or equal to 1: 

g(1) = x + 6 = 1 + 6 = 7

(c) g(5)
Now that if the input is greater than 1, you use x – 3 to get the
value for g:

g(5) = x – 3 = 5 – 3 = 2

You now know enough to determine whether given relations possess the
proper characteristics to be classified as functions.

Example 3: Explain why, in each of the following relations, y is not a func-
tion of x.

(a) x2 + y2 = 9
Begin by solving for y:

y x

y x

9

9

2 2

2
!

= -

= -

Notice that any valid input for x (except for x = –3, 0, and 3) will
result in two corresponding outputs. For example, if x = 2, then 

( )

,

y

y

9 2

5 5

2
!= -

= + -
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Remember, functions can allow only one output per input.

(b)
,

,
y

x x

x x

3 0

1 0

2

2

#

$
=

+

-
*

When x = 0, this function has two outputs. Notice that both con-
ditions in the piecewise definition include 0, so y = 3 and –1 when
x = 0. Because one input cannot have two corresponding outputs,
this is not a function.

Function Graphs

The simplest, although most labor intensive, way to graph any function is
to plug in many input values to see what results and plot the (input, output)
pairs on the coordinate plane. In fact, if you want to produce a relatively
exact, hand-drawn graph, this is your only alternative once the functions
become more complex than simple linear equations. In Figure 2-2, five dif-
ferent x-values provide a pretty good graph of the function f (x) = x2. 

Figure 2-2 Whether a simple or complex function, the one sure way to get
an accurate graph is to evaluate that function at a number of points.

You will learn more advanced methods of creating quicker, but slightly less
accurate, graphs later in this chapter. Before that, you should familiarize
yourself with some important information about the graphs of functions.

 x f (x) = x2 point
 –2 f (–2) = (–2)2 = 4 (–2, 4)
 –1 f (–1) = (–1)2 = 1 (–1, 1)
 0 f (0) = (0)2 = 0 (–0, 0)
 1 f (1) = (1)2 = 1 (1, 1)
 2 f (2) = (2)2 = 4 (2, 4)

–1–2 21

1

2

3

4
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The vertical line test

You can quickly determine whether a given graph is, in fact, the graph of
a function by using the vertical line test. If a vertical line can be drawn
through the graph and that line intersects the graph in more than one loca-
tion, then the graph cannot be that of a function. In Figure 2-3, you see
the graph of a relation named r, which cannot be a function since the ver-
tical line drawn at x = c intersects the graph in two places: (c,a) and (c,b).

Figure 2-3 The line x = c is just one of many vertical lines that can be
drawn through r, intersecting it in more than one place.

How does the vertical line test work? Think of x-values as the inputs for r
and the corresponding y-values as the outputs. In the case of relation r in
Figure 2-3, the input c has two corresponding outputs, a and b, which is
not permitted for functions. 

Finding symmetry

Functions may exhibit y-symmetry or origin-symmetry. A graph exhibiting
symmetry contains parts that will mirror one another in some fashion.
Specifically, if a function f (x) has a y-symmetric graph, then for every point
(x,y) on the graph, you’ll also find (–x,y). In the case of origin symmetry,
if the graph contains the point (x,y), then it must also contain (–x,–y), as
shown in Figure 2-4.

(c,a)

x = c

r
(c,b)
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Figure 2-4 A y-symmetric graph, like f (x), looks the same on either side
of the y-axis. An origin-symmetric graph, like g(x), acts in a completely
opposite manner on either side of the origin. If one side goes up and to the
right, the other goes down and left.

Example 4: Show that the graphs of the following functions demonstrate
the indicated type of symmetry.

(a) h(x) = x4 + x2 – 2, y-symmetry
Begin by plugging in –x for each x.

h(–x) = (–x)4 + (–x)2 – 2

h(–x) = x4 + x2 – 2

The even exponents caused the –x’s to become positive, and you
find that h(–x) = h(x). When this is true, h must be y-symmetric.

(b) j(x) = x5 + x3, origin-symmetry

Replace all x’s with –x’s, and replace j(x) with –j(x):

–j(–x) = (–x)5 + (–x)3

–j(–x) = –x5 – x3

Divide everything by –1:

j(–x) = x5 + x3

Since the right side matches the original function, j must be origin-
symmetric.

Note that origin-symmetric functions are also called odd functions (since
they usually contain only odd-powered exponents); y-symmetric functions
are called even functions for the same reason.

f (x)

g (x)

(-x,y)

(-x,-y)

(x,y) (x,y)
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Calculating intercepts

The intercepts of a function are the real number values at which the graph
crosses either the x- or the y-axis. Whereas a function may have numerous
x-intercepts, it may have only one y-intercept to pass the vertical line test.
The x-intercepts are also known as the function’s roots or zeros.

Example 5: Find the intercepts of the function f (x) = x2 – 7x + 12.

To calculate the y-intercept, substitute 0 for x:

f (0) = 02 – 7(0) + 12 = 12

The y-intercept is 12, since f (x) crosses the y-axis at the point (0,12).
To find the x-intercepts, substitute 0 for f (x):

x2 – 7x + 12 = 0

(x – 3)(x – 4) = 12

x = 3, 4

The graph of f will intercept the x-axis twice, at x = 3 and x = 4. If you
can’t solve the quadratic equation above, review the process in Chapter 3.

Determining domain and range

In most cases, it’s very simple to determine the domain and range of a func-
tion based solely on its graph. Because the domain represents the set of
inputs, or x’s, if a portion of the graph appears above or below any value
on the x-axis, that number must be in the domain of the function. Simi-
larly, if a piece of the graph appears to the left or right of any value on the
y-axis, that value must appear in the range of the function.

Example 6: Given the graph (Figure 2-5) of h(x), identify the function’s
domain and range.

Look along the x-axis. Every x-value has a portion of the graph above or
below it except for the space between x = –1 and 1. Since there’s a dot at
x = 1, that’s included in the domain, but x = –1 is not. Therefore, the
domain is , ,1 1,3 3- -^ h h6 . Along the y-axis, the only values that have no
portion of the graph to either side occur in the small vertical gap between
y = –2 and –1. Thus, the range is , ,2 1,3 3- - -^ h h6 .
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Figure 2-5 The graph of h(x), used in Example 6.

Eight Key Function Graphs

The vast majority of the graphs you’ll create are actually just transformed
(stretched, shifted, and reflected) versions of the simple graphs in Figure 2-6.
You should be able to recognize these graphs on sight (many of them will
already be familiar to you). In addition, you should memorize the graph,
key points, and domain and range of each.

■ Reciprocal function, y =x
1. Domain and range: , ,0 0,3 3-^ ^h h

Since this function outputs the reciprocal of the input, you cannot
input 0, nor can you get 0 as an output. Therefore, both the lines 
x = 0 and y = 0 are asymptotes.

■ Quadratic graph, y = x2. Domain: (–∞,∞). Range: [0,∞).

The most basic parabola of all, this graph must have a nonnegative
range, because the square of any number is positive.

■ Cubic graph, y = x3. Domain and range: (–∞,∞).

This graph looks a lot like y = x2, but it’s steeper and its left half is
bent down into negative y values. This makes sense, because cubics
are larger than squares and can have negative outputs.
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Figure 2-6 Eight important function graphs you should memorize.

y = x
1 y = x 2

y = x 3 y = |x|

y = e xy = ln x

y =   x√
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■ Absolute value, y = |x|. Domain: (–∞,∞). Range: [0,∞). The output
for this function is simply the input without any negative sign. Note
that it is essentially the graph of y = x, with its left side bent upward,
so that it gives positive outputs rather than negative.

■ Square root, y x= . Domain and range: [0,∞).

Since you can take the square root of a positive number only, and a
square root always outputs a positive number, both the domain and
range for this function must be non-negative. Note that the graph
passes through (1,1) since the square root of 1 is 1. Similarly, it passes
through (4,2), since the square root of 4 is 2.

■ Greatest integer function, y = [[x]]. Domain: (–∞,∞). Range: all integers.

This function returns the largest integer less than or equal to the input.
Therefore, [[5.95]] = 5, since 5 is the largest integer which is less than
or equal 5.95. Negatives are a little tricky; notice that [[–1.6]] = –2,
not –1, so you don’t just drop the decimal portion when you calcu-
late the greatest integer output. The output is –2 (the largest integer
less than –1.6). (Remember, –1 > –1.6.)

■ Natural logarithmic function, y = ln x. Domain: (0,∞). Range: (–∞,∞).

You’ll learn more about this function in Chapter 4. For now, remem-
ber that it accepts only positive inputs, contains the point (1,0), and
increases very slowly as x gets larger.

■ Natural exponential function, y = ex. Domain: (–∞,∞). Range: (0,∞).

Again, Chapter 4 provides you with a better understanding of this
function. Until then, know that the function outputs only positive
numbers (although it accepts any real number input), it contains the
point (0,1), and the function increases very quickly as x gets larger.

Basic Function Transformations

Just by adding a well-placed constant, negative sign, or set of absolute value
symbols, you can contort, twist, and bend graphs in almost any way imag-
inable. The practical application of this knowledge is a technique that
makes creating quick sketches of graphs an almost trivial matter. Whereas
the task of graphing the function f (x) = –2(x + 3)2 + 1 might at first seem
complicated, it becomes much easier once you see f as a series of transfor-
mations on the much simpler graph of y = x2.
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Vertical and horizontal shifts

Adding to or subtracting a real number from a function or within that func-
tion causes its entire graph to shift either vertically or horizontally. Specif-
ically, the graph of y = f (x) + a is just the graph of y = f (x) moved up a
units (if a > 0), or moved down a units (if a < 0). If, however, you add or
subtract that value within the function, the graph shifts horizontally. So,
the graph of y = f (x + b) is the just the entire graph of y = f (x) moved b
units to the right (if b < 0), or b units to the left (if b > 0).

Note that horizontal shifts work differently than vertical shifts. In the pre-
vious description, a positive a value moves the graph up, so you might
assume that a positive b value moves the graph to the right. It does not;
instead, the graph moves left.

Example 7: Sketch the graph of f (x) = (x + 2)2 – 3.

You already know that the graph of y = x2 is a parabola whose vertex lies
on the origin. In the function f, you are adding 2 within the squared func-
tion and subtracting 3 from the squared function. Therefore, the 2 corre-
sponds to a leftward horizontal shift (since 2 is positive) and the 3 equates
to a downward vertical shift. See Figure 2-7 for the graph.

Figure 2-7 The graph of f (x) is simply the graph of y = x2 moved 2 units
left and 3 units down.

1
–1

–2

–3

3

2

1

–1–2–3–4–5–6 2 3

y = x 2

f (x) = (x+2)2–3
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Reflections

There are two important kinds of graph reflections, and both are the result
of multiplying by –1:

■ The graph of –f (x) is the graph of f (x) reflected across the x-axis.
In other words, all the original points (x,y) become (x,–y). For an
example, see Figure 2-8.

Figure 2-8 The graphs of f1(x) = ln x and f2(x) = –ln x are reflections of
each other across the x-axis.

■ The graph of f (–x) is the graph of f (x) reflected across the y-axis. In
this case, all the original points (x,y) become (–x,y). For an example,
see Figure 2-9.

f 1(x) = ln x

f 2(x) = –ln x

1–1–2 2 3 4 5 6 7

1

2

3

4

–3

–2

–1
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Figure 2-9 The graphs of g x x1 =^ h and g x x2 = -^ h are reflections of
each other across the y-axis.

Stretching and squishing

If you multiply an entire function by a positive constant a, you are essen-
tially multiplying all of the outputs, or y-values, by a. If a > 1, this will
stretch the graph, making the positive heights more positive and the neg-
ative heights more negative. If, on the other hand, 0 < a < 1, the heights
of each point on the graph will squish, getting closer to the x-axis.

In Figure 2-10, you’ll find three graphs: h(x) = x2 and two of its transfor-
mations. Note how the graph of 2h(x) is stretched, compared to the orig-
inal graph; all of the functions’ heights are twice as far away from the x-axis
than they were originally. On the other hand, 2

1h(x) possesses function
heights 50 percent smaller than h(x).

1–1–2–3–4 2 3 4

1

2

3

g
1
(x)=   x√√g

2
(x)=   –x
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Figure 2-10 The graph of a ⋅ h(x) will stretch or squish the graph of a
depending on a’s value.

Multiple transformations

If more than one transformation is applied to a function, this is the order
you should follow when sketching the new graph:

1. Reflections
2. Stretching or squishing
3. Vertical and horizontal shifts

Example 8: Sketch the graph of f (x) = –3|x – 1| + 2.

Take the basic graph of y = |x|, flip it across the x-axis, stretch it to three
times its normal height, and then move it 1 unit right and 2 units up, as
shown in Figure 2-11.

1

1
2

2

3

2h(x)

h(x)

h(x)

1–1–2 2
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Figure 2-11 The graph of f (x), the answer to Example 8.

Combining and Composing Functions

You can create new functions by combining existing functions. Usually,
these new functions are the result of something as simple as addition or
subtraction, but functions are capable of combining in ways other than
those simple binary operations.

Arithmetic combinations

First let’s look at the easiest way to create a new function from existing
functions: performing basic arithmetic operations.

Example 9: If f (x) = x2 – 2x + 3 and g(x) = x + 1, find the following.

(a) (f – g)(–1)
Subtract g(x) from f (x) and substitute –1 for x:

(f – g)(x) = f (x) – g(x) = (x2 – 2x + 3) – (x + 1) = x2 – 3x + 2

(f – g)(–1) = (–1)2 – 3(–1) + 2 = 1 + 3 + 2 = 6

1

–1

2

1 2 3–1
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(b) g
f

xe ^o h

Divide f (x) by g(x). Note that f can be factored, so the fraction can
then be simplified.

g
f

x x
x x

x
x x

x1
2 3

1
3 1

3
2

= +
- +

=
+

- +
= -e ^

^

^ ^
o h

h

h h
, if x ≠ –1

Note that the domain of the new function is all real numbers except for 
x = –1, which is different than the domain of both f (x) and g(x).

The composition of functions

The process of plugging one function into another is called the compo-
sition of functions. When one function is composed with another, it is
usually written explicitly: f (g(x)), which is read “f of g of x.” In other
words, x is plugged into g, and that result is in turn plugged into f. Func-
tion composition can also be written using this notation: h k x%^ ^h h, which
is the mathematical equivalent of the statement h(k(x)).

Example 10: If f (x) = x2 + 10 and g x x 1= -^ h , find the following.

(a) f (g(x))
Substitute the radical representing g(x) for the x in f (x):

f g x f x x

f g x x x

1 1 10

1 10 9

2
= - = - +

= - + = +

^` a a

^`

hj k k

hj

(b) g f 4%` ^j h

This means the same thing as g(f (4)). First find g(f (x)):

g f x g x x x10 10 1 92 2 2
= + = + - = +^` ` `hj j j

Now you can evaluate g(f (4)):

g f 4 4 9 16 9 52= + = + =^` ^hj h

(c) f f x%` ^j h

Substitute x2 + 10 for the x in f (x):

f (f (x)) = f (x2 + 10) = (x2 + 10)2 + 10

f (f (x)) = x4 + 20x2 + 110
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Inverse Functions

You have used inverse functions since your first days of algebra to cancel
things out. Now that you possess a higher degree of mathematical profi-
ciency, you can better explore why and how they work.

What is an inverse function?

The inverse function for f (x), labeled f –1(x) (which is read “f inverse of x”),
contains the same domain and range elements as the original function,
f (x). However, the sets are switched. In other words, the domain of f (x) is
the range of f –1(x), and vice versa. In fact, for every ordered pair (a,b)
belonging to f (x), there is a corresponding ordered pair (b,a) that belongs
to f –1(x). For example, consider this function, g:

g :{(–2,0), (1, 3), (5, 9)}

The inverse function is the set of all ordered pairs reversed:

g–1:{(0,–2), (3,1), (9,5)}

Only one-to-one functions possess inverse functions. Because these func-
tions have range elements that correspond to only one domain element
each, there’s no danger that their inverses will not be functions. The hor-
izontal line test is a quick way to determine whether a graph is that of a
one-to-one function. It works just like the vertical line test: If an arbitrary
horizontal line can be drawn across the graph of f (x) and it intersects f in
more than one place, then f cannot be a one-to-one function.

Inverse functions have the unique property that, when composed with
their original functions, both functions cancel out. Mathematically, this
means that f f x f f x x1 1

= =
- -
^` ^`hj hj .
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Graphs of inverse functions

Since functions and inverse functions contain the same numbers in their
ordered pair, just in reverse order, their graphs will be reflections of one
another across the line y = x, as shown in Figure 2-12.

Figure 2-12 Inverse functions are symmetric about the line y = x.

Finding inverse functions

To find the inverse function for a one-to-one function, follow these steps:

1. Rewrite the function using y instead of f (x).
2. Switch the x and y variables; leave everything else alone.
3. Solve the new equation for y.
4. Replace the y with f –1(x).
5. Make sure that your resulting inverse function is one-to-one. If it

isn’t, restrict the domain to pass the horizontal line test.

Example 11: If f x x2 3= +^ h , find f –1(x).

Follow the five steps previously listed, beginning with rewriting f (x) as y:

y x2 3= +

f (x)

y = x

f  –1(x)
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x y2 3= +

x2 = 2y + 3

,f x x x2
1 3 01 2 $= -

-
^ `h j

Note the restriction x ≥ 0 for f –1(x). Without this restriction, f –1(x) would
not pass the horizontal line test. It obviously must be one-to-one, since it
must possess an inverse of f (x). You should use that portion of the graph
because it is the reflection of f (x) across the line y = x, unlike the portion
on x < 0.

Chapter  Checkout

Q&A
1. True or False: The function k is one-to-one.

k:{(–2,3), (–1,–2), (0,6), (1,3), (2,–7)}

2. Given the function h(x) = –(x – 1)2 + 5:
(a) What is the domain of h(x)?
(b) What is the range of h(x)?

3. Identify the function m shown in this graph.

1–1

–1

–2

–3

–4

–5

2–2 3 4
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4. If f (x) = |x – 6| and g(x) = [[x]], evaluate .f g 2 3% -` ^j h.
5. If j x x

2
5

=
-

^ h , find j –1(x).
Answers: 1. F 2. (a) (–∞,∞) (b) (–∞,5] 3. m x x 2 3= - + -^ h 4. 9 
5. j x x2 51

= +
-
^ h
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Chapter 3

POLYNOMIAL AND RATIONAL
FUNCTIONS

Chapter  Check-In

❑ Factoring polynomials

❑ Solving quadratic equations

❑ Calculating the roots of polynomials

❑ Dividing polynomials via long and synthetic division.

❑ Working with irrational roots

❑ Graphing rational functions

Once you can find the roots of polynomials, you possess the formidable
skill to solve nearly any equation by hand. Linear equations are easy

to solve, but once the polynomials increase in degree, the procedures
become more involved. This chapter begins with a review of factoring and
quadratic functions, and eventually graduates to more advanced topics in
root calculation.

Factoring Polynomials

Factoring, the process of “unmultiplying” polynomials in order to return
to a unique string of polynomials of lesser degree whose product is the
original polynomial, is the simplest way to solve equations of higher degree.
Although you should already be proficient in factoring, here are the meth-
ods you should be familiar with, in case you need to review.
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Greatest common factors

If all of the terms in a polynomial contain one or more identical factors,
combine those similar factors into one monomial, called the greatest com-
mon factor, and rewrite the polynomial in factored form.

Example 1: Factor the expressions.

(a) 15x3 + 5x2 – 25x
Since each term in the polynomial is divisible by both x and 5, the
greatest common factor is 5x. In factored form, the polynomial is
written 5x(3x2 + x – 5).

(b) 18x3y5z4 + 6x2yz3 – 9x2y3z2

The largest monomial by which each of the terms is evenly divisible,
thus the greatest common factor, is 3x2yz2, so factor it out.

3x2yz2(6xy4z2 + 2z – 3y2)

Factoring by grouping

Sometimes, the greatest common factor of an expression is not just a
monomial but an entire parenthetical quantity. You are allowed to factor
out quantities in parentheses just as you can factor out individual terms.

Example 2: Factor the following expressions.

(a) 3x(x – 5) + 2y(x – 5) – 10(x – 5)
The only thing that divides into each of these terms evenly is the
linear expression (x – 5). Factor it out, just as you would any great-
est common factor, leaving behind the monomial in each term that
was multiplied by (x – 5):

(x – 5)(3x + 2y – 10)

(b) 3x2 – 6x – 4x + 8
Nothing, except the number 1, divides evenly into each of the
terms, and there’s no use factoring out 1. However, the first two
terms have a greatest common factor of 3x. Furthermore, if you
factor –4 out of the final two terms, you can factor by grouping:  

3x(x – 2) – 4(x – 2)

(x – 2)(3x – 4)
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Factoring quadratic trinomials

Your most common factoring task, aside from greatest common factoring,
is changing a quadratic trinomial into the product of two linear binomials.

Example 3: Factor the following expressions.

(a) x2 – 4x – 12
If the leading coefficient is 1, as it is here, the process is simple.
Find two numbers whose sum equals the coefficient of the x term
and whose product is equal to the constant term. The only two
numbers whose sum is –4 and that multiply to give –12 are –6
and 2. Use these as the constants in the linear factors:

(x – 6)(x + 2)

(b) x2 – 10x + 24
Since this quadratic trinomial has a leading coefficient of 1, find
two numbers with a product of 24 and a sum of –10. Through
some experimenting, you’ll find those numbers are –6 and –4:

(x – 6)(x – 4)

(c) 2x2 + 9x – 5
If the leading coefficient is not 1, you must follow another proce-
dure. You still seek two numbers, and those numbers will still add
up to 9. However, they will multiply to give you –10, the product
of the leading coefficient and the constant. (You didn’t have to use
this technique when the leading coefficient was 1, since the prod-
uct of the leading coefficient and the constant would just have been
the constant anyway.) The numbers in question are 10 and –1.
Rewrite the x coefficient as the sum of those numbers:

2x2 + (10 – 1)x – 5

Distribute the x to both 10 and –1:

2x2 + 10x – x – 5

To finish, factor by grouping:

2x(x + 5) – 1(x + 5)

(x + 5)(2x – 1)
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Special factor patterns

Occasionally, the only effort you’ll have to expend on a factoring problem
is recognizing that the polynomial in question matches one of three spe-
cific patterns. You should memorize each of these formulas so that you can
spot them instantly:

■ Difference of perfect squares: x2 – a2 = (x + a)(x – a)

■ Difference of perfect cubes: a3 – b3 = (a – b)(a2 + ab + b2)

■ Sum of perfect cubes: a3 + b3 = (a + b)(a2 – ab + b2)

Example 4: Factor the following expressions completely.

(a) 27x3 + 8
Note that 27x3 and 8 are both perfect cubes, so apply the sum of
perfect cubes formula:

27x3 + 8 = (3x)3 + (2)3 = (3x + 2)[(3x)2 – (3x)(2) + (2)2]

(3x + 2)(9x2 – 6x + 4)

(b) 20x2 – 405
This doesn’t appear to match any of the patterns, but you can factor
out a greatest common factor of 5 to begin:

5(4x2 – 81)

Now it’s clearer that (4x2 – 81) is the difference of perfect squares,
since (2x)2 = 4x2 and 92 = 81:

5(2x + 9)(2x – 9)

Solving Quadratic Equations

There are three major techniques for solving quadratic equations (equations
formed by polynomials of degree 2). The easiest, factoring, will work only
if all solutions are rational. The other two methods, the quadratic formula
and completing the square, will both work flawlessly every time, for every
quadratic equation. Of those two, the quadratic formula is the easier, but
you should still learn how to complete the square, because you’ll need the
skill again in Chapter 9.
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Factoring

To solve a quadratic equation by factoring, follow these steps:

1. Move all non-zero terms to the left side of the equation, effectively
setting the polynomial equal to 0.

2. Factor the quadratic completely.
3. Set each factor equal to 0 and solve the smaller equations. 
4. Plug each answer into the original equation to ensure that it makes

the equation true.

Example 5: Solve the equation.

3x3 = –13x2 + 10x

Add 13x2 and –10x to both sides of the equation:

3x3 + 13x2 – 10x = 0

Factor the polynomial, set each factor equal to 0, and solve.

x(3x – 2)(x + 5)

x = 0 3x – 2 = 0 x + 5 = 0

x = 0, 3
2, –5

Because all three of these x-values make the quadratic equation true, they
are all solutions.

The quadratic formula

If an equation can be written in the form ax2 + bx + c = 0, then the solu-
tions to that equation can be found using the quadratic formula:

x a
b b ac

2
42

!
=

- -

This method is especially useful if the quadratic equation is not factorable.
A word of warning: Make sure that the quadratic equation you are trying
to solve is set equal to 0 before plugging the quadratic equation’s coeffi-
cients a, b, and c into the formula. You should memorize the quadratic
formula if you haven’t done so already.
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Example 6: Solve the quadratic equation.

6x = 4x2 + 1

Set the equation equal to 0:

–4x2 + 6x – 1 = 0

The coefficients for the quadratic formula are a = –4, b = 6, and c = –1:

,

x

x

x

x

x

2 4
6 6 4 4 1

8
6 20

8
6 2 5

8

2 3 5

4
3 5

4
3 5

2
!

!

!

!

=
-

- - - -

= -
-

= -
-

= -

-

=
-

- +
-

- -

^

^ ^ ^

a

h

h h h

k

You can also write the answers as ,x 4
3 5

4
3 5

=
- + , the result of multi-

plying the numerators and denominators of both by –1. Note that the
quadratic formula technique can easily find irrational and imaginary roots,
unlike the factoring method.

Completing the square

The most complicated, though itself not very difficult, technique for 
solving quadratic equations works by forcibly creating a trinomial that’s a
perfect square (hence the name). Here are the steps to follow:

1. Put the equation in form ax2 + bx = c. In other words, move only
the constant term to the right side of the equation.

2. If a ≠ 1, divide the entire equation by a.

3. Add the constant value a
b
2

2

c m to both sides of the equation.

4. Write the left side of the equation as a perfect square.
5. Take the square roots of both sides of the equation, remembering

to add the “±” symbol on the right side.
6. Solve for x.
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Example 7: Solve the quadratic equation by completing the square.

2x2 + 12x – 3 = 0

Move the constant so it alone is on the right side:

2x2 + 12x = 3

Divide everything by the leading coefficient, since it’s not 1:

x2 + 6x = 2
3

Half of the x-term’s coefficient squared, 2
6 2

c m , = 9. Add that value to both
sides of the equation:

x2 + 6x + 9 = 2
3 + 2

18

The left side is a perfect square:

(x + 3)2 = 2
21

Solve for x: Don’t forget that you must include a ± sign when square root-
ing both sides of any equation.

x

x

3
2
21

3
2
21

!

!

+ =

= -

2
^ h

The answer can also be written as x 3 2
42

!=- , if rationalized.

Polynomial Division

You can use one of two techniques to divide polynomials. When you found
the greatest common factor, the easiest method was to see what values
divided easily into every term. Likewise, you can divide polynomials to
find factors of those polynomials.

Long division

The method of long division, similar to the procedure used by elementary
school students to divide whole numbers, is the most general method of
finding the quotient of polynomials.

05 539841 Ch03.qxd  1/26/04  2:48 PM  Page 53



54 CliffsQuickReview Precalculus

Example 8: Divide x4 + 3x3 – 2x2 + 7x + 1 by x2 – 2x + 2.

Write as a long division problem. Because you are dividing by x2 – 2x + 2, it
goes outside the division symbol and is called the divisor. The fourth-degree
polynomial goes inside the division symbol, and is called the dividend.

x x x x x x2 2 3 2 7 12 4 3 2
- + + - + +g

Answer this question: What can you multiply the first term of the divisor by
to get the first term of the dividend? In other words, x2 times what equals x4?
The answer is x2, so write that above the division symbol (in the quotient
space), and line it up above the term –2x2, since it has the same degree:

x x x x x x
x

2 2 3 2 7 12 4 3 2

2

- + + - + +g

Multiply the x2 in the quotient by each term in the divisor and write the
results below the terms in the dividend so that the degrees match. You want
to subtract these terms, so change each sign to its opposite as you write it,
and combine the like terms:

x x x x x x
x

x x x

x x

2 2 3 2 7 1
2 2

5 4

2 4 3 2

2

4 3 2

3 2

- + + - + +

- + -

-

g

Bring the next unused term in the dividend (7x) down, so that you now
have the polynomial 5x3 – 4x2 + 7x. Repeat the process, this time answer-
ing the question: What times x2 equals 5x3 (the first term of the divisor
and the first term of the new polynomial)? When finished, bring down the
“+1” in the dividend and repeat the process:

x x x x x x
x x

x x x

x x x

x x

2 2 3 2 7 1
5 6

3 2

5 10 10

6 12 12

2 4 3 2

2

4 3 2

3 2

3 2

2

2

- + + - + +

+ +

- + -

- + -

- + -

x x x

x x

5 4 7

6 3 1

- +

- +

x9 11-

g

Since 9x – 11 has a smaller degree than the divisor, you have finished; the
remainder will be 9x – 11. The answer will be the quotient plus the remain-
der divided by the divisor:
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x x
x x

x5 6
2 2

9 112
2+ + +
- +

-

Before undertaking any long division problem, make sure there are no
“missing terms” in the divisor or dividend. In other words, if the poly-
nomial is of degree n, be sure it has n + 1 terms. For example, if you want
to divide x3 + 2x + 6 by x2 – 5, you’ll notice that the divisor has degree two,
but not 2 + 1 = 3 terms, so you need to rewrite x2 – 5 as x2 + 0x – 5. You’ll
have to do the same with the dividend, so your setup for the problem will
look like this:

x x x x x0 5 0 2 62 3 2
+ - + + +g

Synthetic division

If the divisor of a polynomial division problem is linear and its leading
coefficient is 1, you can use synthetic division to find the quotient, a
method shorter than long division, using only the coefficients of the divi-
sor and dividend.

Example 9: Divide 2x3 – x2 + 3 by x + 2.

Since the divisor is in form (x + a), this is a perfect candidate for synthetic
division (although long division will still work). Begin by writing the oppo-
site of the divisor’s constant term (–2) in a small box, and list the coeffi-
cients of the dividend next to it. Fill in any missing terms with a 0
coefficient. (This dividend has no x term, so fill in a 0 for it.) Then draw
a horizontal line beneath everything, leaving some space:

2 2 1 0 3- -

Bring down the first coefficient (2) and write it below the line:

2 2 1 0 3

2
.

- -

Multiply the number in the box (–2) by the number below the line (2)
and write the result (–4) below the number in the next column (–1):

2 2 1 0 3
4

2

- -
-
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Combine the numbers in the new column (–1 – 4 = –5) and write the
result below the line. Now, repeat the procedure. Multiply the number in
the box (–2) by the number below the line (–5) and write the result (10)
below the number in the next column (0). Continue until you have as
many numbers below the line as you do coefficients in the dividend:

2 2 1 0 3
4 10 20

2 5 10 17

- -
- -
- -

The numbers below the line are the coefficients of your answer, the quo-
tient, and its remainder. The quotient’s degree will be one less than the
dividend; since the dividend was a cubic, the quotient will be a quadratic.
Write the remainder (–17) as a fraction divided by the divisor, just as you
did with long division. The final answer is:

x x x2 5 10 2
172

- + + +
-

Important Root-Finding Theorems

Although the skill of dividing polynomials is, in and of itself, a worthwhile
outcome, that skill can be applied to a greater purpose: factoring and find-
ing the roots of polynomial functions. In this section, you’ll explore the
two theorems that allow you to extend the technique of synthetic division
to the realm of factoring.

The remainder theorem

The remainder theorem says that if a polynomial function f (x) is divided
by a linear term of the form (x – a) and the remainder is r, then f (a) = r.

This is a startling discovery, if not altogether useful. Most of the time, eval-
uating a function for a constant value is not an arduous or challenging task,
so you might wonder why a theorem that provides a shortcut for evaluating
functions is so important. Frankly, it’s not as important as its corollary, the
factor theorem, which you’ll read about in just a moment.

Example 10: Demonstrate the remainder theorem by showing that f (–1)
is equal to the remainder when the polynomial f (x) = –x3 + 3x2 + x – 7 is
divided by x + 1.

Since the divisor is in the form (x – a), use synthetic division to calculate
the remainder:
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1 1 3 1 7
1 4 3

1 4 3 4

- - -
-

- - -

The remainder equals –4; therefore, according to the theorem, so should
f (–1):

f (–1) = –(–1)3 + 3(–1)2 + (–1) – 7

f (–1) = 1 + 3 – 8 = –4

The factor theorem

If a non-zero number a is a factor of another number b, when you divide 

a
b , you should get an integer. That is to say, a divides evenly into b with no 
remainder. For example, you know that 5 is a factor of 20 since 5

20 = 4, an 
integer with no remainder. The same is true of polynomials, as stated
explicitly by the factor theorem. According to that theorem, a polynomial
function f (x) has a factor (x – a) if and only if f (a) = 0.

