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Preface

This book is intended as a study aid for the student who plans to take the Advanced Placement
Calculus AB and BC examination. It is not meant to be a comprehensive guide to learning cal-
culus or a replacement for an advanced placement course of study. It is simply a resource for
you to draw on during your year of study — and especially during the last four to five weeks
before the AP exam in May.

A specific graphing calculator was used to generate the screens shown in this book. Your calcu-
lator may produce different displays.

Study Guide Checklist
❑ 1. Read the outline of topics given in the Advanced Placement Course Description —

Mathematics: Calculus AB, Calculus BC (the “Acorn Book,” available from your
teacher or directly from Educational Testing Service). Be sure to look at the left column
for AP Calculus AB.

❑ 2. Read “Questions Commonly Asked About the AP Calculus AB and BC Exams” in this
guide.

❑ 3. Read “Topics Covered on a Recent AP Calculus AB or BC Exam.”

❑ 4. If you do not already have one, buy a graphing calculator before proceeding any further.
Be sure you are familiar with the necessary functions and how to access them for your
particular calculator.

❑ 5. Go through each of the specific topics. Read or skim the explanations. Work through
the examples in the text and then complete the questions at the end of each chapter.
Practice writing out your answers to the free-response questions in thorough, precise
form, as if they were a part of a real AP exam.

❑ 6. Memorize important facts (see the list under “Strategies for the Exam”). A set of flash
cards may be useful. Be sure to know the key terms listed in the appendix.

❑ 7. Take the first full-length practice exam (the AB exam). Simulate actual test-taking con-
ditions. Grade the practice test using the answer key and the grading rubric.

❑ 8. Analyze your results from the first test. Identify subject areas that you seem to know
well and those you need to practice more. Review the latter by rereading the appropriate
section and/or working through the examples.

❑ 9. Take the second full-length practice exam (the BC exam). Again, simulate testing con-
ditions and grade the test.

❑ 10. Analyze the results from the second test and review any weak areas.

❑ 11. Just prior to the actual exam, review your memorized facts and put a fresh set of batter-
ies in your calculator.

❑ 12. Take the exam!

ix
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Format of a Recent Calculus AB and BC Exam

Section I: Multiple-Choice Questions 50% of total

IA: 55 minutes 28 questions calculator not allowed

IB: 50 minutes 17 questions must use calculator*

Section II: Free-Response Questions 50% of total

IIA* 45 minutes 3 questions graphing calculator required

IIB** 45 minutes 3 questions NO calculator

*See page 11 for a list of approved calculators.

**During IIB, Students are allowed to continue work on questions 1–3 from IIA, but a calculator may NOT be used during this time.

The AP Calculus BC Grade report will also include an AB subscore (approximately 60% of the
BC exam consists of AB topics).

x

CliffsAP Calculus AB and BC, 3rd Edition

8683-1 FM.F  3/26/01  3:33 PM  Page x



IINTRNTROODDUUCTICTIOONN

PART I

CliffsAP Calculus 2nd Edition • 8683 1 Pt01 1 • HPope • 2/5/01 • p 1

8683-1 Pt01.F  3/22/01  7:14 AM  Page 1



8683-1 Pt01.F  3/22/01  7:14 AM  Page 2



3

Introduction

Questions Commonly Asked About the AP
Calculus AB and BC Exams
Q: What is the AP calculus exam?
A: The three and one-quarter hour Advanced Placement calculus exam is given to high school

students in May to determine how well each student has mastered the subject of calculus.
Passing the AP calculus exam, which requires a grade of 3 or higher on a 5-point scale, al-
lows a student to earn college credit for calculus at universities and colleges participating in
the AP program. Students who pass the AP Calculus AB exam generally receive credit for
one quarter or one semester of college calculus.

Q: What are the advantages of taking AP calculus?
A: The main advantage is that of earning college credit. Students who will be required to take

calculus in college for their major field of study may be able to skip coursework in that sub-
ject entirely or enter the calculus sequence at a more advanced level.

Q: What’s the difference between Calculus AB and Calculus BC? Which exam should I
take?

A: The Calculus BC exam includes all of the material in the Calculus AB exam plus additional
selected topics, notably on sequences and series. You should take the exam you have pre-
pared for. Do not try to cram in the extra BC material on your own. Typically, students who
pass the Calculus AB exam receive either a quarter’s worth or a semester’s worth of college
credit, while students who pass the Calculus BC exam receive one semester’s worth or two
quarter’s worth of college credit. Check with the admissions officer at the universities or
colleges you are interested in attending for more specific information.

Q: Do all colleges accept AP exam grades for college credit?
A: No, but most universities and colleges do. For a complete list of schools that accept 

AP scores for credit, you can ask your teacher for the Advanced Placement Course
Description — Mathematics: Calculus AB, Calculus BC, commonly known as the “Acorn
Book.” The College Board and Educational Testing Service (ETS) publish this booklet each
year. If you need more information, call the institution you are interested in and speak to
someone in the registrar’s office.

Q: How is the AP exam graded and what do the scores mean?
A: The multiple-choice section is machine-scored, and the free-response section of the exam is

graded by groups of AP calculus teachers and/or college calculus instructors. The total
exam is scored on a point system (see the practice AP scoring worksheet in this book), and
then the chief faculty consultants determine how these raw point totals correlate to the
scores of 1 through 5. A score of 3, 4, or 5 is considered passing and generally earns col-
lege credit.
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Q: Are there old exams out there that I can look at?
A: The free-response section of each test is released on the day of the exam each year, so see

your AP teacher for copies of old free-response questions. Several multiple-choice question
sets have also been released over the years. However, now that the use of graphing calcula-
tors is required, some new question types may vary significantly from old question types.

Q: What materials should I take to the exam?
A: You should take four or five sharpened number 2 pencils or mechanical pencils with HB or

softer lead. Also take an eraser, a watch, a photo ID, and your graphing calculator. Be sure
your calculator has brand-new batteries in it just prior to the exam.

Q: When will I get my score?
A: Scores are usually mailed out in the middle of July.

Q: Suppose I do terribly on the exam. May I cancel the test and/or the score?
A: Yes. By writing a letter to ETS, you can cancel all records of an exam. There is no fee for

canceling a score, but the test fee will not be refunded.

Q: May I write on the test?
A: Yes. For the multiple-choice section, only the machine-scored answer sheet will be graded.

You may use the test booklet for all your scratch work for this section, but be sure to mark
your answer choice on the answer sheet. For the free-response section, all work must be
shown in the pink test booklet. Work on the green question sheet will not be counted.

Q: How and when do I register?
A: Registration begins about one month before the exam, around the beginning of April.

Check with the AP test coordinator at your school for more specific information, such as
how to pay the fees. (Note: If your school does not offer an AP course in a subject, you may
still take the exam by registering at a neighboring school that does give the exam.)

Q: What’s on the exam?
A: The AP Calculus AB exam covers many topics in differential calculus and their applica-

tions, and many of the topics and applications in integral calculus. In addition to all of 
the AP Calculus AB topics, the AP Calculus BC exam covers additional methods and 
applications of integral calculus, as well as topics from series — their convergence or 
divergence — and power series approximation to some common functions. For more
specifics, see the Table of Contents and “Topics Covered on a Recent AP Calculus AB or
BC Exam” (page 13) in this book.

Q: When is the AP calculus exam administered?
A: AP exams are given throughout the country on designated days during the first two weeks

in May. Ask your AP teacher or testing coordinator for the specific day of the calculus
exam.

Q: Where can I get more information?
A: Your AP teacher should have a copy of the “Acorn Book” mentioned previously. This book-

let contains an outline of the material that will be on the exam and some sample multiple-
choice and free-response questions. It also contains some specific information about

4
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graphing calculators, including some important programs for certain less powerful calcula-
tors. A Student Guide to the AP Mathematics Courses and Examinations may be useful, but
it does not contain much more than what you will find in the “Acorn Book.” A list of publi-
cations and their prices, including the title mentioned above, can be obtained by writing the
Advanced Placement Program, P.O. Box 6670, Princeton, NJ 08541-6670 for an order form.

Strategies for the Exam
Q: How should I prepare for the AP calculus exam?
A: First, keep up and do well in your AP calculus class. Then practice! Become comfortable

with the test and its format. Take several practice exams to work on your timing. Carefully
analyze your mistakes and review the material you have forgotten or don’t know well.

Q: When should I study this book?
A: Read this book carefully about four weeks before the exam. With four weeks to go, you

should have covered in class most of the material that will be on the exam, and you will
be able to plan your final intensive study time. Refer to the “Study Guide Checklist” on
page ix for suggestions on how to use the exercises and practice tests in this book.

Q: What topics should I study the most?
A: The 45 questions in Sections IA and IB cover a wide range of topics from calculus and pre-

calculus. Balance your preparation accordingly. A list of topics covered on a recent exam
appears on page 13. Don’t overlook the precalculus material beginning on page 19. Several
questions are derived from this material every year. Based on previous exams, some topics
are guaranteed to appear: function theory, definition of the derivative, increasing/decreasing
intervals and concavity, particle motion, optimization, related rates, area and volume, and
continuity.

Q: Do I need to memorize a lot of formulas? Can’t I just rely on my calculator?
A: Just as memorizing the multiplication tables was necessary to pass math tests in grade

school, memorizing certain calculus facts is necessary to do well on the AP exam. Do not
overlook this simple step when preparing for the exam. Count on a number of multiple-
choice questions requiring memorized facts, such as

sec tanxdx x C3
3
1

3
2

= +#
A set of flashcards can help you memorize facts. These should include:

A. derivative formulas

B. antiderivative formulas (including integration by parts)

C. trig identities

D. theorems: Rolle’s theorem, mean value theorem, L’Hôpital’s rule, Newton’s method,
trapezoidal rule, integral pattern for volumes of solids of revolution

E. definitions: derivative, definite integral

5
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In Sections IB and IIA, graphing calculators can be used to help with facts; however, since
they are not allowed in Section IA, be careful about relying on your calculator too heavily.

Q: How do I handle difficult word problems?
A: One of the keys to success on the AP exam, especially on the more difficult word problems

such as those on related rates and optimization, is being able to interpret both English and
calculus appropriately. For example, if the phrase “particle moving right” appears in a 
rate-of-change problem, the only way to solve the problem is to translate the English to 
calculus:

“particle moving right” ⇔ v (t) > 0

Without this translation, it is simply impossible to solve the problem. Thus knowing how to
translate English into calculus is essential to success on the AP exam. A list of phrases that
you will typically encounter on the exam can be found in the Appendix. Memorize it.

Q: What should I do the night before the exam?
A: Review your list of derivative and antiderivative formulas, definitions, theorems, trig identi-

ties, and the calculus dictionary in the Appendix. This is all factual information that you
need to have memorized for Section IA. Make sure you have a strong set of batteries in
your calculator. Then go to sleep. Staying up until 4 A.M. will hurt your grade, not help it.
You cannot learn calculus overnight. Trust in your year of preparation and spend the night
before resting, so you will be fresh and wide awake at 8 A.M.

Multiple-Choice Questions
Q: Should I answer the multiple-choice questions in the order in which they appear?
A: Some students like to pick and choose questions, for example, by doing all the questions

that require derivatives first. Other students prefer to work through the questions in order.
Do whatever seems easiest for you; however, don’t waste time on questions that seem ex-
ceptionally difficult. Consider using the +/– system to prevent you from getting stuck on
one question and wasting time:

1. As you go through each section, answer all the easy questions first.

2. When you come to a question that seems impossible to answer, mark a large minus sign
(–) next to it in your test booklet. You are penalized for wrong answers, so do not guess
at this point. Move on to the next question.

3. When you come to a question that seems solvable but appears too time-consuming,
mark a large plus sign (+) next to that question in your test booklet. Do not guess. Then
move on to the next question.

Note: Don’t waste time deciding whether a question gets a plus or minus. Act quickly. The
intent of this strategy is to save you valuable time.

4. After you have worked all the easy questions, go back and work on your “+” problems.
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5. If you finish working your “+” problems and still have time left, do one of two things:

A. Attempt the “–” problems, but remember not to guess blindly.

B. Forget the “–” problems and go back over your completed work to be sure you didn’t
make any careless mistakes on the questions you thought were easy to answer. You
do not have to erase the pluses and minuses you made in your question booklet.

Q: If I don’t know an answer, should I guess?
A: When your AP exam is graded, one-fourth of the number of questions answered incorrectly

is subtracted from the number answered correctly, so guessing is penalized. However, if
you can eliminate at least two answer choices, go ahead and guess.

Also, don’t second-guess yourself by going back and changing a multiple-choice answer
unless a specific error is evident. First choices are correct more often than not.

Q: Is there a method for helping me eliminate answer choices?
A: Take advantage of being able to mark in your test booklet. As you go through the questions,

use quick sketches to help you eliminate possible choices. Visually eliminate choices from
consideration by marking them out in your test booklet with a slash mark through the an-
swer choice letter [(A)]. Place a question mark before any choices you wish to consider as
possible answers [?(B)]. This technique will help you avoid reconsidering those choices
that you have already eliminated and will thus save you time. It will also help you narrow
down your possible answers. Remember that if you are able to eliminate two or more possi-
ble answers, you may want to guess. Under these conditions, you stand a better chance of
raising your score by guessing than by leaving the answer sheet blank.

Q: What if I’ve had four answers in a row of C in the multiple-choice section, and I’m
pretty sure the next one is C but could be a D? Should I pick D?

A: No, go ahead and choose C. Don’t play games with the letter patterns.

Q: What if I don’t finish all the multiple-choice questions?
A: Don’t panic about finishing all of the questions. Many students do not finish all of the 

multiple-choice questions and still receive high scores on their exams. Take the time to 
answer all the “easy” questions correctly. Don’t guess randomly if you find you are running
short of time. Chances are that random guessing will hurt your score rather than help it.

Q: How many multiple-choice questions do I have to get right to pass the exam with a 3?
A: If you correctly answer about 60 percent of the questions in Section I, you will most likely

receive a passing score, assuming you earn an equal percentage in the free-response sec-
tion. So, you need to get about 27 of the 45 multiple-choice questions correct, along with 3
of the 6 free-response questions. You don’t need to get 3 free-response questions totally
right to pass, but you do need to earn about half of the total points available in Section II.
The two sections of the test are weighted equally.

Q: Exactly what score do I get for a right answer, a wrong answer, and no answer on the
multiple-choice section?

A: In figuring your score, a right answer is worth 1 point, no answer is worth 0, and a wrong
answer is worth –0.25. See the scoring worksheet at the end of each practice test for a more
detailed explanation.
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Q: Are there any trick questions in the multiple-choice section?
A: No. In fact, you can expect some of the questions to be “freebies,’’ that is, problems you

can answer quickly with little or no writing. Don’t worry that these simple questions might
be trick questions. They’re not.

Q: How fast do I have to work in order to complete the exam?
A: In Section I, watch the clock and pace yourself accordingly. In Section IA, average about

one question every 2 minutes, and in Section IB, average about one question every 3 min-
utes. Some questions will take longer than average, of course, and some will take much less
time. Don’t obsess about exactly how long each question is taking; just keep an eye on the
clock so you are not caught by surprise. Do not waste time on questions that seem impossi-
ble — use the +/– system to sort them out.

Free-Response Questions
Q: Should I do the six free-response questions in the order they appear?
A: The six free-response questions are separated into two sections, each containing three ques-

tions. Section IIA (questions 1–3) will contain some questions or parts of a question for
which a graphing calculator is required. During IIA, look through the three questions and
answer first the ones that seem to be the easiest. Number 3 is not necessarily harder than
the other two questions, just different. In Section IIB, a calculator is NOT allowed. Once
again, you should do the easier of the questions 4–6 first. During IIB, you will be allowed
to continue working on questions from IIA, but the use of a calculator is NOT permitted.

Q: How fast do I have to work to finish the free-response questions?
A: Again, keep an eye on the clock. Ninety minutes for six questions means completing an 

average of one question every 15 minutes. Some questions will take less than 15 minutes,
others may take longer. Don’t panic; just watch the time. If a question is not working out,
leave the work you have already completed (don’t erase it) and come back to it later as time
allows.