In other words, if you use synthetic division to divide f (x) by (x – a) and
get a reminder of 0, then you know that f (a) = 0 (according to the remain-
der theorem). The factor theorem takes it one step further and concludes
that a remainder of 0 implies that (x – a) is actually a factor of f (x), mean-
ing that you can now factor polynomials other than just quadratics or
cubics that are the sum or difference of perfect squares. Remember that
the middle sign of the factor will always be the opposite sign of the root
itself.

Example 11: Prove that 4 is a root of g (x) = x3 – 7x2 + 14x – 8, and use
that information to factor g(x) completely.

If 4 is a root (in other words, 4 is a zero or x-intercept of g), then g(4) must
equal 0. You can show this using synthetic division:

4 1 7 14 8
4 12 8

1 3 2 0

- -
-

-

Because the remainder is 0, then g(4) = 0, proving that 4 is a root of g(x).
In fact, the result of the synthetic division tells you what g(x) equals when
the factor (x – 4) divides out evenly: x2 – 3x + 2. Therefore, you know that
the polynomial function g(x) can be factored as

(x – 4)(x2 – 3x + 2)
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(Don’t forget that the middle sign of the factor, the “–” in x – 4, must
always be the opposite sign of the root, which in this case was +4.)

You haven’t finished yet. That quadratic portion of the polynomial can be
factored as (x – 2)(x – 1). Therefore, the complete factorization of g(x) is

(x – 4)(x – 2)(x – 1)

Now that g (x) is fully factored, you can find its other two roots with no
work at all. Since (x – 2) and (x – 1) are factors, then x = 2 and x = 1 are
roots of g, according to the factor theorem.

Calculating Roots

Thanks to the factor theorem, you know that the process of factoring is
essentially akin to the process of finding the roots of a function, which is
useful not only in equation solving, but graphing as well, since the roots
of a function are also its x-intercepts. In this section, you explore the the-
ory and practice of root calculation.

The Fundamental Theorem of Algebra

A number of algebraic theorems lay the foundation and justify all of the
root-finding techniques you’ve used so far, as well as those you use in
the remainder of this chapter. The most important of these theorems is the
Fundamental Theorem of Algebra, which guarantees that any polyno-
mial of degree n will have exactly n total roots. 

This doesn’t mean that those roots will all be real numbers. Some may be
imaginary roots, meaning complex numbers with an imaginary part (not
imaginary in the sense of “existing only in the realms of the imagination”).
Although the Fundamental Theorem guarantees those roots are there, 
it doesn’t actually help you find them. To do that, you’ll need to use
known methods, like synthetic division, supplemented by some additional
techniques.

Descartes’ Rule of Signs

Since the Fundamental Theorem can guarantee only the existence of roots,
you need another tool to help you decipher how many of those guaranteed
roots are positive roots and how many are negative. This is accomplished
through Descartes’ Rule of Signs, a method of divining between the two
kinds of roots based on the number of sign changes between terms of a
given polynomial. This is best illustrated with an example.
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Example 12: Predict how many positive and negative real roots the poly-
nomial function f (x) = –1 + 3x + 2x3 – x2 has, based on Descartes’ Rule of
Signs.

Arrange the terms of the polynomial in order of exponent, from the term
with the highest exponent to the term with the lowest:

f (x) = 2x3 – x2 + 3x – 1

Ignore the coefficients of the terms, and pay attention only to their signs.
Count the number of times the sign changes in adjacent terms as you go
from left to right. Figure 3-1 demonstrates how to count the sign changes.

Figure 3-1 As you progress from left to right, the terms in the function
f (x) change signs three times.

According to Descartes’ Rule of signs, you will have either 3 positive real
roots or 1 positive real root. To arrive at this conclusion, take the number
of sign changes and continue to subtract 2, until your result is negative.
For example, if there had been 6 sign changes in f, then Descartes’ Rule of
Signs tells you that f has either 6, 4, 2, or 0 positive real roots. You do not
know which is true.

To determine the possible number of negative real roots, begin by finding
f (–x):

f (–x) = 2(–x)3 – (–x)2 + 3(–x) – 1

f (–x) = –2x3 – x2 – 3x – 1

Count the number of sign changes in adjacent terms from left to right.
This time, there are no sign changes at all. Therefore, f has no negative
real roots. If the number had been larger, say for example 5, you would
have had to consider the possibility of 5, 3, or 1 negative real root(s), again
following the procedure of subtracting 2 as you did when counting posi-
tive roots.

change from
+ to −

change from
− to +

change from
+ to −

2x3 − x2 + 3x − 1
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The Rational Root Test

In Example 11, you were only able to factor the function if first given one
of its roots. Without that initial root, you cannot perform synthetic divi-
sion and determine what the other roots are.

Therefore, it is critical to apply a test whose purpose is to help you locate
one or more roots of a function so that you are able to use the factor the-
orem and completely factor the function at hand. The Rational Root Test
(also called the Rational Zero Test) does exactly that. It provides a list of
candidates that may or may not be roots of a function, based on that func-
tion’s leading coefficient and constant term.

The Rational Root Test says that a polynomial with leading coefficient a
and constant term b can possess rational roots only of the form ± q

p
, where 

p is a factor of b and q is a factor of a. It cannot discern which are actually
roots; that task falls to you and synthetic division.

Example 13: Find all possible rational roots of

g(x) = 4x3 – 2x2 + 13x – 5

List the factors of the constant and leading coefficient, ignoring the signs
of those terms:

Factors of 5: 1, 5

Factors of 4: 1, 2, 4

The list of possible rational roots of g(x) will be the list of all possible com-
binations of the constant’s factors divided by the leading coefficient’s fac-
tors. (Additionally, each could be positive or negative, and that is indicated
with a ± sign.)

, , , , ,4
5

2
5 5 4

1
2
1 1! ! ! ! ! !

Because there are 6 possible combinations, each of which could be posi-
tive or negative, there are 12 possible rational roots for g(x).

Determining roots

Using the Rational Root Test in conjunction with Descartes’ Rule of Signs,
you are now able to factor (and hence find the roots of ) a far greater num-
ber of polynomials.
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Example 14: Find all roots of the following polynomials.

(a) f (x) = 3x3 – 2x2 – 7x – 2
According to the Rational Root Test, these are the potential rational
roots:

, , ,3
1

3
2 1 2! ! ! !

Try synthetic division with root candidates until you find one with
a 0 remainder. In this case, 2 works. (If the instructor allows you,
use a graphing utility to graph the function, and test any roots gen-
erated by the Rational Root Test that appear to be x-intercepts of
the graph.)

2 3 2 7 2
6 8 2

3 4 1 0

- - -

According to Descartes’ Rule of Signs, there is only one positive
root, so it must be x = 2. Find the other roots by factoring:

(x – 2)(3x2 + 4x + 1)

(x – 2)(3x + 1)(x + 1)

Set each factor equal to 0 and solve; the roots are x = –1, 3
1

- , and 2.

(b) g(x) = 2x4 + 9x3 – 21x2 – 77x + 15
The Rational Root Test lists these as possible roots:

, , , , , , ,2
1 1 2

3
2
5 3 5 2

15 15! ! ! ! ! ! ! !

Notice that 3 is a root:

3 2 9 21 77 15
6 45 72 15

2 15 24 5 0

- -
-

-

You currently have g(x) factored as

(x – 3)(2x3 + 15x2 + 24x – 5)

You still need to find another rational root, but when testing now,
perform synthetic division on the remaining cubic, rather than the
original quartic polynomial. The only other rational root is –5:

5 2 15 24 5
10 25 5

2 5 1 0

- -
- -

-
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Thus, g(x) = (x – 3)(x + 5)(2x2 + 5x – 1). The quadratic cannot be
factored, so you have to use the quadratic equation to find the final
two roots. (They cannot be found using synthetic division, nor were
they listed by the Rational Root Test, because they are irrational.)

x
2 2

5 5 4 2 1
4

5 33
2

! !
=

- - -
=

-

^

^ ^

h

h h

The four roots are

, , ,x 5 3 4
5 33

4
5 33

and=-
- + - -

(c) h(x) = x4 + 20x2 + 64
Factor h(x) as you would a quadratic:

h(x) = (x2 + 4)(x2 + 16)

Set each factor equal to 0 and solve:

x x

x x

x i x i

4 16

4 16

2 4

or

or

or

2 2

!

! !

=- =-

= - = -

= =

All four roots are imaginary: –4i, –2i, 2i, and 4i. Note that Descartes’
Rule of Signs warns you that this function will have neither positive
nor negative real roots, so all 4 roots must be imaginary.

Advanced Graphing Techniques

There are two more graph visualization methods you should master before
this study in polynomial functions comes to a close. The first will help you
determine what the ends of a polynomial graph will do, and the second will
assist you in drawing rational functions, the quotient of two polynomials.

The Leading Coefficient Test

Once you are capable of calculating the intercepts and roots of a graph,
you can generally get a good idea of the graph’s shape. You won’t be able
to construct more exact graphs without plotting point after point until
you understand more advanced calculus concepts, but in the meantime,
paying attention to the end behavior of a graph can help you visualize any
polynomial function.
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The end behavior of a graph is a description of the direction a graph is
heading as its x-values get either infinitely positive or infinitely negative.
In other words, the end behavior describes what direction the graph is head-
ing at the far right and left edges of the coordinate axes.

Some end behavior can be determined just by examining the degree of the
polynomial:

■ Polynomial functions of even degree have the same right- and left-
hand end behavior. In other words, the ends of the graph either both
go up or both go down. (Consider the graph of y = x2; both ends of
the parabola go up.)

■ Polynomial functions of odd degree have opposing right- and left-
hand end behavior. For example, if the right end of the graph goes
up, the left end goes down. (Consider the graph of y = x3; the graph
goes down to the left, but up to the right.)

The Leading Coefficient Test sheds additional light on the end behavior
of polynomials, and only requires you to know the leading coefficient of
the polynomial in question:

■ If the leading coefficient of a polynomial with an even degree is pos-
itive, both the left and right ends will go up. If the leading coefficient
is negative, both ends will go down.

■ If the leading coefficient of a polynomial with an odd degree is pos-
itive, the left end will go down and the right end will go up. The
opposite is true if the leading coefficient is negative.

Example 15: Describe the end behavior of each polynomial.

(a) f (x) = –2x6 – 3x5 + 4x – 19
Since f has an even degree and a negative leading coefficient, the
graph will go down to the left and down to the right.

(b) g(x) = –2 – 7x – 8x2 + 4x3

Even though g is not written in the correct exponential order, the
leading coefficient is positive (4) and the degree is odd (3), so g will
go down to the left and up to the right.
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Finding rational asymptotes

Remember, a rational function is a function defined as the quotient of
two polynomials. Most rational function graphs contain asymptotes, lines
that represent values that the function cannot attain. Asymptotes are usu-
ally drawn as dotted lines on a graph so that they are not confused as part
of the function itself. Visually speaking, a graph is shaped by asymptotes
because it bends to avoid making contact with the lines.

There are three basic types of asymptotes. The following list describes 
how to find each kind of asymptote for the generic rational function 

f x
d x
n x

=^
^

^
h

h

h
.

■ Vertical asymptote: Any value a for which d(a) = 0 but n(a) ≠ 0, has
a corresponding vertical asymptote with equation x = a.

■ Horizontal asymptote: Compare the degrees of n(x) and d(x).

If the degree of n is greater than the degree of d, then f has no
horizontal asymptotes.

If the degree of d is greater than the degree of n, then f has
only one horizontal asymptote: y = 0.

If the degrees of n and d are equal, then f has the horizontal
asymptote y = b

a , where a is the leading coefficient of n(x) and 
b is the leading coefficient of d(x).

■ Slant asymptote: A slant asymptote (also called an oblique asymptote)
is a linear asymptote that is neither vertical nor horizontal. The func-
tion f (x) has a slant asymptote only if the degree of n(x) is one greater
than the degree of d(x). To find its equation, divide n(x) by d(x) to
get q(x) + r(x), where q(x) is the quotient and r(x) is the remainder.
The slant asymptote will have equation y = q(x).

Example 16: Provide the equations for all asymptotes of the function 

f x
x x

x x x
9 22

14 24
2

3 2

=
- -

+ - -
^ h .

Factor the numerator and denominator of f (x):

f x
x x

x x x
11 2

4 2 3
=

- +

- + +
^

^ ^

^ ^ ^
h

h h

h h h

The x-values 11 and –2 make the denominator 0, but f will only have the
vertical asymptote x = 11, since –2 makes the numerator equal to 0 as well.
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Because the degree of the numerator is greater than the denominator, f
will have no horizontal asymptotes, but since it is exactly one greater, f will
have a slant asymptote. To find it, perform long division on f :

f x x
x x

x10
9 22

98 196
2= + +
- -

+
^ h

The slant asymptote for f has the equation y = x + 10.

To graph a rational equation, plot the intercepts, draw the asymptotes, and
then substitute a sufficient number of x-values into the function to get a
good idea of the graph’s shape.

Example 17: Graph the rational function g x
x

x x
9
12

2

2

=
-

- -
^ h .

Factor the numerator and denominator of g(x):

g x
x x
x x

3 3
4 3

=
- +

- +
^

^ ^

^ ^
h

h h

h h

The function has x-intercept 4 and y-intercept 3
4. The equations of the 

asymptotes are x = 3 and y = 1. (Since the numerator and denominator have
the same degree, the horizontal asymptote comes from the quotient of the
leading coefficients of the fraction, both of which are 1.) Because x = –3
makes both the numerator and denominator 0, the graph will have a hole
at that x-value, as illustrated in Figure 3-2.

Figure 3-2 The graph of g(x), the answer to Example 17.

6

5

4

3

2

1

-1
-3 -2 -1 1 2 3 4 5 6 7 8

-2

-3
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Chapter  Checkout

Q&A
1. Factor the expressions completely.

(a) x3y + x2z – 4xy – 4z
(b) x3 – 64y3

2. List all possible rational roots of h(x) = 2x3 + 5x2 – 11x + 6.
3. Find all roots of each function.

(a) f (x) = 8x4 + 22x3 – 41x2 – x + 12
(b) g(x) = 3x3 – 22x2 + 36x – 5

4. Identify the asymptotes for the graph of

g x
x x

x
3 7 20

1
2=
+ -

+
^ h

Answers: 1. (a) (xy + z)(x + 2)(x – 2) (b) (x – 4y)(x2 + 4xy + 16y2) 

2. , , , , ,2
1 1 2

3 2 3 6! ! ! ! ! ! 3. (a) –4, 2
1

- , 4
3, 1 (b) , ,5 6

7 37
6

7 37+ -

4. x = 3
5, x = –4, y = 0.
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EXPONENTIAL AND
LOGARITHMIC FUNCTIONS

Chapter  Check-In

❑ Graphing exponential and logarithmic functions

❑ Calculating logs of any base

❑ Applying logarithmic properties

❑ Solving exponential and logarithmic equations

❑ Understanding word problems containing exponential functions

Functions containing exponents are nothing new or unique. In fact, in
Chapter 3, you worked extensively with polynomial functions, which

contain plenty of exponents. The difference between polynomial functions
and exponential functions is that polynomial functions contain variables
raised to numerical powers, and exponential functions contain numbers
raised to variable powers.

In this chapter, you’ll evaluate, graph, and solve exponential equations and
functions. You’ll also be introduced to the logarithm, which serves as the
exponential function’s inverse.

Exponential Functions

An exponential function is of the form f (x) = ax, for some real number
a, as long as a > 0. While exponential functions accept any real number
input for x, the range is limited to positive numbers.
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Natural exponential function

Although you will deal with many, the most common exponential func-
tion you’ll encounter is the natural exponential function, written as 
f (x) = e x. Although the base e looks just as generic as the base a in our def-
inition of exponential function, it is not. The e stands for Euler’s number,
and represents a standard, commonly known, irrational constant, sort of
like π. (Note that “Euler” is pronounced “OIL-er,” not “YOU-ler.”)

e ≈ 2.71828182845904523...

Although the decimal digits in e appear to repeat themselves at first
(2.718281828...), they soon diverge into an non-repeating and non-
terminating pattern.

You are not expected to memorize e, just as you are not expected to mem-
orize π; therefore, answers can be left in terms of e (such as 12e5) and are
still considered simplified. If you are expected to evaluate the natural expo-
nential function, you will be allowed to use a calculator.

12e5 = 12(148.413159...) ≈ 1780.958

All scientific and graphing calculators have an e button, but be aware that
in some tools and graphing software packages, the e x button is labeled as
“exp.”

Graphs of exponential functions

In Chapter 2, you were presented with the graph of the natural exponen-
tial function, y = e x. All exponential functions have the same basic shape
and properties; they only differ in steepness, according to the constant
raised to the x power. The larger the constant, the more quickly and steeply
the graph will rise once x > 0.

Consider the graph of f (x) = 2x in Figure 4-1, plotted by substituting a
small collection of integers into f.

From the table, it is clear why the graph of f gets closer and closer to the
x-axis as x gets more and more negative. Since a negative input becomes a
negative exponent, your result will be a fraction. The larger the negative
input, the smaller the value of the fraction. However, once the inputs
become positive, the graph grows quickly. 

f (1) = 2, f (2) = 4, f (3) = 8, f (4) = 16, f (5) = 32, f (6) = 64, ...
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Figure 4-1 The graph of f (x) = 2x.

One other thing becomes clear upon examination of f (x). Note that 
f (0) = 1. That is not true only when the base of the exponential function
is 2. In fact, no matter what the base a in g(x) = ax, the graph of g will con-
tain the point (0,1) since any positive number a raised to the zero power
will be 1, according to exponential rule six from Chapter 1.

Since you can be sure the point (0,1) will appear in an exponential graph,
use it as the anchor point for your sketch if asked to transform the graph
of an exponential function.

Example 1: Sketch the graph of h(x) = –3x + 2 – 1.

Approach this problem like the graph transformations in Chapter 2. Your
graph should be y = 3x reflected across the x-axis, moved two units to the
left, and one unit down. Think about this in terms of the anchor point
(0,1). The initial reflection changes the point to (0,–1); once shifted left
and down, the anchor point ends up at (–2,–2). The former horizontal
asymptote of y = 0 has also moved down one, so the new horizontal asymp-
tote is y = –1. See Figure 4-2.

x f (x) = 2x f (x)

3

2

1

–1
–3 –2–4 –1 1 2

–4 2–4 1
16

–3 2–3 1
8

–2 2–2 1
4

–1 2–1 1
2

0 20 1

1 21 2
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Figure 4-2 The graph of y = 3x, shown as a dotted curve, and the graph of
h(x), the answer to Example 1.

Logarithmic Functions

Whereas an exponential function answers the question “A number raised
to a power equals what?” a logarithmic function (or log function) answers
the question “To what power must I raise a number to get another num-
ber?” In other words, the output for a logarithmic function is in actuality
an exponent.

Specifically, the logarithmic expression logc x (read “the log base c of x”)
asks the question: c to what power equals x? Thus, the equations logc x = n
and cn = x mean precisely the same thing.

Example 2: Find x in each of the equations.

(a) log3 81 = x
This expression is the equivalent of 3x = 81, so x = 4. It answers the
question “3 to what power equals 81?”

(b) log2 x = –5
Rewrite as the equation 2–5 = x and evaluate; x = 32

1 .
(c) logx 125 = 3

Rewrite as the equation x3 = 125 and take the cube root of each
side; x = 5.

3

2

5

4

1

–1

–2

–3

–4

–5

–3 –2–4–5–6 –1 1 2 3 4 5

y = 3x

h(x) = −3x + 2 − 1
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(d) loga 1 = x, where a is a positive integer
Rewrite as the equation ax = 1. No matter the value of a, only one
x value will result in a value of 1: x = 0, since any positive number
raised to the 0 power is 1.

Natural and common logs

Although a logarithm’s base can be any positive number (except for 1, since
1 raised to any real number will still be 1), there are two bases you’ll
encounter most often.

■ Base 10. A logarithm of base 10 is called a common log. In fact, if
a logarithmic expression is written without specifying a base, that base
is understood to be 10, in the same way that an unwritten exponent
is understood to be 1.

log 1000 = 3, since 103 = 1000

■ Base e. Just like the exponential function with base e is called the nat-
ural exponential function, the logarithm with base e is called the 
natural logarithm. It is used so frequently that it has its own nota-
tion: ln x, and is read “the natural log of x” or “L-N of x,” in which
case you actually say the letters L and N. Therefore, ln x is the same
thing as loge x.

Inverse relationship

Since exponential and logarithmic functions of the same base are inverses
of one another, if you compose the two functions together, they will can-
cel one another out.

log a a xlog
a

x xa= =` j

Since you will see common and natural logs most often, here is that inverse
relationship expressed in terms of their respective bases:

log

ln

x

e e x

10 10log

ln

x x

x x

= =

= =

`

`

j

j

Graphs of logarithmic functions

Since logarithmic and exponential functions are one another’s inverses, it
is easy to construct the graph of any logarithmic function y = loga x based
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on the corresponding graph of y = ax. In Chapter 2 you learned that graphs
of inverse functions are reflections of one another across the line y = x, since
each graph contains the coordinates of the other graph, with each coordi-
nate pair reversed. It is no surprise, then, that because all exponential graphs
of the form y = ax contain the point (0,1), then all logarithmic graphs of
the form y = logax contain the point (1,0).

In Figure 4-3, you can visually verify that the graphs of the natural loga-
rithmic and natural exponential functions (both of which you already
memorized in Chapter 2) are, indeed, reflections of one another about the
line y = x.

Figure 4-3 The graphs of y = ex and y = ln x are reflections of one another
about the line y = x, as are all inverse functions.

Note that the domain of ln x, like all logarithmic functions of form 
y = logax, is (0,∞). Although it might appear that the y values of the loga-
rithmic graph “level out,” as if approaching a horizontal asymptote, they
do not. In fact, a logarithmic graph will grow infinitely tall, albeit much,
much slower than its sister the exponential function. A range of (–∞,∞)
for the logarithmic functions makes sense, since their inverses are expo-
nential functions and have domains of (–∞,∞).

In order to graph transformations of the logarithmic function (such as reflec-
tions, shifts, and stretches), follow the procedures outlined in Chapter 2,
just as you did when graphing exponential transformations earlier in this
chapter.

3

2

5

6

7

4

1

–1

–2

–3

–3 –2 –1 1 2 3 4 5 6

y = ex

y = x

y = ln x
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Change of base formula

With the aid of a scientific or graphing calculator, it is a simple matter to
evaluate a logarithm. (It is not appropriate or necessary to learn to calcu-
late complex decimal values of logarithms by hand.) However, you may
notice that most computational tools have only two logarithmic buttons:
one for common log and one for natural log. Thus, while it may be sim-
ple to calculate these values:

log 6 ≈ .77815

ln 49 ≈ 3.89182

you’ll need to use the change of base formula to calculate the values of
logs whose base is neither 10 nor e.

According to this formula, you can rewrite a logarithm of base c as a quo-
tient of two logs with a different base, n.

log log
log

x c
x

c
n

n
=

Even though you can choose any base n, you should pick either 10 or e,
since that will allow you to use a calculator to find its decimal value.

Example 3: Evaluate log5 9 using a calculator.

Rewrite the logarithm as a quotient of natural logs by means of the change
of base formula.

. ...

. ...

.

log ln
ln9 5

9

1 609437912
2 197224577

1 3652

5

.

=

=

You could also have rewritten log5 9 as log
log

5
9
, and the final result would

have been the exact same decimal value.

Properties of Logarithms

There are three major logarithmic properties which allow you to both
expand and compress logarithmic expressions. The rules are listed in terms
of common logs, but the properties hold true for all valid logarithmic bases.
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■ Log property 1: log (xy) = log x + log y

In other words, the log of a product is equal to the sum of the logs of
its factors. 

Though rigorously proving this logarithmic property is unnecessary,
you can easily see why it’s true using a real number example and a cal-
culator to evaluate the expressions therein.

ln 15 = ln (3 ⋅ 5) = ln 3 + ln 5

2.708050201... = 1.098612289... + 1.609437912 ...

2.708050201... = 2.708050201...

■ Log property 2: log xa = a log x

An exponent within a logarithm can be “drawn out” of the logarithm
and placed in front of it as a coefficient. This is due to the fact that
an exponent indicates repeated multiplication and, according to log-
arithmic properties, multiplication within one log can be rewritten
as the sum of separate logs.

Consider ln x4. Rewrite the logarithm without using an exponent.

ln (x ⋅ x ⋅ x ⋅ x)

Rewrite the string of x’s using log property 1.

ln x + ln x + ln x + ln x

Since these are all like terms, you can simplify that expression.

4ln x

Even though this is only an example, and not a rigorous proof, it sheds
light on why, exactly ln x4 = 4ln x, and (by extension) why log prop-
erty 2 works.

■ Log property 3: log y
x = log x – log y

In other words, the log of a quotient is equal to the difference of the
individual logs. It is easy to prove this property formally.

Consider the logarithm log y
x . The quotient can be rewritten as a

product, if you use a negative exponent.

log (x ⋅ y–1)
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Rewrite this expression using log property 1.

log x + log y–1

Apply log property 2 to the second term.

log x + (–1)log y

log x – log y

Therefore, log y
x = log x – log y.

Example 4: Fully expand each of the following expressions by applying
logarithmic properties, and simplify the result if necessary.

(a) log 2x2y3

Apply log property 1.

log 2 + log x2 + log y3

Finish by applying log property 3.

log 2 + 2log x + 3log y

(b) log x
x
2

1
2

3 +

Begin by applying log property 3.

log logx x1 22
3

2+ -

The first term requires log property 2, and the other property 1.

3
1

log2 (x + 1) – (log2 2 + log2 x)

Remember, since loga an = n (because exponential and logarithmic
functions with the same base are inverses and cancel one another
out when composed together), then log2 21 = 1, so simplify.

3
1

log2 (x + 1) – log2 x – 1

Example 5: Rewrite each of the following expressions as a single log.

(a) 3ln x – 2ln (x + 1)
Apply log property 2.

ln x3 – ln (x + 1)2
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Now apply log property 3.

ln
x

x
1 2

3

+^ h

(b) log x – 2log y – log z + 3log w
Begin with log property 2. Every positive term belongs in the
numerator, and every negative term in the denominator.

log
y z
xw

2

3

Solving Exponential and 

Logarithmic Equations

Take advantage of the fact that exponential and logarithmic equations
cancel one another out to solve equations containing those elements.
Remember, log a (a x) = x and a xlog xa = .

Exponential equations

Your ultimate goal when solving exponential equations is to isolate the
term with the exponent, ax, on one side of the equation and cancel it out
by taking log a of both sides of that equation. This leaves the form “x =”
and gives you the solution. 

Example 6: Solve the equations.

(a) 3x = 243
Both sides of this equation can be written with base 3.

3x = 35

Take log3 of both sides of the equation.

log3 3x = log3 35

x = 5

(b) 5x = 13
Since 13 cannot be rewritten as an exponent with base 5, proceed
to logging both sides of the equation.

log5 5x = log5 13

x = log5 13
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Use the change of base formula.

.log ln
ln13 5

13 1 593695 .=

(c) 2e3x – 3 = 15
Isolate e3x on the left side of the equation.

2e3x = 18
e3x = 9

Take the natural log of both sides of the equation.

ln (e3x) = ln 9
3x = ln 9

x = ln3
9 ≈ .73241

(d) e2x – 2ex – 15 = 0
Notice that e2x = (ex)2, according to exponential rule 3 from Chap-
ter 1. Therefore, this is really a quadratic equation and can be solved
by factoring.

(ex)2 – 2ex – 15 = 0

(ex – 5)(ex + 3) = 0

ex = 5 or ex = –3

ln ex = ln 5 or ln ex = ln –3
x = ln 5 or ln –3

Only one of those solutions is valid. Since the domain of ln x is
(0,∞), you must discard the solution x = ln –3.

Logarithmic equations

Your ultimate goal when solving logarithmic equations is to isolate the log-
arithmic function log a x on the left side of the equation. To cancel it out,
you’ll raise a to the power of each side of the equation in a process called
exponentiating. In other words, to solve the equation

log a x = c

introduce exponential functions to both sides like this:

a alog x ca =

x = ac
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Example 7: Solve the equations.

(a) log7 x = 2
Although you can solve this intuitively, use it as an opportunity to
practice exponentiating. Since the log has base 7, rewrite each side
of the equation as an exponent of 7.

7 7log x 2
=7

x = 49

(b) ln x – ln (x + 1) = ln 3
Subtract ln 3 from both sides and compress all of the logs into a
single log, using log properties.

ln x – ln (x + 1) – ln 3 = 0

ln
x
x

3 1
0

+
=

^ h

Exponentiate both sides with a base of e to cancel the ln.

e e

x
x

3 3 1

ln 0
x

x

3 1 =

+ =

+] g

x x

x

3 3

2
3

+ =

=-

Notice that the solution cannot be substituted into the original
equation. The expression ln (x + 1) will become invalid because the
natural log function cannot accept a negative input. Therefore,
there is no solution to this equation.

(c) log 3x = 4
1

Since this is the common log, Exponentiate with base 10.

.

x

x

10 10

3 10

3
10

5928

/log x3 1 4

4

4

.

=

=

=

(d) (ln x)2 – 2ln (x4) = 20
Rewrite the second term using log property 2.

(ln x)2 – 4 ⋅ 2ln x = 20

(ln x)2 – 8ln x – 20 = 0
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This quadratic equation can be solved by factoring.

(ln x – 10)(ln x + 2) = 0

ln x – 10 = 0 or ln x + 2 = 0

ln x = 10 or ln x = –2

x = e10, e–2

Simplified solutions do not contain negative exponents, so the final 
answers are x = 

e
1

2 and e10. These solutions both prove valid if sub-
stituted back into the original equation.

Exponential Word Problems

The two main types of word problems usually associated with the study
of exponential functions involve either compound interest or exponential
growth and decay.

Compound interest

The more often interest is compounded upon an initial investment (also
called the principal), the more interest will accrue. Thus, monthly com-
pounding is preferable to annual or quarterly compounding. However, the
best option is continuous compounding. Interest compounded a finite
number of times per year is calculated using a different method than con-
tinuous compounding.

■ Interest compounded n times per year

A principal, P, which is compounded n times per year at an annual
interest rate r (expressed as a decimal) will have balance B(t) after a
period of t years:

B t P n
r1

nt

= +^ ch m

■ Interest compounded continuously

A principal, P, compounded continuously at an annual interest rate r
(expressed as a decimal) will have balance B(t) after a period of t years:

B(t) = Pert

Example 8: How much faster will an initial investment of $15,000 grow
to a balance of $20,000 if the 4.5% annual interest rate is compounded
continuously rather than monthly?
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You need to calculate two kinds of interest, but in each you know that 
P = 15,000, B(t) = 20,000, and r = .045. Plug what you know into the 
formula for continuous compounding of interest.

20,000 = 15,000e(.045)t

3
4

= e.045t

To solve for t, take the natural log of both sides.

ln 3
4

= .045t

. .
ln

t 045
3
4

6 39293 years.=

Now calculate the time it will take when the interest is compounded 
n = 12 times per year using the other interest formula.

, , .

.

20 000 15 000 1 12
045

3
4 1 00375

t

t

12

12

= +

=

c

^

m

h

To solve this, take the log base 1.00375 of both sides of the equation.

log t3
4 12.1 00375 .

Calculate the left side using the change of base formula; solve for t.

t = .
12

76 8589706242 ≈ 6.40491 years

Therefore, continuous interest brings you to the new balance 
6.40491 – 6.39293 = .00198 years (or .00198 × 365 ≈ 4.373 days) faster.

Growth and decay

If a quantity either increases or decreases at a rate which is proportional
to the size of the quantity itself, it exhibits either exponential growth or
exponential decay, respectively. Mathematically speaking, the size of the
quantity is

P(t) = Nekt

where N is the original quantity, t is the amount of time elapsed, and k
is a constant of proportionality. Note that this formula is a clone of the
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formula for continuously compounding interest, only expressed with 
different variables.

You will rarely if ever be given the value k explicitly; it is not as easy to pick
out from the given information as were the variables for compound inter-
est. In fact, it is usually the first order of business in an exponential change
problem to calculate what k is based on the starting and ending sizes of
the quantity in question and the amount of time that has elapsed.

The most common exponential growth and decay problems involve
radioactive half-life (the amount of time it takes the mass of a given
radioactive element to decrease by exactly half ) and bacteria growth.

Example 9: One of the radioactive isotopes of the element Californium,
Cu-250, has a half-life of 13 years. How long will it take 500 grams of 
Cu-250 to decay to 75 grams?

Your first task is to calculate k. Since Cu-250 has a half-life of 13 years,
you know that once t = 13 years have elapsed, the original N = 500 grams
will decrease to exactly half, P(13) = 250 grams. Plug in the values of the
known variables to solve for k.

250 = 500ek(13)

2
1

= e13k

ln 2
1

= 13k

k ≈ –.053319013889

The more decimal places you use for k, the more accurate your answer will
be. Now that you know k, you can use it to solve the actual question posed
by the problem. This time, P(t) = 75, and you are solving for t.

75 = 500e(–.053319013889)t

.15 = e(–.053319013889)t

t = .
.ln

0 053319013889
0 15- ≈ 35.581 years
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Chapter  Checkout

Q&A
1. Solve each equation.

(a) log 100
1 = x

(b) log x 5 = 2
(c) log8 x = 3

4

(d) ln e17 = x

2. Evaluate log2 15 using a calculator.
3. Rewrite as a single logarithm:

4ln (x + 3y) – 2ln z + ln2
1 w

4. Solve each equation.
(a) ln 2x + ln 5 = 3
(b) 6x = 216

5. If a bacteria population triples every three hours, how long will it take
a population of 20 colonies to grow to 1,000 colonies?

Answers: 1. (a) –2 (b) 5 (c) 16 (d) 17 2. 3.90689 3. ln
z

x y w3
2

4
$+` j

4. (a) e
10

3

(b) 3 5. 10.683 hours
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TRIGONOMETRY

Chapter  Check-In

❑ Working with angles in standard position

❑ Understanding basic trigonometric functions

❑ Defining unit circle values for common angles

❑ Graphing trigonometric functions

❑ Calculating the values of inverse trigonometric functions

A t its core, trigonometry is the study of triangles, so everything you’ll
learn about trigonometry is either based upon, derived from, or appli-

cable to triangles. In this chapter, you’ll develop a set of functions based on
a preliminary study of angles and their properties. Those familiar functions
(including sine, cosine, and tangent) can help you uncover just about any
attribute of any triangle, whether it be a side, angle measurement, or its area.

Measuring Angles

Since angles are one of the basic components of triangles, it’s important to
establish a set of standard terms and common practices with regards to
angles before you can begin to manipulate them. Furthermore, it’s impor-
tant to learn a new technique for communicating angle measurement, as
few angles in precalculus and calculus are measured in degrees, the units
with which you’re probably the most familiar.

Characteristics of angles

An angle is made up of two nonoverlapping rays that share the same end-
point; that endpoint is called the vertex of the angle. The ray marking the
beginning of the angle is called the initial side, whereas the ray which marks
the end of the angle is the terminal side. Any angle whose initial side lies
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on the positive x-axis and whose vertex lies on the origin of the coordinate
plane is said to be in standard position. If the terminal side of the angle
falls upon a coordinate axis, the angle is a described as a quadrantal.

Whereas variables representing real numbers are usually given names like
x, y and z, variables representing angles are usually labeled with Greek let-
ter variables, such as θ (theta), α (alpha), β (beta), and γ (gamma).

In Figure 5-1, angle θ is created by ray BC (the initial side) and ray BA
(the terminal side). Because its vertex, B, lies on the origin and ray BC lies
on the positive x-axis, θ is said to be in standard position.

Figure 5-1 Angle θ is in standard position.

Since θ travels in a counterclockwise direction from its initial side to its
terminal side, you know θ > 0. On the other hand, angles that travel clock-
wise are negative.

Degrees and radians

Students are usually most familiar with the angle measurement unit of
degrees from geometry class. If an angle in standard position contains
exactly one complete revolution about the origin, so that the terminal side
overlaps the initial side, a degree is defined as 1/360th of that rotation. If
you travel only one-fourth of that rotation, the angle formed is a right angle,
and measures 4

1 ⋅ 360 = 90 degrees, a result that should not be surprising. 
The notation used for degrees is a small circle written above and to the
right of the angle measurement: 90°.

A

B
θ

C
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Angle measurements using degrees can be expressed more exactly than sim-
ple whole degrees, just like the time of day can be expressed more exactly
than in merely whole hours. In the same way you can say “We’ll meet at 30
seconds after 5:45 pm,” you can express fractions of a degree in minutes and
seconds. In fact, degrees work similar to hours, because there are 60 min-
utes in one degree and 60 seconds in one minute. To write the degree mea-
sure “30 degrees, 12 minutes, 50 seconds,” use this notation: 30 12 50% l m.

Example 1: Express the angle measurement 120 42 37% l m as a degree in 
decimal form.

Express minutes and seconds as fractions of a degree. (Since there are 60
seconds in a minute, there are 60 ⋅ 60 = 3600 seconds in a degree.)

%.120 60
42

3600
37 120 710278.+ +

Because degree measurements get awkward once exact measurements
involving minutes and seconds are involved, most problems in precalcu-
lus and calculus will use radians, another unit of angle measurement.

A radian is the measurement of an angle in standard position that, when
extended to a circle of radius r centered at the origin, will mark the end-
points of an arc whose length is also r. In Figure 5-2, the measure of angle
θ is exactly 1 radian, because the arc it cuts out of the circle (or intercepts)
is the same length as the radius of the circle. (Unlike degrees, there is no
shorthand notation for radians. However, any angle containing “π” can
be assumed in radian form, unless otherwise noted.)

Figure 5-2 Because the darkened arc and the radius are both length r, 
θ measures exactly 1 radian.

θ
rr

r
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One radian measures just over 57.3°, and there are exactly 2π radians
(approximately 6.283) in one full revolution around the origin (just like
there are 360 degrees in one revolution). Therefore, the ratio

%
π π

360
2

180
radians radians

=
%

makes it possible to convert from degrees to radians. Multiply any degree
measurement by that ratio to translate degrees into radians. To change a mea-
surement from radians to degrees, multiply by the reciprocal of the ratio.

Example 2: Complete the following conversions.

(a) Convert 210° to radians.
Multiply the degree measurement by the correct ratio and simplify.

π π π210 180 180 6
210 7 radians$ = =

(b) Convert 6
11π

- to degrees.
This time multiply by 180

π and simplify.
π

π6
11 180

6
1980 330$- =- =- %

Angle pairs

In geometry, you learned that two acute angles whose measurements add
up to 90° are complimentary. This property holds true for angles expressed
in radians as well, but the sum will need to equal the radian equivalent of 
90°, which is 2

π
. Similarly, if the sum of two angle measurements totals 180°

or π radians, those angles are said to be supplementary.

Example 3: Find the indicated angles.

(a) The supplement of α = 12
7π

The sum of α and its supplement, θ will be π. Get common
denominators and simplify.

π π

π π

π

12

12 12

12

7

12 7

5

θ

θ

θ

+ =

= -

=
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(b) The complement of β = 9
2π

The sum of β and its complement, θ, will be 2
π. Again use common

denominators

9
2π

+ θ = 2
π

π π

π π

π

2 9
9

9 2
2

18
4

18

2

9

5

θ

θ

θ

$ $= -

=
-

=

Coterminal angles

Angles in standard position that share the same terminal ray are said to be
coterminal angles. Consider Figure 5-3, in which three distinct angles share 
the same terminal side. Angle θ measures 3

2π radians (120°); it’s the small-

est positive angle possessing that terminal side. However, β = 3
4π

- (–240°)
also terminates at the exact same ray; the only difference is that β approaches
that terminal side by winding clockwise, rather than counterclockwise
(since it is a negative angle.)

Figure 5-3 Three coterminal angles whose common terminal ray lies in
the second quadrant.

θ
α

β
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The other coterminal angle pictured, α, is a positive angle like θ, but winds
completely around the origin once before terminating. To find its mea-
sure, add the radian equivalent of one full rotation (2π) to θ.

α = θ + 2π
α = 3

2π + 2π 

α = 3
8π

In fact, this is the method used to calculate the measures of coterminal
angles. Simply add 2π or subtract 2π from an angle as often as you like to
determine what other angles share the same terminal side.

Example 4: Find two positive and two negative coterminal angles for 
θ = 4

3π
.

Add 2π to θ twice; each result will be a positive coterminal angle.

4
3π

+ 2π = 4
11π

4
11π

+ 2π = 4
19π

Subtract 2π from θ twice; each result will be a negative coterminal angle.

4
3π

– 2π = 4
5π

-

4
5π

- – 2π = 4
13π

-

The Unit Circle

The unit circle is just a circle, centered at the origin, which has radius 1.
By examining the intersection point of the unit circle and the terminal side
of an angle in standard position, you can easily determine the values of
cosine and sine for that angle.

As you learned in geometry, cosine and sine are two of the six trigonomet-
ric functions (you’ll read about the others in the next section) which are
defined as ratios of the lengths of the sides of right triangles. Specifically,
the cosine of an angle (abbreviated “cos”) is defined as the ratio of the adja-
cent leg to the hypotenuse, and the sine (abbreviated “sin”) is the ratio of
the leg opposite the angle to the hypotenuse. (Remember, the hypotenuse
is not considered a leg of the triangle.)
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cos θ = hypotenuse
leg adjacent to θ

sin θ = hypotenuse
leg opposite θ

To calculate cos θ and sin θ, follow these steps:

1. Graph θ in standard position and mark its intersection point P
with the unit circle. 

2. Draw a right triangle connecting P, the point on the x-axis directly
below P, and the origin, as pictured in Figure 5-4. 

3. Use geometric rules and properties to calculate the lengths of the
horizontal and vertical sides of the triangle. This gives you the
coordinate value of P.

4. Plug the lengths of the legs into the appropriate trigonometric ratios.

Figure 5-4 The coordinates of P provide the values of cosine and sine for
that angle.

It is not always easy to find the lengths of the sides of the right triangle; in
fact, the unit circle is only really useful for quadrantals or radian angles
with denominators of 2, 3, 4, and 6. The good news is that you’re not
expected to generate values of sine and cosine using the unit circle once
you understand how it works. 

Example 5: Determine the unit circle values for θ = 3
π by evaluating 

cos 3
π and sin 3

π
.

P = (x, y)

y

x
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Draw θ = 3
π in standard position so that its terminal side intersects the unit

circle at point P. Draw a triangle connecting P, the point on the 
x-axis directly below P, and the origin.

The result is a right triangle containing an angle equivalent to 60°, so you
can surmise that it is a 30-60-90 triangle. The legs of such triangles are in
fixed proportion to one another, according to geometry. The smallest side 
must be half the length of the hypotenuse .

2
1

2
1

=1c m and the other leg must 
be 3 times as long as the smallest side, as demonstrated in Figure 5-5.

Figure 5-5 Use geometric theorems to find the lengths of the triangle’s legs.

To calculate cos θ and sin θ, plug the lengths of the legs into the trigono-
metric ratios.

cos

sin

π

π

3 1
2
1

2
1

3 2
2
3

2
3

= =

= =

This is a useful exercise because it shows you exactly where the values of
cosine and sine originate. However, it’s not useful to reinvent the wheel
and repeat this process for all common radian angles. In Figure 5-6, all of
the tedious calculations have been performed for you. The intersection
points between every common terminal side and the unit circle are listed.
To determine the cosine of any angle, just take the x-value of that coordi-
nate; the sine is the y-value of the intersection point.

1

= 30π
6

 3
2

= 60°π
3

1 
2
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Figure 5-6 The complete unit circle.

Most instructors require you to memorize this diagram, so you can
instantly recite the cosine or sine value of each angle.

Right Triangle Trigonometry

Just as cosine and sine are defined as the ratios of the sides of a right 
triangle, so too are the other four major trigonometric functions. In 
Table 5-1, you’ll find all six trigonometric functions, their abbreviations,
the ratios which define them, and additional expressions (if available) which
are equivalent to the ratio definition of each.

0, 2π = (1,0)π = (–1,0)

3π
2

= (0,–1)

π
2

= (0,1)

,
 3
2

π
3

1 
2

,
 3
2

5π
3

1
2

–

,
 2
2

π
4

 2
2

,
 2
2

7π
4

 2
2

–

,
 3
2

π
6

1
2

,
 3
2

11π
6

1
2

–

,
 3
2

4π
3

1
2

– –

,
 2
2

5π
4

 2
2

– –

,
 3
2

7π
6

1
2

– –

,
 3
2

2π
3

1 
2

–

,
 2
2

3π
4

 2
2–

,
 3
2

5π
6

1
2–
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Table 5-1 The Six Major Trigonometric Functions

Function Abbreviation Right Triangle Alternate
Ratio Expressions

cosine cos θ hypotenuse
adjacent leg

sec
1

θ

sine sin θ hypotenuse
opposite leg

csc
1

θ

tangent tan θ adjacent leg
opposite leg

,cos
sin

cot
1

θ
θ

θ

cotangent cot θ opposite leg
adjacent leg

,sin
cos

tan
1

θ
θ

θ

secant sec θ adjacent leg
hypotenuse

cos
1

θ

cosecant csc θ opposite leg
hypotenuse

sin
1

θ

There are a few things you should notice about the six trigonometric 
functions.

■ Tangent is defined both as a ratio and as the quotient of sine and
cosine. Therefore, if you’re given the values of cos θ and sin θ, you
can evaluate tan θ easily.

■ Cotangent, secant, and cosecant are reciprocal functions, since they are
defined as the reciprocals of the other three functions.

■ Cosecant is not the reciprocal of cosine, just as secant is not the recip-
rocal of sine. Because the word pairs start the same, students sometimes
assume they are reciprocal functions.

Here are the steps to calculate the values of these six trigonometric func-
tions for acute angles within right triangles.

1. Draw a diagram based on the given information.
2. Use the Pythagorean Theorem to find the value of any side whose

length is not given.
3. Determine the sine and cosine of the given angle.
4. Evaluate any or all of the other four trigonometric functions based

on the cosine and sine values.
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Example 6: If cos θ = 5
3, and θ is an acute angle, evaluate the other five 

trigonometric functions for θ.

Since cosine represents the ratio of the adjacent leg to the hypotenuse, you
know the leg next to θ has length 3, and the hypotenuse has length 5, as
shown in Figure 5-7.

Figure 5-7 The given value of cosine allows you to create a diagram of a
right triangle containing θ.

Find s using the Pythagorean Theorem.

s2 = 52 – 32 = 25 – 9 = 16

s = 4

Now that you know the leg opposite θ has length 4, sin θ must equal 5
4.

Since tangent is the ratio of the opposite to the adjacent leg, tan θ = 3
4. By

the way, you can also find tangent using its alternate definition:

tan
cos
sin

5
3
5
4

5
4

3
5

3
4

$= = = =i
i
i

The final three trigonometric functions (secant, cosecant, and cotangent)
are just reciprocals of the cosine, sine, and tangent, respectively.

sec θ = 3
5 csc θ = 4

5 cot θ = 4
3

If you’re given an angle and the length of one side of a right triangle, you
can use trigonometric functions to find the lengths of other sides in the
triangle. In these cases, you’ll need to use either a calculator or a table con-
taining trigonometric values in order to complete the problem.

5

θ
3

s
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Example 7: You are lying on the ground so that your eyes are 25 feet away
from the base of a tree. When you look at the top of the tree, the angle of
elevation of your vision is 32°. How tall is the tree?

Assuming the tree grows perpendicular to the ground, a right triangle is
formed. Draw a diagram like Figure 5-8 that includes all of the informa-
tion you’re given. By the way, an angle of elevation is usually formed by a
line of sight and a horizontal reference plane (usually the ground).

Figure 5-8 The diagram describing Example 7.

You’re given nothing about the hypotenuse, so pick a trigonometric ratio
that includes the adjacent leg (which you’re given) and the opposite leg
(which you’re trying to find); tangent will work.

tan 32° = adjacent leg
opposite leg

tan 32° =  t
25

Evaluate tan 32° using a calculator and solve for t.

t = 25 ⋅ tan 32° ≈ 15.622 feet

Make sure your calculator is set for “degrees” mode, not “radians,” to match
the angle measurement method used in the problem.

Oblique Triangle Trigonometry

You can also calculate trigonometric function values for triangles which
do not contain a right angle, which are called oblique triangles. However,
the process involves slightly more detective work.

32°

25 feet

t
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Reference angles

If you are trying to evaluate trigonometric functions for an angle that’s not
acute, you can’t apply the appropriate ratios right away. That’s because a
non-acute angle cannot be part of a right triangle, and all of the trigono-
metric functions are defined as ratios of the sides of right triangles only.

Therefore, you’ll need to create an acute angle, called a reference angle,
to help you evaluate trigonometric function values of large angles.
Although reference angles don’t have the same measure as the original
angles, they do have the same trigonometric values. There are four basic
types of reference angles, one for each of the four quadrants of the coordi-
nate system, as you can see in Figure 5-9. Choose the one in the same
quadrant as the terminal side of the non-acute angle.

Figure 5-9 Each quadrant has its own reference angle, each of which
forms a right triangle with the x-axis.

Example 8: Calculate the reference angle for γ = 6
7π.

If drawn in standard position, the terminal side of 6
7π falls in the third

(lower left-hand) quadrant. The right triangle for all third quadrant angles,
according to Figure 5-9, will contain reference angle δ, so your job is to
calculate δ.

As you can see in Figure 5-10, while γ extends from the first quadrant all
the way into the third quadrant, δ equals just the portion of γ in the third
quadrant.

β θ
δ α
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Figure 5-10 Angle γ and its reference angle δ from Example 8(a).

To find δ, subtract the radians contained in the first and second quadrant:

δ = γ – π

δ = 6
7

6
6π π

-

δ = 6
π

Calculating trigonometric ratios

Use reference angles and the right triangles which contain them to calculate
trigonometric ratios for non-acute angles. Occasionally, you’ll be given infor-
mation about the sign of an angle’s trigonometric ratio to help you determine
in which quadrant its terminal side is located. In such cases, refer to Table 5-2.

Table 5-2 Signs of the Trigonometric Functions 
in the Four Quadrants

Function I II III IV

cosine + − − +

sine + + − −

tangent + − + −

secant + − − +

cosecant + + − −

cotangent + − + −

δ

γ
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Example 9: If  cos γ = 3
2

- and tan γ < 0, evaluate csc γ.

First, determine the type of reference angle needed; in which quadrant does
the terminal side of γ fall? You know that cosine is negative there, so accord-
ing to Table 5-2, it must be either quadrant II or III. Note that the problem
also tells you that tangent is negative there, so it must be quadrant II. 

Draw a second quadrant reference angle and its accompanying right tri-
angle. You know the adjacent leg has length 2 and the hypotenuse has
length 3 (since you’re given the cosine function), but where does the neg-
ative sign go on the triangle? Note that the hypotenuse should never be
labeled negative, only the horizontal or vertical sides of the right triangle.
Since you’re in the second quadrant, x is negative and y is positive, so there-
fore, the adjacent side should be labeled –2, as shown in Figure 5-11. The
final side’s length, 5, can be found via the Pythagorean Theorem.

Figure 5-11 The reference angle, β, for Example 9’s angle γ and its
accompanying right triangle. The figure is not to scale, but since you don’t
know the scale when you first sketch it, that’s to be expected.

Even though γ was not an acute angle, you have now designed a right 
triangle with acute reference angle β, which will produce the same trigono-
metric values. Therefore, csc γ = csc β.

Remember that cosecant is the reciprocal of sine.

sin

csc

3
5

5
3

=

=

b

b

β

5
3

–2
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Graphs of Sine and Cosine

In Chapter 2, you were introduced to eight basic function graphs which,
when shifted, stretched, and reflected, constituted the vast majority of
graphs in precalculus. Now that you possess a basic understanding of
trigonometric principles, you need to add the graphs of the trigonomet-
ric functions to your repertoire. Although you’ll be expected to graph each
function and identify the key characteristics of each, you will work most
with the graphs of sine and cosine.

Periodic graphs

All of the trigonometric functions’ graphs are periodic, which means that
the graph will repeat itself infinitely (both as x gets infinitely positive and
infinitely negative) after some fixed interval period on the x-axis. The
period of sine is 2π. This makes sense, if you consider that both sine and
cosine get their value from the unit circle. 

The graph of sine is sometimes referred to as a sine wave, because of its
shape. Figure 5-12 shows one period of sine, from θ = 0 to θ = 2π. Each of
the points indicated on the graph represents a value from the unit circle. 

Figure 5-12 One period of the graph y = sin x.

The graph of cosine is identical to the graph of sine shifted 2
π units to the 

right, as you can see in Figure 5-13. Since its values are also based on the
unit circle, its period is also 2π.

1

π
2

π 3π
2

2π

–1
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Figure 5-13 One period of the graph y = cos x.

Because both graphs are periodic, you can evaluate any angle coterminal
to an angle on the unit circle without using a calculator.

Example 9: Evaluate the trigonometric functions.

(a) cos 2
15π

Find an angle on the interval [0,2π) which is coterminal with 2
15π

by continuously subtracting 2π until you find one. The coterminal 
angle on the unit circle will be 2

3π, and you already should know its
cosine value. Therefore,

cos 2
15π = cos 2

3π = 0

(b) sin 6
5π

-

This time add 2π to get a coterminal angle on the interval [0,2π);
its sine value will be the same.

6
5π

- + 2π = 6
7π

sin 6
7π = 2

1
-

Transforming sine and cosine

Most of the shifts, reflections, and stretching you did to functions in Chap-
ter 2 still apply to the graphs of trigonometric functions. However, since
these functions are periodic, they require a few special considerations. The
functions

f (x) = acos (bx + c) + d and g(x) = asin (bx + c) + d

will be altered from the original graphs of f (x) = cos x and g(x) = sin x by
the coefficients as follows:

1

π
2

π 3π
2

2π

–1
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■ a: The graph, instead of reaching a maximum height of 1 and a min-
imum height of –1, will now reach maximum and minimum heights
of a and –a, respectively. In other words, the graph is stretched ver-
tically by a factor of a. (If a < 0, the function will also be reflected
across the x-axis.)

The value |a| is called the amplitude of the function. If given only
the graph of the function, you can determine its amplitude by sub-
tracting the function’s minimum value from its maximum value and
dividing by 2.

■ b: This is the number of times the graph will repeat itself in what used
to be its original period, 2π. You can also use b to find the period of
the transformed function.

new period = b
old period

■ c: Just like the function transformations in Chapter 2, a c value causes
a horizontal function shift. If c > 0, the shift is to the left, and if 
c < 0, the shift is to the right.

■ d: If d > 0, the graph will be shifted d units up, and if d < 0, the graph
is shifted d units down.

If there is more than one transforming coefficient present, apply the trans-
formations in this order: b, a, c, d.

Example 10: Sketch the following graphs.

(a) f (x) = –3sin(2x) + 1
Begin with b = 2; it tells you that exactly two full periods of the
graph will fit into 2π, the period for y = sin x, because the period of 
f equals 2

2π = π. (This squashes the function horizontally toward the
origin.) The coefficient a = –3 will reflect the sine graph across the
x-axis and stretch it upwards and downwards to a height of 3 and
–3, respectively. Finally, d = 1 moves the entire graph up one unit.
The original graph of y = sin x and the transformed version, f (x),
are shown in Figure 5-14.

(b) g(x) = cos4
1 (x – π)

To get the graph of g, start with the graph of y = cos x, give it an 

amplitude of 4
1 (which squishes its height) and move the entire 

graph π units to the right. See Figure 5-15.
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Figure 5-14 The graph of f(x), the answer to Example 10(a), and the pre-
transformed graph of y = sin x.

Figure 5-15 The graph of g(x), the answer to Example 10(b), and the pre-
transformed graph of y = cos x.

Other Trigonometric Function Graphs

Because the remaining trigonometric functions (tangent, secant, cosecant,
and cotangent) are all defined as fractions, their graphs contain asymptotes
(at the values which make their denominators 0). You may be asked to
graph a transformation of any of these functions, and the process under-
taken is identical to the process of graphing transformations of sine and
cosine.

Here are each of the remaining trigonometric graphs, and their important
characteristics.

■ y = tan θ: Since tangent is defined as cos
sin

θ
θ , the graph of tangent has 

an asymptote wherever the graph of cos θ has an x-intercept. In other 
words, the graph has asymptotes y = k

2
π , where k is an odd integer. 

The roots of tangent occur at all x = nπ, where n is an integer. Note
that the period of tangent is π, not 2π like sine and cosine.

1

–1

g(x)

y = cos x

π 2π–2π π
2

3π
2

–π3π
2

– – π
2

1

2

3

4

π
2

π 3π
2

2π
–1

–2

–π – π
2

f (x)

y = sin x
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■ y = cot θ: Like tangent, the period of cotangent is π. However, the
roots for cotangent occur where tangent has asymptotes, and vice
versa. Furthermore, the graph of cotangent looks like the graph of
tangent reflected about the y-axis. See Figure 5-16.

Figure 5-16 The graphs of y = tan θ and y = cot θ.

■ y = sec θ: Since secant is defined as cos
1

θ, it has the same denomi-

nator as tangent. Therefore, they share the same asymptotes as well;
secant, however, has no roots. Its graph blossoms from the highest
and lowest points of its reciprocal function, cosine. For example, since
y = cos x has relative maximum point (0,1) and minimum point
(π,–1), those are the points from which the graph of secant springs.

■ y = csc θ: Cosecant shares the same asymptotes as cotangent. Like its
sister function secant, it has no roots, and its graph springs from the
relative maximum and minimum points of its reciprocal function, 
y = sin x. See Figure 5-17.

-π π

7
6
5
4
3
2
1

-1
-2
-3
-4
-5
-6

π

6
5
4
3
2
1

-1
-2
-3
-4
-5
-6-7

y = tan y = cot θθ
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Figure 5-17 The graphs of y = sec θ and y = csc θ.

Inverse Trigonometric Functions

Since all functions must pass the horizontal line test if they are to possess
inverses, it would seem that trigonometric functions (since they are periodic
and are therefore by definition going to repeat the same function heights
over and over) are not one-to-one and cannot have inverse functions. 

While it’s true that y = sin x is not one-to-one, the portion of the graph on 
the x-interval ,2 2

π π
-; E is. (You can visually verify that the relatively small 

piece of the sine graph does pass the horizontal line test in Figure 5-18.)
Therefore, you can construct an inverse function for that restricted sine
function. The inverse function, also pictured in Figure 5-18, is denoted
“sin–1 x” (read “sine inverse of x”) or “arcsin x” (read “arc sine of x”).

You are more likely to see the “arcsin” notation than the “sin –1” notation,
because the latter expression is sometimes erroneously interpreted as “the
reciprocal of sine.”

sin–1 x ≠ sin x
1

Essentially, the expression “arcsin c” asks the question “What angle θ on the 

interval ,2 2
π π

-; Ehas a sine value of c?” Unlike the sine function, which uses 

angles as inputs, the arcsin function will always return angles as outputs.

-π π

1

2

3

-1

-2

-3

y = sec θ

-π π

1

2

3

-1

-2

-3

y = csc θ
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Figure 5-18 The restricted sine function and its inverse, arcsin x. Note
that the domain of sin x and the range of arcsin x are both restricted to

,2 2
π π

-< F.

The other five trigonometric functions can also be restricted so that they,
too, have inverses whose ranges are in turn restricted; arccsc θ and arctan θ
share the same range restriction as arcsin: 2 2

π θ π# #- . The range restric-
tion for arccos θ, arcsec θ, and arccot θ has the same interval length but
has different endpoints: 0 ≤ θ ≤ π.

Example 11: Evaluate the following expressions.

(a) arcsin sin 2
3π

c m

Evaluate the inner function first.

arcsin (–1)

Where is the sine function equal to –1? At θ = 2
3π, but that does 

not fall within the restricted range. Therefore, find a coterminal 
angle which does fall in that range by subtracting 2π from 2

3π.

2
3π – 2π = 2

π
-

(b) tan (arcsec 3
7

- )

Since the range of arcsecant is 0 ≤ θ ≤ π, it applies only to angles in
quadrant I or II. Secant is only negative in quadrant II, so you can
rewrite the expression as tan θ, and draw a right triangle with a sec-
ond quadrant reference angle to visualize θ, as shown in Figure 5-19. 

1

–1

y = sin x

y = arcsin x

π
2

π
2

π
2–

π
2–
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Figure 5-19 A diagram of θ, based on the information in Example 11(b)
and the Pythagorean Theorem.

Although you don’t know exactly what θ is, you can still revaluate tan θ
and complete the problem, since tangent is equal to the opposite leg
divided by the adjacent one.

tan tan3
7

3
2 10

arcsec θ- = =-c m

Chapter  Checkout

Q&A
1. What is the greatest negative coterminal angle for θ = 6

π?
2. Convert 315° to radians.
3. If θ is in standard position and its terminal side passes through the

point (–1,–5), evaluate sin θ.
4. Give the amplitude and period of f (x) = –4cos 3

π θc m + 5.
5. Evaluate arccos .sin 3

π
-c m

Answers: 1. 6
11π

- 2. 4
7π 3.

26
5

- 4. amp = 4; per = 6π 5. 6
5π

θ

102
7

–3
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Chapter 6

ANALYTIC TRIGONOMETRY

Chapter  Check-In

❑ Defining trigonometric identities

❑ Proving statements using identities

❑ Solving equations involving trigonometry

❑ Applying double- and half-angle identities

❑ Understanding the Laws of Sines and Cosines

Whereas Chapter 5 focused exclusively upon introducing the elements
of trigonometry, this chapter will help you apply them appropriately

in the situations for which trigonometry is most used in precalculus. You’ll
begin with a brief foray in manipulating trigonometric expressions, then
solve trigonometric equations, and eventually apply mathematical laws to
evaluate angles and sides of oblique triangles given very little information. 

This is the culmination of trigonometry for your purposes, because it shows
that the concepts you’ve learned thus far are not only useful for situations
involving right triangles or angles in standard position, but that information
about all triangles can be obtained by applying trigonometric functions.

Trigonometric Identities

Although trigonometric identities look a lot like trigonometric equations,
they differ in one key characteristic. Whereas an equation may have one,
two, or a handful of solutions, an identity is true no matter what value is
plugged in for the variable.
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For example, the equation x + 5 = 9 is an equation with one solution 
(x = 4). However, the equation 2(x + 1) = 2x + 2 falls under the category
of identity because it is true for any real number x. Granted, it’s not a very
interesting or useful identity, because it cannot be applied in very many
situations.

Four types of identities

There are four main categories of trigonometric identities with which you
should become familiar. In fact, you should have each identity memorized,
so that you can apply them without referring to this list.

■ Reciprocal identities: Remember that the cotangent, cosecant, and
secant functions are all defined as the reciprocals of the other three
trigonometric functions. 

cot θ = 
tan

1
i

= 
sin
cos

i
i

sec θ = 
cos

1
i

csc θ = 
sin

1
i

The reciprocal relationship is a two-way street, however, so you can
take the reciprocal of both sides of each of the above equations, and
the result is another list of identities.

tan θ = 
cot

1
i

= 
cos
sin

i
i

cos θ = 
sec

1
i

sin θ = 
csc

1
i

■ Pythagorean identities: Since the cosine and sine of an angle on the
unit circle represent the lengths of the legs of a right triangle, you
know that the following is true for all angles:

cos2 θ + sin2 θ = 1

Be aware that cos2 θ means the exact same thing as (cos θ)2 and 
sin2 θ = (sin θ)2; it is simply shorthand notation that doesn’t require
as many parentheses. If you divide that identity by either cos2 θ or
sin2 θ, you get one of the other two Pythagorean identities.

1 + tan2 θ = sec2 θ

1 + cot2 θ = csc2 θ
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■ Sign identities: Based on the symmetry exhibited in their graphs, you
can tell that sine, cosecant, tangent, and cotangent are odd functions.
Since an odd function f (x) has the property f (–x) = –f (x), the follow-
ing statements are true:

sin (–θ) = –sin θ
csc (–θ) = –cscθ
tan (–θ) = –tanθ
cot (–θ) = –cot θ

The only even trigonometric functions are cosine and secant, which
exhibit this property:

cos (–θ) = cos θ
sec (–θ) = sec θ

■ Cofunction identities: Cofunctions are trigonometric function pairs
which differ only in the presence or absence of the prefix “co”. For
example, tangent and cotangent are cofunctions, as are sine and cosine.

If f (θ) and g(θ) are cofunctions, then

f (2
π – θ) = g(θ)

g(2
π – θ) = f (θ)

For example, since sine and cosine are cofunctions, then the follow-
ing two statements are valid identities:

sin (2
π – θ) = cos θ

cos (2
π – θ) = sin θ

Simplifying expressions with identities

Trigonometric identities, when combined with basic algebraic skills such
as factoring, can be used to rewrite expressions in simplified form.

Example 1: Simplify each of the following expressions.

(a) tan (–t) ⋅ cos (–t)
Rewrite using the sign identities.

–tan t ⋅ cos t
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Express tangent as a quotient.

cos
sin

t
t

- ⋅ cos t

Cancel out the cos t terms.