Q: How much work should I show on free-response questions?
A: Always show all your work in a detailed, logical, organized manner. A rule of thumb is that

whatever math is happening in your brain should be put down on paper. The graders are not
mind readers; they can grade only what they see in your answer booklet. It’s better to have
shown too much work than not enough.

Watch out for the words “justify your answer,” “prove your answer,” and other similar
phrases. When these key words appear, provide the appropriate calculus in a clear, concise
manner. For example, if the problem asks only for “any intervals where the function is in-
creasing,” a correct answer for full credit would appear simply as “increasing when x > 3.”
However, if the question also adds “justify your answer,” the correct solution should in-
clude 1) the calculus to find the first derivative, 2) the algebra to derive the critical numbers
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from the first derivative, 3) some type of interval testing to find where the derivative is posi-
tive, and 4) the conclusion of “increasing when x > 3.” “Justify your answer” is more likely
to appear on the exam now that graphing calculators are allowed. Give precise, thorough
explanations of your method and reasoning when taking information from a graphing cal-
culator to help answer a question.

Q: What if I can’t get part of a free-response question, and I need it for the next part of
the question?

A: If Part A of a free-response question is proving difficult, don’t give up on solving Parts B,
C, and D. Part A may be irrelevant to finishing the rest of the question. If the latter parts of
a free-response question do depend on an answer you can’t get, simply make up a reason-
able answer and proceed with it in the other parts. In such a case, don’t just tell how the
problem could be solved; do the actual work with a made-up answer.

Q: What form should I use for free-response answers?
A: Answer the question completely in whatever form is requested. For example, if the question

asks for “any points of inflection of a graph,” be sure to provide both coordinates, not just
the x-coordinate. It may be helpful to circle key words or phrases in the question that indi-
cate the type or form of the answer that is required. If you choose to give an approximation
to an answer, be sure to follow the directions about rounding.

Q: Should I simplify my answers?
A: Don’t waste time simplifying unnecessarily, especially with derivatives, linear equations,

and definite integrals. Expressions such as

( ) ( ) ( ) ( )
2
1

3 5 4 5 3 1 4 1
2 2
- - - - -` `j j9 C

can be left as is, unless a calculator approximation is requested. However, expressions such
as cos 0, ln 1, and eln3 should be simplified.

Q: How are free-response questions scored?
A: The free-response questions are scored on a 9-point scale, although the point distribution is

not printed in the exam. The more difficult parts of a question count for more points. Pay
careful attention to any question parts that ask you to “justify your answer” because they
are frequently worth more points. You need to demonstrate your knowledge of the subject
in a clear, concise fashion to get all the points. See the grading rubric following each free-
response question in the practice tests for more information.

Q: How many of the free-response questions do I have to get right to pass the exam with
a 3?

A: If you can earn about 60 percent of the points available in the free-response section, you
will most likely earn a 3, assuming an equal percentage are correct on the multiple-choice
section. This does not mean that you must get at least three of the six problems completely
and totally correct, just that you earn about 32 of the 54 total points. However, don’t be pre-
occupied with how many points you’re getting as you do the exam. Do your best, and let
the readers worry about the points.
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Calculator Questions
Q: Do I really need a calculator?
A: Since May 1995, use of a graphing calculator has been required for some questions on the

AP exam. Calculators are not provided. Students must bring their own approved calculators
(see the list on page 11). Sharing calculators is not allowed.

Q: What functions does my calculator have to perform?
A: Four basic functions are listed in the course outline:

■ graphing a function within an arbitrary viewing window

■ finding the zeros of a function

■ computing the derivative of a function numerically, that is, finding the value of a deriva-
tive at a specific point

■ computing definite integrals (with constant endpoints) numerically

Here is a comparison of the various features of the most commonly used calculators.

Graph Zeros Numerical Derivative Definite Integral

Cassio 700 yes no no yes

HP-48 yes yes yes yes

Sharp 9300 yes yes yes yes

TI-81 yes no yes no

TI-82 yes yes yes yes

TI-85 yes yes yes yes

TI-86 yes yes yes yes

Q: I already have a graphing calculator, but it doesn’t do all of the necessary functions.
Now what?

A: The four required functions may either be built into the calculator or programmed prior to
the exam. Calculator memories will not be cleared either prior to or after the exam. The
“Acorn Book” contains a set of programs that may be installed into the less powerful graph-
ing calculators to provide all the necessary functions.

Q: How many questions will require the use of a calculator?
A: Only about 7 of the 17 multiple-choice questions in Section IB and portions of the free-

response section will require the use of a calculator. Be sure to get plenty of practice with
your calculator well before the AP exam. Familiarity with the machine will allow for the
most efficient use of time. Also, know the appropriate calculator syntax. Some types of cal-
culators may require that functions be entered in a specific manner to graph completely.
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Q: Which calculators are allowed at the AP calculus exam?
A: The following machines met the requirements for use on the 2000 exam. 

Approved List of Graphing Calculators

Casio Hewlett- Radio Shack Sharp Texas Other
Packard Instruments

FX-6000 series HP-28 series EC-4033 EL-5200 TI-73 Micronta

FX-6200 series HP-38G series EC-4034 EL-9200 series TI-80 Smart2

FX-6300 series HP-48 series EC-4037 EL-9300 series TI-81

FX-6500 series EL-9600 series TI-82

FX-7000 series TI-83/TI-83 Plus

FX-7300 series TI-85

FX-7400 series TI-86

FX-7500 series TI-89

FX-7700 series

FX-7800 series

FX-8000 series

FX-8500 series

FX-8700 series

FX-8800 series

FX-9700 series

FX-9750 series

CFX-9800 series

CFX-9850 series

CFX-9950 series

CFX-9970 series

Q: What calculators are not allowed at the AP exam?
A: Unacceptable machines include laptop computers, pocket organizers, electronic writing

pads or pen input devices, and palmtop computers with QWERTY keyboards.

Q: What if I want to use a calculator that is not on the approved list?
A: If you wish to use a calculator not on the above list, your teacher must contact ETS prior to

April 1 to receive written permission for you to use your calculator at the AP calculus
exam.
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Q: How will I know when to use a calculator?
A: Each of the seven review sections in this book contains sample questions requiring the use

of a calculator. Familiarize yourself with them. Practice will help you identify the types of
questions that require a calculator; however, such questions will not be indicated in any
special manner on the actual exam. Knowing when to use a calculator and when not to use
a calculator is part of what is being tested.

On multiple-choice questions, the format of the answer choices may indicate when a calcu-
lator should be used. If all of the choices are given in decimal form, a calculator is probably
necessary.

Only the four basic functions previously identified will be required on the test. If a problem
seems to require inordinate amounts of lengthy calculator work not mentioned on this list,
stop. There may be a simple solution not requiring a calculator that you have overlooked.

Q: Won’t a calculator be useful on all of the free-response questions?
A: You may only use a calculator on IIA (questions 1–3) of the free-response section.

Sometimes the use of a graphing calculator is not effective or efficient. For example, if a
question asks for “any points of inflection of a graph,” it may be possible to find an appro-
priate window on a graphing calculator to visually find a change in concavity. However,
due to limited resolution of the image on the screen, it may be impossible to find such a
window. [If you don’t believe it, try to find the point of inflection of f(x) = x2/3(x – 5) by
looking at the graph on a calculator. (It’s at x = –1.)]

Only one or two of the free-response questions will require the use of a graphing calculator,
so don’t rely on your calculator too heavily.

Q: How does the use of graphing calculators affect the types of questions that are asked
on the exam?

A: The use of graphing calculators in the free-response section of the test may affect not only
those parts which require a calculator but also the questions in other parts of the problems.
For example, the type of problem that requires finding the graph of a function through the
use of the first and second derivatives to find extrema and points of inflection becomes triv-
ial when a graphing calculator is allowed. If you encounter this type of question, count on
the words “justify your answer” to appear at every step of the problem. Or, the request to
justify your answer may appear in an altered form. Rather than providing a specific alge-
braic equation to manipulate through first and second derivatives, the question may provide
a graphical interpretation of the derivative and ask for conclusions regarding the function
and/or second derivative. In another context, the problem may provide a chart showing the
signs of the first and second derivatives over given intervals and ask for conclusions or
sketches.

In Section IB of the multiple-choice section, only about 7 of the 17 questions will require a
calculator. These could include simple processes, such as finding a decimal approximation
for ln 2, and more complicated operations, like finding zeros or the intersection of two
curves.
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Topics Covered on a Recent AP Calculus 
AB or BC Exam
(* represents BC-only topic)

Precalculus
Functions

Domain and range

Zeros and intercepts

Product, sum, quotient, composite of functions

Inverse functions

Odd and even functions, symmetry

Asymptotes of rational functions

Trig functions: amplitude, period and phase shifts, identities

Shifts and distortions to graphs of functions: y = af([b(s + c)] + d

Absolute value of functions: y = | f(x)| and y = f(|x|)

*Parametric equations

*Polar curves

*Vectors and vector valued functions

Calculus
Limits

Limit theorems: constant, sum, product, quotient

One-side limits

Infinite limits and limits at infinity

Non-existence limits

L’Hôpital’s rule for 0/0 and ∞ /∞
*L’Hôpital’s rule for (0)(∞), ∞ – ∞, 00, 1∞, ∞0

Continuity

Formal definition, graphical interpretation

Intermediate value theorem and extreme value theorem

Relationship between continuity and differentiability
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Differential Calculus

Limit definitions of the derivative: general and at a point

Derivative rules: power, product, quotient, chain, trig, inverse trig, exponential, and 

logarithmic

Derivation of two rules: d/dx(sinx) = cosx and d/dx(xn) = nxn – 1, n a positive integer

Implicit differentiation

Higher order derivatives

Logarithmic differentiation

Derivative theorems: Rolle’s theorem and mean value theorem

*Derivatives of parametric, polar, and vector functions

Derivative Applications

Tangent and normal lines, slope of a curve

Average and instantaneous rates of change

Curve sketching: increasing, decreasing, relative extrema, concavity, inflection points

Differentials

Related rates

Optimization, absolute extrema

Position/velocity/acceleration (PVA) in linear motion

PVA with vectors

Integral Calculus

Antiderivatives

Integration formulas

Integration techniques: general power rule, substitution, trig, inverse trig

*Integration techniques: parts, partial fractions

Definition of the definite integral (limit of a Riemann sum)

Properties of the definite integral

Approximation for definite integrals: rectangles, trapezoids

Fundamental theorems

*Improper integrals

*Vector integration
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Applications of Antiderivatives and the Definite Integral

Position*/velocity/acceleration (PVA) in linear motion

Differential equations (variables separable)

Area between curves

*Area with polar functions

Average value of a function over an interval

Volume: solids of revolution and solids with known cross sections

Exponential growth/decay and its derivation: dy/dt = ky, y = Cekt

*Logistic growth

*Arc length

*PVA with vectors

*Geometric interpretation of differential equations via slope fields

*Numerical solution of differential equations using Euler’s method

*Power Series and Polynomial Approximations

*Sequences and Series

*Limit of a sequence

*Increasing/decreasing sequence

*Infinite series — harmonic, geometric, p-series, alternating series

*Tests of convergence/divergence of infinite series: comparison, limit comparison,
integral, ratio root and alternating series test

*Alternating series with error bound

*Absolute and conditional convergence

*Radius and interval of convergence

*Power Series

*Taylor polynomial — with Lagrange form of the remainder

*Macclaurin polynomial

*Macclaurin series for functions

*Radius and interval of convergence of power series

*Differentiation and integration of power series

*Formation of new series from known series
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Precalculus Topics

Familiarity with certain noncalculus topics is essential for success on the AP exam.
Approximately 10 percent of the multiple-choice questions deal strictly with precalculus top-
ics. The majority of the questions based on calculus also require a working knowledge of pre-
calculus topics. Expect precalculus material to appear in part (a) or parts (a) and (b) of a
free-response question. Because these parts may be essential to completing the calculus portion
of the question, precalculus material should be reviewed thoroughly.

At the end of this chapter, you will find a set of multiple-choice questions that corresponds to
the material presented here. If you feel confident in your ability with precalculus material, you
may want to go to these questions. They will help you determine whether there are any areas
that you need to review.

Functions and Function Notation
Calculus has been called the study of functions, so the formal definition of a function is an 
important one.

Definition of a Function
A function is a set of ordered pairs where no two ordered pairs have the same x-coordinate.
Graphically, this definition means that any vertical line may intersect the graph only once if the
relation is to be a function.

Figure 1.1

The relationship represented
by this graph is a function.

The relationship represented
by this graph is not a function.

y

x

y
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Vocabulary
The x-coordinate is known as the independent variable. The entire set of x-coordinates of a
function is known as its domain. The y-coordinate is the dependent variable. The set of 
y-coordinates is the range of the function. Finding the domain and range of specific functions
is a common instruction on the AP exam.

Notation
Functions may be specified in a number of ways:

1. A list or roster: {(2, 1) (3, 2) (4, –5)}

2. Graphically: as shown on the previous page

3. An equation: 2x – 3y = 7 or y = 5x – 7

4. Using function notation: f(x) = 5x – 7

Function notation is the method most commonly employed on the AP exam. Here are some
typical uses:

Sample

Given that f(x) = 3x2 – 5x, find

A. f(–2)

B. f(2a – b)

C.
x

f x x f x
∆

∆+ -^ ^h h

A. f(–2) = 3(–2)2 – 5(–2)

= 12 + 10 = 22

B. f(2a – b) = 3(2a – b)2 – 5(2a – b)

= 3(4a2 – 4ab + b2) – 5(2a – b)

= 12a2 – 12ab + 3b2 – 10a + 5b

C.
x

f x x f x
x

x x x x x x

∆
∆

∆
∆ ∆3 5 3 5

2 2

+ -
=

+ - + - -^ ^ ^ ^ `h h h h j8 B

x

x x x x x x x x

∆
∆ ∆ ∆3 2 5 5 3 5

2 2 2

=
+ + - - - +^` h j: D

x
x x x x x x x x

∆
∆ ∆ ∆3 6 3 5 5 3 5

2 2 2
= + + - - - +^ h

x
x x x x

∆
∆ ∆ ∆6 3 5

2

=
+ -^ h

= 6x + 3∆x – 5
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Part C in the foregoing problem will be used extensively later, in the definition of the derivative.

Zeros or Roots
Finding the zeros, or roots, of a function may be called for in a variety of contexts on the AP
exam. To find zeros, or roots, find where y = 0 or f(x) = 0.

Sample

Find the zeros of f(x) = 2x2 – 12x.

Find where f(x) = 0

2x2 – 12x = 0

2x(x – 6) = 0

2x = 0 or x – 6 = 0

x = 0 x = 6

To express the zeros accurately, write them as ordered pairs:

(0, 0) and (6, 0)

Symmetry
The most common types of symmetry on the AP exam are symmetry with respect to the y-axis
and symmetry with respect to the origin, as shown in the following graphs. Proving that a func-
tion has a certain type of symmetry requires the definition that follows.

Figure 1.2

Symmetry with respect
to the y-axis

Symmetry with respect
to the origin

(x, f(x))(–x, f(–x))

(–x, f(–x))

y

x

3

2

1

-1-2-3 321
-1

-2

-3

y

x

3

2

1

-1-2-3 321
-1

-2

-3

(x, f(x))
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Definition of Symmetry
A function f(x) is symmetric with respect to the y-axis if and only if f(–x) = f(x).

A function f(x) is symmetric with respect to the origin if and only if f(–x) = –f(x).

A relation g(y) is symmetric with respect to the x-axis if and only if g(–y) = g(y).

Definition of Even and Odd Functions
A function f(x) that is symmetric with respect to the y-axis is called an even function.

A function f(x) that is symmetric with respect to the origin is called an odd function.

Sample

Show that f(x) = x2 – 2 is symmetric with respect to the y-axis.

To show symmetry with respect to the y-axis, show that f(–x) = f(x). Begin with the left side,
f(–x), and show that this equals the right side, f(x).

f(–x) = (–x)2 – 2

= x2 – 2

= f(x) which was to be shown

Sample

Show that g(x) = –7x3 + 4x is symmetric with respect to the origin.

To show symmetry with respect to the origin, show that g(–x) = –g(x).

g(–x) = –7(–x)3 + 4(–x)

= –7(–x3) – 4x

= 7x3 – 4x

= –(–7x3 + 4x)

= –g(x) which was to be shown

Symmetry with respect to the x-axis does not occur on the AP exam very frequently because it
can occur only when the relation is not a function.
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Figure 1.3

Sample

Show that x = y2 is symmetric with respect to the x-axis.

To show symmetry with respect to the x-axis, first express the relation using y as the indepen-
dent variable, and then show that g(–y) = g(y).

x = y2 ⇒ g(y) = y2

g(–y) = (–y)2

= y2

= g(y) which was to be shown

Graphing a Function
Graphing or sketching a function is often a part of free-response problems on the AP exam.
Even when not specifically requested, however, a sketch may be tremendously useful in help-
ing solve the problem. The most common types of functions found on the AP exam are those
outlined in this chapter: polynomials, trigonometric (including inverse), exponential, logarith-
mic, the conics, and rational functions. Expect these to appear regularly, both in basic forms
and modified by shifts and distortions.

Shifts and Distortions of Graphs

Definition of Shift and Distortion
A shift of a function is merely a movement to a new location; the same size and shape are re-
tained. A distortion changes the shape or size of a graph.

Symmetry with respect
to the x-axis

(g(y), y)

(g(–y), –y)

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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Theorem on Shifts and Distortions
If a basic function y = F(x) is modified to g(x) = aF[b(x + c)] + d, then the constants a, b, c, and
d have the following effects:

1. Shifts are caused by c and d.

c causes a horizontal shift
>

<

c

c

0

0

left

right

&

&
*

d causes a vertical shift
>

<

d

d

0

0

up

down

&

&
*

2. Distortions are caused by a and b.

a causes a vertical distortion
>

<

a

a

1

1

stretch

shrink

&

&
*

b causes a horizontal distortion
>

<

b

b

1

1

shrink

stretch

&

&
*

3. Reflections are caused when a or b is negative.

If a is negative, the graph is reflected about the x-axis.

If b is negative, the graph is reflected about the y-axis.

Sample

Sketch the graph of g(x) = –(x + 3)3 – 1 by identifying the shifts, distortions, and
reflections to the graph of y = x3.

The basic graph of y = x3 follows.

Figure 1.4

f(x) = x 3

y

x

6

4

2

-2-4-6 64

"center"

2
-2

-4

-6
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The graph of g(x) has three changes:

1. A reflection about the x-axis due to a being negative

2. A shift 3 units to the left

3. A shift 1 unit down

These modifications produce the following graph:

Figure 1.5

Absolute-Value Distortions
Two special types of distortions are created with absolute values. To sketch an absolute-value
modification of the basic graph of y = F(x), follow these guidelines:

1. g(x) = | F(x) | affects the range (y-coordinates) of the graph.

Leave Quadrants 1 and 2 completely alone. Then move the portion of the graph that is in
Quadrants 3 and 4 into Quadrants 1 and 2 by reflecting it around the x-axis. The resulting
graph is found only in Quadrants 1 and 2; Quadrants 3 and 4 are empty.

2. g(x) = F(|x|) affects the domain (x-coordinates) of the graph.

Erase whatever part of the graph is in Quadrants 2 and 3, and then reflect Quadrants 1
and 4 into Quadrants 2 and 3 while leaving the Quadrant 1 and 4 portions intact.

g(x) = −(x + 3)3 − 1

y

x

6

4

2

-2-4-6 64

new
"center"

2
-2

-4

-6
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Sample

For the graph of y = F(x) shown here, sketch |F(x)| and F(|x|).

Figure 1.6

Figure 1.7

Inverse Functions
Inverse functions are functions that, in effect, cancel each other out. For example, given the two
inverse functions

f x x g x
x

and7 4
4

7
= - =

-
^ ^h h

it is easy to show that f(g(2)) = 2 and that g(f(2)) = 2.

f(g(2)) = f(5⁄4) g(f(2)) = g(–1)

= 7 – 4(5⁄4)
4

7 1
=

- -^ h

= 7 – 5 = 8⁄4

= 2 = 2

F(x)

y

x

3

2

1

-1-2-3 321
-1

-2

-3

y

x

3

2

1

-1-2-3 321
-1

-2

-3

F( x )

F(x)

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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Definition of Inverse Functions
Two functions f(x) and g(x) are said to be inverses if and only if f(g(x)) = g(f(x)) = x. The in-
verse of a function may or may not be a function. Examination of the domain and range of the
function and/or its inverse may be needed to determine whether the inverse is really a function.

Notation
The notation most commonly used to define inverses is the “exponent” –1; thus the inverse of
f(x) is indicated as f –1(x). Do not get this mixed up with the reciprocal of f(x). The most com-
mon applications of inverse on the AP exam are to find the inverse of a given function and to
sketch the inverse. To find an inverse function:

1. Eliminate function notation; that is, replace f(x) with y.

2. Interchange x and y.

3. Solve for y.

4. Return to function notation; that is, replace y with f –1(x).

Sample

Find the inverse of f(x) = 3x – 7.

1. Eliminate function notation. y = 3x – 7

2. Interchange x and y. x = 3y – 7

3. Solve for y. x + 7 = 3y

x
y

3
7+

=

4. Return to function notation. f x
x

3
71 +-

^ h

The graphs of inverse functions are symmetric with respect to the line y = x. To graph an inverse:

1. Sketch the line y = x.

2. Reflect the given graph around y = x.
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Figure 1.8

Polynomial Functions
Polynomial functions are one of the most common types of functions used on the AP exam.
Here are a few examples of polynomial functions:

f x x x

g x x x

h x x x

3 2 7

6 2 3

15
3
2

2

5

4

= - +

=- + -

= -

^

^

^

h

h

h

Polynomial functions are “well-behaved” functions that have no domain restrictions, no dis-
continuities, no asymptotes, and not even any sharp turns. Their graphs are smooth, pretty
curves that are easy to sketch and work with.

Figure 1.9

Two simple tests, the degree test and the leading coefficient test, will help you determine the
behavior of polynomials.

y

x

6

4

2

-2-4-6 642
-2

-4

-6

y

x

6

4

2

-2-4-6 642
-2

-4

-6
f(x) = 2x2 + 4x − 1

k(x) = 4x2 + x4

y

x

6

4

2

-2-4-6 642
-2

-4

-6

f -1(x)

y=x

f(x)
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Degree Test
If a polynomial function f(x) has degree n, then the number of times the graph of f(x) changes
direction is equal to n – 1 or n – 3 or n – 5 . . . a, where a ≥ 0. Note that this means that even-
powered functions must have an odd number of changes in direction, whereas odd-powered
functions must have an even number of changes in direction.

Sample

For f(x) = 7x – 3x3 + x4 – 8, how many changes in direction could the graph of f(x) have?

f(x) is a fourth-degree polynomial, so n = 4. Therefore, its graph could have three changes or
one change in direction. Graphically, changes in direction appear as “bumps” on the graph. In
the pictures that follow, note again that the even-powered functions have an odd number of
bumps, and the odd-powered functions have an even number of bumps.

Figure 1.10

Leading Coefficient Test
The sign of the coefficient on the highest-degree term of a polynomial indicates the left and
right behavior of the polynomial according to the following chart:

Figure 1.11

Leading
coefficient
positive

Leading
coefficient
negative

left: up
right: up

left: down
right: down

left: down
right: up

Even degree Odd degree

left: up
right: down

Even-powered functions Odd-powered functions

f(x)

g(x)

h(x)

j(x)

y

x

y

x
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Trigonometric Functions
The six trig functions will appear frequently on the AP exam, so be prepared to work with them
in a variety of contexts.

Graphs, Domain and Range, Periods
Know the graphs of all six functions, together with their domains and ranges and periods. You
should be able to sketch trig functions that have a shift and/or distortion associated with them.

Figure 1.12

Figure 1.13

Figure 1.14

y = tan x
D : x ≠ π/2 + kπ
R : all real numbers
Period: π

y

x

3

2

1

-π 2ππ
-1

-2

-3

y = cos x
D : all real numbers
R : −1 ≤ y ≤ 1
Period: 2π

y

x

3

2

1

-π/2-π 3π/2 2πππ/2
-1

-2

-3

y = sin x
D : all real numbers
R : −1 ≤ y ≤ 1
Period: 2π

y

x

3

2

1

-π/2-π 3π/2 2πππ/2
-1

-2

-3
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Figure 1.15

Figure 1.16

Figure 1.17

Shifts and Distortions for Trig Functions
Given that y = a sin b(x + c) + d, a, b, c, and d have the following effects:

a

changes the amplitude (A);

A 2
max min forsineand cosine

modifies the rangeforsecantand cosecant

causesa verticaldistortionfor tangent and cotangent

=
-

Z

[

\

]
]]

]
]]

y = csc x
D : x ≠ kπ
R : y ≤ −1 or y ≥ 1
Period: 2π

y

x

3

2

1

-π/2 3π/2π/2
-1

-2

-3

y = sec x
D : x ≠ π/2 + kπ
R : y ≤ −1 or y ≥ 1
Period: 2π

y

x

3

2

1

-π 2ππ
-1

-2

-3

y = cot x
D : x ≠ kπ
R : all real numbers
Period: π

y

x

3

2

1

-π/2 3π/2π/2
-1

-2

-3
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b changes the period to 
b
P where P = normal period of the function

>

<
( )c

c

c
causes a phase horizontal shift

left

right

0

0

&

&
*

>

<
d

d

d
causes a vertical shift

up

down

0

0

&

&
*

Sample

Graph siny x
2
1

2
2

1= + -
r

c m .

Figure 1.18

Trig Identities
Memorize the following trig identities. They are vital to solving trig equations, as well as to
performing many of the advanced calculus techniques. Occasionally, a multiple-choice ques-
tion may simply require you to know an identity directly.

Pythagorean

sin2 x + cos2 x = 1

tan2 x + 1 = sec2 x

1 + cot2 x = csc2 x 

Double Angle

sin 2x = 2 sin x cos x

cos 2x = cos2 x – sin2 x

= 1 – 2 sin2 x

= 2 cos2 x – 1

y

x

2

1

-π-2π 2ππ
-1

-2
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Power Reducing

sin2 x = 1⁄2(1 – cos 2x)

cos2 x = 1⁄2(1 + cos 2x)

Sum or Difference

sin(x ± y) = sin x cos y ± cos x sin y

cos (x ± y) = cos x cos y " sin x sin y

x y
x y

x y
tan

tan tan
tan tan

1
!

"
!

=^ h

Negative Angle

sin(–x) = –sin x

cos(–x) = cos x

tan(–x) = –tan x

Product to Sum

sin mx sin nx = 1⁄2[cos(m – n)x – cos(m + n)x]

sin mx cos nx = 1⁄2[sin(m + n)x + sin(m – n)x]

cos mx cos nx = 1⁄2[cos(m – n)x + cos(m + n)x]

Solving Trig Equations
Solving trig equations is always required on the AP exam. You may have to find an algebraic
representation of an entire set of solutions, or you may have to find the solutions contained in
a specified interval such as [0, 2π). For calculator problems, be sure your calculator is in the
correct mode (radians or degrees) to match the choices. Be wary of relying solely on a calcula-
tor to solve trig equations. A calculator will typically provide only the first-quadrant or fourth-
quadrant solution. Use a unit-circle diagram and reference angle for the others.

To solve a trig equation:

1. Use identities and algebraic techniques to isolate one or more trig equations such as
sin x = 1/2.

2. Use a calculator or the special function values to finish solving.

3. Write out the generic solution first, and then find the solutions in the specified interval
(if any).
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Sample

Find all the solutions of 3 sin x cos x = 2 sin x.

3 sin x cos x – 2 sin x = 0

sin x(3 cos x – 2) = 0

sin x = 0 or 3 cos x – 2 = 0

x = kπ cos x = 2⁄3

x ≈ 0.84 + 2kπ or  x ≈ 5.44 + 2kπ

The first part of the solution (kπ) should come from a known trig fact. The other two parts re-
quire the use of a calculator (use the cos–1 key, the “INV” key, the “2nd” key, or the “arc” key).
The calculator will provide only the 0.84 solution; use a unit-circle diagram for the other.

You must also be able to deal with multiple-angle equations.

Sample

Find all solutions of tan 2x = 4.3 in the interval (π, 2π].

2x = tan–1 (4.3)

2x. 1.34 + kπ from your calculator

.
x

k
2

1 34. + r

.
k

these are all the solutions0 67
2
!= +

r

. 0.67 + k(1.57)

(π, 2π] is equivalent to (3.14, 6.28], so x = 3.81 and x = 5.38 are the solutions in the given
interval.

Inverse Trig Functions
You will need to know the graphs and properties of the inverse trig functions. The domains
and ranges are of particular importance, because the ranges are restricted to result in inverses
that are truly functions. The inverse trig functions may be indicated using several equivalent
notations:

y = arcsin x

y = Arcsin x

y = sin–1 x
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Recent AP exams have used the first two of these; most calculators use the last.

Figure 1.19

Figure 1.20

Figure 1.21

Figure 1.22

y

x

π/2

-1-2 1 2

π

y = arccot x
D : [-∞, ∞]
R : [0, π]

y

x
-1-2 1 2

π/2

-π/2

y = arctan x
D : [-∞, ∞]
R : [-π/2, π/2]

y

x

π/2

π

-1 1

y = arccos x
D : [-1, 1]
R : [0, π]

y

x

π/2

-1 1

-π/2

y = arcsin x
D : [-1, 1]
R : [-π/2, π/2]
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Figure 1.23

Figure 1.24

Exponential and Logarithmic Functions
Exponential and logarithmic functions have a number of unique properties that make them in-
teresting without being overly difficult. Hence, they are a popular choice for free-response as
well as multiple-choice questions on the AP exam.

Exponential Functions

Form: y = bx, b > 0

Domain: all real numbers

Range: all positive real numbers

y-intercept: (0, 1)

Zero(s): none

Asymptote: x-axis

Examples
y = 2x and y = (0.4)x are examples of exponential functions. Of course, exponential functions
can be shifted and distorted to produce new and different forms such as y = –3(2)x – 1.

y

x
-1-2 21

π/2

-π/2

y = arccsc x
D : (-∞, -1] and [1, ∞)
R : [-π/2, 0) and (0, π/2]

y

x
-1

π

-2 21

π/2

y = arcsec x
D : (-∞, -1] and [1, ∞)
R : [0, π/2) and (π/2, π]
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Graphs
The two typical graphs are a result of whole-number bases (shown on the left) and fractional
bases (shown on the right). Note that the graph on the right can also be written with a whole-
number base and with a negative exponent.

Figure 1.25

A Special Exponential Function
One particular exponential function is so common that it is often referred to as the exponential
function: y = ex. The number e is a transcendental number and a nonterminating, nonrepeating
decimal. It is frequently approximated as e ≈ 2.71828. Remember that e is a constant number,
not a variable. One way to be more comfortable with e is to think of it as a cousin of π. A more
formal definition of e will be given in the next chapter. The graph of y = ex looks similar to the
one on the left in Figure 1.25, except that y = ex contains the point (1, e), or (1, 2.71828), rather
than the point (1, 3).

Logarithmic Functions

Form: y = logb x, b > 0

Domain: all positive real numbers

Range: all real numbers

y-intercept: none

Zero(s): (1, 0)

Asymptote: y-axis

Examples
y = log3 x and y = log x (base-10 logarithm) are two examples of log functions. And again, log
functions can be shifted and distorted: y = –log 2(x – 5) + 3.

y = 3x

y

x

3

2

1

-1-2-3 321
-1

-2

-3

y

x

3

2

1

-1-2-3 321
-1

-2

-3

y = (  )x = (2)-x1
2
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Log and Exponential Forms
It is sometimes convenient to work with log functions in exponential form. The change can be
made according to the equation

y = logb x ⇔ by = x

Graphs
As in exponential functions, the two typical graphs result from whole-number bases (shown on
the left) and fractional bases (shown on the right).