–sin t

(b) csc2 θ – csc2 θ cos2 θ
Factor csc2 θ out of both terms.

csc2 θ(1 – cos2 θ)

Consider the Pythagorean identity containing cosine and sine. If
you were to subtract cos2 θ from both sides of that identity, it would
still hold true, and it would result in

cos2 θ + sin2 θ = 1

sin2 θ = 1 – cos2 θ

The quantity on the right side of the equation appears in the fac-
tored form of this problem, so substitute sin2 θ for it.

csc2 θ(1 – cos2 θ)

= csc2 θ(sin2 θ)

Rewrite using a reciprocal identity.

= 
sin

1
2 i

⋅ sin2 θ

= 1

(c)
sec

cot

x

xπ

1
2

2
-

-c m

Rewrite the numerator using a cofunction identity. You can sub-
tract 1 from both sides of the Pythagorean identity containing tan-
gent and secant to substitute in for the denominator, similar to the
substitution you made in part (b).

tan
tan

x
x

2

Simplify the fraction and apply a reciprocal identity to finish.

tanx
1 = cot x
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Proving Trigonometric Identities

The skills required to simplify trigonometric expressions can be further uti-
lized to prove that equations are actually trigonometric identities. Students
take different approaches. Some manipulate both sides of the given equa-
tion until they can tell that it is obviously true. Others work with only one
side of the equation and try to get it to match the other. Whichever your
strategy, you know you’ve proven the identity when you reach one of the
following:

■ A known trigonometric identity (such as a Pythagorean identity)

■ An obviously true statement, such as “sin θ = sin θ”

Example 2: Prove the following trigonometric identities.

(a) cos
sin

x
x

1 - = sin
cos
x

x1 +

Cross-multiply to eliminate the fractions.

sin2 x = 1 – cos2 x

Add cos2 x to both sides to reach a known identity, and therefore
accomplish your goal.

cos2 x + sin2 x = 1

(b) csc θ cot θ sec θ = sec2 (2
π – θ)

Rewrite the right side using a cofunction identity.

csc θ cot θ sec θ = csc2 θ

Rewrite the left side using reciprocal identities.

sin sin
cos

cos
csc1 1 2

$ $ =
i i

i
i

i

The cos θ terms will cancel out, leaving a statement that is true
according to a reciprocal identity.

sin
1
2 i

= csc2 θ

(c)
sec

sin
sin

x

x
x

π

1
2 2

-
-

-
=

^

c

h

m
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Leave the right side alone and simplify the left side; begin with the
fraction. Rewrite its numerator with a cofunction identity and its
denominator with a sign identity.

1 – sec
cos

x
x = sin2 x

Rewrite secant using a reciprocal identity.

cos

cos sin
x

x x1 1
2

- =

Simplify the complex fraction.

1 – cos2 x = sin2 x

cos2 + sin2 x = 1

(d) sec4 θ – tan4 θ = 
cos

sin1
2

2
+

i
i

The left side is the difference of perfect squares; factor it.

(sec2 θ + tan 2 θ)(sec2 θ – tan2 θ) = 
cos

sin1
2

2
+

i
i

According to a Pythagorean identity, sec2 θ – tan2 θ = 1, so substitute
that value.

(sec2 θ + tan 2 θ)(1) = 
cos

sin1
2

2
+

i
i

Rewrite the right side of the equation as the sum of two fractions.

sec2 θ + tan 2 θ =  
cos

1
2 i

+ 
cos
sin

2

2

i
i

Rewrite the left side of the equation using reciprocal identities.

cos
1

2 i
+ 

cos
sin

2

2

i
i = 

cos
1

2 i
+ 

cos
sin

2

2

i
i

Solving Trigonometric Equations

Trigonometric equations don’t require many special techniques to solve.
In fact, you’ll use the same methods you did with ordinary, polynomial
equations, with one important exception: You have to write your solution
in the very specific way called for by the problem. Although an equation
will always have the same solutions, there are different ways of writing
those solutions based on how the problem is worded.
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Consider this basic trigonometric equation:

sin θ = 0

Your answer for this, as with all trigonometric equations, will be an angle
or angles that make the statement true. Here are the different solutions you
should give to that equation depending upon the problem’s instructions.

■ Exact solution: If you are asked to provide the exact solution, you
should pay special attention to the restricted domain of the inverse
trigonometric function. To solve the equation sin θ = 0, you should
take the arcsin of both sides.

arcsin (sin θ) = arcsin 0

The left side will simplify to θ; when you evaluate the right side,
remember you can only give one output, since arcsine is a function,
and that solution must fall within the interval 2 2

π π# #- i , as dis-
cussed in Chapter 5.

θ = 0

■ Specified solution: Sometimes, the problem will ask you to provide
solutions on a predefined interval, usually [0,2π). If that interval is
specified in this problem, you should give two solutions: θ = 0, π,
since they both make the statement true. You’re not breaking the rules
of inverse functions, you’re just choosing to ignore them. Even though
arcsin 0 should only return one value, there’s no denying that both 
θ = 0 and θ = π make the equation true.

■ General solution: A general solution includes an infinite number of
angles, because it considers all the angles coterminal to the solution as
valid answers, as well. You already know that both 0 and π are valid
solutions to the equation sin θ = 0. To make that into a general solu-
tion, include all possible coterminal angles of each individual solution
by adding multiples of the trigonometric function’s period like this:

θ = 0 + 2π(n)

θ = π + 2π(n)

where n is an integer. In fact, you can write this solution even sim-
pler, since every viable answer is exactly π more than another.

θ = π + nπ, if n is an integer
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In the problems that follow, the directions will request different kinds of
solutions, but remember that any type of solution can be requested for any
type of trigonometric equation.

Simple equations

These equations looks just like linear equations, except that they contain
trigonometric functions.

Example 3: Give all solutions to the equation on the interval [0,2π).

sec3 2 0- =i

Isolate sec θ on the left side of the equation.

sec
3

2
=i

Take the reciprocal of both sides of the equation.

cos 2
3

=i

According to the unit circle, the angles which have that cosine are 

θ = 6
π, 6

11π.

Quadratic equations

Just like polynomials, these can be solved via factoring or, if necessary, the
quadratic formula.

Example 4: Give the general solution to the equation.

tan2 x + 4tan x = 5

Move all terms to the left side and factor the equation.

tan2 x + 4tan x – 5 = 0

(tan x + 5)(tan x – 1) = 0

Set each factor equal to 0 and solve. Since tangent has a period of π, find
the solutions on [0,π]; you’ll create the general solution by adding nπ to
these answers.

tan x = –5 or tan x = 1

x = arctan (–5) or x = 4
π
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Since both the sine and cosine values of 4
π are equal (and tangent is defined 

as the quotient of the two), tan 4
π = 1. There are no angles on the unit 

circle whose tangent is –5, so you can either leave your answer as 
arctan (–5) or rewrite as an approximate decimal (–1.3734). Create the
general solution by adding multiples of π, the period of tangent.

x = arctan (–5) + nπ

x = 4
π + nπ

if n is an integer.

Equations requiring identities

Before you can solve an equation, you need to make sure it is expressed
entirely in terms of one trigonometric function. Example 5 makes use of
an identity to reach that goal.

Example 5: Give the exact solution to the equation.

sin2 θ + 3cos θ – 3 = 0

Rewrite sin2 θ as (1 – cos2 θ), since they are equal according to a Pythagorean
identity.

(1 – cos2 θ) + 3cos θ – 3 = 0

Multiply everything by –1 and simplify.

–1 + cos2 θ – 3 cos θ + 3 = 0

cos2 θ – 3cos θ + 2 = 0

Factor the left side, and set each factor equal to 0.

(cos θ – 2)(cos θ – 1) = 0

cos θ = 2 or cos θ = 1

The left equation has no solution, because the range of cosine is 
–1 ≤ cos θ ≤ 1, so it can be discarded. Since you are asked to give the exact
solution of cos θ = 1, make sure to report only answer on the restricted
domain of [0,π].

θ = 0
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Equations requiring squaring

It is not always a straightforward task to write an equation in terms of only
one trigonometric function. Pythagorean identities make this easier, but
in order to use them, squared trigonometric functions must be present. If
they aren’t, introduce them by squaring both sides of the equation. Beware
that this procedure could introduce false solutions, so you must always
check your answers to ensure that they are valid.

Example 6: Give the general solution to the equation.

sin x + 1 = cos x

Square both sides of the equation; make sure to use FOIL on the left side.

sin2 x + 2sin x + 1 = cos2 x

Since the only non-squared trigonometric function is sine, eliminate cosine
with a Pythagorean identity.

sin2 x + 2sin x + 1 = 1 – sin2 x

2sin2 x + 2sin x = 0

Factor and solve.

2sin x(sin x + 1) = 0

2sin x = 0 or sin x = –1

The left equation has solutions 0 and π, and the right equation has solu-
tion 2

3π. However, if you test each, you’ll notice that π does not work.

x = 0 + n(2π)

x = 2
3π + n(2π)

if n is an integer.

Functions of multiple angles

If the trigonometric function contains something other than just a vari-
able such as x or θ, you’ll only need to alter the final steps of the problem.
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Example 7: Give the solutions to the equation on the interval [0,2π).

2cos (3θ) + 1 = 0

Isolate cos (3θ) on the left side of the equation.

cos (3θ) = 2
1

-

Usually, you would now list the angles on one period of cosine which have 
a value of 2

1
- . (They are 3

2π and 3
4π.) However, since the coefficient of 

θ is 3, list three times as many angles for a total of 6, lengthening the orig-
inal list of 2 solutions via the next 2 positive coterminal angles of each.

, , , , ,π π π π π π3 3
2

3 3 3 3 3
4 8 10 14 16

=i

To finish, divide everything by θ’s coefficient.

, , , , ,π π π π π π
9

2
9 9 9 9 9

4 8 10 14 16
=i

It was only necessary to write all 6 solutions for this problem because the
directions indicated that all solutions on the interval [0,2π) be given.

Sum and Difference Identities

Remember that trigonometric functions are just that: functions. They are
not real number values that can be distributed throughout a quantity.

sin (x + y) ≠ sin x + sin y

If you encounter a sum or difference within a trigonometric function (like
the left side of the above statement), you’ll need to use sum and difference
identities to transform the expression into an altogether new expression,
which will contain only trigonometric functions of single angles. These
identities are listed below. Note that each ± symbol could represent either
a + or a –, but that the " symbol will then take on the opposite value.

■ Sine: sin sin cos cos sin! !=a b a b a b_ i

■ Cosine: cos cos cos sinsin! "=a b a b a b_ i

■ Tangent: tan
tan tan

1 tan tan
!

"

!
=a b

a b
a b

_ i

These identities can be used to calculate trigonometric values for angles
not on the unit circle, but they are not limited to this task. In fact, you
may see them in trigonometric equations or identity problems. Wherever
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you see a sum or difference within a trigonometric function, your first task
should be to expand that function via sum and difference identities.

Example 8: Solve the equation and give all solutions on the interval [0,2π).

cos (x + 4
π) – cos (x – 4

π) = 1

Expand both sums within the trigonometric expression. Two of the terms
will cancel, so evaluate the trigonometric functions in the remaining terms.

cos cos sin sin cos cos sin sin

sin sin

sin

sin

x x x x

x x

x

x

π π π π
4 4 4 4 1

2
2

2
2

1

2 1

2
1

2

2
2
2

$

- - + =

- - =

- =

=- =-

J

L

K
K

J

L

K
K

c c

N

P

O
O

N

P

O
O

m m

Sine takes on that function value at θ = 4
5π, 4

7π.

Additional Identities

Although the identities discussed thus far this chapter are used most fre-
quently, you will occasionally encounter a few additional types of identi-
ties. Like previous identities, these fulfill needs that may arise in very
specific (but less common) circumstances.

Double-angle formulas

Since the majority of the identities you’ve used so far are written in terms
of a single angle (sin x rather than, for example, sin 2x), converting from
double angles to single angles is a useful skill. Double-angle expressions
should almost always be rewritten as single-angle expressions immediately
if observed in an identity or equation.

■ sin 2θ = 2sin θ cos θ

■ cos 2θ = cos2 θ – sin2 θ

cos 2θ = 2cos2 θ – 1

cos 2θ = 1 – 2sin2 θ

■ tan 2θ = 
tan
tan

1
2

2
- i

i
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Note that the cosine double-angle formula contains three different but
equivalent expansions, so you have some flexibility when substituting in
for it. Decide which to use based on the rest of the problem’s content; if
it contains both sines and cosines, use the first expansion, but if it con-
tains only one or the other, use the expression that matches.

Example 9: Prove the identity.

2cos5 x sin x – 2sin5 x cos x = cos 2x sin 2x

Factor 2sin x cos x out of the left side of the equation.

2sin x cos x(cos4 x – sin4 x) = cos 2x sin 2x

Factor the difference of perfect squares.

2sin x cos x(cos2 x + sin2 x)(cos2 x – sin2 x) = cos 2x sin 2x

According to a Pythagorean identity, cos2 x + sin2 x = 1.

2sin x cos x(1)(cos2 x – sin2 x) = cos 2x sin 2x

The left side contains two double-angle identity expansions.

(sin 2x)(cos 2x) = cos 2x sin 2x

This is true because of the commutative property of multiplication.

Half-angle formulas

Just like double-angle formulas, half-angle formulas return expressions in
terms of single angles. 

■ cos cos
2 2

1
!=

+i i

■ sin cos
2 2

1
!=

-i i

■ tan
cos

cos
2 1

1
!=

+

-i
i

i

tan
cos

sin
2 1

=
+

i
i

i

tan
sin

cos
2

1
=

-i
i
i
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Tangent has three alternate half-angle expansions, two of which will gen-
erate the correct sign of your answer. The other three of the five half-angle
trigonometric expansions contain a “±” sign, which indicates that you must
insert the correct sign, depending upon which quadrant the given angle, 

2
i , lies in. For example, if 2

i ’s terminal side fell in the second quadrant,
you’d know that its cosine and tangent values would be negative and its
sine would be positive, just like all second quadrant angles.

Example 10: Evaluate tan π
12
5 using a half-angle identity.

Although π
12
5 is not on the unit circle, π

6
5 is. Therefore, set θ = π

6
5 in one

of the half-angle expansions.

.

tan tan
cos

sin
π

2 12
5

1 6
5

6
5

1 3 2

1 2

3 73205

π

π

.

= =
+

=
+ -

i

c

c

a

m

m

k

Sum-product formulas

If an equation or identity can be made simpler by transforming the sum
or difference of two sines or two cosines into a product, use the appropri-
ate sum-product formula.

■ cos cos cos cos2 2 2+ =
+ -

a b
a b a b

e eo o

■ cos cos sin sin2 2 2- =-
+ -

a b
a b a b

e eo o

■ sin sin sin cos2 2 2+ =
+ -

a b
a b a b

e eo o

■ sin sin cos sin2 2 2- =
+ -

a b
a b a b

e eo o

Example 10: Evaluate using a sum-product formula.

sin 12
23π + sin 12

7π

Neither of these angles appear on the unit circle, but notice that both half
of their sum and half of their difference are angles which do. This makes
the problem a prime candidate for a sum-product formula.
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π π π π

π π π π
2
1

12 12
7

2
1

12
30

4
5

2
1

12 12
7

2
1

12 3

23

23 16 2

+ = =

- = =

c c

c c

m m

m m

Plug into the sin α + sin β formula, using the simplified expressions above.

sin sin sin cosπ π π π
12 12 2 4 3

2 2
2

2
1

2
2

23 7 5 2
+ =

= - -

=

J

L

K
K

c c

c

N

P

O
O

m m

m

Product-sum formulas

These formulas are used to rewrite products of sines and/or cosines into
equivalent sums. Like sum-product formulas, these are used very rarely
compared to the identities that preceded them, but are invaluable if and
when the need arises.

■ cos cos
cos cos

2=
- + +

a b
a b a b_ _i i

■ sin sin
cos cos

2=
- - +

a b
a b a b_ _i i

■ cos sin
sin sin

2=
+ - -

a b
a b a b_ _i i

■ sin cos
sin sin

2=
+ + -

a b
a b a b_ _i i

If you notice that α + β and α – β both equal a unit circle angle, use these
formulas to evaluate the expression, much like Example 10.

Oblique Triangle Laws

In Chapter 5, you used reference angles to calculate trigonometric values
of oblique angles in standard position on the coordinate plane. The laws
you’ll learn in this section apply not to oblique angles but oblique triangles.
The angles in these triangles are usually written in degrees, rather than radi-
ans, but the statements hold true no matter how the angles are measured.

08 539841 Ch06.qxd  1/26/04  2:49 PM  Page 120



Chapter 6: Analytic Trigonometry 121

For the sake of uniformity, these theorems will refer to angles and sides in
a standard way. While you cannot assume a given triangle is acute or
obtuse, you can assume that the letters representing angles and their oppo-
site sides will match. For example, angle A is opposite side a, and angle C
is opposite side c, as shown in Figure 6-1.

Figure 6-1 In Law of Sines and Law of Cosines problems, matching let-
ters indicate angles and sides opposite one another.

Law of Sines

According to the Law of Sines, the angles of a triangle and the lengths of
their opposite sides are all in the same proportion:

sin
a

A = sinb
B = sinc

C

Sometimes, this formula is written as an equality statement of the recip-
rocals, which is also true.

sinA
a = sinB

b = sinC
c

The Law of Sines helps you calculate angles and sides of a triangle if you
are given either:

■ Measures of two angles in the triangle and the length of a side

■ Measures of two of the sides in the triangle, and an angle not included
(created by) those sides

The Law of Sines will always work if given two angle measurements, but
in the case of two sides and a non-included angle, there is a chance you
could get more than one possible solution or no solution at all. This weak-
ness will be addressed by the next law, the Law of Cosines.

A
B

C

a b

c
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Example 11: Given an oblique triangle ABC with A = 55°, B = 73°, and
a = 6, find the length of side c.

Since the sum of the angles of a triangle equals 180°, you can find the mea-
sure of angle C.

C = 180° – 55° – 73° = 52°

Apply the Law of Sines using c, since it’s the value you’re trying to find,
and a, since you know both its length and the measure of its opposite angle.

sin
a

A = sinc
C

sin
6
55% = sinc

52%

c ⋅ sin 55° = 6 ⋅ sin 52°

c = 
sin
sin

55
6 52

%

%

≈ 5.772

This answer makes sense, because the larger an angle, the larger the side
opposite it will be. Since C is slightly smaller than A, then c is in turn
slightly smaller than a.

Example 12: Given an oblique triangle ABC with C = 20°, b = 13, and 
c = 5, find the measure of angle B.

Apply the Law of Sines.
sin

b
B = sinc

C

sinB
13 = sin5

20%

sin B = sin
5

13 20%

sin B ≈ .8892523726

Using a calculator, you can calculate

arcsin (.8892523726) ≈ 62.78°

However, a second quadrant reference angle of 62.78° produces the same
sine value, since sine is positive in both the first and second quadrants.
Since this angle could be acute (first quadrant) or obtuse (second quad-
rant), both answers are acceptable; calculate the angle which corresponds
to that reference angle:

180° – 62.78° = 117.22°
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There are two possible triangles that could possess the measurements given
to you in the problem, so both measurements for B are correct.

Law of Cosines

If you are not given the information required by the Law of Sines (i.e. a
pair of angles or two sides and a non-included angle), the problem may be
a candidate for the Law of Cosines, which states that the sides and angles
of an oblique triangle are related in this manner:

a2 = b2 + c2 – 2bc cos A

b2 = a2 + c2 – 2ac cos B

c2 = a2 + b2 – 2ab cos C

The Law of Cosines is better suited than the Law of Sines to help find
missing angles and sides of triangles if given either:

■ The lengths of two sides and the measure of their included angle

■ The lengths of all three sides of the triangle, but no angle 
measurements

If a problem asks you to calculate the measures of multiple parts of a tri-
angle, and you must use the Law of Cosines to begin that problem, you
need not stick with the Law of Cosines to complete it. Once you have the
measurements of an angle and its opposite side, you can default back to
the Law of Sines (which is shorter and requires less work). 

However, if you are calculating an angle which might be obtuse, you must
use the Law of Cosines to get the correct angle measurement. Remember,
the Law of Sines cannot always differentiate between acute and obtuse
angles. However, the Law of Cosines can, since cosine has different signs
in quadrants I and II (unlike sine). 

Example 13: Given an obtuse triangle ABC with a = 17, b = 26, and 
c = 14, find the measurements of all the angles accurate to the hundredths
place.

Since you are given all of the sides’ lengths, apply the Law of Cosines. Start
by calculating the measure of B since it is opposite the largest side, and
therefore possibly obtuse.
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b2 = a2 + c2 – 2ac cos B

262 = 172 + 142 – 2(17)(14) cos B

676 = 485 – 476cos B

arccos 476
191-

c m = B

Evaluate using a calculator.

B ≈ 113.6570024°

Do not round any angle measurements until the end, or you risk com-
pounded inaccuracies. Now use the Law of Sines to calculate one of the
remaining angles.

sin
a

A = sinb
B

sinA
17 = .sin

26
113 6570024%

sin A ≈ 17 ⋅ .0352293837

A ≈ 36.79112242°

Since the sum of the angles of a triangle is 180°, calculate C.

C = 180° – 113.6570024 – 36.79112242 ≈ 29.55187518°

Therefore, A = 36.79°, B = 113.66°, and C = 29.55°.

Calculating Triangle Area

The most basic and most widely known formula for the area of a triangle is

A = bh2
1

where b is the base and h is the height. However, this formula is only use-
ful when the segments representing b and h meet at a right angle. There-
fore, if you are trying to calculate the area of an oblique triangle (or a
triangle whose height is not easy to find), this formula isn’t applicable. This
section presents additional formulas that allow you to find a wider variety
of triangle areas.
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Given Side-Angle-Side

If you are given the lengths of two sides of a triangle (x and y) and the mea-
sure of their included angle (θ), then the area of the triangle will be

sinxy2
1 i

Example 14: Find the area of the triangle pictured in Figure 6-2.

Figure 6-2 The diagram for Example 14.

Since the angle 110° is contained by the sides of length 5 and 11 (in other
words, you are given side-angle-side), apply the sine area formula.

Area = 2
1 ⋅ 5 ⋅ 11 ⋅ sin 110°

Area ≈ 25.842 square units

This formula (like the Law of Sines and the Law of Cosines) will work
equally well for angles expressed as either degrees or radians, since an angle
has the same sine or cosine value, no matter what units you use to mea-
sure it.

Given side-side-side

If you are given no angle measurements, but do know the lengths of all an
oblique triangle’s sides, you can apply Heron’s Area Formula to find the
area of the triangle. According to this formula, a triangle with side lengths
a, b, and c will have area

s s a s b s c- - -^ ^ ^h h h

if s = a b c
2

+ + .

A

B

C
5

11110°
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Example 15: Calculate the area of the triangle in Figure 6-3.

Figure 6-3 The triangle described in Example 15.

Begin by calculating s.

s = 2
8 11 17+ +

s = 18

Use this value in Heron’s Area Formula.

.

Area s s a s b s c

18 18 8 18 11 18 17

1260

35 50 square units.

= - - -

= - - -

=

^ ^ ^

^ ^ ^

h h h

h h h

Chapter  Checkout

Q&A
1. Prove the identity: tan

cos
sec cos2

=
-i
i

i i.

2. Solve the trigonometric equation and give all solutions on the interval
[0,2π): cos8 2 4 3 0- =i^ h .

3. Given an oblique triangle containing sides of length 4 and 7, such that
the angle formed by those sides measures 132°, answer the following:

(a) What is the length of the third side?
(b) What is the area of the triangle?

4. Calculate the area of a triangle with sides of length 6, 7, and 11.

A

B

C

17

8

11
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Answers:

1. tan
cos
sec

cos
cos

tan

sec

sec

tan sec

tan sec

1 1

1

1

2

2

2 2

2 2

= -

= -

= -

+ =

i
i
i

i
i

i

i

i

i i

i i

2. , , ,π π π π
12 12 12 12

11 13 23

3. (a) b ≈ 10.123 (b) 10.404 4. 6 10
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Chapter 7

VECTORS AND 
THE TRIGONOMETRY OF

COMPLEX NUMBERS

Chapter  Check-In

❑ Interpreting vectors algebraically and geometrically

❑ Performing operations on vectors in component form

❑ Calculating the dot product

❑ Expressing complex numbers trigonometrically

❑ Applying DeMoivre’s Theorem

This chapter contains trigonometric applications for other fields of math-
ematic study—vectors and complex numbers—which demonstrates

that trigonometry is useful for more than calculating the angles and sides
of triangles.

Vectors in the Coordinate Plane

A vector is a quantity that possesses two characteristics: magnitude and
direction. Vectors are visualized as directed line segments (segments with
an arrow head at one end indicating direction) on the coordinate plane,
as demonstrated in Figure 7-1.
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Figure 7-1 Vector v travels from point P to point Q.

The vector in Figure 7-1 begins at initial point P and ends at terminal
point Q. Whereas vectors are usually expressed as variables in boldface,
they can also be written in terms of their endpoints. Therefore, the vector 

in Figure 7-1 could be named either v or PQ.

Standard form of a vector

Vector arithmetic is vastly simplified if the vectors involved have initial
points which lie on the origin of the coordinate plane. Such vectors are
said to be in standard position. 

Once a vector is in standard position, the coordinates of its terminal point,
(x2, y2), can be written as <x2, y2>. The change of grouping symbol indi-
cates that the vector is now in component form, since x2 and y2 represent
the horizontal and vertical components of the vector, respectively. In other
words, if vector m has component form <a,b>, then its initial point is the
origin, and its terminal point is (a,b).

Q = (x2, y2)

V

P = (x1, y1)
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Example 1: Write vector n, which has initial point (–3,7) and terminal
point (4,–2) in component form.

Subtract the x-values of the terminal point from the x-values of the initial
point to get the x-value of component form. Repeat the process for the 
y-values.

n = <4 – (–3), –2 – 7> = <7,–9>

Notice that the terminal point of n is exactly 7 units to the right of and 9
units down from its initial point.

Once a vector is in component form, you can easily find the length of the
vector (called its magnitude) using the Pythagorean Theorem, since a right
triangle is formed between the origin, the terminal point of the vector, and
the point on the x-axis directly below the terminal point. The magnitude
of a vector v is written ||v||.

If v = <a,b>, then a bv 2 2
= +

Example 2: Calculate the magnitude of n = <7,–9>.

7 9 49 81 130n 2 2= + - = + =^ h

Unit vectors

A vector which has a magnitude of 1 is called a unit vector, much like the
circle of radius 1 is called the unit circle. You may be asked to find a unit
vector in the same direction as a given vector. A vector, v, written in com-
ponent form, can be transformed into a unit vector of the same direction,
v0, by dividing each component of v by ||v||.

Example 3: If v = <3,–2>, calculate the unit vector v0 which shares the
same direction as v.

First find the magnitude of v.

3 2 13v 2 2= + - =^ h

Divide each component of v by ||v|| to find v0.

, ,
13
3

13
2

13
3 13

13
2 13

v 0 = - = -
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There are two standard unit vectors, i = <1,0> and j = <0,1>, which 
represent horizontal and vertical components, respectively. Any vector 
v = <a, b> can be written in terms of these unit vectors

v = ai + bj

The reverse is also true; w = ci + d j is equivalent to w = <c,d>.

Example 4: Vector v has initial point P = (0,4) and terminal point 
Q = (–3,5). Write v in terms of standard unit vectors i and j.

Begin by expressing the vector in component form.

v = <–3 – 0,5 – 4>

v = <–3,1>

The horizontal component is the coefficient for i, and the vertical com-
ponent is the coefficient for j.

v = –3i + j

Basic vector operations

There are four major operations you will perform on vectors. You should
understand the following three both algebraically and geometrically. The
fourth will be discussed in the next section.

■ Vector addition: If vector v = <a,b> and w = <c,d>, then

v + w = <a + c, b + d>

To add vectors in the coordinate plane, place the initial point of the
second vector on top of the terminal point of the first vector. The vec-
tor representing the sum will have the same initial point as the first
vector and the same terminal point as the second vector. This is called
the parallelogram law of vector addition; it’s pictured in Figure 7-2.
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Figure 7-2 The parallelogram law for vector addition.

Example 5: If v = <–3,10> and w = <8,–1>, calculate v + w.

v + w = <–3 + 8,10 – 1> = <5,9>

■ Scalar multiplication: When a vector is multiplied by a constant
(also called a scalar), both the length and the direction of the vector
can be changed.

If v = <a,b> has magnitude m, then cv = <ca,cb> and ||cv|| = |cm|

If c < 0, then vector cv will travel in the opposite direction as v.

Both possible effects of scalar multiplication are demonstrated geo-
metrically in Figure 7-3.

V

W

V + W
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Figure 7-3 The effects of scalar multiplication on vector v.

Example 6: If v = –4i + 11j, evaluate –9v.

Written in component form, v = <–4,11>. Multiply each component by –9.

–9v = <–4 ⋅ –9,11 ⋅ –9> = <36,–99>

■ Vector subtraction: Any vector subtraction problem can be rewrit-
ten as a vector addition problem with a scalar multiple of –1 times
the second vector:

v – w = v + (–w)

To visualize a subtraction problem, reverse the direction of the sec-
ond vector (but leave its length alone). Then, apply the parallelogram
law for vector addition and treat it as an addition problem.

Example 7: If v = <–2,3> and w = <1,–6>, calculate v – w.

v – w = v + (–w) = <–2,3> + <–1,6> = <–3,9>

2V

V

−     V1
2

09 539841 Ch07.qxd  1/26/04  2:51 PM  Page 133



134 CliffsQuickReview Precalculus

Dot Products

The dot product of two vectors, v = <a,b> and w=<c,d>, is defined as

v ⋅ w = ac + bd

Properties of the dot product

Notice that the result is a scalar (a number), not a vector, unlike the result
of the preceding three vector operations.

The dot product has the following properties:

■ v ⋅ w = w ⋅ v (the dot product is commutative)

■ u ⋅ (v + w) = u ⋅ v + u ⋅ w (the dot product can be distributed through
a vector sum)

■ n(v ⋅ w) = nv ⋅ w or v ⋅ nw, where n is a scalar (if a dot product is mul-
tiplied by a scalar, the expression can be rewritten as a dot product
with n as a scalar multiple of exactly one of the vectors)

■ v ⋅ 0 = 0 (0 is known as the zero vector and has component form
<0,0>)

■ v ⋅ v = ||v||2 (the dot product of a vector with itself is equal to the
square of that vector’s magnitude)

Example 8: Evaluate the following if v = <2,–3> and w = <–8,1>.

(a) w ⋅ v
(–8 ⋅ 2) + (1 ⋅ –3) = –19

(b) 2v ⋅ –3w
(2 ⋅ <2,–3>) ⋅ (–3 ⋅ <–8,1>)

<4,–6> ⋅ <24,–3>

96 + 18 = 114

(c) 2(v ⋅ w)
You can either take the dot product first and then multiply by 2 or
multiply one of the vectors by 2, and then take the dot product.
Either of the techniques will result in the same answer. Below, both
techniques are demonstrated.
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2(v ⋅ w) = v ⋅ 2w

2(<2,–3> ⋅ <–8,1>) = <2,–3> ⋅ 2<–8,1>

2(–16 – 3) = <2,–3> ⋅ <–16,2>

2(–19) = –38

(d) <5,–3> ⋅ (v + w)
Distribute the vector <5,–3> across the vector sum of v and w.

<5,–3> ⋅ v + <5,–3> ⋅ w

<5,–3> ⋅ <2,–3> + <5,–3> ⋅ <–8,1>

19 – 43 = –24

(e) w ⋅ w
The below work demonstrates that the dot product of a vector with
itself is equal to the square of its magnitude; note that 65w = .

w ⋅ w = ||w||2

, ,8 1 8 1 65

64 1 65

2
$- - =

+ =

a k

Measuring angles between vectors

The angle θ (0 ≤ θ ≤ π) between vectors v and w in standard position, as
shown in Figure 7-4, can be found with this formula:

cos θ = 
v w
v w$

Example 9: Calculate the measure of θ, the angle formed by v = <7,6>
and w = <–4,2>.

Substitute the vectors into the angle formula.
, ,

.

.

cos

cos

cos

7 6 4 2

7 6 85

4 2 20 2 5

85 2 5
28 12

388057000058

112 83

v w

v

w

θ

θ

θ

θ

2 2

2 2

$

$

.

.

=
-

= + =

= - + = =

=
- +

-

%

^ h
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Note that if the vector names were reversed in this example (v = <–4,2>
and w = <7,6>), the result would still be the same. That’s because both the
numerator and the denominator of the angle formula contain commuta-
tive operations.

Figure 7-4 If v and w are in standard position, you can calculate the
measure of θ, the angle between them.

Orthogonal vectors

Two vectors are said to orthogonal if they intersect at right angles. In other
words, orthogonal vectors are perpendicular to one another. 

Consider the orthogonal vectors <4,–10> and <5,2>. Calculate the angle
between them using the method of Example 9.

V

W

θ
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, ,
cos

cos

cos

cos

π

4 10 5 2

20 20

0

0

2 90

v w

v w

v w

θ

θ

θ

θ

θ

$
=

-

=
-

=

=

= = %

From this example, you can see that the magnitudes of the vectors are irrel-
evant when determining whether or not vectors are orthogonal. In fact, the
only condition that non-zero orthogonal vectors v and w must satisfy is

v ⋅ w = 0

Since the dot product is commutative, a result of w ⋅ v = 0 is sufficient as
well. Note that although zero vectors are orthogonal to all vectors, they do
not exhibit the geometric property of perpendicularity, since zero vectors
have zero magnitude.

Example 10: Find the value of a which makes v = <–5,6> and w = <4,a>
orthogonal vectors.

If v and w are orthogonal, then v ⋅ w = 0.

<–5,6> ⋅ <4,a> = 0

Evaluate the dot product and solve for a.

–20 + 6a = 0

6a = 20

a = 3
10

Complex Numbers and Trigonometry

A complex number, as you may recall from Chapter 1, looks like a + bi
and contains two elements: a real part, a, and an imaginary part, bi, where
i 1= - .
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Because it possesses two components, a complex number cannot be graphed
on a number line, like a real number can. Instead, complex numbers must
be graphed on a coordinate plane, where the horizontal axis represents the
real quantity and the vertical axis represents the imaginary quantity, as pic-
tured in Figure 7-5.

Figure 7-5 Complex numbers graphed in the coordinate plane.

Basic operations with complex numbers

Adding and subtracting complex numbers is simple. Just combine the real
parts and do the same with the imaginary parts, as though you were adding
like terms of different polynomials.

(3 + 4i) + (–2 + 6i) = (3 – 2) + (4i + 6i) = 1 + 10i

(6 – 3i) – (–10 + 5i) = (6 – 3i) + (10 – 5i) = 16 – 8i

Multiplication and division of complex numbers is only slightly more 
difficult.

imaginary axis

real axis

−5 + 5i

−3

2i

3 − i

−2 − 3i

4 + 4i
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Example 11: Find the product: (1 + 3i)(–2 –7i).

Use the FOIL method, as though you were multiplying linear binomials.

–2 – 7i – 6i – 21i 2

Combine the imaginary terms.

–2 – 13i – 21i 2

Since i 1= - , then i 1 12 2
= - =-a k .

–2 – 13i – 21(–1)

–2 – 13i + 21

19 – 13i

The product of two complex numbers will simplify to a complex number
itself, once the i2 term is simplified.

The conjugate of a complex number (a ± bi) is equal to a bi" ; change
the middle sign to its opposite.

Example 12: Find the quotient: i
i

4 3
2
-

.

Multiply both the numerator and denominator of the quotient by the con-
jugate of the denominator. This will eliminate imaginary numbers from
the denominator. Simplify the result.

i
i

i
i

i
i i

i

i i

4 3
2

4 3
4 3

16 9
8 6

16 9
8 6

25
8

25
6

25
6

25
8

2

2

$
- +

+

-
+

+
-

- =- +

Just like multiplication, the result of dividing two complex numbers is
itself a complex number.
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Trigonometric form of a complex number

The complex number c = a + bi can be written in trigonometric form

c = r(cos θ + isin θ)

where the variables are defined as follows:

■ r a b2 2
= + (the distance from the origin to the point on the coordi-

nate place representing the graph if c); r is called either the modulus
or the absolute value of c.

■ θ is the angle measured from the positive x-axis to the segment joining
the origin and c; θ is called the argument of c. In order to determine 

the value of θ, notice that tan θ = a
b .

A graphical representation of each of these variables is given in Figure 7-6.

Figure 7-6 The variables a, b, r, and θ will help you put the complex num-
ber c = a + bi into trigonometric form.

To put a complex number in trigonometric form, follow these steps:

1. Calculate the modulus of c.
2. Calculate tan θ.

c = a + bi

r

a

b

θ
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3. Determine θ based upon its tangent value and what quadrant it
lies in.

4. Substitute r and θ into c = r(cos θ + isin θ).

Example 13: Write the complex number c i3 3=- - in trigonometric
form.

First, find the modulus of c.

r 3 3

9 3

2 3

2 2
= - + -

= +

=

^ ah k

Evaluate tan θ.

tan 3
3

3
3 3

3
1θ 1

1 2
1 2 1

= -
-

= = =
-] g

Since the graph of c lies in the third quadrant (because both its real and
imaginary components are negative), chose the θ from the unit circle in
that quadrant which has the given tangent value. It is easier to spot θ if 
you multiply the numerator and denominator of tan θ by 2

1.

tan cos
sin

π

3
1

2
1
2
1

2
3

2
1

6
7

θ θ
θ

θ

$= = =

=

Plug θ and r into the formula for trigonometric form.

cos sin

cos sin

c r i

c iπ π2 3 6
7

6
7

θ θ= +

= +

^

c

h

m

Check your answer by evaluating the trigonometric expressions and dis-
tributing 2 3; you’ll get c i3 3=- - .

Multiplying and dividing complex numbers

If c1 = r1(cos θ1 + isin θ1) and c2 = r2(cos θ2 + isin θ2) are complex numbers
in trigonometric form, then the product and quotient of c1 and c2 are
defined as follows:
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cos sin

cos sin

c c r r i

c
c

r
r i

θ θ θ θ

θ θ θ θ

1 2 1 2 1 2 1 2

2

1

2

1
1 2 1 2

$ = + + +

= - + -

^ ^

^ ^

h h

h h

8

8

B

B

Example 14: Evaluate c
c

2

1 if

cos sin cos sinc i c iπ π π π3 2 2 6 6 6and1 2= + = +c cm m

Apply the quotient formula.

cos sin

cos sin

c
c i

i

i

i
i

π π π π

π π

6
3

2 6 2 6

2
1

3 3

2
1

2
1

2
3

4
1 3

4
1

4
3

2

1

$

= - + -

= +

= +

=
+

= +

J

L

K
K

c c

c

N

P

O
O

m m

m

= G

Roots and Powers of Complex Numbers

You may wonder why people use the trigonometric form of a complex
number at all, when multiplying and dividing complex numbers in such
a form is so much more difficult than simply performing the operations
with the complex numbers in form c = a + bi. 

It turns out that raising complex numbers to exponential powers and find-
ing the roots (like square roots and cube roots, not x-intercepts) of complex
numbers is a bit easier when those numbers are written in trigonometric
form.

DeMoivre’s Theorem

Consider the product of a complex number c, written in trigonometric
form, with itself.

c = r(cos θ + isin θ)

c2 = [r(cos θ + isin θ)]2

Apply the multiplication formula for complex numbers, noting that in this
example, θ1 = θ2.
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cos sin

cos sin

c r r i

r i2 2

θ θ θ θ

θ θ

2 2

2

$= + + +

= +

^ ^

^

h h

h

8 B

Using the same process, you can find this result:

c3 = r3(cos 3θ + isin 3θ)

This conclusion is generalized for any power in DeMoivre’s Theorem: 
If c = r(cos θ + isin θ) is a complex number and n is a nonnegative inte-
ger, then

cn = rn(cos nθ + isin nθ)

Example 15: If c = 2 – 2i, evaluate c5.

Begin by putting c in trigonometric form. Since r 2 2= and θ = π
4

7 , 
you get

cos sinc iπ π2 2 4
7

4
7

= +c m

Apply DeMoivre’s Theorem to calculate c5.

cos sinc iπ π2 2 4 4
35 355 5

= +a ck m

Find a coterminal angle for 4
35π on the unit circle.

cos sinc iπ π128 2 4 4
3 35

= +c m

Calculating nth roots of complex numbers

If wk is an nth root of the complex number c = a + bi, then

(wk)
n = c, if n is a positive integer

This is not dissimilar from the roots discussed in Chapter 1. For example,
you know that x = 4 is a square root of 16, since

(4)2 = 16

If n is a positive integer, then every complex number c = r(cos θ + isin θ)
has exactly n different roots (w0, w1, w2, ... , wn – 1) given by the formula

, , , ,...,cos sinw r n
k i n

k k nπ π 0 1 2 12 2 whereθ θ
k

n=
+

+
+

= -c m
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Example 16: Find all cube roots (third roots) of c = 6(cos 6
7π + isin 6

7π).

You’re finding third roots, so let n = 3. Let k take values from 0 to 1 less
than n; therefore k will first be equal to 0, then 1, then 2.

:

:

:

cos sin

cos sin

cos sin

k w i

k w i

k w i

π π

π π

π π

0 6 18
7

18
7

1 6 18 18

2 6 18 18

19 19

31 31

0
3

1
3

2
3

= = +

= = +

= = +

^ c

^ c

^ c

h m

h m

h m

Chapter  Checkout

Q&A
1. If v has initial point P = (3,14) and terminal point (7,9),

(a) Write v in component form.
(b) Calculate ||v||.
(c) Write v in terms of standard unit vectors i and j.
(d) Find the unit vector v0 in component form that has the same

direction as v.

2. If v = <–2,3> and w = <–1,–8>, calculate the following:
(a) v + w
(b) 2v – 3w
(c) v ⋅ w
(d) θ°, if θ is the obtuse angle formed by v and w

3. Calculate the quotient: i
i

1 4
2 3

- +
- + .

4. Given complex number c i1 3=- + ,
(a) Write c in trigonometric form.
(b) Calculate c3 using DeMoivre’s Theorem.

Answers: 1. (a) <4,–5> (b) 41 (c) v = 4i – 5j

(d) , ,
41
4

41
5

41
4 41

41
5 41

- = - 2. (a) <–3,–5> (b) <–1,30> (c) –22 

(d) 139.185° 3. i17
14

17
5

+ 4. (a) c = 2(cos π
3

2 + isin π
3

2 ) (b) 8
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Chapter 8

ANALYTIC GEOMETRY

Chapter  Check-In

❑ Expressing equations of conics in standard form

❑ Identifying centers, foci, vertices, and asymptotes of conics

❑ Understanding parametric equations

❑ Transforming coordinates between rectangular and polar form

❑ Graphing polar and parametric equations

This chapter presents an in-depth study of non-linear graphs in the coor-
dinate plane. It begins with an analytic (algebraic) interpretation of the

four types of conic sections, which were heretofore understood in terms
of their geometric definitions. Late in the chapter, you’ll find a discussion
on different techniques for representing graphs in the coordinate plane.

Conic Sections

The set of four geometric figures (circles, parabolas, ellipses and hyperbolas)
together referred to as the conic sections are the cornerstone of modern ana-
lytic geometry. They are called the conic sections because their shapes can be
generated by intersecting a plane with a double-napped cone. (A double-
napped cone is created by joining two right circular cones together at their
vertices such that their bases are parallel.) Figure 8-1 illustrates where each
conic section can be found on the cone.

Your primary jobs when studying conic sections are:

■ Finding an equation of a conic section given its graph or description

■ Expressing a conic equation in standard form

■ Graphing a conic section given its equation in standard form.
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Though all conics have things in common (for example, they all contain
at least one perfect square binomial when in standard form), they are dif-
ferent enough to warrant a separate discussion of each.

Figure 8-1 The four types of conic sections.

Circles

A circle is a set of coplanar points which are equidistant from a fixed point
called the center; the distance between each point on the circle and the
circle’s center is called the radius. The standard form for the generic circle
pictured in Figure 8-2 is

(x – h)2 + (y – k)2 = r2

where (h,k) is the center and r is the radius.

Example 1: Identify the center and radius of the circle, and use that infor-
mation to sketch the circle’s graph.

(x – 3)2 + (y + 1)2 = 16

The coordinates for the center are the opposite of the numbers within the
squared quantities: (3, –1). The radius is equal to the square root of the
constant on the right side of the equation: 4.

To graph the equation, plot the center, and then count four units to the
right,  units to the left, four units above, and four units below the center.

hyperbola

parabola

circle

ellipse
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The circle will pass through those points (as well as all of the other infinitely
many points exactly 4 units away from the center) since the radius of the
circle is 4 (see Figure 8-3).

Figure 8-2 The graph of a circle with center (h,k) and radius r.

Figure 8-3 The graph of the circle in Example 1.

3

2

1

–2 –1 1 2 3 4 5 6 7
–1

–2

–3

–4

–5

(h, k) r
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Example 2: Find the center and radius of the circle.

2x2 – 8x + 2y2 – 4y – 62 = 0

Your objective will be to rewrite this equation in the standard form of a
circle; since that form contains perfect squares, you’ll need to complete the
square twice in this problem, once for the x’s and once for the y’s. 

Begin by dividing the entire equation by the shared coefficient of the
squared terms: 2. Remember, you cannot complete the square unless the
coefficients of the squared terms are 1.

x2 – 4x + y2 – 2y – 31 = 0

Move the constant to the right side of the equation.

x2 – 4x + y2 – 2y = 31

Complete the square for both the x-terms and the y-terms.

x2 – 4x + 4 + y2 – 2y + 1 = 31 + 4 + 1

Factor the left side of the equation.

(x – 2)2 + (y – 1)2 = 36

The center of the circle is (2,1), and the radius is 6.

Parabolas

A parabola is a collection of coplanar points equidistant from a fixed
point (called the focus) and a fixed line (called the directrix) that doesn’t
contain the focus. The point at which the direction of the parabola changes
is referred to as the vertex, and the line passing through the vertex about
which the graph of the parabola is symmetric is called the axis of symme-
try. Figure 8-4 shows the graphs of two parabolas and all of their corre-
sponding parts.

Notice, as demonstrated by Figure 8-4, that the vertex V is equidistant
between the focus and the directrix, along the axis of symmetry.

There are two standard forms for a parabola, just as there are two kinds of
parabolas presented in Figure 8-4. You can determine which form to use
based upon what variable is squared in the original equation.

10 539841 Ch08.qxd  1/26/04  2:50 PM  Page 148



Chapter 8: Analytic Geometry 149

Figure 8-4 The graphs of parabolas with focus point F and vertex V; c is
the distance from the vertex to both the focus and the directrix.

Standard form 1: For quadratics containing an x2 term

y = a(x – h)2 + k, such that a = c4
1

A graph in this form has the following characteristics:

■ Opens upward if a > 0; opens downward if a < 0

■ Vertex = (h,k)

■ Axis of symmetry has equation x = h

■ Focus = (h,k ± c), depending upon the direction of the parabola

■ Directrix has equation y = k ± c, depending upon the direction of the
parabola

Don’t get confused by the “±” signs in the formulas both in this and the
next standard form. If you draw a diagram, it’s easy to tell which way to
go from the vertex to get to either the directrix or the focus. Just remem-
ber that the parabola will always open in the direction of the focus and
away from the directrix.

Standard form 2: For quadratics containing a y2 term.

x = a(y – k)2 + h, such that a = c4
1

F

FV

axis of
symmetry

axis of
symmetry

V
} c
} c

c c} } 

directrix

directrix
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Note that both the x and y variables change places, as do the h and k vari-
ables when compared with the other standard form. In this version of a
parabolic equation, the following characteristics apply:

■ Open rightward if a > 0; opens leftward if a < 0

■ Vertex = (h,k), just like in the previous standard form

■ Axis of symmetry has equation y = k

■ Focus = (h ± c,k), depending upon the direction of the parabola

■ Directrix has equation x = h ± c, depending upon the direction of the
parabola

Example 3: If a parabola has focus (2,–3) and directrix x = 6, write the
equation of that parabola in standard form.

Since the directrix equation has form “x =”, then this parabola requires the
second standard form equation. (Notice that the other standard form cor-
responds to parabolas with directrix equations in the form of “y =”.)

The axis of symmetry is the horizontal line through the focus, so it must have
equation y = –3. As demonstrated in Figure 8-5, the vertex is the point on the
axis of symmetry that’s equidistant from both the focus and the directrix, so
it must have coordinates (4,–3); c is that equivalent distance, so c = 2. 

Figure 8-5 If you plot the focus and directrix, the vertex is the point on
the axis of symmetry that falls right in the middle.

x = 6

F = (2, −3)

VAxis of symmetry

Directrix

1

–1 1 2 3 4 5 6
–1

–2

–3

–4
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Finally, since a parabola always opens toward its focus and away from its
directrix, this parabola must open leftward, making a negative. To write
the equation, begin by calculating a.

a = c4
1

- = 
4 2

1
-

^ h
= 8

1
-

Now substitute the correct values into the second standard form for a
parabola.

x = a(y – k)2 + h

x = y8
1 3 4

2
- - - +^` ^hj h

x = y8
1 3 4

2
- + +_ i

Example 4: Find the focus, directrix, axis of symmetry, and vertex of the
parabola and sketch its graph.

y = 2x2 – 8x + 7

Since this equation contains an x2 term, you apply the first standard form
equation for a parabola. You’ll need to complete the square, so factor a 2
out of both the x2 and x terms.

y = 2(x2 – 4x) + 7

Complete the square.

y + 8 = 2(x2 – 4x + 4) + 7

Even though it looks like you’re adding 4 on the right side, that 4 is in a set
of parentheses which is multiplied by 2, so you’re actually adding 2 ⋅ 4 = 8
to the right side. To keep the equation balanced you must also add 8 to the
left side.

Factor and simplify to get the standard form of the parabola.

y = 2(x – 2)2 – 1

Figure 8-6 shows the results. The best (and quickest way) to graph parabo-
las accurately is still to plot points by plugging in a handful of values for x.
(Knowing the focus and directrix don’t really help you plot an accurate
graph by hand.) However, if you (and your instructor) are satisfied with a
rough sketch, notice that you can graph this parabola using transformations
(as discussed in Chapter 2).
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Figure 8-6 The graph of the parabola in Example 4.

Based on this graph, you can tell that the focus is above the vertex and 
the directrix is below it (since the graph always opens in the direction of the
focus). From the standard form of the equation, you can determine that
the vertex is (2,–1) and a = 2 (don’t forget to take the opposite sign for the
quantity within the squared parentheses). Therefore, the axis of symme-
try is x = 2.

Use a to calculate c.

2 = c4
1

8c = 1

c = 8
1

Use c to determine the focus and directrix.

Focus = (2, –1 + 8
1) = (2, 8

7
- )

Directrix: y = –1 8
1

- = 8
9-

4

3

2

1

1 2 3 4

–1
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Ellipses

An ellipse is the set of coplanar points such that the sum of the distances
from each point to two distinct coplanar points (called the foci) is constant.
(Note that foci is just the plural form of the word focus. Therefore, ellipses
are defined based on two focus points, as opposed to parabolas, which were
only defined based on one.)

The line segment passing through the foci is called the major axis; its end-
points lie on the ellipse and are called the vertices. The midpoint of the
major axis is called the center of the ellipse.

Every ellipse also possesses a minor axis, perpendicular to the major axis,
which passes through the center and has endpoints on the ellipse as well.
(Note that the minor axis is always shorter than the major axis, hence the
names.) The parts of an ellipse are illustrated in Figure 8-7.

Figure 8-7 Two ellipses, one with a horizontal major axis and one with a
vertical major axis.

Standard form

According to mathematical convention, the length of the major axis is 2a
units. Thus, the distance from the center of the ellipse to each of its ver-
tices is a units. Similarly, the length of the minor axis is 2b. The variable
c is used to measure the distance from the center of the ellipse to each of
the foci. See Figure 8-8.

minor axis

CV VF F

major axis

minor axis

C

V

V

F

F

major
axis
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Figure 8-8 A visual representation of the variables a, b, and c in the stan-
dard form of an ellipse.

The standard from of an ellipse (with a horizontal major axis) is

a
x h

b

y k
12

2

2

2

-
+

-
=

^ `h j

If, instead, the major axis is vertical, then the standard form is

b
x h

a

y k
12

2

2

2

-
+

-
=

^ `h j

In both forms, (h,k) is the center of the ellipse and c a b2 2
= - . As you can

see, the only difference between the two forms is the placement of a2 and
b2. In each case, the a2 is placed beneath the variable whose axis is parallel
to the major axis. For example, if the major axis is horizontal, then a2 is
placed beneath the x variable, since the x-axis is horizontal as well.

Example 5: Write the equation of the ellipse whose vertices are (–3,4) and
(7,4), with foci (–1,4) and (5,4), in standard form.

The center of the ellipse is the midpoint of both the major axis and the
segment whose endpoints are the foci: (2,4). So, h = 2 and k = 4. Since the
distance between the center and either one of the foci is 3, c = 3. In addi-
tion, the distance from the center to one of the vertices is 5, so a = 5. Use
a and c to calculate b.

b

ba a

cc

bb

a

a
c

c
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c a b

b

b

b
b

3 5

9 25

16
4

2 2

2 2

2

2

= -

= -

= -

=

=

Since the line containing the foci and vertices is horizontal, use the stan-
dard form for an ellipse with a horizontal major axis.

x y

x y

5
2

4

4
1

25
2

16
4

1

2

2

2

2

2
2

-
+

-
=

-
+

-
=

^ `

^ `

h j

h j

Example 6: Put the equation of the ellipse in standard form, and find the
coordinates of its center, vertices, and foci. Use that information to sketch
its graph.

16x2 – 128x + y2 + 10y = –217

Factor 16 out of the x-terms so you can complete the square twice, just as
you did with circles.

16(x2 – 8x) + y2 + 10y = –217

16(x2 – 8x + 16) + y2 + 10y + 25 = –217 + 256 + 25

Remember, you’re not adding 16 and 25 to both sides, you’re adding 
16 ⋅ 16 = 256 and 25 to both sides. Now simplify and factor the perfect
squares.

16(x – 4)2 + (y + 5)2 = 64

Both standard forms of an ellipse must be set equal to 1, so divide every-
thing by 64 to cancel out the constant.

x y
4

4
64

5
1

2
2

-
+

+
=

^ _h i

The major axis must be vertical, the center is (4,–5), a = 8, b = 2, and
c 64 4 60 2 15= - = = . Calculate the coordinates specified by the
problem.
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Vertices: (4, –5 ± 8) = (4,3) and (4,–13)

Foci: , , ,4 5 2 15 4 5 2 15 4 5 2 15and!- = - + - -a a ak k k

To graph the ellipse, plot the center, then count 8 units above and below
it to graph the vertices. Since b = 2, also plot the points which are 2 units
to the left and right of the center. From these 4 points, sketch a rounded,
elliptical graph, like in Figure 8-9.

Figure 8-9 The graph of the ellipse in Example 6.

Eccentricity

The smaller the distance between the foci of an ellipse, the more the ellipse
will resemble a circle. In fact, a circle is equivalent to an ellipse whose foci
overlap. Generally speaking, an ellipse will fall somewhere within the spec-
trum ranging from nearly circular to very oval in shape.

The eccentricity of an ellipse is a numerical measurement that describes
the shape of its graph; its value is

e = a
c

Since c and a are both always positive and c will always be less than a, you
know that the eccentricity of every ellipse will fall somewhere on the inter-
val (0,1).

–1

1
2
3
4

–2
–3
–4
–5
–6
–7
–8
–9
–10
–11
–12
–13

1–1 2 3 4 5 6 7

10 539841 Ch08.qxd  1/26/04  2:50 PM  Page 156



Chapter 8: Analytic Geometry 157

The further apart the foci, the greater c is (resulting in a value of e closer to
1), indicating an ellipse which is more oval than circle. If, however, the foci
are close together, c will be very small, and e will have a value much closer
to 0, indicating that the ellipse is more circle than oval. See Figure 8-10.

Figure 8-10 The larger the eccentricity of an ellipse, the more it resem-
bles an oval; the closer e is to 0, the more the ellipse resembles a circle.

Example 7: Determine the eccentricity of the ellipse.

x2 – 2x + 3y2 – 18y + 16 = 0

Put the ellipse in standard form by completing the square like in Example 6.

x2 – 2x + 3(y2 – 6y) = –16

x2 – 2x + 1 + 3(y2 – 6y + 9) = –16 + 1 + 27

(x – 1)2 + 3(y – 3)2 = 12

x y
12

1
4

3
1

2
2

-
+

-
=

^ `h j

Since a2 = 12 and b2 = 4, you can evaluate c.

c 12 4 8 2 2= - = =

e = .92 e = .08
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Apply the eccentricity formula.

.

e a
c

12

8

8165.

=

=

According to its eccentricity value, the graph of this ellipse is much more
oval than circle.

Hyperbolas

A hyperbola is a set of points such that the difference of the distances
from each point to two distinct, fixed points (called the foci) is a positive
constant. The graph of a hyperbola differs from all other conic sections in
that its graph is made up of two distinct branches that open in opposite
directions.

Like an ellipse, a hyperbola is formed by two axes. The line segment pass-
ing through the foci is called the transverse axis, and its endpoints (called
the vertices) lie on the hyperbola. A hyperbola with a horizontal transverse
axis opens left and right, whereas one with a vertical transverse axis opens
up and down. The midpoint of the segment connecting the foci is called
the center of the hyperbola.

The conjugate axis of a hyperbola is perpendicular to the transverse axis
at the hyperbola’s center. The asymptotes of the hyperbola can be used to
help visualize the conjugate axis, since its length is not given by any points
actually on the hyperbola.

Imagine a rectangle exists nestled between the branches of the hyperbola,
such that one pair of its parallel sides pass through the vertices. In addi-
tion, the rectangle should be drawn such that the asymptotes of the hyper-
bola pass exactly through its corners, like in Figure 8-11. The conjugate
axis is the segment, perpendicular to the transverse axis, whose end points
fall on the rectangle.
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Figure 8-11 The graphs of two hyperbolas with vertices V, foci F, and
center C.

Standard form

A hyperbola in standard form has one of the following equations:

,

,

a
x h

b

y k

a

y k

b
x h

1

1

if the transverse axis is horizontal

if the transverse axis is vertical

2

2

2

2

2

2

2

2

-
-

-
=

-
-

-
=

^ `

` ^

h j

j h

Each of the variables within the standard form is defined as follows:

■ (h,k) is the center of the hyperbola

■ a is the distance from the center to one of the vertices; in other words,
the length of the transverse axis is 2a

■ b is the distance from the center to one endpoint of the conjugate
axis; in other words, the conjugate axis has length 2b

■ c is the distance from the center to one of the foci, and has value 
c a b2 2
= +

F F

transverse axis

conjugate axis

F

F

V

V

C

VCV
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Although this standard from has a lot in common with the standard form
of an ellipse, there is one important distinction that is not immediately
obvious. In an ellipse, you always know the major axis (with length 2a) is
the longer of the two axes. In a hyperbola, the axis whose length is 2a (the
transverse axis) dictates which direction the hyperbola will open, but there
is no guarantee that a > b.

Example 8: If a hyperbola has vertices (–3,4) and (–3,–2), and foci (–3,6)
and (–3,–4), write the equation of the hyperbola in standard form.

Note that the segment connecting the foci is vertical, so use the standard
form for hyperbolas with vertical transverse axes. The midpoint of the
transverse axis, and therefore the center of the hyperbola, is (–3,1). The
distance from the center to a focus point is c = 5, and the distance from
the center to a vertex point is a = 3. Use these values to calculate b.

c a b

b

b

b
b

5 9

25 9

16
4

2 2

2

2

2

= +

= +

= +

=

=

Since b is a distance, there is no need to consider –4 as a solution to the
above equation; a, b, and c will always be positive.

Fill in the values for a, b, h, and k into standard form.

a

y k

b
x h

y x

y x

1

3

1

4

3
1

9
1

16
3

1

2

2

2

2

2

2

2

2

2
2

-
-

-
=

-
-

- -
=

-
-

+
=

` ^

^` ^`

` ^

j h

hj hj

j h

Graphing hyperbolas

The easiest way to graph a hyperbola involves drawing the dotted rectan-
gles pictured in Figure 8-11. Here are the steps to follow:
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1. Put the hyperbola in standard form, if it is not already. Determine
whether the transverse axis is horizontal or vertical.

2. Plot the center.
3. Plot the vertices, a units in either direction from the center, along

the transverse axis.
4. Plot the endpoints of the conjugate axis, each b units away from

the center. Remember, the conjugate axis is perpendicular to the
transverse axis.

5. Create a rectangle such that the points you plotted in steps (3) and
(4) above are the midpoints of its sides.

6. Draw the diagonals of the rectangle and extend them beyond its
corners; these are the asymptotes of the hyperbola.

7. Draw branches of the hyperbola opening in the appropriate direc-
tions. They should extend out from the vertices, approaching but
never touching the asymptotes.

Example 9: Graph the hyperbola.

x2 – 2x – 25y2 = 24

Put the hyperbola in standard form by completing the square for the x
terms. 

x2 – 2x + 1 – 25y2 = 24 + 1

(x – 1)2 – 25y2 = 25

Divide everything by 25, since a hyperbola in standard form is set equal
to 1.

x y
25

1
1

0
1

2
2

-
-

-
=

^ _h i

This is the standard form of a hyperbola with a horizontal transverse axis,
with center (1,0), a = 5, and b = 1. Use the values of a and b to create a
rectangle whose length and width are the transverse and conjugate axes,
respectively. Since the transverse axis is horizontal, the hyperbola will open
left and right. See Figure 8-12.
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Figure 8-12 The graph of the hyperbola in Example 9.

Equations of asymptote lines

The equations for the asymptotes of a hyperbola written in standard
form are:

y = k ± a
b x h-^ h, if transverse axis is horizontal

y = k ± b
a x h-^ h, if transverse axis is vertical

Note that “±” is used in the formulas because every hyperbola will possess
two asymptote lines.

Example 10: Find the equations of the asymptotes for the hyperbola.

x2 + 2x – 4y2 + 8y – 19 = 0

Complete the square separately for the x and y terms, and put the hyper-
bola in standard form.

x2 + 2x + 1 – 4(y2 – 2y + 1) = 19 + 1 – 4

x y
16

1
4

1
1

2
2

+
-

-
=

^ `h j

The transverse axis is horizontal, a = 4, b = 2, and (h,k) = (–1,1). Therefore,
the equations of the asymptotes are

y = 1 + x2
1 1+^ h

y = 1 x2
1 1- +^ h

1

–1

–2

–3

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13–13–12–11–10 –9 –8 –7 –6 –5 –4 –3 –2 –1
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Identifying Conic Sections

To identify a conic section, given only its equation, first transform the
equation into general form:

Ax2 + Bx + Cy2 + Dy + E = 0

By examining the coefficients A and C, it is a simple matter to determine
what conic section the equation represents without ever having to put it
into standard form.

■ If A = 0 or C = 0 (meaning that either the x2 or y2 term is missing),
the equation is a parabola.

■ If A = C, then the equation is a circle.

■ If A ≠ C but they have the same sign (i.e. they are both positive or
both negative), then the equation is an ellipse.

■ If A ≠ C and they have opposite signs, then the equation is a hyperbola.

For instance, in Example 10 the equation is already in general form. Since
A = 1 and C = –4 (which are unequal values with opposite signs), you know
that the equation is a hyperbola.

Parametric Equations

A graph can be expressed in terms of three variables, rather than just the
two variables (x and y) you have used thus far. The third variable (usually
written t or θ) is called the parameter. Every point (x,y) on a normal graph
can be defined in terms of a set of parametric equations that contain that
parameter.

Graphing parametric equations

Every point (x,y) on a parametrically-defined graph gets its value from its
defining equations

x = f(t) y = g(t)

Plug a wide range of t-values into each equation and you’ll get a corre-
sponding coordinate pair (f(t),g(t)) on the graph for that particular param-
eter value. Remember, the parameter is not actually graphed; it is just
plugged into the “x =” and “y =” equations to generate coordinate pairs.
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Example 11: Sketch the curve generated by the parametric equations.

x = t + 3

y = t2 – 2t – 1

Allow t to take on a variety of negative and positive values, and plug each
into both equations to generate points on the graph, as demonstrated in
Figure 8-13.

Figure 8-13 The graph of the parametrically-defined curve from Example 11.

Rewriting parametric equations

Plotting points is a tedious method for graphing parametric equations, so
it’s often useful to express the parametrically-defined curve in terms only
of x and y by eliminating the parameter.

Example 12: Rewrite the following parametric equations by eliminating
the parameter.

(a) x = 2cos θ, y = 5sin θ
In this case, the parameter is the angle θ. Solve the parametric
equations for cos θ and sin θ, respectively.

cos θ = x2 sin θ = 
y
5

Square both sides of both equations.

cos2 θ = x4

2

sin2 θ = 
y
25

2

1

1 2 3 4 5 6 7
–1

–2

–3

–1

2

3

4

5

4 4 + 3 = 7 (4,7)(4)2 – 2(4) – 1 = 7

3 3 + 3 = 6 (6,2)(3)2 – 2(3) – 1 = 2

2 2 + 3 = 5 (5,–1)(2)2 – 2(2) – 1 = –1

t x = t + 3 (x,y)y = t 2 – 2t – 1

1 1 + 3 = 4 (4,–2)(1)2 – 2(1) – 1 = –2

0 0 + 3 = 3 (3,–1)(0)2 – 2(0) – 1 = –1

–1 –1 + 3 = 2 (2,2)(–1)2 – 2(–1) – 1 = 2

–2 –2 + 3 = 1 (1,7)(–2)2 – 2(–2) – 1 = 7
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Consider the Pythagorean identity

cos2 θ + sin2 θ = 1

Since you have values for cos2 θ and sin2 θ, plug them into the
identity.

x
4

2

+ 
y
25

2

= 1

This is the equation of an ellipse, centered at the origin, with vertical
major axis of length 2 ⋅ 5 = 10 and minor axis of length 2 ⋅ 2 = 4.