Figure 1.26

Special Log Functions
There are two special logarithmic functions.

y = ln x a base-e logarithm read as the “natural log.”

y = log x a base-10 logarithm known as the “common log.”

Both graphs have the same general shape as the one on the left in Figure 1.26.

Properties of Logarithms
There are several handy properties of logarithms that you must know and be able to apply.
These are frequently used in simplifying or modifying expressions with logs in them. Watch
out for these to appear, especially on multiple-choice problems: Your answer may be present as
one of the choices but in a disguised form via the log properties.

y = log3 x y = log1/2 x

y

x

3

2

1

-1-2-3 321
-1

-2

-3

y

x

3

2

1

-1-2-3 321
-1

-2

-3

38

Part II: Specific Topics

CliffsAP Calculus 3rd Edition • 8683 1 Ch01 4 •Jill • 03/16/01 • p 38

8683-1 Ch01.F  3/22/01  7:15 AM  Page 38



Log Properties
log log log

log log log

log log

log log

xy x y

y
x

x y

x y x

x y x
1

b b b

b b b

b
y

b

b
y

b

= +

= -

=

=

^

c

`

a

h

m

j

k

Exponential Equations
The log properties are also used extensively in solving exponential equations. To solve expo-
nential equations:

1. Isolate the bx part of the equation.

2. Take the “log” of both sides, usually the natural log.

Sample

Solve 2x–4 – 3 = 12.

Isolate the bx expression. 2x–4 = 15

Take the natural log of both sides. ln (2x – 4) = ln 15

Apply the third log property. (x – 4)ln 2 = ln 15

Solve for x. ln
ln

ln
ln

x 4
2
15

2
15

- =

x 4= +

Calculator approximation x ≈ 7.907

Logarithmic Equations
To solve logarithmic equations:

1. Isolate the log expression.

2. Switch to exponential form.

3. Use a calculator if necessary.
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Sample

Solve 3 log4 (2x – 1) = 5.

Isolate the log expression. log4 (2x – 1) = 5⁄3

Switch to exponential form. 45/3 = 2x – 1

Solve for x. 45/3 + 1 = 2x

x = 1⁄2(45⁄3 + 1)

Calculator approximation x ≈ 5.540

Relationship Between Logs and Exponentials
Exponential and logarithmic functions are inverses, as shown by the following:

f(x) = ex and g(x) = ln x ⇒
f(g(x)) = g(f(x)) = x since

eln x = x and ln (ex) = x

You may occasionally need the last line above to simplify expressions.

Rational Functions
Rational functions provide excellent material for free-response questions on asymptotes and on
increasing and decreasing functions. These types of questions can be answered quickly by
graphing the function, although calculus support may be required (see Chapter 3,
“Derivatives”).

Definition of a Rational Function
A rational function is a function of the form

r(x) = 
q x

p x

^

^

h

h

where p(x) and q(x) are polynomial functions and q(x) ≠ 0.

Examples of rational functions include

f x
x
x

9
2 3

2=
-
-

^ h and g x
x

x x
27

3 4 9
3

2

=
-

- +
^ h
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Graphing a Rational Function
To graph a rational function, do not simply plot a bunch of points and then try to “connect the
dots.” Rational functions typically have one or more discontinuities in the forms of asymptotes
or “holes,” and plotting a large number of points is often tedious or too time-consuming. The
best plan of attack is as follows:

1. Simplify, if possible.

2. Find zeros (if any).

3. Find the y-intercept (if any).

4. Find all asymptotes, including vertical, horizontal, and slant.

5. Check for symmetry.

6. Plot a few points.

Except for finding the asymptotes, these six steps are self-explanatory. To find vertical asymp-
totes, let the denominator = 0. To find horizontal or slant asymptotes, compare the degree of the
numerator with the degree of the denominator:

,

,

>

deg deg

deg deg

deg deg

y

num denom

horizontal divide

num denom

slant divide

quotient without the remainder is the asymptote

num denom no asymptote

1

1

&

&

&

#

=
= +

+

_

`

a

b
bb

b
bb

Sample

Graph the function  f x
x x
x x

3 27
3 6

3

2

=
-
-

^ h

1. Simplify.

f x
x x
x x

x x

x x

3 27
3 6

3 9

3 2
3

2

2=
-
-

=
-

-
^

`

^
h

j

h

x x x

x x

3 3 3

3 2
=

- +

-

^ ^

^

h h

h

x x
x

x
3 3

2
0!=

- +
-

^ ^h h

Note the restriction on x that results from your having canceled a factor. This restriction will
produce a “hole” in the final graph.
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2. Zeros: Let f(x) = 0.

x – 2 = 0

x = 2 so (2, 0) is the zero

3. y-intercept: Let x = 0.

, ,f yso is the intercept0
0 3 0 3

0 2
9
2

0
9
2

=
- +

-
= -^

^ ^
ch

h h
m

But the restriction x ≠ 0 means that (0, 2⁄9) is a “hole,” not a y-intercept.

4. Asymptotes

Vertical: Let the denominator = 0.

(x – 3)(x + 3) = 0

x = 3 or x = –3

Horizontal: degree of numerator ≤ degree of denominator ⇒ divide

,x x yso is the asymptote9 2
0

0
2
- - =g

5. For symmetry, check f(–x).

f x
x

x

x
x

9

2

9
2

2 2- =
- -

- -
=

-
- -

^
^

^
h

h

h

f(–x) ≠ f(x), and

f(–x) ≠ –f(x) so there is no symmetry

6. Find extra points.

x y

4
7
6

1
8
3

4
7
2

-
-

-
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7. Graph the function.

Figure 1.27

Conic Sections
The four conic sections — the parabola, circle, ellipse, and hyperbola — are so named because
they are defined as the intersection of a cone and a plane. Of the four, only the parabola may be
a function. The others sometimes occur as semi-conics and so may be treated as functions. For
all the conics, know the standard forms and how to sketch the graph. Here are the standard
forms and the principle properties.

Parabolas
y = a(x – h)2 + k vertex (h, k) opens: up if a > 0

down if a < 0

x = a(y – k)2 + h vertex (h, k) opens: right if a > 0
left if a < 0

Circles
(x – h)2 + (y – k)2 = r2 center (h, k) radius = r

Ellipses

a

x h

b

y k
12

2

2

2
-

+
-

=
^ `h j

center (h, k) extreme points: (h ± a, k) and (h, k ± b)

y

x

6

4

2

-2-4-6 642
-2

-4

-6
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Hyperbolas

a

x h

b

y k
12

2

2

2
-

-
-

=
^ ^h h

center (h, k) opens: left and right

b

y k

a

x h
12

2

2

2
-

-
-

=
^ ^h h

center (h, k) opens: up and down

Vertices of asymptotic rectangle: (h ± a, k ± b) (both forms)

Completing the Square
If a conic section is not in standard form, force it into standard form by completing the square
on one or both variables. The term needed to complete a square is

(1⁄2 linear coefficient)2

Also, remember that the quadratic coefficient must be 1 before the square can be completed.

Sample

Put the following conic section in standard form:

2x2 – 8x + 2y2 + 6y = 0

2x2 – 8x + 2y2 + 6y = 0

Divide by 2 to make quadratic coefficients 1. x2 – 4x + y2 + 3y = 0

Complete the squares: (x2 – 4x + 4) + (y2 + 3y + 9⁄4) = 0 + 4 + 9⁄4

Because [1⁄2(–4)]2 = 4 and [1⁄2(3)]2 = 9⁄4

(x – 2)2 + (y + 3⁄2)2 = 25⁄4

Thus the conic is a circle, the center is (2, –3⁄2), and the radius is r = 5⁄2.

For the graphs, here are some examples to study.
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Figure 1.28

Figure 1.29

Figure 1.30

y

x

3

2

1

-1-2-3 321 4
-1

-2

-3

-4

-5

(x − 2)2 + (y + 3)2 = 4
center: (2, −3)
r = 2

y

x

3

2

1

-1-2-3 321
-1

-2

-3

-4

-5

x = −2(y + 3)2 + 2
vertex: (2, −3)
opens left

y

x

3

2

1

-1-2-3 321 54
-1

-2

-3

y =    (x − 2)2 − 3
vertex: (2, −3)
opens up

1
2
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Figure 1.31

Figure 1.32

Algebra
Several basic algebra techniques are used frequently on the AP exam.

Interval Notation
The following notations are equivalent. Either may be used on the exam.

(a, b) ⇔ {x : a < x < b}

[a, b] ⇔ {x : a ≤ x ≤ b}

[a, b) ⇔ {x : a ≤ x < b}

y

x

3

2

1

-1-2-3 32 41
-1

-2

-3

-4

-5

-6

-7

center: (2, −3)
vertices of asymptotic rectangle:
     (2 ± 1, −3 ± 3)

(x − 2)2

1
(y + 3)2

9
+ = 1

3

1

y

x

3

2

1

-1-2-3 32 41
-1

-2

-3

-4

-5

-6

-7

2

√10

(2, −3 ± √10)

center: (2, −3)
extreme points: (2 ± 2, −3)

(x − 2)2

4
(y + 3)2

10
+ = 1
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(a, b] ⇔ {x : a < x ≤ b}

(a, ∞) ⇔ {x : x > a}

[a, ∞) ⇔ {x : x ≥ a}

(–∞, b) ⇔ {x : x < b}

(–∞, b] ⇔ {x : x ≤ b}

Lines
On the AP exam, lines and related subjects could be a part of almost any type of question.
Know the following:

Slope: m x x
y y

x
y

run
rise

∆
∆

2 1

2 1
= -

-
= =

Slope/intercept form: y = mx + b

Point/slope form: y – y1 = m(x – x1)

Two-point form: y y x x
y y

x x1
2 1

2 1
1- = -

-
-d ^n h

Parallel lines: m1 = m2

Perpendicular lines: m1 ⋅ m2 = –1

Interval Testing
Finding intervals where a higher degree inequality takes on positive or negative values can be
accomplished in several ways. The easiest of these follows.

1. Change the inequality to the form f(x) > 0 [or f(x) ≥ 0, f(x) < 0, or f(x) ≤ 0].

2. Find the zeros of f(x) by factoring.

3. Label a number line with the zeros you found in step 2.

4. Choose a value in each interval from the number line, and test the value of f(x) to see if the
inequality holds true.

Sample

Solve 7x3 + 3x4 ≤ 6x2.

7x3 + 3x4 ≤ 6x2

3x4 + 7x3 – 6x2 ≤ 0

x2(3x – 2)(x + 3) ≤ 0

zeros: x = 0, 2⁄3, –3
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Therefore, this inequality is true for [–3, 2⁄3].

Absolute Value
You may need to be familiar with the definition of absolute value in order to rewrite an 
absolute-value function as a piece function.

<
x

x x

x x

if

if

0

0

$
=

-
*

Sample

Write y = |3x2 – 2x – 1| as a piece function.

Find where the argument is equal to zero, and do interval testing.

3x2 – 2x – 1 = 0

(3x + 1)(x – 1) = 0

x = –1⁄3 or x = l

< <y

x x x

x x x

x x x

if

if

if

3 2 1 1

3 2 1
3
1

1

3 2 1
3
1

2

2

2

$

#

=

- -

- - -
-

- -
-

` j

Z

[

\

]
]]

]
]]

Parametric Equations (BC Only)
Some types of curves that are difficult to graph and manipulate in the Cartesian system can be
dealt with more effectively and efficiently using parametric equations. Parametric equations use
a third variable, the parameter t, in representing separate functions for the x- and y-coordinates.
Parametric problems on the AP exam will frequently require the use of a calculator.

If f and g are continuous functions of t, then the set of parametric equations

x = f(t) and y = g(t)

represent the set of points (x, y) or (f(t), g(t)) in the Cartesian system.

pos neg pos

1−1
3

0

pos neg neg pos

−3 2
3
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Sample

Use a graphing calculator to sketch the curve below for  t0 5# # .

x = 3cos(t) and y = 3t2 – 10

Set the mode for parametric equations and type in the equations for x and y in the editor. The
window needs to reflect the minimum and maximum values for t, which are given here as 0 and
5. The increment value for t needs to be set around 0.1. A larger t-step can speed up the graph-
ing process, but may result in the parametric graph appearing as a strange set of line segments.
For the minimum and maximum values for x and y, analyze the range of the x and y equations
on the domain of  t0 5# # . Since the x equation includes a cosine function, there is a restric-
tion on the range, so the x values will be between –3 and 3. The y equation represents a
parabola, which will be increasing for t0 5# # , so the y values will be between –10 and 65.
The window below shows the resulting graph.

Domain of t
If no particular domain is given for t, do NOT assume t 0$ . For some application problems,
where t represents time, such a restriction may be needed, but it is not generally true that t must
be positive. Other restrictions on t may come from “built in” domain restrictions from the spe-
cific functions. For example, if ( )x t5 2= - , t must be greater than or equal to 2 for the radical
expression to be real.

Eliminating the Parameter
AP exam problems will probably not require elimination of the parameter. In fact, most prob-
lems will be written so that eliminating the parameter is either very difficult or impossible, so
that work must all be accomplished in the parametric system. 
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Sample

Sketch the graph of

x = 5 – t2 and y = t2 + 3t

both in parametric form and by eliminating the parameter.

A graphing calculator yields:

To eliminate the parameter, solve the x equation for t and substitute into the y equation.

, ( ) ( )

x t

t x

t x

so y x x

x x

5

5

5

5 3 5

5 3 5

2

2
&

!

!

!

= -

= -

= -

= - + -

= - -

This Cartesian equation, when graphed, yields the same graph as above.

For each set of parametric equations, eliminate the parameter t, and then describe the graph
represented by the resulting equation.
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1.

( )

( )

x
t

y t

x t y t

y x

y x

and

parabola

2
4

2 4

2 4

4 4

2

2

2

2

.

"

= = -

= = -

= -

= -

2.

)(

x t y t

x t

x
t y

x

y
x

y
x

and

line

2 3 2 3

3 2

2
3

2 3
2

3

2
2
3

2
9

2
3

2
13

.

"

= - = +

+ =

+
= = +

+

= + +

= +

c m

3.

( )

( )

x t y
t

t

x t y
x

x

y x
x

and

diagonal hyperbola

1
1

1
1 1

1

1

.

"

= - =
-

+ = =
+ -

+

=
+

Sometimes a trigonometric identity can be used to eliminate the parameter.

4.

( )( )

( )

)(

sec cos

sec cos

cos
cos

x y

xy

xy

y x

and

diagonal hyperbola

θ θ
θ θ

θ θ1

1

1

= =

=

=

=

=
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5.

( ) ( )

( )

cos sin

cos sin

cos sin

x y

x y

x y

x y

and

ellipse

θ θ

θ θ

θ θ

3 4

3 4

1

3 4
1

9 16
1

since 2 2

2 2

2 2

= =

= =

+ =

+ =

+ =

c dm n

6.

( ) ( )

( ) ( )

( )

cos sin

cos sin

cos sin

cos sin

x y

x y

x y

x y

x y

and

ellipse

θ θ
θ θ

θ θ

θ θ

2 3 3 2

2 3 3 2

3
2

2
3

1

3
2

2
3

1

9
2

4
3

1

since 2 2

2 2

2 2

= + =- +

- = + =

-
=

+
=

+ =

-
+

+
=

-
+

+
=

c dm n

Particle Problems
Parametric equations can be used to describe the motion of a particle in a plane. In this case,
the parameter t is frequently taken to represent time.

Sample

Two particles move along parametric curves as defined below for any time t, t 0$ .