(b) ,x t y t2 1= + = +

Choose one of the parametric equations and solve it for t. It’s easi-
est to do so with the y equation.

y = t + 1

t = y – 1

Plug this t-value into the x equation, and solve for y.

x t

x y

x y

x y

y x

2

1 2

1

1

1

2

2

= +

= - +

= +

= +

= -

` j

The graph of the parametric equations looks almost exactly like the
parabola y = x2 – 1. However, notice that it is impossible to have 
x < 0 in the original, parametric definition of the graph, since a
square root must always result in a nonnegative number. Therefore,
you have to adjust the transformed graph to reflect this restriction
on the domain:

y = x2 – 1, for x ≥ 0

Polar Coordinates

Any coordinate (x,y) on the normal (or rectangular) coordinate plane can
also be expressed in terms of polar coordinates. Consider the point P in
Figure 8-14.
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Figure 8-14 A point P with rectangular coordinates (x,y) can be
expressed with polar coordinates (r,θ).

To convert P = (x,y) into polar coordinates, you will need:

■ The distance, r, from a fixed point O (called the pole) to P. For the
sake of simplicity, the origin is usually chosen as the pole, and in fact
you should assume that to be true unless told otherwise.

■ The angle, θ, with initial side OA (called the polar axis) and terminal 

side OP, such that θ > 0 implies counterclockwise rotation and θ < 0
implies clockwise rotation. Traditionally, the positive x-axis is chosen
to be the polar axis.

These values, written as the coordinate pair (r,θ) represent the rectangular
point P in polar form. Note that if r < 0, you should travel in the direction
opposite the terminal side of θ.

Example 13: Graph the polar coordinates A = (2, π
4

3 ), B = (–3,π), and

C = (–4, π
6

5
- ).

Unlike rectangular coordinates, polar coordinates are not unique, thanks
to negative and coterminal angles. For instance, consider point C in

Figure 8-15. It could also be expressed as (4,π6), (4, π
6

13 ) or (–4, π
6

17
- ).

P = (x,y)

yr

x AO
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Figure 8-15 The graphs of polar coordinates A, B, and C from Example 13.

Converting between polar and rectangular coordinates

Because triangle AOP in Figure 8-14 is a right triangle, you can draw the
following trigonometric conclusions:

■ cos θ = r
x

■ sin θ = r
y

■ tan θ = x
y

■ x2 + y2 = r2

The first two of those four conclusions allow you to convert from polar to
rectangular coordinates. Solve them for x and y, respectively, to get the
conversion equations:

x = rcos θ y = rsin θ

The final two of the above bullets will assist you when converting the other
direction, from rectangular to polar coordinates.

(–3,π)=B

3π
4A=(2,     ) 11

1

1

1 1

2

3

4

5

2

2
2

2
2

3

3

3
3

3

4

4

4

4
4

5

5

5
6

6
6

6

5432112345

5
5

5π
6(–4,–     )=C
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Example 14: Convert to rectangular coordinates: (–2, π
2

3 ).

Apply the conversion equations.

cos sin

cos sin

x r y r

x y

x y

x y

π π2 2
3 2 2

3

2 0 2 1

0 2

= =

= - = -

= - = - -

= =

i i

^ ^

^ ^ ^ ^

h h

h h h h

The rectangular coordinates are (0,2).

Example 15: Convert to polar coordinates: (1,–2).

Begin by applying the Pythagorean polar coordinate conclusion.

r2 = x2 + y2

r2 = 12 + (–2)2 = 5

r 5=

Now apply the tangent formula to find θ.

tan θ = x
y

tan θ = 1
2

-

θ = arctan (–2)

There is no obvious unit circle angle whose tangent value equals –2, so
either leave θ as arctan (–2) or use a calculator to evaluate its value. There-
fore, one possible polar coordinate representation of the point (1,–2) is

,arctan5 2-^a hk

Converting between polar and rectangular equations

To convert a rectangular equation to polar form, use the same conversion
formulas from Example 14 to replace the values of x and y.

Example 16: Rewrite in polar form: x – 2y = 4.

Replace x with rcos θ and y with rsin θ.

rcos θ – 2(rsin θ) = 4
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Polar equations are usually written in terms of θ, so solve for r.

cos sin

cos sin

r

r

2 4

2
4

- =

=
-

i i

i i

^ h

To convert a polar equation into rectangular form, the technique is not as
straightforward; your method will depend upon the problem. You may need
any or all of the four trigonometric conclusions generated by Figure 8-14.

Example 17: Rewrite in rectangular form: r = 2sin θ.

Multiply both sides by r.

r2 = 2rsin θ

Remember that r2 = x2 + y2 and rsin θ = y; make those substitutions.

x2 + y2 = 2y

This is the equation of a circle. Put it in standard form.

x2 + y2 – 2y = 0

x2 + (y2 – 2y + 1) = 1

x2 + (y – 1)2 = 1

The circle’s center is (0,1) and it has radius 1.

If you are unable to easily convert a polar equation into rectangular form but
are still required to graph it, plug a wide range of θ’s from the unit circle into
the equation and plot the corresponding points. (Just like you can pick a wide
range of x’s and plug them into a rectangular equation to get the corre-
sponding y’s and therefore the coordinates of points on a rectangular graph.)

Chapter  Checkout

Q&A
1. Identify the following conic sections and put them in standard form.

(a) 36x2 – y2 – 8y + 20 = 0
(b) x2 + x + y2 – 6y + 4

1 = 0
(c) 3x2 – 18x – 4y + 29 = 0
(d) 2x2 + y2 = 14
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2. Find the coordinates of the foci:

9x2 – 36x + 4y2 – 56y + 196 = 0

3. Rewrite the parametric equations by eliminating the parameter:

x = e t y = t 3 – 2

4. Rewrite the polar coordinates (–2, π
4

5 ) in rectangular form.

Answers: 1. (a) hyperbola, 
y x

36
4

1 1

2
2+

- =
` j

(b) circle, x 2
1 2

+c m + (y – 3)2 = 9 (c) parabola, y = x4
3 3 2

12- +^ h

(d) ellipse, x
y

7 14 1
2 2

+ = 2. , , ,2 7 5 2 7 5+ -a ak k 3. y = (ln x)3 – 2 

4. ,2 2a k
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Chapter 9

MATRICES AND SYSTEMS 
OF EQUATIONS

Chapter  Check-In

❑ Determining solutions to systems of equations

❑ Performing operations on matrices

❑ Solving systems of equations using augmented matrices

❑ Writing matrices in row-echelon and reduced row-echelon form

❑ Graphing the solution to systems of inequalities

In this chapter, your focus shifts from working with a single function,
inequality, equation, or graph to working with multiple equations at once.

Your primary goal will be to determine solutions (in the form of coordinates
or regions) that make two or more equations or inequalities true.

Systems of Equations

A system of equations is a set of equations for which you are seeking a
single set of coordinates that makes all of the equations in the set true.
Consider the system of equations

x y

x y

3 7

5 19

- =

+ =-
*

The solution to this system is the (x,y) coordinate pair (1,–4), because that
is the only x- and y-value which, together, make both equations true.

3 1 4 7 1 5 4 19

3 4 7 1 20 19

- - = + - =-

+ = - =-

^ ^ ^h h h
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A system that has no solutions is described as inconsistent, whereas a sys-
tem with an infinite number of solutions is said to be dependent.

Graphically speaking, the solution to a system of equations is the point or
points at which the equations in the system intersect. In Figure 9-1, note
that the lines 3x – y = 7 and x + 5y = –19 intersect at the coordinate pair
representing the solution: (1,–4).

Figure 9-1 The solution to the system of equations is the intersection
point of its two graphs.

Without the use of computer or calculator graphing technology, solving
systems of equations by determining where their graphs intersect is not
very accurate. Graphs drawn by hand, even on graphing paper, do not have
the built-in precision to allow you to trust any conclusions draw from them
(especially if the coordinates of the solutions are not integers). 

Two-Variable Linear Systems

There are two methods most often used to solve systems of linear equations
containing only two variables. Although both work for any system of equa-
tions, some problems are more suited for one than the other, meaning that
you may reach a solution faster and with less computation if you choose
between the two carefully.

x + 5y = −19

3x − y = 7

(1, −4)
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Substitution method

If one of the equations can easily be solved for a variable, the system is a
good candidate for the substitution method. Here are the steps to follow:

1. Solve an equation for one of its variables.
2. Substitute that variable’s value into the other equation and find the

value of the remaining variable.
3. Plug the resulting value into the equation you originally manipu-

lated to complete the ordered pair.

Example 1: Solve the following systems of equations.

(a)
x y

x y

2 4

8 3 5

- =

+ =-
*

Since the y-term in the first equation has a coefficient of –1, it’s
easy to solve for it; the result should have no fractions in it and
therefore be easier to manipulate.

y = 2x – 4

Substitute for y in the other equation.

8x + 3(2x – 4) = –5

8x + 6x – 12 = –5

14x = 7

x = 2
1

Now that you know the x-value of the solution, plug it into the
equation you previously solved for y.

y = 2 2
1

c m – 4

y = 1 – 4 = –3

The solution to this system is ,2
1 3-c m.

(b)
x y

x y

2 3

4 12 8

- =

- =
*

Solve for first equation for x and plug it into the second equation.
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x = 2y + 3

4(2y + 3) – 12 = 8y

8y + 12 – 12 = 8y

8y = 8y

This equation is true no matter what value you plug in for y, so this
is a dependent system, and it has an infinite number of solutions.

Elimination method

Remember that any equation multiplied by (or divided by) a nonzero real
number will still keep its original solution(s) although the equation may
look different. This is the foundational principle of the elimination
method, whose steps are as follows:

1. Choose a real number (or numbers) such that if you multiply one
(or both) of the equations in the system by the number(s), and then
add the equations, one of the variables in the system is eliminated.

2. Solve the result of the equation sum that results from Step (1).
3. Plug the value you find into either of the two original equations to

complete the ordered pair.

There is an alternative to choosing a real number to eliminate a variable.
First, put the equations in standard form (such that A > 0 and D > 0).

Ax By C

Dx Ey F

+ =

+ =
*

Multiply the first equation by D and the second by –A, then add the equa-
tions together (by combining like terms). This will eliminate the x variable,
no matter what the coefficients are.

Example 2: Solve the systems of equations.

(a)
x y

x y

2 4 2
51

8 3 12

- =

+ =-
*

Multiply all the terms in the first equation by (–4).

–4(2x – 4y = 2
51)

–8x + 16y = –102
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Add the new form of the first equation to the second equation,
noting that the x-terms will cancel out. (That’s why the multiple
of –4 was chosen for the first equation.)

x y
x y

8 16 102
8 3 12

- + =-
+ = -

y
y

19 114
6

=-
=-

Substitute this value for y in either of the two original equations. 

8x + 3(–6) = –12

8x – 18 = –12

8x = 6

x = 4
3

The solution to this system is ,4
3 6-c m.

(b)
x y

x y

2 4

3 6 1

- =-

- + =
*

Multiply the top equation by 3 and add the equations together.
x y
x y

3 6 12
3 6 1

0 11

- =-
- + =

=-

This is a false statement, and no (x,y) pair can make it true. There-
fore, this system is inconsistent, as it has no solutions.

Nonlinear Systems of Equations

The substitution and elimination methods still apply to systems of equa-
tions even if the equations aren’t linear. Whereas substitution works more
often than elimination for nonlinear systems, when elimination works, it
works quickly and effectively.

Example 3: Solve the systems of equations.

(a)
x x y
x y

4 2 6 0
2 11

2
- + + =

- =
*

Use the substitution method; solve the second equation for y.

y = 2x – 11
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Substitute this value for y into the first equation and solve.

x x x

x x x

x
x

4 2 2 11 6 0

4 4 22 6 0

16
4

2

2

2

!

- + - + =

- + - + =

=

=

^ h

Plug both values of x into the equation you solved for y.

(x = –4): y = 2(–4) – 11 = –19

(x = 4): y = 2(4) – 11 = –3

There are two coordinate pair which make up the solution:
(–4,–19) and (4,–3).

(b)
x y

x y

4 9 36

9

2 2

2 2

+ =

+ =
*

Perform the elimination method; multiply the second equation by
–4 and add the two equations together.

x y
x y

4 9 36
4 4 36

2 2

2 2

2

+ =
- - =-

y
y

5 0
0

=
=

Substitute y = 0 into the second equation in its original form.

x2 + 02 = 9

x = ±3

The solution to this system consists of the coordinates (3,0) and
(–3,0).

Characteristics of Matrices

A matrix is a rectangular collection of numbers, arranged in rows and
columns, surrounded by a single set of brackets on either side. The order
of a matrix describes how many rows and columns are contained within.
The matrix below has order 3 × 4 (read “3 by 4”), because it has 3 rows
and 4 columns.
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a a a a

a a a a

a a a a

11 12 13 14

21 22 23 24

31 32 33 34

R

T

S
S
S
SS

V

X

W
W
W
WW

Each number within the matrix is called an element (or an entry), and it
is designated by two subscripts, aij, where i is the number representing the
element’s row and j represents its column. Therefore, a21 is the element in
the second row (from the top) and the first column (from the left).

An italicized capital letter is usually used to designate a matrix; you may
include the order of the matrix as a subscript if you wish, for the sake of
clarity: A3 × 4. You can also represent a matrix by writing one of its generic
elements in double subscript notation and surrounding it in either brackets
or parentheses: [aij].

If the matrix has an equal number of rows and columns, it is said to be a
square matrix. A square matrix of order n × n has a diagonal containing
the elements a11, a22, a33, ... , ann.

If a matrix consists of only one row, it is called a row matrix; similarly, a
matrix consisting of only one column is called a column matrix. A matrix
of any order which contains only zeros as elements is called a zero matrix.

Basic Matrix Operations

You should be able to add, subtract, and multiply matrices. Furthermore,
you should also be able to multiply a matrix by a scalar (numeric) value.

Adding matrices

The sum of two matrices, A = [aij] and B = [bij], that have the same order
is C = [cij], where cij = aij + bij. In other words, each element in C is equal
to the sum of the elements in A and B that are located in corresponding
spots. Therefore, you know that c25 (the element in the second row and
fifth column of C ) is equal to the sum of a25 + b25. You can only add matri-
ces if they have the same order.

Example 4: Find the sum of the matrices.

2

5

4

7

0

1

6

3-

-
+

-

R

T

S
SS

R

T

S
SS

V

X

W
WW

V

X

W
WW
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Add the elements whose locations correspond.

2 0

5 1

4 6

7 3

2

4

2

4

+

- +

- +

+ -

-

^ h

R

T

S
SS

R

T

S
SS

V

X

W
WW

V

X

W
WW

Note that matrix addition is both commutative and associative. 

Scalar multiplication

If n is a scalar (a real number) and A = [aij], then

n ⋅ A = [n ⋅ aij]

In other words, if a matrix if multiplied by a scalar, then multiply every
one of its elements by that scalar.

Example 5: Given the following matrices, evaluate 2A + B.

A B
2

5

1

2

4

0

3

6

1

8

6

2

5

4

10

3
=

- -

-
=

- - -

-

R

T

S
SS

R

T

S
SS

V

X

W
WW

V

X

W
WW

Begin by multiplying every element in A by the scalar 2.

A2
4

10

2

4

8

0

6

12
=

- -

-
R

T

S
SS

V

X

W
WW

Now add 2A and B together.

A B2
4 1 2 6 8 5 6 10

10 8 4 2 0 4 12 3

3 4 13 16

2 2 4 9

+ =
+ - + - + - + -

- + - + + + -

=
- -

- -

^ ^ ^

^

h h h

h

R

T

S
SS

R

T

S
SS

V

X

W
WW

V

X

W
WW

Subtracting matrices

In order to perform matrix subtraction, multiply the second matrix by a
scalar value of (–1) and add the matrices:

A – B = A + (–B)

Since subtraction really boils down to addition, both matrices must have
the same order in order to subtract them.
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Example 6: Given the following matrices, evaluate A – 2B.

A B
4 3

2 1

5 7

9 6
=

-

-
=

-

R

T

S
SS

R

T

S
SS

V

X

W
WW

V

X

W
WW

This subtraction problem is equivalent to the addition (and scalar multi-
plication) problem of A + (–2B). Begin by calculating –2B.

B2
10 14

18 12
- =

- -

-

R

T

S
SS

V

X

W
WW

Now add A + (–2B).

A B2
6 17

20 13
+ - =

- -

-
^ h

R

T

S
SS

V

X

W
WW

Multiplying matrices

Two matrices need not have the same order if you want to find their prod-
uct. However, in order for the product of two matrices, A ⋅ B to exist, the
number of columns in A must equal the number of rows in B. The pattern
for calculating matrix products is a bit more complex than scalar multi-
plication and matrix addition.

If Am × n = [aij] and Bn × p = [bij], then C = A ⋅ B = [cij] is an m × p matrix
defined as follows.

1. Choose an unknown value cij in C you’d like to evaluate.
2. Multiply each element in the ith row of A (from left to right) times

its corresponding element in the jth column of B (from top to bot-
tom). In other words, ai1 is multiplied by b1j, ai2 is multiplied by b2j,
and so forth until you simultaneously reach the end of the row and
column. (This is why the number of columns in A must match the
number of rows in B.)

2. The sum of all those products is equal to cij.
3. Repeat the process for all elements of C.

Consider the matrices A and B.

A
a a

a a
B

b b b

b b b

11 12

21 22

11 12 13

21 22 23

= =

R

T

S
SS

R

T

S
SS

V

X

W
WW

V

X

W
WW

Since A has 2 columns and B has 2 rows, the product of these matrices
exists, and will be 2 × 3.
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A B
a b a b a b a b

a b a b a b a b a b a b

11 11 12 21 11 12 12 22 11 13 12 23

21 11 22 21 21 12 22 22 21 13 22 23
$

$ $ $ $

$ $ $ $ $ $
=

+ +

+ + +

a b$ + a $ bR

T

S
SS

V

X

W
WW

Note that matrix multiplication is associative, is not commutative (because
of the row/column restriction), but is distributive over matrix addition, so
A(B + C) = AB + AC.

Example 7: Calculate the products of the matrices.

(a)

4

2

3

0

7

1

6

5

1

2
$-

-

-

R

T

S
S
S
SS

R

T

S
SS

V

X

W
W
W
WW

V

X

W
WW

The result will be a 3 × 2 matrix.

4 6 0 5

2 6 7 5

3 6 1 5

4 1 0 2

2 1 7 2

3 1 1 2

24

47

13

4

16

1

$

$

$

$

$

$

+ -

- + -

+ -

- +

- - +

- +

= -

-

-

^

^

^

^

^ ^

^

h

h

h

h

h h

h

R

T

S
S
S
SS

R

T

S
S
S
SS

V

X

W
W
W
WW

V

X

W
W
W
WW

(b)
1

4

3

7

5

6

2

9

0

8

1

4

$
-

-
-

-

R

T

S
SS

R

T

S
S
S
SS

V

X

W
WW

V

X

W
W
W
WW

The result will be a 2 × 2 matrix.

1 2 3 9 5 0

4 2 7 9 6 0

1 8 3 1 5 4

4 8 7 1 6 4

29

55

31

49

$ $

$ $

+ + -

- + +

- + - + -

- - + - +

=
-

^ ^

^ ^

^ ^ ^ ^

^ ^ ^ ^

h h

h h

h h h h

h h h h

R

T

S
SS

R

T

S
SS

V

X

W
WW

V

X

W
WW

Solving Systems of Equations with Matrices

If a system of equations contains 3 or more different variables, it becomes
difficult to solve via elimination or substitution. One very orderly method
for finding solutions to such systems is to create matrices based on their
coefficients, called coefficient matrices.

Consider the system
x y z

x y z

x y y

5 3 10

2 8

3 7 30

- + =-

+ - =

- + + =-

Z

[

\

]
]

]]
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You can find the solution (x, y, z) by manipulating the augmented matrix.

1

2

1

5

1

3

3

1

7

10

8

30-

-

-

-

-

R

T

S
S
S
SS

V

X

W
W
W
WW

This matrix is said to be augmented because it is more than just a coefficient
matrix; it also includes an extra column (on the far right) that contains the
constants on the right side of the equal signs in the system. The column(s)
which make this an augmented matrix are usually separated from the 
coefficient matrix by a thin or dotted line, as shown above.

Gaussian and Gauss-Jordan elimination

Your goal, when manipulating matrices to solve systems of equations, is
to get elements of 1 in the diagonal (a11, a22, a33, ...) of the coefficient
matrix. In addition, you want all of the elements left of the diagonal to
be 0. If there are any rows containing only 0’s, they should be placed at
the very bottom of the matrix.

a b

e

c

f

h

d

g

j

1

0

0

0

1

0

0

1

0 0 0

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

This process is called Gaussian elimination and the result is a matrix in
row-echelon form. When matrices are in row-echelon form, it is a simple
matter of back-substitution to reach a solution.

You can take this process one step farther and force all of the non-diagonal
elements in the coefficient matrix to be 0’s as well. This process is called
Gauss-Jordan elimination, and the result is a matrix in reduced row-
echelon form, like the matrix below. (Although that matrix has no rows
that contain only zeros, such rows should again be placed at the bottom of
the matrix.)

a

b

c

d

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W
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The solutions for this matrix stand out visibly in the rightmost column of
constants. Though the process of Gauss-Jordan elimination is a bit more
tedious than mere Gaussian elimination, no back-substitution is necessary
to reach a solution.

Note that a matrix in row-echelon or reduced row-echelon form need not
contain row(s) of 0’s, but if it does, any such row should appear at the bot-
tom of the matrix. Also, matrices that have a greater number of columns
than rows can still be put in either form; they do not have to be square.
The 1 elements still appear in the same place (a11, a22, a33, etc.), although
this set is not technically called the diagonal if the matrix does not have a
matching number of rows and columns.

Matrix row operations

In order to reach row-echelon or reduced row-echelon form, you are
allowed to manipulate the rows in a matrix as follows:

1. Multiply a row by a constant (except 0).
2. Switch the positions of two rows.
3. Replace a row by its sum with another row.

You can also combine these row operations, so you can multiply a row by
a constant and add it to another row. In the examples that follow, this will
be indicated by arrow notation. For example, “–2R2 + R3 → R3” means
“Multiply the second row by –2, add the result to the third row, and write
the result in the third row, replacing its previous values.”

Example 8: Solve the system by rewriting it as an augmented matrix in
row-echelon form.

x y z

x y z

x y y

5 3 10

2 8

3 7 30

- + =-

+ - =

- + + =-

Z

[

\

]
]

]]

As indicated earlier in this section, this system can be rewritten as this 
augmented matrix:

1

2

1

5

1

3

3

1

7

10

8

30-

-

-

-

-

R

T

S
S
S
SS

V

X

W
W
W
WW
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Perform these operations: –2R1 + R2 → R2 and R1 + R3 → R3. The net result
is a 1 at the top of the left column with 0’s beneath it.

1

0

0

5

11

2

3

7

10

10

28

40

-

-

-

-

-

R

T

S
S
S
SS

V

X

W
W
W
WW

Interchange R2 and R3, then divide row 2 by –2. This changes its second-
column element to 1.

1

0

0

5

1

11

3

5

7

10

20

28

-

-

-

-
R

T

S
S
S
SS

V

X

W
W
W
WW

To eliminate the 11 in position a32, perform –11R2 + R3 → R3.

1

0

0

5

1

0

3

5

48

10

20

192

-

-

-

-

R

T

S
S
S
SS

V

X

W
W
W
WW

Divide R3 by 48 to get a33 = 1.

1

0

0

5

1

0

3

5

1

10

20

4

-

-

-

-

R

T

S
S
S
SS

V

X

W
W
W
WW

This matrix can now be converted back into a system of equations.
Remember, columns 1, 2, and 3 correspond to the coefficients of x, y, and
z respectively.

x y z

y z

z

5 3 10

5 20

4

- + =-

- =

=-

Z

[

\

]]

]]

Since you now know that z = –4, plug that into the second equation to
find y.

y – 5(–4) = 20

y + 20 = 20

y = 0
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Now plug y = 0 and z = –4 into the first equation to calculate x.

x – 5(0) + 3(–4) = –10

x – 12 = –10

x = 2

The solution is (x,y,z) = (2,0,–4).

Example 9: Solve the system by rewriting it as an augmented matrix in
reduced row-echelon form.

x y

x y

2 3 16

4 3

+ =

- =-
*

Rewrite as a matrix and divide R1 by 2 to begin the diagonal of 1’s.

1

4

3 2

1

8

3- -

R

T

S
SS

V

X

W
WW

Eliminate the 4 in position a21 with the operation –4R1 + R2 → R2.

1

0

3 2

7

8

35- -

R

T

S
SS

V

X

W
WW

Divide R2 by –7 to achieve row-echelon form.

1

0

3 2

1

8

5

R

T

S
SS

V

X

W
WW

To achieve reduced row-echelon form, element a12 must be a 0, so that
all non-diagonal entries in the coefficient matrix are 0. The operation

R2
3

2- + R1 → R1 will achieve that goal.

1

0

0

1

1 2

5

R

T

S
SS

V

X

W
WW

If you rewrite this matrix as a system of equations, you get the solution
with no further substitution or simplification.

x = 2
1, y = 5

Systems with infinitely many solutions

Although both Examples 8 and 9 worked out nicely, both providing com-
plete solutions, it is possible that the system won’t have a single solution
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but an infinite number of answers. That’s not caused by the use of matri-
ces, but augmented matrices do make such an occurrence easier to spot.
Systems with infinite solutions will not transform into a matrix with a valid
diagonal of 1’s, whether it’s because the coefficient matrix isn’t square or
one of the rows cancels out and becomes a row of 0’s (in which it is impos-
sible to introduce a 1 to complete the diagonal).

For example, if you try to solve the system

x y z

x z

3 9 15 6

2 10 4

+ - =

- =
*

using Gauss-Jordan elimination, you’ll get the matrix

1

0

3

1

5

0

2

0

-
R

T

S
SS

V

X

W
WW

Since there is no third row, the coefficient matrix is not square. You cannot
find a specific z, and there will be infinitely many solutions. To write the
set of solutions, set z = c, where c is any real number, and back-substitute
like you did in Example 8.

z = c

y = 0

x + 3(0) – 5c = 2

x = 2 + 5c

The solution is (2 + 5c, 0, c), where c is a real number. To convince your-
self that the solution is valid, pick a c value and plug it into the system to
check. For instance, consider c = 5. Plugging this into the equations of the
system results in true statements:

c = 5 corresponds to solution (2 + 5(5), 0, 5) = (27, 0, 5)

3(27) + 9(0) – 15(5) = 81 – 75 = 6 ✓

2(27) – 10(5) = 54 – 50 = 4 ✓

Inverse Matrices

In Chapter 1, you learned that addition and multiplication of real num-
bers have inverse properties which (when applied) cancel out a value, effec-
tively returning that operation’s identity element:

a + (–a) = 0 a ⋅ a
1 = 1
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So, too, a square matrix Am × m may have an inverse matrix A–1
m × m such

that the product A ⋅ A–1 equals the m × m identity matrix.

You have already (albeit unknowingly) dealt with the identity matrix when
you were applying Gauss-Jordan elimination. It is the square matrix which
contains all 0 elements except for its diagonal, which contains only 1 ele-
ments. For instance, the 4 × 4 identity matrix is

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

The identity matrix acts just like any other identity element; if any square
matrix A is multiplied by the identity matrix of the same order, the result
is A.

Calculating inverse matrices

The inverse matrix A–1 is unique for every matrix A; that is, if a matrix has
an inverse, it has only one. Note that only square matrices can possess
inverses.

1. Create an augmented matrix A AI0 = 6 @, where I is the identity
matrix with the same order as A.

2. Manipulate A0 so that the left-hand square matrix (A) is in reduced
row-echelon form. If you cannot do so (perhaps one of the rows
becomes all 0’s), then A is singular, meaning it has no inverse.

3. The right-hand square matrix (formerly the identity matrix, before
you put A into reduced row-echelon form) is A–1.

Example 10: Find the inverses of the matrices.

(a) M
1

3

2

5
=

-

-
R

T

S
SS

V

X

W
WW

Create an augmented matrix M0 containing the 2 × 2 identity
matrix on its right side and M on its left.

M0 = 
1

3

2

5

1

0

0

1-

-
R

T

S
SS

V

X

W
WW
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Begin with 3R1 + R2 → R2 to try and reach reduced row-echelon
form.

M0 = 
1

0

2

1

1

3

0

1

-

-

R

T

S
SS

V

X

W
WW

The operations –2R2 + R1 → R1 followed by –R2 → R2 will turn the
left-hand matrix into an identity matrix, which is your goal in
reduced row-echelon form.

M0 = 
1

0

0

1

5

3

2

1

-

-

-

-

R

T

S
SS

V

X

W
WW

The right-hand matrix is the inverse matrix of M.

M
5

3

2

1
1
=

-

-

-

-

-

R

T

S
SS

V

X

W
WW

(b) A

2

1

2

1

0

1

0

2

1

= -

- -

R

T

S
S
S
SS

V

X

W
W
W
WW

Begin by augmenting this matrix with a 3 × 3 identity matrix.

A

2

1

2

1

0

1

0

2

1

1

0

0

0

1

0

0

0

1

0 = -

- -

R

T

S
S
S
SS

V

X

W
W
W
WW

Put the left-hand square matrix in reduced row-echelon form; you
will wind up with

A

1

0

0

0

1

0

0

0

1

2

3

1

1

2

0

2

4

1

0 = -

-

-

R

T

S
S
S
SS

V

X

W
W
W
WW

A–1 is the 3 × 3 matrix on the right-hand side of the dashed line.

Solving matrix equations

You’ve already seen Gaussian and Gauss-Jordan elimination used to solve
a system of equations, but you have additional options available to you for
solving systems, including matrix equations.
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Consider the equation 4x = 8. To solve this for x, you must cancel the 4 
by means of its multiplicative inverse, 4

1:

x4 4
1

4
1 8$ =c cm m

x = 2

Similarly, you can solve the matrix equation

AX = B,

where A is a coefficient matrix, X is a column matrix consisting of the corre-
sponding variables, and B is a column matrix containing all the constants. To
solve the matrix equation for X, multiply each side of the equal sign by A–1:

(A–1⋅ A)X = (A–1)B

X = A–1 ⋅ B

Example 11: Solve the system by first translating it into a matrix equation
and then solving that equation.

x y z

x z

x y z

2 3 2

4 7

4 2 9

+ - =

+ =

- - + =-

Z

[

\

]
]

]]

This system is equivalent to the following matrix equation:

x

y

z

2

1

4

1

0

2

3

4

1

2

7

9- -

-

=

-

R

T

S
S
S
SS

R

T

S
S
S
SS

R

T

S
S
S
SS

V

X

W
W
W
WW

V

X

W
W
W
WW

V

X

W
W
W
WW

Calculate the inverse of the 3 × 3 matrix and multiply it on both sides of
the equation to isolate the variable matrix.

x

y

z

x

y

z

8 5

17 5

2 5

1

2

0

4 5

11 5

1 5

2

7

9

16 5 35 5 36 5

34 5 70 5 99 5

4 5 0 9 5

3

1

1

= -

-

- -

- -

=

+ +

- - +

- + +

= -

R

T

S
S
S
SS

R

T

S
S
S
SS

R

T

S
S
S
SS

R

T

S
S
S
SS

R

T

S
S
S
SS

R

T

S
S
S
SS

V

X

W
W
W
WW

V

X

W
W
W
WW

V

X

W
W
W
WW

V

X

W
W
W
WW

V

X

W
W
W
WW

V

X

W
W
W
WW

The solution to the system is x = 3, y = –1, z = 1.
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Determinants

A determinant is a real number that is defined for any square matrix A; it
is expressed either as det (A) or |A|. (You can also indicate a determinant
by writing the matrix itself bounded by single bars, instead of brackets.)

If the square matrix A is 1 × 1 (the matrix has only one element), then the
determinant is defined as that matrix’s element. If, however, the matrix con-
tains multiple rows and columns, the determinant must be calculated.

Determinants of 2 × 2 matrices

The determinant of the 2 × 2 matrix

A
a

c

b

d
=

R

T

S
SS

V

X

W
WW

is defined as 
a

c

b

d
= ad – bc.

Example 12: Calculate the determinant of the matrix.