Particle A Particle B

( )y t 3= -
2

x t 4= - x
t

y
t

2 7
3

2
3

=
-

=

At what time(s), if any, do the two particles collide?
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A graphing calculator sketch of the motion of the two particles shows the following:

From this graph, it would appear that the particles collide twice; however, this is not the case.
The PATHS of the two particles do intersect twice, but for an actual collision, the particles
must be at the same location AT THE SAME TIME. To find this algebraically, set BOTH the x
and y equations equal to each other and solve. 

xA = xB yA = yB Therefore, particles A and B collide when
t – 4 = 3t/2 – 7 (t – 3)2 = 3t/2 t = 6. At this time, x = t – 4 = 6 – 4 = 2
2t – 8 = 3t – 14 t2 – 6t + 9 = 3t/2 and y = (t – 3)2 = (6 – 3)2 = 9.
6 = t 2t2 – 12t + 18 = 3t When t = 6, particles A and B will both be

2t2 – 15t + 18 = 0 at the point (2,9).
(2t – 3)(t – 6) = 0
t = 3/2 or t = 6

Only one solution is apparent here, where t = 6. To see this demonstrated graphically, use a
graphing calculator in “simultaneous” mode, and set the t-step to 0.05 to slow down the motion.

Polar Coordinates and Graphs (BC Only)
A basic understanding of polar coordinates and graphs is necessary for the calculus required on
the BC exam.

T=6

X1 =T–4

X=2 Y=9

T Y1 =(T–3) 2T
^

T=6

X2 =(3/2)T–7

X=2 Y=9

T Y2 =(3/2)TT
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Notation
The polar coordinate system assigns an ordered pair ( , )r θ to every point in the plane, as shown
below. The angle θ should be expressed in radians.

The representation of a point is NOT unique in polar coordinates. For example, the point P
graphed below can be expressed in several ways:

Conversion
Changing a point or equation from polar to rectangular coordinates will probably not be neces-
sary on the AP exam; it is expected that work would be done entirely in the polar system.
However, it may be helpful to convert occasionally if you are unable to, say, determine the
quadrant of a point.

polar to rectangular rectangular to polar

siny r= θ

cosx r θ=

tan

r x y

x
yθ

2 2

1

= +

=
-

Calculators
When using a graphing calculator in polar, ALWAYS be sure to set the “mode” to RADIANS.
For some calculators, it may be necessary to set the display of coordinates to polar (not rectan-
gular). Also check the window settings: the minimum and maximum values for θ typically de-
fault to 0 and 2π, with a θ increment value of π/24 (approximately 0.131). It may be necessary
to modify these depending on a given domain for a function, or its periodicity. Be careful not to
set the θ increment too large, however. A larger θ step WILL speed up the graphing process,
but may result in the polar graph appearing as a strange set of line segments. Generally, a θ step
of about 0.1 will give a good graph in a short amount of time.

21

P (2,    )
π
6 P (2,    )

π
6 

(–2,    )
7π
6   

(2,     )
13π

6   

(r,  )θ

θ

r
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Polar Graphs
Familiarity with several basic types of graphs will assist in understanding the calculus later on.
While using a calculator will speed the process of graphing, knowing the general types of equa-
tions may help avoid errors. The general types are: lines, circles, spirals, rose curves, limacons,
and lemniscates. To see how polar graphs are generated, it may be useful to graph each of these
types on a graphing calculator and then use the trace function to see how the points are swept out.

Symmetry
The symmetry tests in polar form can be quite tedious to apply, and probably are not worth
memorizing. However, it may be worth noting polar equations which use ONLY the sine func-
tion are automatically symmetric with respect to the y axis (the line θ = π/2 in polar). Similarly,
if an equation contains only the cosine function, the graph is symmetric to the x axis (polar axis).

Intersections
To find the area of a polar region, it is sometimes necessary to find the point(s) of intersection
of two polar curves. Generally, this requires equating the r expressions for the two curves and
solving the resulting trig equation. Also, the pole (origin) may be an intersection point of two
curves but with different θ values: (0, π/2) and (0, π/4) are both representations of the same
point, i.e., the pole or origin. Finding intersection points using a graphing calculator may also
be required on the exam.

Sample

Find all intersection points of cos sinr randθ θ1 1= + = - .

Begin by graphing the two curves.

The intersection point in Quadrant 3 seems clear, but the number of intersection points (if any)
in Quadrant 2 is not as obvious. A closer window sheds some light on this area, revealing a sec-
ond intersection point in Quadrant 2. In addition, it seems that both curves contain the pole,
where r = 0.
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To find all of these points, set the two r expressions equal to each other.

,

cos sin

cos sin

k k

θ θ
θ θ

θ

1 1

4
3

2
4

7
2

+ = -

=-

= + +
r r r r

To check the pole,

( , ) ( , )

cos sin

cos sin

k k

θ θ
θ θ

θ

0 1 0 1

1 1

2
2

2

0 0
2

= + = -

=- =

= + = +r r i r r

r r

Converting Equations from Rectangular to Polar Form

Convert each rectangular equation to polar form:

1. x y

r

r

16

16

4

2 2

2

+ =

=

=

x 2+y = r 2

y
x

θ

θ

θ
r

x

y tan   = 

x=r cos (x,y) rectangular

coordinates

(r,   ) polar

coordinates

θ

  θ 

y=r sin
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2.

cos

cos
sec

x

r

r

r

θ

θ
θ

3

3
3

=

=

=

=

3.

sin cos

sin cos

cos
sin

tan

y x

r rθ θ
θ θ

θ
θ

θ
θ

3

3

3

3

3

3

=

=

=

=

=

=
r

a

^

k

h

Converting Equations from Polar to Rectangular Form
Convert each polar equation below to rectangular form:

1.

( )

( )

cos

cos

cos

r

r r r

r

x y x

x x y

circle

θ
θ

θ

3

3

3

3

3 0

2

2 2

2 2

=

=

=

+ =

- + =

2.

( )

csc

sin
sin

r

r

r

y

horizontal line

θ

θ
θ

5
5

5

5

=

=

=

=
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3.

( )

tan tan

tan
cos

sin

tan

x
y

y x

y x

line

θ

θ

θ

θ

6

6

6

6

2
3

2
1

3

1

3

1

3
3

=

=

=

=

=

=

=

r

r

r

r

J

L

K
K

J

L

K
K

c

c

c

N

P

O
O

N

P

O
O

m

m

m

4.

( )

( )

( )

cos
cos

cos

cos

r

r

r r

r r

x y x

x y x

x y x x

x y x x

x y x

ellipse

θ
θ
θ

θ

3 2
5

3 2 5

3 2 5

3 5 2

3 5 2

3 5 2

9 25 20 4

9 9 25 20 4

5 9 20 25 0

2 2

2 2
2

2

2 2 2

2 2 2

2 2

=
+

+ =

+ =

= -

+ = -

+ = -

+ = - +

+ = - +

+ + - =

a ^k h

5.

( )

( )

cos sin
cos sin

cos sin

r

r

r r

x y

line

θ θ
θ θ
θ θ

5 2
3

5 2 3

5 2 3

5 2 3

=
-

- =

- =

- =
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Special Polar Graphs
Many times we encounter certain types of graphs whose equations are much simpler in polar
rather than in rectangular form. For example, the graph at the equation x2 + y2 = 16 is a circle.
In polar form, the equation x2 + y2 = 16 becomes r2 = 16, so r = 4. Below are examples of some
graphs and their popular equations.

A. Limacons: one of the forms cos sinr a b r a borθ θ! != = where a > 0 and b > 0.

B. Rose Curves: one of the forms r = a cos(nθ) or r = a sin(nθ)

These curves will have n petals, if n is odd, but they will have 2n petals if n is even  ( )nfor 2$ .

r = 2cos (2  )θr = 2cos (3  )θ

r = 3+1sinθr = 3+2sinθ

r = 3+3sinθr = 3+5sinθ
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C. Circles and Lemniscates: one of the following forms r = a , r = a cosθ, r = a sinθ,
r2 = a2 sin(2θ), or r2 = a2 cos(2θ)

r 2 = 16 cos(2  )   θ

r 2 = 16 sin(2  )   θr = 3   

r = 3sin   θr = 3cos   θ

r = 2cos (4  )θr = 2cos (5  )θ
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D. Miscellaneous Curves: of the form r = θ or θ = a

Vectors and Vector-Valued Functions (BC Only)
A vector can be thought of informally as a ray or a directed line segment: It has a beginning (or
initial) point and an ending (or terminal) point, thus giving it a direction. Some vectors are
graphed below. One of the most common notations used to represent vectors is PQ

<
, where the

vector has P as its initial point and Q as its terminal point as shown in the graph below. In texts,
vectors may also be indicated by a lower or upper case bold single letter such as u or V.

Vectors are frequently represented with their initial point at the origin, often referred to as stan-
dard position, as with AB

<
in the graph above. 

The component form of a vector gives the horizontal and vertical components of the vector, in
that order, and is represented as an ordered pair with “pointy” parentheses: < 3,4 >. Thus, vec-
tor PQ above would have component form < 3,4 >, which can be found by subtracting the x
and y coordinates, 8 – 5 = 3 and 3 – (–1) = 4. Note that since AB

<
is in standard position above,

the component form of AB
<

, < 1,2 >, can easily be found by examining the coordinates of the
point B, ( 1, 2 ).

Component Form of a Vector
If a vector V has initial point (x1, y1) and terminal point (x2, y2), then its component form is
given by <x2 – x1, y2 – y1>. A vector V in standard position with terminal point (x, y) has com-
ponent form <x, y>.

6

4

2

–2–4 64 1082–1

V

B(1,2)

A

Q(8,3)

P(5,-1)

~AB ~PQ

θ π
4=r = θ
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The length of a vector is referred to as its magnitude, and is represented by placing the name of
the vector between two double bars: V or AB . Given the initial and terminal points of a vec-
tor, its magnitude can be found using the distance formula. The direction of a vector in standard
position is the angle from the positive x axis in a counter-clockwise direction to the vector, and
can be found easily with the tangent function.

Magnitude and Direction of a Vector in Standard
Position
A vector V with initial point (0, 0) and terminal point (x, y) has 

component form V = <x, y>

magnitude V x y
2 2

= +

and direction θ = tan–1 (y/x) where 0 ≤ θ ≤ 2π or 0 ≤ θ ≤ 360°

Sample

Find the magnitude and direction of the vector V = <5, –2>

The magnitude is ( ) ( ) .V 5 2 29 5 3852
2 2 .= + - =

For the direction, θ = tan–1 (5/–2) ≈ –1.1903 + 2kπ ≈ 5.0929 (where k = 1) 

When working with vectors, single real number quantities, such as 3, are referred to as scalars.
Several operations with scalars and vectors are shown below.

Vectors Operations
Let V = <x1, y1 > and U = < x2, y2> be given vectors, and k by a given scalar quantity. 

The vector sum of the vectors is V + U = <x1 + x2, y1 + y2>.

The scalar multiple of k and V is the vector kV = < kx1, ky1>.

The opposite (of negative) of V is –V = <–x1, –y1>.

The difference of U and V is U – V = U + (–V) = <x2 – x1, y2 – y1).

The sum, or resultant, of two vectors can also be found graphically. To find the sum of U and V
graphically, recopy V so that its initial point coincides with the terminal point of U. The vector
which is the sum of the U and V has the same initial point as U and the same terminal point as
the new, recopied version of V. This process is illustrated below.
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Yet another way to represent vectors uses scalar multiplication and vector addition, along with
two unit vectors. For this notation, two special unit vectors (a vector with a magnitude of 1) are
given particular names: i is the unit vector in the direction of the x axis, and j is the unit vector
in the direction of the y axis, as shown in the graph below. Notice that i has no vertical compo-
nent and j has no horizontal component.

Now, any vector can be written as the vector sum of scalar multiples of i and j.

Sample

Write the vector with initial point R(3, –1) and terminal point S(5, 2) in component form
using i and j.

In component form, RS
< = <2 – (–1), 5 – 3> = <3, 2>.

So, RS
< can be written as the sum of the vectors 3i and 2j as shown in the graph below.

Alternate Component Form
The vector V = <x, y> can also be written in component form as V = xi + yj.

Vectors can only be added when they are in component form. So, to find the resultant of two
vectors, it may be necessary to change from magnitude/direction to component form. These
formulas are a direct result of the definition of sin and cos.

1

2

21

2j

2j

3i

3i+2j

y

x

1

21

i=<1,0>

j=<0,1> j
i

y

x

6

4

2

642

V=<1,3>

<6,5>

U=<5,2>

y

x

6

4

2

642

U+V=

U

V
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Magnitude/Direction to Component Form
Given a vector V with direction θ and magnitude V , its component form is given by

( ) ( ) ( )cos sin cos sinV i j V i V jV θ θ θ θ= + = +

or

< , >cos sinV V Vθ θ=

Sample

A force of 20 pounds makes an angle of 60° with the positive x axis, while a force of
30 pounds has a direction of 135°. Find the component form of the forces, find the
resultant in component form, and find its direction and magnitude.

The magnitude of the first force is given as 20 and the direction θ = 60°. 

( ) ( )

cos sini j

i j

i j

F 20 60 20 60

20
2
1

30
2
3

10 10 3

= +

= +

= +

% %

For the second force,

( ) ( )

cos sinG i j

i j

i j

30 135 30 135

30
2
2

30
2
2

15 2 15 2

= +

= +

=- +

% %

For the resultant,

( ) ( )

( ) ( )

. .

R F G i j i j

i j

i j

10 10 3 15 2 15 2

10 15 2 10 3 15 2

11 2132 38 5337.

= + = + + - +

= - + +

- +

( . ) ( . )

. lbs

R 11 2132 38 5337

40 1321

2 2

.

= - +

v

θ

θ�v�sin

�v�

θ�v�cos
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.
.

.

tanθ
11 2132

38 5337
180

106 22

R
1

.

=
-

+

%

-
c m

Vector-Valued Functions
Vectors can also be analyzed by considering a special set of functions that has the set of real
numbers as the domain, and a set of vectors as the range. These are known as vector-valued
functions.

R(t) = f(t) i + g(t) j is a vector-valued function where f(t) and g(t) are real-valued 
functions.

t is any number in the domain of both f(t) and g(t)

Note: In the above function, the x and y components of the vectors are obviously given by
x = f(t) and y = g(t). This should make it easy to see the relationship between parametric
equations and vector-valued functions. For vector AP problems, it may be possible to solve
them by considering the corresponding set of parametric equations, and vice versa. If a
problem seems confusing or complicated as one type, vector or parametric, try consider-
ing it the other way.

For convenience, the graph of a vector-valued function is usually shown as just the terminal
points of the vectors, rather than with all the vectors (rays) included. To graph a vector-valued
function with a calculator, use parametric mode, with x = f(t) and y = g(t).