A = 
2

4

3

10

-
R

T

S
SS

V

X

W
WW

Simply multiply a11 by a22 and subtract the product of a12 and a21.

|A| =  (–2)(10) – (3)(4) = –20 – 12

|A| = –32

Minors and cofactors

Two additional concepts must be defined before you can calculate the
determinants of matrices larger than 2 × 2.

The minor, Mij, of element aij (which is contained within square matrix
A) is equal to |A0|, if A0 is the matrix created by deleting the ith row and
the jth column of A. According to its definition, then, if A is n × n, then
A0 must be (n – 1) × (n – 1).

The cofactor, Cij, of the same element, aij, is defined as

Cij = (–1)i + j ⋅ Mij

In other words, the cofactor of aij is simply the minor of aij multiplied by
either –1 (if i + j is an odd number) or 1 (if i + j is even).
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Note that both minors and cofactors are defined in terms of determinants,
so their values are real numbers, not matrices.

Example 13: If matrix A = [aij]  is defined as follows, calculate the minor
and cofactor of a23.

A = 

3

1

5

2

4

1

6

7

2

-

-

R

T

S
S
S
SS

V

X

W
W
W
WW

You are asked to evaluate M23 and C23, the minor and cofactor of element
a23 = 7. Begin by eliminating the second row and the third column of A
(both the row and the column containing the element 7).

A0 = 
3

5

2

1

R

T

S
SS

V

X

W
WW

M23 is equal to |A0|.

M23 = 3 ⋅ 1 – 2 ⋅ 5 = –7

Once you calculate the minor, it is a simple matter to evaluate the corre-
sponding cofactor.

C M1

1 7

1 7

7

23
2 3

23

5

$= -

= - -

= - -

=

+
^

^ ^

^ ^

h

h h

h h

Determinants of square matrices

To evaluate the determinant of any square matrix, follow these steps:

1. Find the row or column (if any) that contains the most 0’s, to sim-
plify your work in the later steps.

2. Multiply each element in that row or column by its cofactor.
3. Add the products generated by step (2). 

This process is called “expanding a row (or column),” and it will work
regardless of which row or column in the matrix you select.
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Example 14: Calculate det(A) by expanding one of its rows or columns.

A

2

1

2

3

4

1

5

3

6

=

-

-

-

R

T

S
S
S
SS

V

X

W
W
W
WW

This example calculates det(A) by expanding the third column.

det(A) = 5 ⋅ C13 + 3 ⋅ C23 + 6 ⋅ C33

Calculate the cofactors, using the method of Example 13.

det(A) = 5 ⋅ 7 + 3 ⋅ 8 + 6 ⋅ 11

det(A) = 35 + 24 + 66 = 125

Example 15: Calculate the minor of b22 if matrix B = [bij] is defined as 
follows.

B

2

3

1

2

4

2

1

2

3

5

6

0

7

4

8

0

=
-

-

-

-

-

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

To calculate this minor, eliminate the second row and the second column
and calculate the determinant of the resulting 3 × 3 matrix.

B0 = 

2

1

2

3

6

0

7

8

0

-

R

T

S
S
S
SS

V

X

W
W
W
WW

Notice that the determinant will be significantly easier if you expand the
third row, since it contains two 0 elements.

M22 = |B0| = 2 ⋅ C31 + 0 ⋅ C32 + 0 ⋅ C33

M22 = 2 ⋅ 66 = 132
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Cramer’s Rule

Consider this system of linear equations:

a x b y c

a x b y c

1 1 1

2 2 1

+ =

+ =
*

You know numerous methods that can solve this system of equations, but
Cramer’s Rule presents yet another option to reach a solution.

According to Cramer’s Rule, if you define the determinants

, ,D
a

a

b

b
D

c

c

b

b
D

a

a

c

c
and

1

2

1

2
1

1

2

1

2
2

1

2

1

2

= = =

the solution to the linear system of equations is:

,x D
D y D

D1 2= =

assuming, of course, that D ≠ 0.

In other words, D is the determinant of the coefficient matrix. The other
matrices, Dn, are created by replacing the nth column of D with the col-
umn of constants.

If a system boils down to a 3 × 3 coefficient matrix, Cramer’s Rule can be
applied in a similar way, as demonstrated in Example 17. In fact, you can
apply Cramer’s Rule to any system whose coefficient matrix is square, but
once those D matrices get to be 4 × 4 or larger, the amount of work it takes
to calculate the appropriate determinants makes Cramer’s Method pro-
hibitively complicated; you’d be better served with Gaussian or Gauss-
Jordan elimination to solve such systems.

Example 16: Solve the system using Cramer’s Rule.

x y

x y

5 11 26

7 3 24

+ =-

- - =
*

Begin by defining the determinants. D is the determinant of the coeffi-
cient matrix, D1 is the same determinant with the x-column replaced by
the constants column (the numbers –26 and 24 on the right side of the
equal signs), and D2’s y-column gets replaced by those same constants.
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, ,D D D
5

7

11

3

26

24

11

3

5

7

26

24
1 2=

- -
=

-

-
=

-

-

D = –15 – (–77) = 62

D1 = (–26)(–3) – (11)(24) = –186

D2 = (24)(5) – (–26)(–7) = –62

Now apply Cramer’s Rule to find the solution.

x D
D

62
186 31= =

-
= -

y D
D

62
62 12= =

-
= -

Example 17: Solve the system using Cramer’s Rule.

x y z

x y z

x y z

4 6 5 7

2 3 7 8

6 15 8 1

- + =-

- + - =

- + + =-

Z

[

\

]
]

]]

Define the determinants just as in Example 16, except this time, you’ll
have an additional determinant D3, whose third column is replaced by the
constant column.

D

4

2

6

6

3

15

5

7

8

= -

-

-

-

, ,D D D

7

8

1

6

3

15

5

7

8

4

2

6

7

8

1

5

7

8

4

2

6

6

3

15

7

8

1

1 2=

-

-

-

- = -

-

-

-

- = -

-

- -

-

Evaluate each determinant by expanding a row or column.

D = 108, D1 = 54, D2 = 72, D3 = –108

You can now solve the system with Cramer’s Rule; note that the solution
for z exactly resembles the method used for x and y.

x D
D

108
54

2
11= = =

y D
D

108
72

3
22= = =

z D
D

108
108 13= =

-
= -
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Graphs of Two-Variable Inequalities

If you change the equality sign in an equation or function to an inequal-
ity sign, such as <, ≤, >, or ≥, you drastically change the appearance of its
graph. No longer is the graph a line or curve whose coordinates make the
equation true. Instead, an entire region of the coordinate plane contains
solutions to the system. 

It stands to reason, then, that systems of inequalities will follow suit. No
longer is the solution to a system the location on the graph where all the
graphs in the system meet; instead, the solution is the region overlapped
by all of the individual inequality graphs comprising the system.

Single inequalities

Graphing an inequality on the coordinate plane is very similar to graph-
ing equations. Follow these steps to sketch an accurate graph:

1. Draw the graph as it would appear if the inequality sign were
replaced by an equal sign. If the inequality sign allows for the possi-
bility of equality (only ≤ and ≥ do), then draw the graph as a solid
line. If, however, the inequality sign does not make such allowances
(< and > do not), draw the graph as a dotted line.

2. Notice that the graph splits the coordinate plane into different
regions. Each of those regions represents a possible solution to the
inequality. Choose one point that’s clearly contained in each region,
called a test point.

3. Plug each test point into the original inequality (with its inequality
sign restored). If the test point makes the inequality true, then so
do all points in that region, and that region is a solution to the
inequality. Indicate a solution region by shading it in.

Example 18: Graph the inequalities.

(a) y > x2
1 – 3

Begin by drawing the graph as though the “>” were “=”. It’s the equa-
tion of a line with slope 2

1 and y-intercept –3. However, since the 
inequality sign does not allow for inequality, draw a dotted graph.
The line separates the plane into two regions, one above and the
other below the line. Notice that only points in the region above
the line comprise the solution; the test point (0,0) is clearly above
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the line, and it (like all other coordinates in that region) will make
the inequality true when substituted for (x,y):

0 > 2
1 0^ h – 3

0 > –3 ✓

State your solution by shading the region above the line. 
See Figure 9-2.

Figure 9-2 The shaded region is the solution region for the inequality
in Example 18(a).

(b) y ≤ –x2 + 2
Begin by drawing the graph of a parabola, opening downward,
with vertex (0,2); since the inequality sign is ≤, the graph should be
a solid line. The graph splits the coordinate plane into two regions:
one inside the conic and one outside it. If you choose test point
(0,0) (which is contained inside the conic), the coordinate makes
the inequality true:

0 ≤ –(0)2 + 2

0 ≤ 2

Any point outside the parabola makes the inequality false, so you
should shade its inside to indicate the solution (Figure 9-3).
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Figure 9-3 The solution to a conic inequality will be either the inside or
the outside of its graph.

Systems of inequalities

The solution to a system of inequalities is the region of the coordinate
plane containing solutions to all inequalities in the system. The easiest way
to find this region is to graph each of the inequalities separately, and then
identify the portion of the plane where all the solutions overlap.

Example 19: Graph the solutions to the systems of inequalities.

(a)
>y x

y x

2
1 3

22#

-

+

Z

[

\

]]

]]

The inequalities in this system are the same ones you graphed in
Example 18 (a) and (b). Therefore, the overlapping portion of the
graph will be the region inside the solid parabola and above the
dotted line (Figure 9-4).

(b)
<x y

x y

25

4 25 1

2 2

2 2

$

+

+

Z

[

\

]]

]]

The first graph is a dotted circle with radius 5, centered at the ori-
gin; its solution is the inside of the circle. The second is an ellipse,
centered at the origin, with vertical major axis of length 10 and
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horizontal minor axis of length 4; its solution is the region outside
the ellipse. Therefore, the solution to the system is the region inside
the circle but outside the ellipse (Figure 9-5). 

Figure 9-4 The solution to Example 19(a).

Figure 9-5 The solution to Example 19(b).
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Linear Programming

One practical application for systems of inequalities is a technique called
linear programming. It uses a region defined by linear inequalities
(called constraints) to find optimal values for a function f (x,y), which is
defined in terms of two variables (x and y). (The optimal value for f (x,y) is
either the largest or smallest possible value of f, depending upon what
is specified by the problem.)

In essence, the goal of a linear programming problem is to choose the set
of coordinates (from among an infinite number of candidates) that gives
the function either its largest or smallest possible value. Here are the steps
you should follow when solving a linear programming problem:

1. Graph the linear inequality constraints, noting the shaded region
that is the common solution defined by the system of inequalities.
That region is called the set of feasible solutions, because the solu-
tion to the problem must come from within that region.

2. Calculate the points of intersection of the constraints. (To do so,
treat each intersecting pair of constraints as a system of equations
and determine the solution point.) Those points are called the 
vertices of the feasible solution set.

3. Plug each vertex into f (x,y) to determine the function’s value at
each vertex. The solution will always occur at one of the vertices.

4. Identify the vertex that gives the minimum or maximum value of
f (x,y), as dictated by the problem.

Example 20: Find the maximum value of the function f (x,y) = 2x + 3y, if
f is subject to the following constraints:

x

y

x y

x y

x y

0

0

2 2

2 9

3 12

$

$

$

#

#

- -

+

+

_

`

a

b
b
bb

b
b
bb

The first two constraints restrict the region of feasible solutions to the first
quadrant only. Graph the remaining three inequalities to determine its
other borders, and shade in the solution to the system of inequalities. There
is no need to graph each line in its entirety when illustrating the region of
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feasible solutions; you only have to graph the line segment whose end-
points are that constraint’s intersections with another contraint.

Once you have determined the feasible region, calculate its vertices (see
Figure 9-6).

Figure 9-6 The feasible region for Example 20 with its vertices labeled.

Evaluate f (x,y) for each vertex.

f(0,0) = 2(0) + 3(0) = 0

f(0,2) = 2(0) + 3(2) = 6

f(1,4) = 2(1) + 3(4) = 14

f(3,3) = 2(3) + 3(3) = 15

f(4,0) = 2(4) + 3(0) = 8

The maximum value for f given those constraints is 15, and it occurs when
x = 3 and y = 3.

Note that the region of feasible solutions was bounded in this problem,
since the region had a clearly defined perimeter and its area was not infi-
nite. If, however, the region is infinitely large for a given problem (such that
the vertices do not connect to form a closed shape) then the region can only
be used to determine minimum values of f (x,y), not maximum values.

(1, 4)

(3, 3)

(4, 0)(0, 0)

(0, 2)
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Chapter  Checkout

Q&A
1. Show that the solution to the system is the same if calculated using

the two different methods listed.

x y

x y

3 4 23

5 2 31

+ =

- =-
*

(a) The elimination method
(b) Cramer’s Rule

2. Given matrices A and B as defined below, perform the indicated 
operations.

A B

3

1

5

1

4

3

2

6

10

4

2

8

0

9

1

7

6

3

=

-

-

- = -

-

R

T

S
S
S
SS

R

T

S
S
S
SS

V

X

W
W
W
WW

V

X

W
W
W
WW

(a) 2A – B
(b) A ⋅ B

3. Put M in reduced row-echelon form.

M

2

0

1

4

5

1

3

2

1

10

2

5

=

R

T

S
S
S
SS

V

X

W
W
W
WW

4. Calculate A–1, the inverse matrix of A.

A
4

2

3

1
=

-

-
R

T

S
SS

V

X

W
WW

Answers: 1. x = –3, y = 8 2. (a)

2

0

18

2

17

5

3

18

23-

- -

-

R

T

S
S
S
SS

V

X

W
W
W
WW

(b)

26

36

66

11

42

17

9

49

47

- -

- -

R

T

S
S
S
SS

V

X

W
W
W
WW

3. M = 

1

0

0

0

1

0

0

0

1

7

2

4-

R

T

S
S
S
SS

V

X

W
W
W
WW

4. A
1 2

1

3 2

2
1
=

-

-

-

-

-

R

T

S
SS

V

X

W
WW
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ADDITIONAL TOPICS

Chapter  Check-In

❑ Applying Pascal’s Triangle

❑ Expanding binomials via the Binomial Theorem

❑ Examining the terms of a sequence

❑ Evaluating sums and partial sums of series

The topics in this chapter deserve special mention because they either
supplement the material you’ve learned thus far or serve to introduce

elements you’ll investigate more fully once you enroll in a calculus course.

The section on binomial expansions gives you great shortcuts for com-
puting otherwise impossibly long products. The section on sequences and
series is merely the briefest of introductions, just enough to whet your
appetite for the more thorough approach you’ll see in calculus.

Binomial Expansion

One of the most common algebraic errors students make is improperly
raising binomials to exponential powers, Remember,

(a + b)2 ≠ a2 + b2

Instead, you must use the FOIL technique to find the product:

(a + b)2 = a2 + 2ab + b2

When a binomial is raised to an exponent larger than 2, however, the FOIL
method is no longer appropriate. In such cases, you can apply one of two
techniques to expand the binomial correctly.
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Pascal’s Triangle

Consider the quantity (a + b)n, for values of n ranging between n = 0 and
n = 5:

:

:

:

:

:

:

n a b

n a b a b

n a b a ab b

n a b a a b ab b

n a b a a b a b ab b

n a b a a b a b a b ab b

0 1

1

2 2

3 3 3

4 4 6 4

5 5 10 10 5

0

1

2 2 2

3 3 2 2 3

4 4 3 2 2 3 4

5 5 4 3 2 2 3 4 5

= + =

= + = +

= + = + +

= + = + + +

= + = + + + +

= + = + + + + +

^

^

^

^

^

^

h

h

h

h

h

h

Notice that each line of the above expansions shares these characteristics:

■ Each expansion (a + b)n begins with an and ends with bn.

■ The powers of a in the expansion begin with n and decrease by one
with each consecutive term.

■ The powers of b in the expansion begin with 0 (b0 = 1) and increase
by 1 with each consecutive term.

■ In each term, the exponents of a and b sum to n.

The tricky part of expanding a binomial, then, lies in calculating the appro-
priate coefficients, since the variable patterns are so fixed and predictable.

Notice that you can rewrite the coefficients of the expansions in a trian-
gular pattern, called Pascal’s triangle.

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

Row

Row

Row

Row

Row

Row

Pascal’s triangle has the following properties:

■ Each row begins and ends with 1.

■ Each row contains one more element than its row number.
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■ Each term in the triangle is equal to the sum of the terms to its upper-
right and upper-left.

■ The terms in the row r are the coefficients of the binomial expansion
(a + b)r.

Example 1: Expand the binomial (x + y)4.

The correct coefficients for the expansion come from row four of Pascal’s
triangle. (Don’t forget that triangle technically begins with row zero.)

1 4 6 4 1

The powers of x begin with n = 4 and decrease by 1, left to right.

1x4 4x3 6x2 4x1 1x0

The powers of y begin with 0 and increase by 1, left to right.

1x4y0 4x3y1 6x2y2 4x1y3 1x0y4

The final expansion is the sum of those terms in simplified form.

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

Example 2: Expand the binomial (2x – 3y)3.

The coefficients for the expansion (a + b)3 are found in the third row of
Pascal’s triangle. 

1 3 3 1

Include the a and b factors as you did in Example 1.

1a3 + 3a2b + 3ab2 + 1b3

For this problem, a = 2x and b = –3y.

(2x)3 + 3(2x)2(–3y) + 3(2x)(–3y)2 + (–3y)3

8x3 – 36x2y + 54xy2 – 27y3

It is not always convenient to find the nth row of Pascal’s triangle in order
to expand binomials, especially when n gets relatively large, or if you are
seeking a single term rather than the entire expansion. However, before
you learn another technique to expand binomials, you must first be intro-
duced to a new concept.
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Factorials

The factorial, n! (read “n factorial”), of a natural number n is defined as
the product of n with all of its preceding natural numbers.

n! = n(n – 1)(n – 2)...(2)(1)

In other words, to evaluate a factorial, multiply the given number by all
of the natural numbers which are less than it:

6! = 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720

The only non-natural number that has a valid factorial value is 0:

0! = 1

Since 0 is not natural, its value is not derived using the usual factorial def-
inition, but it is necessary to define this value because it surfaces in many
formulas which would otherwise be undefined.

Example 3: Simplify the fraction.

!
!

6
10

The numerator can be rewritten so that it contains a 6!, which can then
be canceled with the 6! in the denominator.

!
!

6
10 9 8 7 6$ $ $ $

[10 ⋅ 9 ⋅ 8 ⋅ 7] = 5040

The Binomial Theorem

The Binomial Theorem states that the (k + 1)st term of the expansion 
(a + b)n equals

!
!

n k k
n a bn k k

-
-

!^ h

The binomial coefficient 
! !

!
n k k

n
-^ h

is usually written 
n

k

J

L

K
K

N

P

O
O.

Example 4: Expand the binomial (x + y)4 using the Binomial Theorem.

The variables will expand just as they did in Pascal’s triangle. To calculate
the coefficients, use k values that begin with 0 (for the leftmost term) and
increase to n = 4 (for the rightmost term).
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x x y x y xy y
4

0

4

1

4

2

4

3

4

4
4 3 2 2 3 4
+ + + +

J

L

K
K

J

L

K
K

J

L

K
K

J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O

N

P

O
O

N

P

O
O

N

P

O
O

Apply the Binomial Theorem to calculate the coefficients.

!
!

! !
!

!
!

! !
!

! !
!

4

0 4 0
4

24 1
24 1

4

1 4 1
4

6 1
24 4

4

2 4 2
4

2 2
24 6

4

3 4 3 3
4

1 6
24 4

4

4 4 4 4
4

1 24
24 1

$

$

$

$

$

=
-

= =

=
-

= =

=
-

= =

=
-

= =

=
-

= =

0

1

!

2 !

J

L

K
K

J

L

K
K

J

L

K
K

J

L

K
K

J

L

K
K

^

^

^

^

^

N

P

O
O

N

P

O
O

N

P

O
O

N

P

O
O

N

P

O
O

h

h

h

h

h

Substitute the coefficient values into the expansion:

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

Note that this is the same expansion you got in Example 1, when you used
Pascal’s triangle.

Example 5: Find the 11th term of the expansion (x – 2y)15.

Apply the Binomial Theorem with k = 10, n = 15, a = x, and b = –2y.

!
!

! !
!

x y

x y

x y

x y

15 10
15 2

5 10
15 14 13 12 11 10

2

3003 1024

3075072

15 10 10

5 10

5 10

5 10

$

$ $ $ $ $

-
-

= -

=

=

-

!10^
`

`

`

h
j

j

j

Ordered Number Lists

A large portion of second-semester calculus is spent studying infinite lists
of numbers and investigating things such as whether or not those infinite
lists sum up to a single, finite number. For now, an introduction to these
lists is sufficient. 
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Sequences

A sequence of numbers is an ordered list (either finite or infinite) of num-
bers called terms, which are usually defined according to some rule an. The
terms of a recursive sequence are defined based on one or more of the
preceding terms in the sequence.

Example 10: Write the first three terms of the sequence.

an = 3n – 2n

Plug in values of n ranging from 1 to 3 to get the corresponding terms.

a1 = 31 – 2(1) = 1

a2 = 32 – 2(2) = 5

a3 = 33 – 2(3) = 21

Example 11: If b0 = 2, find the next five terms of the recursive sequence.

bn = bn – 1 + n2

Plug in n values beginning with 1 and ending with 5.

b1 = b0 + 12 = 2 + 1 = 3

b2 = b1 + 22 = 3 + 4 = 7

b3 = b2 + 32 = 7 + 9 = 16

b4 = b3 + 42 = 16 + 16 = 32

b5 = b4 + 52 = 32 + 25 = 57

Series

A series is the sum of the terms of a sequence. This summation is usually
written using sigma notation:

...a a a a a an
n

c

c c
1

1 2 3 1= + + + + +
=

-!

where n is the index, c is the upper summation limit, and 1 is the lower
summation limit.
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Note that the upper summation limit can be ∞, in which case the series sum
may or may not exist. If the upper limit is finite, then the sum of the first
c terms is called the cth partial sum of the series.

Example 12: Find the sum of the series.

!n1 1n

n 1

5

- -
=

!^ ^h h

Calculate the terms of the sequence.

a1 = (–1)1(1 – 1)! = –1 ⋅ 1 = –1

a2 = (–1)2(2 – 1)! = 1 ⋅ 1 = 1

a3 = (–1)3(3 – 1)! = –1 ⋅ 2 = –2

a4 = (–1)4(4 – 1)! = 1 ⋅ 6 = 6

a5 = (–1)5(5 – 1)! = –1 ⋅ 24 = –24

The sum of the series is equal to the sum of these five terms.

!n1 1 1 1 2 6 24 20n

n 1

5

- - =- + - + - =-
=

!^ ^h h

Example 13: Find the third partial sum of the infinite series.

n
n

1
n 1

+

3

=

!

The third partial sum is the sum of the first three terms.

n
n

1 2
1

3
2

4
3

12
23

n 1

3

+ = + + =
=

!

Chapter  Checkout

Q&A
1. Expand the binomial (3x + y)6 using Pascal’s Triangle.
2. Calculate the 7th term of the expansion for (x – y)10.

3. Given the sequence a 6 2
1

n

n

= -c m , calculate an
n 1

4

=

! .

Answers: 1. 729x6 + 1458x5y + 1215x4y2 + 540x3y3 + 135x2y4 + 18xy5 + y6

2. 210x4y6 3. 8
15

-
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CQR Resource Center offers the best resources available in print and online
to help you study and review the core concepts of precalculus. You can
find additional resources, plus study tips and tools to help test your knowl-
edge, at www.cliffsnotes.com.

Books
CliffsQuickReview Precalculus is one of many great books available to help
you review, refresh, and relearn mathematics. If you want some additional
resources for math review, check out the following publications.

CliffsQuickReview Algebra II, by Edward Kohn, M.S., contains lots of prac-
tice problems and examples, much like this book. In addition, second semester
algebra and precalculus courses contain some overlapping topics, so you can
get another instructor’s take on the material. John Wiley & Sons, Inc.

CliffsQuickReview Trigonometry, by David A. Kay, M.S., provides an
in-depth study of trigonometry. Examples abound, and the explanations
are very good. John Wiley & Sons, Inc.

Bob Miller’s Calc for the Clueless: Precalc with Trigonometry, by
Robert Miller, provides yet another perspective on the study of precalcu-
lus. This book’s strength lies in its non-threatening voice. McGraw Hill.

Precalculus, by Ron Larson and Robert P. Hostetler, is the best precalcu-
lus textbook out there. With only a few exceptions, the material is presented
in a digestible and readable fashion. It contains tons and tons of practice
examples with useful solutions to the odd problems. Highly recommended!
Houghton Mifflin.

The Complete Idiot’s Guide to Calculus, by W. Michael Kelley, is the
best basic guide to calculus on the market. If you’re a precalculus student,
surely calculus looms in your future, and this book is a terrific supplement
to your textbook. Alpha Books.
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John Wiley & Sons also has three Web sites that you can visit to read all
about the books we publish:

■ www.cliffsnotes.com

■ www.dummies.com

■ www.wiley.com

Internet
The Web is always a good source for free math help and tutoring. These
are just a few of the sites you’ll find most informative as you commute
along the information superhighway:

Mathematics Help Central www.mathematicshelpcentral.com/
lecture_notes/precalculus_algebra.htm This site provides lots of brief
but useful recaps of all the major precalculus topics (as well as recaps for
numerous other college math courses). Precalculus is split into two com-
ponents (algebra and trigonometry), but the link above takes you straight
to the algebra page.

Precalculus Quiz Generator and Grader www.math.ua.edu/precalc.htm
Courtesy of the University of Alabama, this Web tool automatically gener-
ates and provides solutions for 15-question quizzes on the major topics of
precalculus. You can even choose what types of questions that will be included. 

OJK’s Precalculus Page www.geocities.com/ojjk/ A veteran mathe-
matics teacher created this site to provide exhaustive review for precalculus
students. It contains explanations and examples for just about every topic
you can think of.

Calculus-Help.com www.calculus-help.com Precalculus students
are bound to become calculus students, and there is no site better to get
practice problems or multimedia tutorials to deepen your understanding
of calculus.

Don’t forget to drop by www.cliffsnotes.com. We created an online
Resource Center that you can use today, tomorrow, and beyond. (You can
even download the majority of the CliffsQuickReview and CliffsNotes titles!)
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absolute value (of a complex number) see modulus.

amplitude the value by which the graph of a trigonometric function
such as sine or cosine is stretched; the amplitude is always a positive value.

argument the angle measured from the positive x-axis to the segment join-
ing the origin and the point representing the graph of complex number c.

augmented matrix a matrix containing more than simply coefficients;
it may contain a column of solutions or even an appended identity matrix,
as in the method of calculating inverse matrices.

axis of symmetry the line passing through the vertex of a parabola about
which the graph of the parabola is symmetric.

center (of a circle) the point from which all points on a given circle are
equidistant.

center (of an ellipse) the midpoint of an ellipse’s major axis.

center (of a hyperbola) the midpoint of the transverse axis.

circle a set of coplanar points equidistant from a fixed point called the
center.

coefficient matrix a matrix whose entries are the coefficients for a sys-
tem of equations.

cofactor the value Cij = (–1)i + j ⋅ Mij based upon some element aij in a
square matrix, where Mij is the minor associated with aij.

cofunctions trigonometric function pairs which differ only in the pres-
ence or absence of the prefix “co,” such as sine and cosine.

common logarithm a logarithm of base 10; if a logarithm is written
without an explicit base (like log 3x), the base is understood to be 10.

complex numbers any number of the form a bi+ , where a and b are real
numbers and i 1= - . If b = 0, the complex number is also a real number.
If, however, a = 0, the number is said to be purely imaginary.
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component form method of writing a vector’s terminal point which pre-
supposes that its initial point is the origin.

composition of functions the act of plugging one function into another,
usually written as f (g(x)) or f g x%` ^j h.

conjugate the complex number a b" that corresponds to any complex
number a ± b.

conjugate axis the segment perpendicular to the transverse axis at a
hyperbola’s center.

constraints linear inequalities that bound the feasible region in a linear
programming problem.

coterminal angles angles in standard position that share the same ter-
minal ray.

counting numbers the most basic set of numbers, often learned when
one is first taught to count: {1, 2, 3, 4, 5, 6, ...}. They are also called the
natural numbers.

Cramer’s Rule a method for solving systems of equations with matrices.

critical number a value for which an expression is either undefined or
is equal to zero.

degree (angle measurement) 1/360th of a ray’s full rotation around the
origin.

degree (of a polynomial) the greatest exponent within a polynomial.

DeMoivre’s Theorem allows you to calculate powers of complex num-
bers written in trigonometric form.

dependent describes a system of equations that has infinitely many 
solutions.

Descartes’ Rule of Signs a method used to determine the number of
possible positive and negative real roots of a polynomial.

determinant a real number that is defined for any square matrix A,
expressed either as det (A) or |A|.

diagonal the elements a11, a22, a33, ... , ann in the square matrix An × n.

directrix the fixed line used to define a parabola; all points on the
parabola must be the same distance from the directrix as they are from the
parabola’s focus.
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dot product of two vectors, v = <a,b> and w = <c,d>, is v ⋅ w = ac + bd.

eccentricity the value e = a
c for an ellipse which describes whether the 

graph tends more toward an oval or circular shape.

ellipse the set of coplanar points such that the sum of the distances from
each point to two distinct coplanar points (called the foci) is constant.

Euler’s number the irrational mathematical constant written as e, which
has a value approximately equal to 2.71828182845904523....

even functions functions such that f (–x) = –f (x).

exponential function has form f (x) = ax, for some real number a, as long
as a > 0.

exponentiating the process of raising a constant to the power of both
sides of the equation in order to cancel out a logarithm. The exponenti-
ated form of log a x = c is a alog x ca = .

factorial the product of a natural number, n, with all its preceding nat-
ural numbers, written “n!”.

feasible solutions the region for the system of inequalities which act as
constraints in linear programming.

foci (of an ellipse) the two fixed focus points which define an ellipse.

foci (of a hyperbola) the two fixed focus points which define a hyperbola.

focus (of a parabola) the fixed point used to define a parabola.

function a relation in which every input results in one and only one 
output.

Gaussian elimination the process used to put a matrix in row-echelon
form.

Gauss-Jordan elimination the process used to put a matrix in reduced
row-echelon form.

Heron’s area formula used to calculate the area of an oblique triangle
given the lengths of all its sides.

hyperbola set of points such that the difference of the distances from each
point to two distinct, fixed points (called the foci) is a positive constant.

identity elements numbers that, when applied in specific operations,
do not alter the values you begin with. 
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identity matrix a square matrix which contains all 0 elements except for
its diagonal, which contains only 1 elements.

inconsistent describes a system of equations that has no solutions.

index the small number outside of a radical sign.

inverse function the function, labeled f –1(x), which contains all the
ordered pair of f (x), with its coordinates reversed. In other words, if f (x)
contains (a,b), then f –1(x) contains (b,a).

inverse matrix the unique n × n matrix A–1 corresponding to the n × n
matrix A such that A–1 ⋅ A equals the n × n identity matrix.

irrational numbers any number that cannot be expressed as the quotient

b
a , where a and b are integers and b is nonzero.

leading coefficient the coefficient in the term of a polynomial con-
taining the variable raised to its highest power.

Leading Coefficient Test describes what direction (either up or down)
the graph is heading at the far right and left edges of the coordinate axes.

linear programming technique used to optimize a function whose solu-
tion set is subject to a set of linear inequality constraints.

logarithmic function function of form f (x) = logc x (read “the log base
c of x”).

magnitude the length of a vector; the magnitude of v is written ||v||.

major axis the line segment (whose ends are vertices) which passes
through the foci of an ellipse.

matrix a rectangular collection of numbers, arranged in rows and
columns, surrounded by a single set of brackets on either side.

minor notated Mij, and corresponding to a square matrix A, it is equal
to the determinant of the matrix created by deleting the ith row and jth
column of A.

minor axis the line segment, perpendicular to the major axis, which
passes through the center of an ellipse and has endpoints on the ellipse.

modulus the distance r a b2 2
= + from the origin to the point on the

coordinate plane representing the graph of the complex number c = a + bi;
also called the absolute value of c.
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natural exponential function the exponential function with Euler’s
number as its base: f (x) = ex.

natural logarithm the logarithmic function of base e, written “ln x” and
read either “natural log of x” or “L-N of x.”

natural numbers the most basic set of numbers, often learned when one
is first taught to count: {1, 2, 3, 4, 5, 6, ...}. They are also called the count-
ing numbers.

oblique triangles triangles which do not contain a right angle.

odd functions functions such that f x f x- = -^ ^h h.

one-to-one a term used to describe a function for which every output
has only one corresponding input. Only one-to-one functions have inverses.

optimal maximum or minimum values of a function.

order describes how many rows and columns are in a matrix.

orthagonal describes two vectors which are perpendicular to one another.

parabola a set of coplanar points equidistant from a fixed point (the
focus) and a fixed line (the directrix).

parametric equations two equations (usually “x =” and “y =”) defined
in terms of a third variable, called the parameter.

partial sum sum of the terms of a series whose upper summation limit
is finite.