The calculus that goes with vectors is probably easiest to perform using the vector-valued func-
tion notation, since most people are already comfortable taking limits, and finding derivatives
and anti-derivatives with standard function notation.
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1. sinarc
6

7
=

r
c m

A.
6

11r

B.
6

7r

C.
6

5r

D.
6
r

E.
6

-r

2. If the zeros of f(x) are x = –1 and x = 2,
then the zeros of f(x/2) are x =

A. –1, 2

B. –1⁄2,
5⁄2

C. –3⁄2,
3⁄2

D. –1⁄2, 1

E. –2, 4

3. How is g(x) related to f(x)?

A. g(x) = f(|x|)

B. g(x) = |f(x)|

C. g(x) = f(–x)

D. g(x) = –f(x)

E. g(x) = f(x)

4. cos 2θ =

A. cos2 θ + sin2 θ

B. 1 – 2 sin2 θ

C. 1 – 2 cos2 θ

D. sin2 θ – cos2 θ

E. none of these

5. The graphs of all of the following are
asymptotic to the x-axis EXCEPT

A. y
x 1

2
2=
-

B. y = ex–2

C. y
x

x
1

4
2=
+

D. y = –log(x + 1)

E. xy = 1

6. Suppose that f(x) = ln x and g(x) = 
9 – x2. The domain of f(g(x)) is

A. x ≤ 3

B. |x| ≤ 3 

C. |x| > 3

D. |x| < 3

E. 0 < x < 3

7. The domain of the function

/f x x1 1= -^ h is

A. x ≥ 0

B. x ≤ 1

C. x ≥ 1

D. x < 1

E. x > 1

g(x)

y

x

2

1

-1-2-3 321
-1

f(x)

y

x

2

1

-1-2-3 321
-1
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8. log p
m n

b =
J

L

K
K

N

P

O
O

A. logb m – 1⁄2 logb n – logb p

B. logb m + 1⁄2 logb n – logb p

C. logb m – 1⁄2 logb n + logb p

D. 1⁄2 logb m – logb n – logb p

E. 1⁄2 logb m + logb n – logb p

9. If the amplitude of y = (1/k)cos(k2 θ)
is 2, then its period must be

A. π

B. 2π

C. 4π

D. 8π

E. 16π

10. Find the most general set of solutions of
2 sin2 θ = sin θ.

A. , ,k k k
6

2
6

5
2+ +

r r r r r

B. , ,k k k
3

2
3

2
2+ +

r r r r r

C. , ,k k k
3

2
3

5
2

2
+ + +
r r r r r r

D. , ,k k k
6

2
6

5
2

2
+ + +
r r r r r r

E. , ,k k k
6 6

5
+ +
r r r r r

11. For f x x and1= -^ h

,g x x g f is3 2= - -^ ^_h hi

A. undefined

B. 1 – 5

C. 0

D. 2

E. 5

12. The graph of y2 – 3y – 2 = x2 is a(n)

A. parabola

B. circle

C. hyperbola

D. ellipse

E. line

13. The vertex of the graph of y2 – 4y =
3x – 6 is

A. (2, 2⁄3) 

B. (2, 2) 

C. (2⁄3, –2)

D. (2⁄3, 2)

E. (–2, 2⁄3)

14. For f(x) = log3(x – 2), find f–1(x).

A. f–l(x) = 3x + 2

B. f–l(x) = 3x+2

C. f–1(x) = 3x – 2

D.
log

f x
x 2
11

3

=
+

-
^

^
h

h

E. logf x
x 2

11
3=

-
-
^ ch m

15. If ,f x x
e

fthen is1
ln x

=^ ^h h

A. 0

B. 1

C. e⁄2

D. e

E. not defined
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16. Which of the following is an odd
function?

A. y = x3 + 1

B. y = cos x

C. y = sin x

D. y = ln x

E. y = e–x

17. If the curve of f(x) is symmetric with
respect to the origin, then it follows that

A. f(0) = 0

B. f(–x) = –f(x)

C. f(–x) = f(x)

D. f(x) is also symmetric with respect
to the x- and y-axes

E. f(–x) = –f(–x)

18. If 9e3t = 27, then t =

A. ln
27
27

B. ln 33

C. 1

D. ln 3

E. ln 9

19. ln a = b is equivalent to

A. ea = b

B. ln b = a

C. ae = b

D. be = a

E. eb = a

20. The graph of y2 = x2 + 9 is symmetric
with respect to

I. the x-axis

II. the y-axis

III. the origin

A. I only

B. II only

C. III only

D. I and II only

E. I, II, and III

21. Which of the following graphs are
graphs of functions?

A. I only

B. II only

C. III only

D. I and II only

E. I, II, and III

22. For what values of x is 
(3x2 + 6x)(2x – 5) < 0?

A. (–∞, –2) , (0, 5⁄2) 

B. (–2, 0) 

C. (–2, 5⁄2)

D. (–2, 0) , (5⁄2, ∞)

E. (–2, ∞)

y

x

y

x

y

x

I. II. III.
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Answers to Multiple-Choice Questions

1. E. arcsin sin arcsin
6

7
2
1

6
=

-
=

-r r
c cm m

Remember that the range of inverse sine is [–π/2, π/2]. Because of this, the two functions
do not “cancel” exactly. However, if the question had asked for sin (arcsin 2/3), the
two functions would have “canceled,” because the only restriction on the function is
–1 ≤ sin x ≤ 1. You can also use your calculator for these questions.

2. E. The coefficient of 1/2 inside the function creates a horizontal stretch, in effect moving
the zeros twice as far out to x = –2 and x = 4.

x f x x
x

f
x

2 2

1 0 2 1 0

2 0 4 2 0

- - -

^ ch m

3. A. The second and third quadrants in the original graph of f(x) play no part in the graph
of g(x), whereas the first and fourth quadrants have been reflected into the second and
third quadrants, so g(x) = f(|x|).

4. B. Know the identities.

5. D. The graphs of A, C and E are all asymptotic to the x-axis because they are rational
functions with the degree of the numerator less than the degree of the denominator. B is
asymptotic to the x-axis because it is simply a shift 2 to the right of y = ex, which is itself
asymptotic to the x-axis. D is a version of a log curve, with a reflection around the x-axis
and a shift 1 to the left. Log curves are not asymptotic to the x-axis.

6. D. f(x) = ln x and g(x) = 9 – x2 ⇒

f(g(x)) = f(9 – x2) = ln (9 – x2)

For the domain of any logarithmic function, the argument must be strictly positive.

(9 – x2) > 0

(3 – x)(3 + x) > 0

Using interval testing to solve this inequality yields

so –3 < x < 3, or |x| < 3.

posneg neg

3−3
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7. D. For a radical expression, the domain must be restricted to numbers that make the
expression under the radical greater than or equal to zero. But here the radical is also in
the denominator of a fraction, which means the radical cannot equal zero.

1– x > 0 ⇒ x < 1

8. B. log log log logp
m n

m n p
/

b b b b
1 2

= + -
J

L

K
K

N

P

O
O

= logb m + 1⁄2 logb n – logb p

9. D. The amplitude of y = (1/k)cos (k2 θ) is given by the expression 1/k.

k
k

1
2

2
1

&= =

The period of y = (1/k)cos (k2θ) is given by the expression 2π/k2.

P
k
2

2
1

2

4
1

2
82 2= = = =

r r r r
c m

10. A. 2 sin2 θ = sin θ

2 sin2 θ – sin θ = 0

sin θ(2 sin θ – 1) = 0

sin θ = 0 or 2 sin θ –1 = 0

θ = kπ sin θ = 1/2

k korθ θ
6

2
6

5
2= + = +

r r r r

11. C. Work from the inside to the outside: f(–2) = 1 – (–2) = 3. Thus

g f g2 3 3 3 0= = - =^_ ^hi h

12. C. y2 – 3y – 2 = x2 ⇔ y2 – 3y – x2 = 2

You should be able to tell that this is a hyperbola because of the –1 coefficient on the x2.
Complete the square if you’re not convinced.

13. D. Complete the square on y2 – 4y = 3x – 6.

3x – 6 + 4 = y2 – 4y + 4

3x – 2 = (y – 2)2

x = 1⁄3(y – 2)2 + 2⁄3 ⇒ vertex is (2⁄3, 2)
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14. A. f(x) = log3 (x – 2) ⇔ y = log3 (x – 2)

Now switch the x and y to create the inverse, and solve for y.

x = log3(y– 2)

3x = y – 2

y = 3x + 2 ⇒ f–1(x) = 3x + 2

15. B. Simplify by using the log properties on the numerator.

f x x
e

x
x

1
ln x

= = =^ h

16. C. Odd functions are symmetric with respect to the origin, so look for a function where

f(–x) = –f(x)

f(–x) = sin(–x)

= –sin x = –f(x) which shows symmetry with respect to the origin

17. B. Know the symmetry tests.

18. B. 9e3t = 27 ⇔ e3t = 3

Take the natural log of both sides.

1n (e3t) = ln 3

3t = ln 3

t = 1⁄3 ln 3

And by the natural log properties,

t = ln 31/3 = ln 33

19. E. In general, logm n = p is equivalent to mp = n. For this problem, the base is e because it
is a natural log (ln). Therefore,

ln a = b ⇔ loge a = b ⇔ eb = a
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20. E. This can be verified with the symmetry tests:

y x y x f x xor9 9 9
2 2 2 2

& ! != + = + = +^ h

f x x f x9
2

&!- = - + =^ ^ ^h h h symmetric with respect to y-axis

f x f x- =-^ ^h h because ± “changes” to ± ⇒ symmetric with respect to the origin

As a relation in y,

g y y 9
2

!= -^ h

g(–y) = g(y) ⇒ symmetric with respect to y-axis

Alternately, use conics:

y2 = x2 + 9 ⇔ y2 – x2 = 9

⇔ y x
9 9

1
2 2

- =

This last equation is recognizable as a hyperbola centered at the origin with a square
asymptotic rectangle. Thus it is symmetric with respect to both axes and to the origin.

21. D. Use the vertical-line test. In the first two graphs, all vertical lines will intersect the
graph only once, whereas in the third graph, many vertical lines will hit the circle twice.

22. A. Solve by the number line method and interval testing.

(3x2 + 6x)(2x – 5) < 0

3x(x + 2)(2x – 5) < 0

Thus x < –2 or 0 < x < 5/2. Change to interval notation.

0

posneg neg pos

−2 5
2
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Sample Free-Response Question: Precalculus

1. Consider the function  f x
x x x

x x
3 4 12
2

3 2

2 3

=
- - +

-
^ h

A. Give the zeros of f(x).

B. Give the equations of any vertical asymptotes.

C. Give the equations of any horizontal asymptotes.

D. Make a sketch of the graph.

Answer to Free-Response Question

1. Always simplify first. By factoring the numerator first, you may be able to find a potential
factor of the third-degree numerator and thus make the factoring simpler (see the synthetic
division that follows).

f x
x x x

x x
3 4 12
2

3 2

2 3

=
- - +

-
^ h

x x x

x x

2 6

2
2

2

=
- - -

- -

^ `

^

h j

h

x x x

x x

2 2 3

2
2

=
- + -

- -

^ ^ ^

^

h h h

h

,
x x

x
x

2 3
2

2

!=
+ -

-
^ ^h h

2

1 1 6 0
2 2 12

- -
- -

1 3 4 12- -

A. Zeros: Let f(x) = 0 ⇒ x = 0

Thus (0, 0) is the only zero.

B. Vertical asymptotes: Let denominator = 0 ⇒ (x + 2)(x – 3) = 0

Thus x = –2 and x = 3 are vertical asymptotes.
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C. Horizontal asymptotes: Compare degrees.

degree of numerator = degree of denominator ⇒ divide

f x
x x

x
2 3

2

=
+ -

-
^

^ ^
h

h h
, x ≠ 2

x x x

x
x x

6
1

6
6

2 2

2

- - -
-

- -
- + +

g

Thus y = –1 is the horizontal asymptote.

D. Sketch:

y

x

3

2

1

-1-2-3-4-5 321 54
-1

-2

-3
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75

Limits and Continuity

The single major concept that separates precalculus math from calculus is that of the limit of a
function. Although none of the formal definitions of limits are on the AP exam, you must have
a solid, intuitive understanding of how a limit works in order to be able to apply limits to con-
cepts such as continuity. You must also master a variety of different techniques used to find
limits, because the AP exam will include multiple-choice questions that deal directly with find-
ing limits.

Intuitive Definition of a Limit
Perhaps the simplest way to understand the concept of the limit of a function is through a
graphical interpretation and in terms of the following translation from calculus to English:

Calculus ⇔ English

( )x2 1
x 2

lim - =
"

? ⇔ Read: “What is the limit of 2x – 1 as x approaches 2?”

Think: As the x-coordinates get closer and closer to 2 what
values (if any) are the y-coordinates getting closer to?

Figure 2.1

From the graph, it should be clear that as the x-coordinates get closer and closer to 2, the 
y-coordinates get closer and closer to 3. The calculus notation for this is

( )x2 1 3
x 2

lim - =
"

f (x) = 2x − 1

y

x

3

2

4

1

-1-2-3 321
-1

-2

-3

x

y
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The value of the function at the exact point where x = 2 is irrelevant to answering the limit
question. The limit question is answered by determining what value the y-coordinates are 
approaching as x gets closer and closer to 2. Examine the following table of values.

x 1 1.5 1.6 1.8 1.9 1.99 2.01 2.1 2.2 2.3 2.5 3

f(x) 1 2 2.2 2.6 2.8 2.98 3.02 3.2 3.4 3.6 4 5

On the top line, x-coordinates have been selected as a series of values approaching 2 from both
directions — that is, increasing from 1 and decreasing from 3. Note that the corresponding y-
values on the bottom line are approaching 3 from both directions, that is, increasing from 1 and
decreasing from 5. The ordered pair (2, 3) is not included in the chart because it is not relevant to
determining the limit. In fact, if a function g(x) is created that has the same values as f(x) above,
but is defined differently (or even undefined) at x = 2, the limit of g(x) is the same as for f(x):

Figure 2.2

From the graph it should be clear that here, too, as the x-coordinates get closer and closer to 2,
the y-coordinates get closer and closer to 3. In the language of calculus

( )g x 3
x 2

lim =
"

Here are some other examples of limits:

Figure 2.3

y

x

6

4

2

-2-4-6 642
-2

-4

-6

y = 6 − 3x

lim  6 − 3x  = 3
x   3

y

x

3

2

4

1

-1-2-3 321
-1

-2

-3

g(x) =
2x − 1 
2

for x ≠ 2 
for x = 2
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Figure 2.4

Figure 2.5

Figure 2.6

Generally, finding the limit of a continuous function requires straightforward substitution. Even
the limits of certain types of discontinuous functions, such as g(x) above, can be found by di-
rect substitution. However, some types of discontinuities may dramatically affect the limit of
the function at the point of discontinuity, as shown in the examples that follow. 

Sample

What is 
( )

?
x 1

2

x 1

2lim
-

"

Begin by sketching the graph. The graph shows that as the x-coordinates get closer and closer
to 1, the function values (y-coordinates) simply get bigger and bigger. The calculus notation
used to symbolize this is

y

x

6

4

2

-2-4-6 642
-2

-4

-6
(−3, −5)

lim 5 = −5x + 2x   −3

y

x

1

-π π-2π 2π
-1

(π, 0)
lim (sin θ) = 0
θ   π

y

x

3

2

1

-1-2-3 321
-1

-2

-3

1
2

−5
4

−5
4lim (3x2 − 2) =

x   1/2
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Figure 2.7

Caution: This notation is not meant to imply that a limit actually exists. Remember that ∞ (in-
finity) is a concept, not a number. The notation used above, whereby the limit “equals infinity,”
is generally preferred because it indicates the behavior of the graph. But it is also correct to
write

( )x
does not exist

1
2

x 1

2lim
-

"

Sample

>
lim h x h x

x x

x x
Find if

for

for

2 4 1

1x 1 2

#
=

- - -

-" -
^ ^h h *

Again, begin by sketching the graph. Examine the y-coordinates as the x-coordinates get closer
and closer to –1. There is no single number that the function values are getting closer to: From
the left the y-values get closer and closer to –2, and from the right they get closer and closer to 1.
This implies that 1 ( )lim h xx " - does not exist.

Figure 2.8

The limit notation can be modified to symbolize the situation where the lefthand and righthand
limits are different.

( ) ( )h x h xand2 1
x x1 1

lim lim=- =
" "- -- +

Such one-sided limits will be explained in greater detail later in this chapter.

y

x

3

2

1

-1-2-3 321
-1

-2

-3

y

x

3

2

1

-1-2-3 321
-1

-2

-3

lim 2 = +∞
(x − 1)2x   1
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Algebraic Techniques for Finding Limits
Finding the limit of a continuous function requires the simple algebraic technique of substitu-
tion. For more complicated functions, other algebraic techniques are required. These tech-
niques include

1. Substitution

2. Simplifying expressions

3. Rationalizing the numerator or denominator

These last two techniques are used when direct substitution yields the indeterminate form,
wherein both numerator and denominator are zero (0/0). When the indeterminate form arises
from direct substitution, some type of algebra must be done to change the form of the function.
Caution: Do not make the mistake of assuming that the indeterminate form of 0/0 somehow
“cancels out” and is equal to 1. This is not true, as shown by the following examples.

Sample

What is 
x

x x
1

2

x 1

2

2

lim
-

+ -

"

?

Substituting x = 1 in directly gives

x
x x

1
2

1 1
1 1 2

0
0

x 1

2

2

lim
-

+ -
=

-
+ -

=
"

This is the indeterminate form, which implies that algebra needs to be done — in this case,
factoring.

x
x x

x x

x x

1
2

1 1

2 1

x x1

2

2

1

lim lim
-

+ -
=

+ -

+ -

" "
^ ^

^ ^

h h

h h
by factoring

x
x

1
2

x 1

lim=
+
+

"

c m by canceling

= 3⁄2 by substitution

The graph of f(x), a rational function, shows a hole at (1, 3⁄2). Recall that the limit is not af-
fected by an undefined or unusual value at the limit site.

( )f x
x

x x
1

2
2

2

=
-

+ -

x
x

x
1
2

1!=
+
+
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Figure 2.9

Sample

What is ?
x
x

4
2

x 4

lim -
-

"

Again, direct substitution yields the indeterminate form.

x
x

4
2

4 4
4 2

0
0

x 4

lim -
-

=
-
-

=
"

Therefore, you must do algebra to change the form.

Rationalizing the numerator, x
x

x

x
4
2

2

2

x 4

lim -
-

+

+

"

J

L

K
K

N

P

O
O

Simplifying,
x x

x

4 2

4

x 4

lim=
- +

-

" ^ ah k

Canceling factors,
x 2

1

x 4

lim=
+"

J

L

K
K

N

P

O
O

Substituting,
4 2

1
4
1

=
+

=

One-Sided Limits
One-sided limits are used most frequently with piece functions, functions with domain restric-
tions, or infinite limits. One-sided limits can be interpreted similarly to general limits:

Calculus ⇔ English

( ) ?x
x 1

2
lim =
"

+

⇔ Think: As the x-coordinates get closer and closer to 1 from
the right side, what values (if any) are the y-coordinates get-
ting closer to?

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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Figure 2.10

From the graph, it should be clear that the y-coordinates are approaching 1 as the x-coordinates
approach 1 from the right. The calculus notation is

x 1
x 1

2
lim =
"

+

` j

Similarly,

x 1
x 1

2
lim =
"

-

` j

One-sided limits are not often used with continuous functions such as this one because it is
simpler just to use a general limit:

x 1
x 1

2
lim =
"

` j

In piece functions, however, one-sided limits are needed, as in the next example.

Sample

Let g be defined as follows: ( )
<

sin

cos
g x

x x
x

x

for

for

0

2
0

$
= *

Find ( ) ( )g x g xand
x x0 0

lim lim
" "

+ -

.

Begin by graphing the function.

Figure 2.11

1

-π-2π π

y

x
2π

-1

(1,1)

y = x2

x

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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For the limit from the right
( ) ( )sing x x

0

x x0 0

lim lim=

=

" "
+ +

And for the limit from the left

( ) cosg x
x
2

x x0 0

lim lim=
" "

- -

c m

= 1

As mentioned before, if the one-sided limits are not equal, then the general limit does not exist.

( )

( )
( )

g x

g x
g x

0

1
x

x

x

0

0

0

lim

lim
lim&

=

=
"

"

"

+

-

_

`

a

bb

bb

does not exist

In general, if ( ) ( )f x f x
x a x a

lim lim!
" "

+ -

, then ( )f x
x a

lim
"

does not exist.

This method provides one method that is commonly used on free-response questions to justify
the answer that a limit does not exist.

Functions with implied domain restrictions are a second case where one-sided limits are 
required.

Sample

What is ?x 2
x 2

lim -
"

+

As a result of the domain of y x 2= - a one-sided limit must be used for this problem.
Because x can only be greater than or equal to 2, it would be impossible to approach 2 from the
left. The function is continuous on its domain, however, so just substitute:

x 2 2 2 0
x 2

lim - = - =
"

+

A graph may also be useful. The graph for this problem is the top half of a parabola.

Figure 2.12

y

x

6

4

2

-2-4-6 642
-2

-4

-6

y = √x − 2

82

Part II: Specific Topics

CliffsAP Calculus AB & AC 3rd Edition • 8583 1 Ch02 5 • Jill • 03/16/01 • p 82

8683-1 Ch02.F  3/22/01  7:18 AM  Page 82



( )

( , ),

y x y x y

x y y

where

where

vertex opens right

2 2 0

0 2 0

2 0

2

2

+ $

$

= - = -

= - +

Infinite Limits
Another type of nonexistent limit that can require the use of one-sided limits is the infinite
limit mentioned previously. The formal definition of an infinite limit is not on the AP exam.

Figure 2.13

There are essentially two ways to find infinite limits:

1. Graph the function and look for vertical asymptotes.

2. Apply the theorem for infinite limits (given below).

Graphing the function is effective when the function is not terribly complicated. For example,
with simple rational functions, locating the vertical asymptotes requires only finding any points
where the denominator equals zero. For the foregoing function,

( )
( )

( )f x
x

xvertical asymptote where
3

1
3 02

2
&=

-
- =

Thus there is a vertical asymptote where x = 3, so

( )x 3
1

x 3

2lim 3
-

=+
"

Some functions may not even have to be graphed, but only visualized. Examples include

( ) ( )tan tanx xand
( / ) ( / )x x2 2

lim lim3 3=- =+
" "r r+ -

Note the application of one-sided limits here. See the section on trig functions if no visualiza-
tion suggests itself.

Graphing can be impractical, so sometimes it may be easier to apply the following theorem.

y

x

3

2

1

-1-2-3 321 54
-1

-2

-3

= +∞lim
(x − 3)2

1
x     3
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Theorem for Infinite Limits

( )
( )

( )

( )

tan

g x
f x

f x

and

g x

if

any cons t

0
x a

x a

x a

lim

lim

lim

!3=

=

=
"

"

"

Z

[

\

]
]]

]
]]

The validity of this theorem can be demonstrated by examining a set of fractions where the nu-
merator is held constant while the denominator approaches 0:

, , , , , , , , , , .etc
4
2

3
2

2
2

1
2

2
1
2

3
1
2

4
1
2

10
1
2

100
1
2

1000
1
2

As the denominator becomes arbitrarily small, the fractions are increasing without bound; that
is, the limit is infinite.

Sample

Use the theorem for infinite limits to show that

( )x 3
1

x 3

2lim 3
-

=+
"

(from the original example in this section).

lim

( )
( )

( )

x
and

x

because

a

3
1

1 1

3 0

constant

x

x

x

3

2

3

3

2

lim

lim

3
-

=+

=

- =
"

"

"

Z

[

\

]
]]

]
]]

A simpler notation that may be helpful is

( )x 3
1

0
1

x 3

2lim 3
-

= =+
"

c m

Note that (1/0) is enclosed in parentheses. (1/0) is, of course, an undefined expression; it is
used here as a convenient notation for infinite limits. Determining the sign of the answer,

or3 3+ - , requires three steps:

1. Find the sign of the numerator by substitution.

2. Find how the denominator approaches zero, from negative numbers or positive numbers,
by choosing a value from the correct side (if it’s a one-sided limit) and substituting.

3. Apply the usual division rules to your results from the first two steps.
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Sample

Find 
x
x

2
3

x 2

lim -
-

"
+

by applying the theorem for infinite limits.

Because the limit of the numerator is a constant and the limit of the denominator is 0, the limit
of the quotient is !3.

( )

( )

x

x x
x

3 1

2 0 2
3x

x

x

2

2

2

lim

lim
lim& !3

- =-

- = -
-

="

"

"

+

+

+

_

`

a

bb

bb

But is it +∞ or –∞ ? Use the three steps listed above.

1. The sign of the numerator is negative: ( )x 3 1
x 2

lim - =-
"

+

2. Choose x = 3, a number to the right of 2, because that is the indicated direction on the
limit, and substitute this into the denominator. Because 3 – 2 = 1, a positive number, the
denominator approaches 0 from positive values.

3. Applying the division rule

positive
negative

negative=

reveals that the limit is 3- .

Modifying the simplified notation from above, the symbol or0 0
+ - can be used to indicate the

behavior of the denominator:

x
x

2
3

0
1

x 2

lim 3
-
-

=
-

=-
"

+
+

c m

and for the other side of the limit:

x
x

2
3

0
1

x 2

lim 3
-
-

=
-

=+
"

-

-

c m

On a free-response problem, you may have to find the vertical asymptotes of a function and
then use calculus to show, or “justify,’’ that they are truly vertical asymptotes. If so, just show
that the function increases or decreases without bound by demonstrating that the limit is !3:

x = a is a vertical asymptote of the function f(x) ( )f x or
x a or

lim+ 3 3=+ -
"

+ -

Limits at Infinity
An interesting variation on the concept of a limit involves taking the limit as the x-coordinates
increase or decrease without bound, rather than as the x-coordinates approach a specific value.
The best way to interpret this is graphically:
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Figure 2.14

As the x-coordinates increase without bound ( )x " 3+ , the y-coordinates (function values) get
closer and closer to 2, which implies that the limit, or limiting value, of the function is 2. The
function values never actually have to equal 2 for the limit to be 2, as long as they get closer
and closer to 2, as shown in the following chart:

x –1 0 1 2 3 4 10 100 1,000

f(x) –1 0.5 1 1.25 1.4 1.5 1.75 1.97 1.997

From the graph, it should be obvious that as x decreases without bound ( )x " 3- , the function
values approach 2. It should be obvious that horizontal asymptotes are thus also justified by
limits.

y = a is a horizontal asymptote of the function f(x) ( )f x a
x

lim+ =
" ! 3

As with infinite limits, there are two basic methods for finding limits at infinity:

1. Graph the function and look for horizontal asymptotes.

2. Use the theorem on page 84.

Graphing or visualizing the function in order to determine its horizontal asymptotes is probably
the quickest and easiest method for finding limits at infinity. To find the horizontal asymptotes
of a rational function, recall that you need to examine the degree of the numerator and denomi-
nator (see page 41) as shown in the next two examples.

Sample

What is ?
x

x
8 2
3 27

x

2

2

lim
-

-

" 3

d n

y

x

6

4

2

-2-4-6 642
-2

-4

-6

= 2lim 2x + 1
x + 2x     ∞
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degree of numerator = degree of denominator

divide to find asymptote&

&x x y

x

2 8 3 27

3 12

2
3

2
3- + -

-
=-

-

2 2

2

- 15

g is the horizontal asymptote as shown on the graph

Therefore,

Figure 2.15

A shortcut: When the degree of the numerator equals the degree of the denominator, the limit is
equal to the quotient of the leading coefficients of the numerator and denominator. In this ex-
ample, the leading coefficient of the numerator is 3 and that of the denominator is –2, so

x
x

8 2
3 27

2
3

2
3

x

2

2

lim
-

-
=

-
=-

" 3

Sample

What is ?
x

x
4 2

3

x

2lim
-
-

" 3

degree of numerator < degree of denominator

divide to find asymptote&

x x2 4 3
0

- + -2
g

y 0& = (the x-axis) is the horizontal asymptote

Thus

x
x

4 2
3

0
x

2lim
-
-

=
" 3

A shortcut: When the degree of the numerator is less than the degree of the denominator, the 
x-axis is the asymptote, so the limit is always 0.

y

x

6

4

2

-2-4-6 642
-2

-4

-6

= −lim 3x2 − 27
8 − 2x2

3
2x     ∞
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Sample

What is ( )?arctanx
x

lim
" 3

Some horizontal asymptotes should be known, and in these cases you may be able to avoid any
graphing:

( )arctanx
2

x

lim =
r

" 3

A graph will not suffice for justifying limits at infinity or horizontal asymptotes on a free-
response problem. It is necessary to apply the following theorem in that case.

Theorem for Limits at Infinity

x
a

0
x

nlim =
" ! 3

where a = any constant

n = any positive constant

Here are some examples of the application of that theorem.

x
2

0
x

2lim =
" 3- x

4
0

x

lim
-

=
" 3

An appealing reason for the validity of this theorem is found by examining a sequence of frac-
tions where the numerator stays constant and the denominator increases without bound:

, ,
2
1
3

1
3

2
3

4
3

6
3

10
3

100
3

1000
3

1 000 000
3

This series is obviously approaching zero.

The theorem for limits at infinity is very useful when applied in conjunction with a simple rule:
Rewrite the function in a new form by multiplying the numerator and denominator by the frac-
tion x1 h^ hwhere h is the highest power of any term in the function.

Sample

What is ?
x

x x
7 5
3 2

x

2

2

lim
+

-

" 3

The highest power in the function is 2, so multiply the numerator and denominator by x1 2^ h.

( )

( )

x
x

x x
x

x

x

7 5
1

3 2
1

7 5

3 2

x x
2

2

2

2

2

lim lim
+

-

=
+

-

" "3 3

J

L

K
K
KKc

c
N

P

O
O
OOm

m

7 0
0 2

7
2

=
+
-

=
-

88

Part II: Specific Topics

CliffsAP Calculus AB & AC 3rd Edition • 8583 1 Ch02 5 • Jill • 03/16/01 • p 88

8683-1 Ch02.F  3/22/01  7:18 AM  Page 88



In the solution above, notice the theorem is used twice:

x x
and

3
0

5
0

x x

2lim lim= =
" "3 3

A sneaky version of limits at infinity often arises on the AP exam:

Sample

Find 
x
x

2 5
2

x

2

lim -
+

" 3+

and 
x
x

2 5
2

x

2

lim -
+

" 3-

.

For both of these problems, the highest power is actually first degree. But, in order to be able to
simplify the expression, you must multiply the numerator and denominator by x1

2 rather
than x1 .

( )x
x

x

x

x
x

x
x

x
2 5

2
1

1

2 5 1

2

x x

2

2

2

2

2

2

2

lim lim-
+

=
-

+

" "3 3+ +

J

L

K
K

J

L

K
K
K
K

N

P

O
O

N

P

O
O
O
O

( )x x

x
x

x

2 5 1

2

x

2

2

2

lim=
-

+

" 3+

x

x

2
5

1
2

2
1

2
1

x

2

lim=
-

+
= =

" 3+ c m

For the limit as x decreases without bound, all the previous work applies except for the simpli-
fication of the multiplier in the denominator (from the first to the second lines below). For the
limit as x decreases without bound, x is a negative number, so x x

2
=- .

x
x

x
x

x

x
2 5

2
2 5

2
1

1

x x

2 2

2

2

lim lim-
+

=
-
+

" "3 3- -

J

L

K
K

J

L

K
K
K
K

N

P

O
O

N

P

O
O
O
O

( )x x

x
x

x

2 5
1

2

x

2

2

2

lim=
- -

+

" 3- c m

x

x

2
5

1
2

2
1

2
1

x

2

lim=
- +

+
=

-
=-

" 3- c m
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Special Trig Limits
Two special trig limits occur frequently on the AP exam, both in standard forms and with subtle
variations. They are

sin cos
x

x
x

x
and1

1
0

x x0 0

lim lim=
-

=
" "

Both of these limits can be proved in a variety of ways, including L’Hôpital’s rule, which is
covered in the chapter on applications of the derivative. For now, memorize both limits, and
learn how to apply them. Do not try direct substitution of 0 into either function; substituting
yields the indeterminate form 0/0.

Sample

Find .
sin2

0

lim i
i

"i

In order for you to apply the special trig limits directly, the arguments must match. This can be
achieved by multiplying the numerator and denominator by 2.

sin sin2
2
2

2
2

2

1 2 2

0 0

lim lim

$

=

= =

i
i

i
i

" "i i

c cm m

Sample

Find .
cos 1

0

lim
-
a
a

"a

( )
cos cos1 1

1 0 0
0 0

lim lim
-

= -
-

=- =a
a

a
a

" "a a

c m

Continuity
Continuity is an important calculus concept that is closely related to limits. An intuitive under-
standing of continuity is easy. If you can draw a function without having to lift your pencil,
then the function is continuous. Conversely, if you have to lift your pencil for any reason, you
have found a point of discontinuity. Study the graph of the following function and see if you
can identify the points where it is discontinuous.
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Figure 2.16

f(x) is discontinuous at x = –2, –1, 1, and 2.

In many cases, simply examining a graph may be sufficient to determine whether a function is
continuous and to find any points of discontinuity. However, on free-response problems, prov-
ing or justifying continuity (or discontinuity) at a point may be required. You can do this by us-
ing the following three-part definition.

Definition of Continuity at a Point
A function f(x) is said to be continuous at a point x = a if

1. f(a) exists

2. ( )f x
x a

lim
"

exists

3. ( ) ( )f x f a
x a

lim =
"

All three conditions must be true for the function to be continuous at a.