Pascal’s triangle the triangular arrangement of the coefficients of bino-
mial expansions; the (n + 1)th row of the triangle gives the coefficients for
the expression (a + b)n.

period the shortest length along the x-axis after which a periodic graph
will repeat itself.

periodic describes a graph which will repeat itself infinitely after some
fixed length of the x-axis, called the period.

polar axis the fixed ray in polar coordinates representing the initial side
of the angle θ.

polar coordinates coordinates in the form (r,θ), where r is the distance
from the pole and θ is the angle from the polar axis.

pole the fixed point in polar coordinates from which the distance r to
the point is measured.
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principal the initial investment in a compound interest problem.

quadrantal an angle in standard position whose terminal side falls upon
a coordinate axis.

radian measurement of an angle in standard position that, when
extended to a circle of radius r centered at the origin, will mark the end-
points of an arc whose length is also r.

radius the fixed distance between the center of a circle and any point on
that circle.

rational numbers any number that can be expressed as a fraction b
a ,

where a is an integer and b is a non-zero integer.

Rational Root Test a method used to determine all possible rational
roots for a polynomial.

real numbers any number which is either rational or irrational is also a
real number, because the real numbers are made up by combining those
two, smaller groups.

rectangular coordinates coordinates in the form (x,y) in the Cartesian
plane.

recursive sequence sequence whose terms are defined based on one or
more preceding terms of the sequence.

reduced row-echelon form the form of a matrix in which the diagonal
contains only 1s, all elements above and below the diagonal are 0s, and
any rows containing only zeros are placed at the bottom of the matrix.

reference angle an acute angle that helps calculate trigonometric func-
tion values of an oblique angle.

row-echelon form the form of a matrix in which its diagonal contains
only 1s, all elements to the left of the diagonal are 0s, and all rows made
up entirely of zeros appear at the bottom of the matrix.

scalar term used to refer to a numeric, non-vector quantity when deal-
ing with vectors.

sequence ordered list of numbers a1, a2, a3, ....

series the sum of the terms of a sequence.

singular describes a matrix that has no inverse.

slant asymptote a linear asymptote that is neither vertical nor horizontal.
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square matrix a matrix that has the same number of rows and columns.

standard form (of a vector) describes a vector whose initial point lies
on the origin.

standard position describes an angle whose initial side lies on the pos-
itive x-axis and whose vertex lies on the origin of the coordinate plane.

synthetic division a shortcut alternative to long division, which uses
only the coefficients of the divisor and dividend; it is only applicable if the
divisor is linear.

system of equations set of equations for which you are seeking coordi-
nates that makes all of the equations in the set true.

test points points chosen based on the graph of an inequality to deter-
mine which regions of the graph (as defined by the inequality) make it true.

transverse axis segment passing through the foci of a hyperbola whose
endpoints are the hyperbola’s vertices.

unit circle a circle, centered at the origin with radius 1, which is used
to calculate the sine and cosine values of certain angles.

unit vector a vector with magnitude 1.

vector quantity that possesses both magnitude and direction.

vertex (of an angle) the endpoint shared by the two rays forming an angle.

vertex (of linear programming) the point at which two constraints
intersect.

vertex (of a parabola) the point at which the direction of a parabola changes.

vertical line test if a vertical line can be drawn through a graph, inter-
secting it in two or more places, then the graph cannot be that of a function.

vertices (of an ellipse) the endpoints of the major axis.

vertices (of a hyperbola) the endpoints of the transverse axis.

zero matrix a matrix of any order whose elements are all zeros.

zero vector written 0, it is the vector with component form <0,0>; it is
orthagonal to all vectors by definition, although it is not actually perpen-
dicular to anything because its magnitude is 0.
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A
absolute value, defined, 140
absolute value inequalities, solving, 21
absolute values, solving equations and, 20
acute angles, trigonometric functions,

calculating, 92
addition

associative property, 7
commutative property, 8
complex numbers, 137–138
distributive property, 8
identity element, 9
matrix operations, 177–178
polynomials, 15–16
rational expressions, 17–18
vector operations, 131–132

additive identity, defined, 9
additive inverse property, defined, 9
algebra, precalculus background

requirements, 3
amplitude, functions, 100
analytic geometry

circles, 146–148
conic sections, overview, 145–146
ellipses, 153
parabolas, 148–153

angles (trigonometry)
acute, calculating function values for, 92
characteristics of, 83–84
complementary and supplementary, 86
coterminal, 87–88
degrees, defined, 84
labeling, 84
Law of Sines, 121–123
oblique, calculating trigonometric 

ratios, 96–97
oblique, overview, 94
oblique, reference angles, 95–96
overview, 83
pi (π) and, 85
quadrantal, 84
radians, 85–86
rounding measurements, Law of Cosines

and, 124

sine and cosine, determining, 88–91
standard position, 84
unit circle, determining sine and 

cosine, 88–91
vectors, measuring between, 135–136

arcsin, inverse trigonometric functions,
103–104

area, calculating for triangles, 124
side-angle-side formula, 125
side-side-side formula, 125–126

argument, complex numbers, 140
associative addition, matrices, 178
associative multiplication, matrices, 180
associative property

defined, 7–8
polynomials, adding and subtracting, 16

asymptotes
hyperbolas, 158
hyperbolas, equations, 162
rational, 64–65
trigonometric graphs and, 101

augmented matrices, defined, 181
axioms, as properties, 7
axis of symmetry, parabolas, 148

B
background requirements, 3
base 10, logarithmic functions, 71
base e, logarithmic functions, 71
base numbers, defined, 9–10
binomial expansion

Binomial Theorem, 204–205
factorials, 204
overview, 201
Pascal’s triangle, 202–203

Binomial Theorem, binomial expansion,
204–205

binomials, defined, 15
bounded intervals, defined, 5–6
brackets ([ ]), bounded notation, 5–6
branches, hyperbolas, 158
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C
center

circles, defined, 146
ellipses, 153
hyperbolas, 158

change of base formula, logarithmic
functions, 73

circles
analytic geometry, 146–148
perfect squares, 148
standard form, 148

classifications (numbers)
complex numbers, 4–5
counting numbers, 3
identity elements, 9
integers, 4
inverse properties, 9
irrational numbers, 4
natural numbers, 3
overview, 3
polynomials, 14
rational numbers, 4
real numbers, 4
whole numbers, 4

classifying polynomials, 15
closed intervals, defined, 6
coefficient

Binomial Theorem, 204
conic sections, identification, 163
logarithm properties, 74
polynomials, 14
polynomials, leading, 15
synthetic division, 56

coefficient matrices, defined, 180
cofactors, determinants, 189–190
cofunction identities (trigonometry), 

defined, 108
column matrices, defined, 177
combining functions, overview, 41–42
common log, logarithmic functions, 71
commutative addition, matrices, 178
commutative property

defined, 8
polynomials, adding and subtracting, 16

complementary angles, defined, 86
completing the square, solving quadratic

equations and, 52–53
complex fractions, simplifying, 18–19
complex numbers

absolute value and, 140
adding, 137
addition, 137–138
argument, 140
conjugates, 139

defined, 4–5
DeMoivre’s Theorem, 142–143
division, 137–138, 141–142
modulus, 140
multiplication, 137–138, 141–142
roots, calculating, 143–144
roots and powers of, overview, 142
subtracting, 137
subtraction, 137–138
trigonometric form, 140–141
trigonometry, overview, 137–138

component form, vectors, 129
composition of functions, 42
compound interest problems, exponential

expressions, 79–80
conic sections

circles, 146–148
ellipses, overview, 153
hyperbolas, overview, 158–159
identifying from equations, 163
overview, 145–146

conjugate axis, hyperbolas, 158
conjugates, complex numbers, 139
constants, Euler’s number, 68
constraints, linear programming, 198
coordinates (polar), overview, 165–168
cosecant

defined, 92
graphing, 102
trigonometric identities, 107–108

cosine
defined, 92
determining, 88–91
double-angle formula, 118
graphs, overview, 98
graphs, periodic, 98–99
graphs, transforming, 99–101

cotangent
defined, 92
graphing, 102
trigonometric identities, 107–108

coterminal angles, defined, 87–88
counting numbers, defined, 3
Cramer’s Rule, linear equations, 192–193
critical numbers, inequality statements, 22
cubic graphs, functions, 34–35

D
decay problems, exponential expressions 

and, 80–81
decimals

infinite patterns, 4
integers and, 4
irrational numbers, 4

15 539841 Index.qxd  1/26/04  2:51 PM  Page 218



Index 219

nonterminating, 4
rational numbers and, 4
terminating, 4

degree
converting to radians, 86
defined (angles), 84
polynomials, 15

DeMoivre’s Theorem, complex numbers,
142–143

denominators, rationalizing radical
expressions, 14

dependent system of equations, defined, 172
Descartes’ Rule of Signs

finding roots, 60–62
overview, 58–59

determinants
Cramer’s Rule, 192–193
matrices, overview, 189
minors and cofactors, 189–190
square matrices, 190–191
2×2 matrices, 189

diagonal, matrices, 177
diagrams, relations, 26
difference identities, trigonometric equations,

116–117
difference of perfect cubes, factoring

polynomials and, 50
difference of perfect squares, factoring

polynomials and, 50
directrix, parabolas, 148
distributive property

defined, 8
polynomials, adding and subtracting, 16
polynomials, multiplying, 16–17

dividend, defined, 54
division

complex numbers, 137–138, 141–142
exponential expressions, 10
linear inequalities, 20
polynomial division, long division, 53–55
polynomial division, overview, 53
synthetic division (polynomials), 55–56
synthetic division (polynomials),

theorems, 56–58
divisor, defined, 54
domain

functions, 33–34
logarithmic functions, 72
relations, 27

dot products, vectors, 134–137
double-angle formulas, trigonometry, 117–118
double-napped cones, defined, 145

E
eccentricity, ellipses, 156–158
elements, matrices, 177
elimination method

nonlinear systems of equations, 175–176
solving two-variable linear systems,

174–175
ellipses

eccentricity, 156–158
overview, 153
standard form, 153–154
standard form, compared to 

hyperbolas, 160
end behavior, graphs, 62–63
endpoints (interval notation), 

determining, 5–6
entries, matrices, 177
equations

conic sections, identification, 163
hyperbolas, asymptotes, 162
matrices, solving, 187–188
parametric, overview, 163
relations, 26
solving, 19–20
solving, completing the square and, 52–53
solving, quadratic formula and, 51–52
systems of, overview, 171–172
trigonometric, compared to trigonometric

identities, 106–107
trigonometric, functions of multiple

angles, 115–116
trigonometric, solving, 111–112
trigonometric, solving quadratic, 113
trigonometric, solving simple, 113
trigonometric, solving with identities, 114
trigonometric, solving with squaring, 115
trigonometric, sum and difference

identities, 116–117
Euler’s number, exponential functions, 68
evaluating. See also solving

determinants, square matrices, 190–191
functions, 28–29
logarithmic functions, 73

even functions, defined, 32
exact solutions, solving trigonometric

equations, 112
expanding a row (matrices), defined, 190
exponential expressions

binomial expansion, 201
compound interest problems, 79–80
decay problems, 80–81
growth problems, 80–81
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exponential expressions (continued)
overview, 9–11
simplifying, 11
solving, 76–77
word problems, overview, 79

exponential functions
compared to polynomial functions, 67
defined, 67
Euler’s number, 68
graphs, 68–70
inverse relationship with logarithmic

functions, 71
natural exponential function, 68

exponents
logarithm properties, 74
logarithmic functions and, 70

expressions
double-angle, 117–118
exponential, 9–11
exponential, solving, 76–77
exponential, word problems and, 79–81
factoring polynomials, 48–50
logarithmic, solving, 77–79
logarithmic functions, 70
radicals, 12
rational, 17–19
trigonometric identities, simplifying,

108–109

F
factor theorem, overview, 57–58
factorials, binomial expansion, 204
factoring

polynomials, greatest common factor, 48
polynomials, by grouping, 48
polynomials, overview, 47
polynomials, special patterns and, 50
quadratic equations, 51
quadratic trinomials, 49
root-finding theorems, 56–58

factors, logarithm properties, 74
feasible solutions, linear programming, 198
financial problems, exponential expressions

and, 79–80
focus

ellipses, 153
hyperbolas, 158
parabolas, 148

FOIL method
binomial expansion, 201
multiplying polynomials, 16–17

formulas
double-angle (trigonometric equations),

117–118
half-angle (trigonometric equations),

118–119
product-sum, 120
sum-product (trigonometric equations),

119–120
triangle area, 124
triangle area, side-angle-side, 125
triangle area, side-side-side, 125

fractions
complex, simplifying, 18–19
exponential expressions, 10–11
integers and, 4
irrational numbers, 4
multiplying, 17
radical expressions, 12
rational expressions, 17–19
rational numbers and, 4
rationalizing radical expressions, 14

functional notation, 28–30
functions

absolute value graph, 35–36
acute angle values, 92
amplitude, 100
combining, 41–42
composition of functions, 42
cosecant, 92
cosine, 88–91, 92
cotangent, 92
cubic graph, 34–35
defined, 26
exponential, defined, 67
exponential, Euler’s number, 68
exponential, natural, 68
exponential compared to polynomial, 67
functional notation, 28–30
graphs, domain and range, 33–34
graphs, inverse functions, 44
graphs, overview, 30
graphs, reflections, 38–39
graphs, stretching and shrinking, 39–40
graphs, symmetry, 31–32
graphs, vertical line test, 31
greatest integer graph, 35–36
intercepts, calculating, 33
inverse, 43
inverse, finding, 44–45
inverse, graphs, 44
inverse, trigonometry, 103–105
Leading Coefficient Test, 62–63
logarithmic, overview, 70–71
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natural exponential graph, 35–36
natural logarithmic graph, 35–36
one-to-one, 28
piecewise-defined, 28–29
quadratic graph, 34–35
rational asymptotes, 64–65
reciprocal function graph, 34–35
reference angles (trigonometry), 95–96
relations, 27–28
root-finding theorems, 56–58
roots, 33
secant, 92
sine, 88–91, 92
square root graph, 35–36
tangent, 92
transformations, multiple, 40–41
transformations, overview, 36
trigonometry, 92
zeros, 33

Fundamental Theorem of Algebra, defined, 58

G
Gaussian elimination, matrix systems of

equations, solving, 181–182
Gauss-Jordan elimination, matrices, 181–182
general solutions, solving trigonometric

equations, 112
geometric theorems, triangles, determining

length of legs, 90
graphs

absolute value (functions), 35–36
circles, 146–147
cosecant, 102
cotangent, 102
cubic (functions), 34–35
ellipses, 153–156
end behavior, 62–63
exponential functions, 68–70
functions, calculating intercepts, 33
functions, domain and range, 33–34
functions, overview, 30
functions, reflections, 38–39
functions, stretching and shrinking, 39–40
functions, symmetry, 31–32
functions, transformations (overview), 36
functions, transformations (vertical and

horizontal shifts), 37
functions, vertical line test, 31
greatest integer function, 35–36
hyperbolas, 159–162
inverse functions, 44
Leading Coefficient Test, 62–63

linear programming, 199
logarithmic functions, 71–72
natural exponential function, 35–36
natural logarithmic function, 35–36
parabolas, 148–149
parametric equations, 163–164
periodic (trigonometry), 98–99
polar coordinates, 165–168
quadratic (functions), 34–35
rational asymptotes, 64–65
reciprocal function, 34–35
secant, 102
single inequalities, 194–196
square root (functions), 35–36
system of equations, 172
systems of inequalities, 196–197
tangent, 101
transformations (logarithmic functions), 72
transformations (trigonometry), 99–101
trigonometry, asymptotes and, 101
trigonometry, overview, 98
two-variable inequalities, 194
vectors, defined, 128–129

greatest common factor, polynomials, 48
growth problems, exponential expressions

and, 80–81

H
half-angle formulas, trigonometry, 118–119
horizontal asymptotes, defined, 64
horizontal line test, inverse functions, 43
horizontal shifts, functions, 37
hyperbolas

asymptotes, equations, 162
graphing, 160–162
overview, 158–159
standard form, 159–160
standard form, compared to ellipses, 160

hypotenuse, defined, 88

I
identification, conic sections from 

equations, 163
identities (trigonometric)

overview, 106–107
proving, 110–111
simplifying, 108–109
solving equations and, 114
sum and difference, 116–117
types of, 107–108

identity elements, defined, 9
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inconsistent system of equations, defined, 172
index, radicals, 12
inequality statements

bounded intervals, 5–6
interval notation, overview, 5
polynomials and, 21
rational expressions and, 21
unbounded intervals, 6–7

infinity (∞), unbounded intervals and, 6
initial point, vectors, 129
initial side (angles), defined, 83
input, functions, 26–30
integers

compared to whole numbers, 4
defined, 4

intercepts, functions, calculating, 33
interest (compound), exponential expressions

and, 79–80
interval notation

absolute value inequalities, 21
bounded intervals, 5–6
linear inequalities, 20
overview, 5
unbounded intervals, 6–7

inverse functions
defined, 43
finding, 44–45
graphs, 44
trigonometry, 103–105

inverse matrices, calculating, 185–187
inverse properties, defined, 9
inverse relationship, exponential functions

with logarithmic functions, 71
irrational constants, Euler’s number, 68
irrational numbers

defined, 4
real numbers and, 4

L
Law of Cosines, oblique triangles, 123–124
Law of Sines, oblique triangles, 121–123
laws. See also theorems

oblique triangle, 120–121
as properties, 7

LCD (least common denominator), rational
expressions, 17–18

leading coefficient, polynomials, 15
Leading Coefficient Test, polynomial graphs

and, 62–63
least common denominator. See LCD
legs (triangles), determining length of, 90
like terms, polynomials, adding and

subtracting, 15–16
linear equations, Cramer’s Rule, 192–193
linear inequalities, solving, 20–21

linear programming, systems of inequalities,
198–199

lines, equations for, 23–24
lists

ordered number, overview, 205
ordered number, sequences, 206–207
relations, 26

logarithmic expressions, solving, 77–79
logarithmic functions

change of base formula, 73
common log, 71
domain, 72
evaluating, 73
graphs, 71–72
inverse relationship with exponential

functions, 71
natural log, 71
overview, 70–71
transformations, 72

logarithms, properties, overview, 73–76
long division, polynomial division, 53–55

M
magnitude, vectors, 130
major axis, ellipses, 153
maps, relation maps, 27
matrices

addition operations, 177–178
augmented, 181
coefficient matrices, 180
column matrices, 177
Cramer’s Rule, 192–193
determinants, overview, 189
diagonal, 177
elements, 177
equations, solving, 187–188
Gaussian elimination, 181–182
Gauss-Jordan elimination, 181–182
inverse, calculating, 186–187
inverse, overview, 185–186
minors and cofactors, 189–190
multiplication operations, 179–180
overview, 176–177
reduced row-echelon form, 181
row matrices, 177
row operations, 182–184
row-echelon form, 181
scalar multiplication, 178
square matrices, 177
subtraction operations, 178–179
systems of equations, solving, 180–181
systems of equations, solving for multiple

solutions, 184–185
2×2, determinants, 189
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measurement
angles between vectors, 135–136
degrees, angles, 84–85

minor axis, ellipses, 153
minors, determinants, 189–190
minutes, measuring angles, 85
modulus, defined, 140
monomials, defined, 15
multiple transformations, functions, 40–41
multiplication

associative property, 7
commutative property, 8
complex numbers, 137–138, 141–142
exponential expressions, 9–11
fractions, 17
identity element, 9
linear inequalities, 20
logarithmic properties, 74
matrix operations, 179–180
polynomials, 16–17
radical operations, 13–14
rational expressions, 18

multiplication symbol (×), 8
multiplication symbol (·), 8
multiplicative inverse property, defined, 9

N
natural exponential function, defined, 68, 71
natural log, logarithmic functions, 71
natural numbers, defined, 3
negative exponents, handling, 10
negative infinity (–∞), unbounded intervals

and, 6
negative numbers, integers and, 4
nonlinear systems of equations, 

solving, 175–176
non-zero real numbers, inverse properties, 9
notation

bounded, 5–6
degrees (angles), 84
functional, 28–30
interval, 5–7

number classifications
complex numbers, 4–5
counting numbers, 3
identity elements, 9
integers, 4
inverse properties, 9
irrational numbers, 4
natural numbers, 3
overview, 3
polynomials, 14
rational numbers, 4

real numbers, 4
whole numbers, 4

numerators, rationalizing radical 
expressions, 14

O
oblique triangles

Law of Cosines, 123–124
Law of Sines, 121–123
laws, overview, 120–121
overview, 94
trigonometric ratios, calculating, 96–97

odd functions, defined, 32
one (1), as multiplicative identity, 9
one-to-one functions, 28

inverse functions, 44–45
open intervals, defined, 6
operations, radical expressions, 13–14
order of a matrix, defined, 176
ordered number lists, overview, 205
origin-symmetry, functions, 31–32
orthogonal vectors, overview, 136–137
output, functions, 26–30
ovals, ellipses, 157

P
π (pi)

angle measurement and, 85
irrational numbers, 4

parabolas
analytic geometry, 148–153
standard forms, 148–149

parallelogram law of vector addition, defined,
131–132

parametric equations
graphing, 163–164
overview, 163
rewriting, 164–165

parentheses ( ( ) ), bounded notation, 5–6
Pascal’s triangle, binomial expansion,

202–203
perfect cubes, factoring polynomials and, 50
perfect squares

circles, 148
factoring polynomials and, 50

periodic graphs, trigonometry, 98
pi (π)

angle measurement and, 85
irrational numbers, 4

piecewise-defined functions, 28–29
point-slope form, defined, 23
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polar coordinates
converting to rectangular coordinates,

167–168
overview, 165–168

polar equations, converting to rectangular
equations, 168–169

polynomial expressions
classifying polynomials, 15
overview, 14–15

polynomials
adding and subtracting, 15–16
binomials, 15
degree, 15
Descartes’ Rule of Signs, 58–59
factoring, by grouping, 48
factoring, overview, 47
factoring, quadratic trinomials, 49
factoring, special patterns and, 50
FOIL method, 16–17
functions, compared to exponential

functions, 67
functions, Leading Coefficient Test, 62–63
Fundamental Theorem of Algebra, 58
greatest common factor, 48
inequality statements, 21
leading coefficient, 15
monomials, 15
multiplying, 16–17
polynomial division, long division, 53–55
polynomial division, overview, 53
quadratic equations, completing the

square, 52–53
quadratic equations, factoring, 51
quadratic equations, overview, 50
quadratic formula, solving equations with,

51–52
Rational Root Test, 60
root-finding theorems, 56–58
roots, finding, 60–62
synthetic division, 55–56
trinomials, 15

power (exponential expressions)
compared to polynomial functions, 67
defined, 9–10

powers, complex numbers, 142
principal (compound interest problems),

exponential expressions and, 79–80
product-sum formulas, trigonometry, 120
properties

associative, 7–8
commutative, 8
distributive, 8
logarithms, overview, 73–76

overview, 7
radical expressions, 12
vector dot products, 134–135

proving, trigonometric identities, 110–111
Pythagorean identities (trigonometry),

defined, 107
Pythagorean Theorem

acute angle values and, 92
vector magnitude, 130

Q
quadrantal

trigonometry, 84
unit circle and, 89

quadratic equations
completing the square and, 52–53
factoring, 51
logarithmic expressions, 79
overview, 50
parabolas, 149
solving (trigonometry), 113

quadratic formula, solving equations with,
51–52

quadratic graphs, functions, 34–35
quadratic trinomials, factoring, 49
quotients

logarithm properties, 74
polynomial long division, 54
synthetic division, 55–56
tangent and, 92

R
radians

angle measurement, 85–86
unit circle and, 89

radical expressions
operations with, 13–14
overview, 12
properties, 12
rationalizing, 14
simplifying, 12–13

radicals
irrational numbers, 4
parts of, 12

radicand, radicals, 12
radius, circles, defined, 146
range

functions, 33–34
relations, 27

rational asymptotes, overview, 64–65
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rational expressions
inequality statements, 21
multiplying, 18
overview, 17

rational functions, asymptotes, 64
rational numbers

defined, 4
proof for integers, 4
real numbers and, 4

Rational Root Test
finding roots, 60–62
overview, 60

rationalizing, radical expressions, 14
ratios

tangent and, 92
trigonometric, calculating, 96–97

rays (angles), defined, 83
real numbers

∞ (infinity), 6
bounded notation, 5
composition of, 5
defined, 4
exponential functions and, 67
inverse properties, 9

reciprocal function graphs, defined, 34–35
reciprocal functions, trigonometry, 92
reciprocal identities (trigonometry), 

defined, 107
rectangular coordinates, converting to polar

coordinates, 167–168
rectangular equations, converting to polar

equations, 168–169
reduced row-echelon form, matrices, 181
reference angles

calculating trigonometric ratios, 96–97
evaluating trigonometric functions, 95–96

reflections, function graphs, 38–39
relation maps, 27
relations

functions, 27–28
overview, 26–27

remainder theorem, overview, 56–57
restricted sine function, inverse trigonometric

functions, 103–105
right triangles

legs, determining length of, 90
overview, 91

root-finding theorems, synthetic division,
56–58

roots
complex numbers, 142
complex numbers, calculating, 143–144
defined, 12

Descartes’ Rule of Signs, 58–59
finding, 60–62
functions, 33
Fundamental Theorem of Algebra, 58
Rational Root Test, 60

rounding, angle measurements, Law of
Cosines and, 124

row matrices, defined, 177
row operations, matrices, 182–184
row-echelon form, matrices, 181

S
scalar multiplication

matrices, 178
vectors, 132–133

secant
defined, 92
graphing, 102
trigonometric identities, 107–108

seconds, measuring angles, 85
sequences, ordered number lists, 206–207
shrinking, function graphs, 39–40
side-angle-side formula, triangle area, 125
side-side-side formula, triangle area, 125
sign identities (trigonometry), defined, 108
simple trigonometric equations, solving, 113
simplifying

complex fractions, 18–19
exponential expressions, 11
polynomial expressions, 15–17
radical expressions, 12–13
rational expressions, 18–19
trigonometric identities, 108–109

sine
defined, 92
determining, 88–91
graphs, overview, 98
graphs, periodic, 98–99
graphs, transforming, 99–101

single inequalities, graphs, 194–196
single-angle expressions, converting from

double-angle expressions, 117–118
slant asymptotes, defined, 64
slope, defined, 23
slope-intercept form, defined, 24
solving. See also evaluating

absolute value inequalities, 21
equations, 19–20
exponential expressions, 76–77
linear inequalities, 20–21
logarithmic expressions, 77–79
logarithmic functions, 70–71

15 539841 Index.qxd  1/26/04  2:51 PM  Page 225



226 CliffsQuickReview Precalculus

solving (continued)
matrix equations, 187–188
nonlinear systems of equations, 175–176
systems of equations, matrices, 180–181
systems of equations, multiple solutions,

184–185
trigonometric equations, 111–112
trigonometric equations, functions of

multiple angles, 115–116
trigonometric equations, with 

identities, 114
trigonometric equations, quadratic, 113
trigonometric equations, simple, 113
trigonometric equations, with squaring, 115
trigonometric equations, sum and

difference identities, 116–117
two-variable linear systems, elimination

method, 174–175
two-variable linear systems, substitution

method, 173–174
specified solutions, solving trigonometric

equations, 112
square matrices

defined, 177
determinants, evaluating, 190–191
determinants, overview, 189

squaring, trigonometric equations, solving, 115
standard form

circles, 148
ellipses, 153–154
ellipses, compared to hyperbolas, 160
hyperbolas, 159–160
parabolas, 148–149

standard position
angles (trigonometry), 84
vectors, 129

stretching, function graphs, 39–40
substitution method

nonlinear systems of equations, 175–176
solving two-variable linear systems,

173–174
subtraction

complex numbers, 137–138
distributive property, 8
matrix operations, 178–179
polynomials, 15–16
radical operations, 13–14
rational expressions, 17–18
vector operations, 133

sum identities, trigonometric equations,
116–117

sum of perfect cubes, factoring polynomials
and, 50

sum-product formula, trigonometry, 119–120
supplementary angles, defined, 86
symmetry, functions, 31–32
synthetic division

factor theorem, 57–58
overview, 55–56
remainder theorem, 56–57
theorems, overview, 56

systems of equations
graphs, 172
matrices, solving, 180–181
overview, 171–172
solving for multiple solutions, 184–185
two-variable linear systems, elimination

method, 174–175
two-variable linear systems, substitution

method, 173–174
systems of inequalities

graphs, 196–197
linear programming, 198–199

T
tangent

defined, 92
graphing, 101
half-angle formula, 118–119

terminal point, vectors, 129
terminal side (angles), defined, 83
terminating decimals, defined, 4
terms (polynomials)

classifying polynomials, 15
defined, 14

test points
inequality statements, 22
single inequality graphs, 194

theorems. See also laws
Binomial Theorem, 204–205
DeMoivre’s Theorem, 142–143
factor theorem, 57–58
remainder theorem, 56–57
synthetic division, overview, 56
triangle legs, determining length of, 90

transformations (functions)
logarithmic functions, 72
multiple, 40–41
overview, 36
sum-product formula, 119–120
trigonometric graphs, 99–101
vertical and horizontal shifts, 37

transverse axis, hyperbolas, 158
triangles (trigonometry)

angles, overview, 83
area calculation formula, 124
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area calculation formula, 
side-angle-side, 125

area calculation formula, side-side-side, 125
legs, determining length of, 90
oblique, 94–97
oblique, calculating trigonometric ratios,

96–97
oblique, reference angles, 95–96
oblique triangle laws, 120–121
pi (π) and angle measurement, 85
right, overview, 91
sine and cosine, determining, 88–91

trigonometry
acute angles, calculating function values

for, 92
angles, complementary and

supplementary, 86
angles, coterminal, 87–88
angles, degrees, 84
angles, labeling, 84
angles, overview, 83
angles, standard position, 84
characteristics of angles, 83–84
complex numbers, overview, 137–138
complex numbers, trigonometric form of,

140–141
double-angle formulas, 117–118
equations, solving, 111–112
equations, solving, functions of multiple

angles, 115–116
equations, solving, sum and difference

identities, 116–117
equations, solving quadratic, 113
equations, solving simple, 113
equations, solving with identities, 114
equations, solving with squaring, 115
functions, 92
graphs, asymptotes and, 101
graphs, cosecant, 102
graphs, cotangent, 102
graphs, overview, 98
graphs, secant, 102
graphs, tangent, 101
graphs, transforming, 99–101
half-angle formulas, 118–119
inverse functions, 103–105
oblique triangles, 94
periodic graphs, 98–99
product-sum formulas, 120
quadrantal, 84
radians, 85–86
right triangles, overview, 91
sum-product formula, 119–120

triangles, area calculating formula, 124
triangles, area calculating formula, side-

angle-side formula, 125
triangles, area calculating formula, side-

side-side formula, 125
trigonometric identities, overview,

106–107
trigonometric identities, proving,

110–111
trigonometric identities, simplifying,

108–109
trigonometric identities, types of,

107–108
trigonometric ratios, calculating, 96–97
unit circle, 88–91
unit vectors, 130–131
vector operations, 131–133
vectors, component form, 129
vectors, defined, 128–129
vectors, dot products, 134–137
vectors, magnitude, 130
vectors, measuring angles between,

135–136
vectors, orthogonal, 136–137
vectors, parallelogram law, 131–132
vectors, standard position, 129

trinomials
completing the square, quadratic

equations and, 52–53
defined, 15
quadratic, factoring, 49

two-variable inequalities, graphs, 194
two-variable linear systems, solving

elimination method, 174–175
substitution method, 173–174

U
unbounded intervals, defined, 6–7
unit circle (trigonometry), overview, 88–91
unit vectors, overview, 130–131

V
variables

angles, labeling, 84
exponential functions compared to

polynomial functions, 67
parametric equations, 163
solving equations for, 19–20

vectors
addition operations, 131–132
angles, measuring, 135–136
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vectors (continued)
component form, 129
defined, 128–129
dot products, 134–137
magnitude, 130
orthogonal, 136–137
parallelogram law, 131–132
scalar multiplication, 132–133
standard position, 129
subtraction operations, 133
unit vectors, 130–131

vertex
defined, 83
hyperbolas, 158
parabolas, 148

vertical asymptotes, defined, 64
vertical line test, functions, 31
vertical shifts, functions, 37
vertices, ellipses, 153

W
whole numbers

compared to integers, 4
defined, 4

word problems, exponential expressions,
overview, 79

Y
y-symmetry, functions, 31–32

Z
zero (0)

additive identity, 9
exponents and, 11
whole numbers and, 4

zeros, functions, 33
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