Discontinuities such as those shown in Figure 2.16 at x = –2 (a hole) and x = 1 (a hole with an
“extra” point) are called removable discontinuities. Those at x = –1 (an asymptote) and x = 2
(a break or skip) are called nonremovable discontinuities.

Sample

Use the definition of continuity to prove that f(x) as graphed in Figure 2.16 is
discontinuous at x = –2, –1, 1, and 2.

In order to show that a function is discontinuous at a point, show that at least one of the three
parts of the definition of continuity is not satisfied. It is not necessary (nor is it always possible)
to show that all three parts of the definition are not satisfied.

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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At x = –2 f(–2) does not exist (hole) discontinuous

At x = –1 f(–1) does not exist (asymptote) discontinuous

or
1

( )f x
x

lim
" -

does not exist discontinuous

At x = 1 
( )

( ) ( ) ( )

f

f x f x f

1 2

1 1

x
x

1
1

lim lim& !

=

=
"

"

_

`

a

bb

b
discontinuous

At x = 2
( )f x

( )

( )

f x

f x

0

1
x

x

x
2

2

2

lim

lim

lim
&

=

=
"

"

"

-

+
does not exist

_

`

a

bb

bb

discontinuous

Continuity on an interval is defined by considering the interval to be a group of points and 
applying the definition of continuity at a point to each point in the interval.

Definition of Continuity on an Open Interval
f(x) is continuous on the interval (a, b) if f(x) is continuous for every point c where ( , )c a b! .

Definition of Continuity on a Closed Interval
For closed intervals, a slight modification of this definition is required in order to ensure conti-
nuity at the two endpoints. f(x) is continuous on the interval [a, b] if

1. f(x) is continuous for every point c where ( , )c a b!

2. ( ) ( )f x f a
x a

lim =
"

+

3. ( ) ( )f x f b
x b

lim =
"

-

Justifying continuity often arises in the context of piece functions. One type of problem com-
monly found on the AP exam requires that you determine a value of a variable to guarantee
continuity of a piece function and then justify the answer by applying the definition. This is 
illustrated in the next example.

Sample

Let f be defined as follows:

( ) < <f x

x x

ax b x

x x

for

for

for

3 2

2 1

1
2

#

$

=

- - -

+ -

Z

[

\

]
]

]]

Find a and b such that the function is continuous. Justify your answer using the definition
of continuity.
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If this problem were to appear as a multiple-choice question, it would simply be a matter of
forcing the line y = ax + b to contain the points (–2, –1) and (1, 1).

( , ) ( , )

( ) ( ( ))/

m

y x

y x

and

point slope form

2 1 1 1
2 1
1 1

3
2

1
3
2

2

3
2

3
1

&

&

- - =
- -
- -

=

- - = - -

= +

Therefore, .a band
3
2

3
1

= =

But if this is a free-response question, you must now justify this choice of a and b via the defin-
ition of continuity. f(x) is now

( ) < <f x

x x

x x

x x

for

for

for

3 2

3
1

2 1

1
3
2

2

#

$

=

- - -

+ -

Z

[

\

]
]

]]

Thus, at x = –2

1. f(–2) = –1, so f(–2) exists

( ) ( )

( )

( )

( ) ( )

.

.

f x x

f x x

f x

f x f

so a exists

3 1

3
2

3
1

1

1

2 1

2

3

limit

x x

x x

x

x

2 2

2 2

2

2

lim lim

lim lim

lim

lim

&

= - - =-

= + =-

=-

= - =-

" "

" "

"

"

- -

- + - +

-

-

- -

c m

_

`

a

b
b

bb

Therefore, f(x) is continuous at x = –2, since all three parts of the definition are satisfied.

Now, at x = 1,

1. f(1) = 1, so f(1) exists

2.
( ) ( )

( ) ( )

( )f x x

f x x

f x

so a exists

3
2

3
1

1

1

1

limit

x x

x x

x
1 1

1 1

2 1

lim lim

lim lim

lim
&

= + =

= =

=
" "

" "

"

- -

+ +

_

`

a

b
b

bb

3. ( ) ( )f x f 1 1
x 1

lim = =
"

Therefore, f(x) is continous at x = 1.
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1. What is ?
x
x

2
8

x 2

3

lim -
-

"
+

A. 0

B. 12

C. +∞

D. –∞

E. none of these

2. Let f be defined as follows:

( )
>

f x
x x

x x

for

for

12 3 3

15 3

#
=

-

-
*

What is ( )?f x
x 3

lim
"

+

A. 3

B. 12

C. 15

D. 21

E. The limit does not exist.

3. What is ?
x

x
3

7

x 4

3lim -
"

A. 1

B. 73

C. 3

D. 283

E. The limit does not exist.

4. Find x
x 1 2

lim
"

(where indicates the 

greatest-integer function).

A. 0

B.
2
1

C. 1

D. 2

E. The limit does not exist.

5. What is ?
x

x

2 5

3

x

lim
+

-

" 3

A.
2
1

-

B.
5
1

-

C.
5
3

D.
2
3

E. undefined
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6. What is ?
x
x

3 2
2 1

x

lim +
-

" 3

A. 3+

B. 3-

C.
3
1

D.
3
2

E. 1

7. What is 
,

?
x x

x
10 000
4

x

2

2

lim
+

" 3

A. 0

B.
2500

1

C. 1

D. 4

E. The limit does not exist.

8. Which of the following statements is or
are true?

I. ( )x x2 1 7
x 2

2
lim + - =
"

II.
x x
x x

12
5 6

7
1

x 3

2

2

lim
- -
+ +

=
" -

III.
x
x

9
3

x 9

lim !3
-

-
=

"

A. I and II only

B. I and III only

C. II and III only

D. III only

E. I, II, and III

9. What is ?
x 2

5

x 2

lim -
"

-

A. 0

B.
4
5

-

C. 3+

D. 3-

E. none of these

10. What is ?
x

x
4

2

x 2

2lim
-

"
+

A.
2
1-

B. 0

C. 2

D. 3+

E. 3-

11. What is ?
tan

x
x

2
x 0

lim
"

A. 0

B.
2
1

C. 1

D. 2

E. undefined

12. What is ?
cos 1

0

lim
-

z
z

"z

A. –1

B. 0

C. 1

D. 3

E. none of these

13. Which of the following is NOT
necessary to establish in order to show
that a function f(x) is continuous at the
point x = c?

A. f(c) exists

B. domain of f(x) is all real numbers

C. ( ) ( )f x f c
x c

lim =
"

D. ( )f x
x c

lim
"

exists

E. All of these are necessary.
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14. Let f be defined as follows:

( )f x x
x

for

for
1
1

4

2

= -
-

x 1=

x 1!
*

Which of the following statements
is or are true?

I. ( )f x
x 1

lim
"

exists

II. f(1) exists

III. f(x) is continuous at x = 1

A. I only

B. II only

C. I and II only

D. I and III only

E. I, II, and III

15. Determine a value of k such that f(x) is
continuous, where

>xfor 2
( )f x

kx

x k

3 5

4 5
=

-

- xfor 2#
*

A. 1

B.
11
13

C.
11
3

D.
11

3-

E. 3-

16. Find the value of k such that the
following function is continuous for all
real numbers.

( )f x
kx

kx

for1
2

=
-

for

<x 2

x 2$
*

A. 1

B.
2
1

C.
6
1

-

D.
2
1

-

E. none of these

17. The function ( )f x
x

x x
4

5 6
2

2

=
-

+ + has

A. only a removable discontinuity at 
x = –2

B. only a removable discontinuity at 
x = 2

C. a removable discontinuity at x = –2
and a nonremovable discontinuity
at x = 2

D. removable discontinuities at x = –2
and x = –3

E. nonremovable discontinuities at 
x = 2 and x = –3
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Answers to Multiple-Choice Questions

1. B. ( )( )
x
x

x
x x x

2
8

2
2 2 4

x x2

3

2

2

lim lim-
-

=
-

- + +

" "
+ +

( )x x2 4 12
x 2

2
lim= + + =
"

+

2. B. The problem asks for the limit from the right, so use the part of the piece function
where, x > 3 — .,y xthat is 15= -

( ) ( )f x x15 12
x x3 3

lim lim= - =
" "

+ +

3. D. y
x

x
3

7
3=

-
is discontinuous only at x = 3, so just substitute:

( )
x

x
3

7
4 3
7 4

28
x 4

3 3 3lim=
-

=
-

=
"

4. A. The greatest-integer function is :x x " greatest integer less than or equal to x. It looks
like this:

5. A.
x

x

x

x

x

x

2 5

3

2 5

3
1

1

x x

lim lim
+

-
=

+

-

" "3 3

J

L

K
K

J

L

K
K
K
K

N

P

O
O

N

P

O
O
O
O

x

x

2 5

3 1

2 0
0 1

2
1

x

lim=
+

-

=
+
-

=
-

" 3

6. D.
x
x

x
x

x

x
3 2
2 1

3 2
2 1

1

1

x x

lim lim+
-

=
+
-

" "3 3

J

L

K
K
K

c

N

P

O
O
O

m

x

x

3 2

2 1

3 0
2 0

3
2

x

lim=
+

-
=

+
-

=
" 3

y

x

3

2

1

-1-2-3 321
-1

-2

-3

x   1/2
lim x = 0
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7. D.
, ,x x

x
x x

x

x

x
10 000
4

10 000
4

1

1

x x

2

2

2

2

2

2

lim lim
+

=
+

" "3 3

e o

,
x1

10 000
4

1 0
4

4
x

lim=
+

=
+

=
" 3

8. A. Examine each statement individually:

I. ( )x x2 1 2 2 2 1 7
x 2

lim + - = + - =
"

2 2
^ h , so I is true.

II. 
( )( )
( )( )

x x
x x

x x
x x

12
5 6

4 3
2 3

x x3

2

2

3

lim lim
- -
+ +

=
- +
+ +

" "- -

x
x

4
2

7
1

7
1

x 3

lim=
-
+

=
-
-

=
" -

, so II is true.

III. 
x
x

x
x

x

x
9

3
9

3

3

3

x x9 9

lim lim-
-

=
-

-

+

+

" "

J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O

= 
( )( )x x

x

9 3

9

x 9

lim
- +

-

"

x3

1
6
1

x 9

lim=
+

=
"

, so III is false.

9. D.
x 2

5
0
5

x 2

lim 3
-

= =-
"

-

-

c m

10. D.
x

x
4

2
0
4

x 2

2lim 3
-

= =+
"

+
+

c m

11. B.

( ) ( )

tan sin
cosx

x
x

x
x2 2

1 1

1
2
1

1
2
1

x x0 0

lim lim=

= =

" "

c c c

c

m m m

m

12. B.
( )

( )( )
cos cos1 1 1

1 0 0
0 0

lim lim
-

=
- -

= - =
z
z

z
z

" "z z

13. B. The definition of continuity at a point is made up of A, C, and D, so all three are
necessary. Because the problem requires continuity only at a point, not on the set of real
numbers, the domain does not need to be the real numbers.
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14. C. The first part of the function can be simplified:

( )( )
,

x
x

x
x x

x
1
1

1
1 1

1
2

-
-

=
-

+ -
= + x 1!

Now ( )f x
x xfor1 1

4

!
=

+

xfor 1=
*

which is graphed below.

Statement I is true because ( )lim f x 2
x 1

=
"

.

Statement II is also true, because the second part of the piece function yields f(1) = 4.

Statement III is false. For f(x) to be continuous at 1, ( )lim f x
x 1"

must equal f(1).

15. B. The function needs to “hook up” at x = 2.

( )f x
kx3 5

=
- for

x k4 5-

>x 2

for x 1#
*

For the left piece: ( ) ( )

( ) ( )

f k k

f k k

2 3 2 5 6 5

2 4 2 5 8 5

= - = -

= - = -
4

For the right piece:

k k6 5 8 5

11
13

& - = -

k11 13=

k =

for continuity

y

x

6

4

2

-2-4-6 642
-2

-4

-6
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16. D. The function needs to “hook up” at x = 2.

( )
<

f x
kx x

kx x

for

for

1 2

2
2

$
=

-
*

For the left piece: ( ) ( )

( ) ( )

f k k

f k k

2 2 1 2 1

2 2 4
2

= - = -

= =
4

For the right piece:

k k

k

k

2 1 4

2 1

2
1

& - =

- =

=
-

for continuity

17. C. ( )
( )( )
( )( )

,f x
x

x x
x x
x x

x
x

x
4

5 6
2 2
2 3

2
3

22

2

!=
-

+ +
=

+ -
+ +

=
-
+

-

f(x) is a rational function with a hole at ,2
4
1

-
-

c m and an asymptote at x = 2. Therefore,
there is a removable discontinuity at x = –2 and a nonremovable discontinuity at x = 2.

Sample Free-Response Questions: 
Limits and Continuity

1. Let f be defined as follows:

( ) < <

ln

f x

x

ax b x

x

for

2 1

2 1
2

+

+ -

xfor 2# -

for x 1$

Z

[

\

]
]

]]

Find values for a and b such that the function is continuous and use the definition of
continuity to justify your answer.

2. Consider the function ( )f x
x x
x x

9
2

3

2

=
-
- on the interval [–5, 5].

A. Give any zeros of f(x).

B. Give equations of all asymptotes. Justify your answer.

C. List all points where f(x) is discontinuous. Use the definition of continuity to justify
your answer.

D. Sketch f(x).
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Answers to Free-Response Questions

1. First, find a and b. The function must contain the points (–2, –3) and (1, 0) because these
are the “ends” of the known pieces. A quick sketch may help.
( , )

( , )

y ax b a b

y ax b a b

on

on

2 3 3 4

1 0 0

2

2

&

&

- - = + - = +

= + = +

,

a

a b y xso

3 3

1 1 1
2

&

- =

- = = =- + for continuity

Thus ( ) < <

ln

f x

x

x x

x

for

2 1

1 2 1
2

=

+

- + -

xfor 2#

xfor 1$

Z

[

\

]
]

]]

Now show that these values for a and b imply continuity by using the definition.

Justification by using the definition of continuity:

f(x) is continuous at x = a if:

1. ( ) ,f a exists

2. ( ) ,f x exists and
x a

lim
"

3. ( ) ( )f x f a
x a

lim =
"

At x = –2: f(–2) = –3

( ) ( )

( ) ( )
( )

f x x

f x x
f x

2 1 3

1 3
3x x

x x

x

2 2

2 2

2

2

lim lim

lim lim
lim&

= + =-

= - + =-
=-" "

" "

"

- -

- -

-

- -

+ +

_

`

a

bb

bb

lim f(x) = f(–2) = –3
x " –2

y = In x

y = ax2 + b 

y = 2x + 1 

(1, 0)

(−2, −3)

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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Therefore, f(x) is continuous by definition at x = –2 for a = –1 and b = 1.

At x = 1: f(1) = 0

( ) ( )

( ) ( )
( )

lnf x x

f x x
f x

0

1 0
0x x

x x

x

1 1

1 1

2

1

lim lim

lim lim
lim&

= =

= - + =
=" "

" "

"

+ +

- -

_

`

a

bb

bb

( ) ( )f x f 1 0
x 1

lim = =
"

Therefore, f(x) is continuous by definition at x = 1 for a = –1 and b = 1.

2. Always begin by simplifying.

( )
( )

( )
f x

x x
x x

x x

x x

x
x

x
9
2

9

2

9
2

03

2

2 2 !=
-
-

=
-

-
=

-
-

Therefore, ( )
( )( )

f x
x x

x
x

3 3
2

0!=
+ -

-

(a) For zeros, set the numerator equal to zero.

x – 2 = 0

x = 2, so (2, 0) is the only zero

(b) For vertical asymptotes, set the denominator equal to zero.

(x + 3)(x – 3) = 0

So x = –3 and x = 3 are the vertical asymptotes.

To justify the vertical asymptotes, show ( ) ( ) .lim limf x f xor
x a x a

! !3 3= =
" " -+

For x = –3:
x
x

9
2

0
5

x 3

2lim 3
-
-

=
-

=+
" -

-

+

c m

For x = 3:
x
x

9
2

0
1

x 3

2lim 3
-
-

= =-
"

-

-

c m

For the horizontal asymptote, recall that

degree of numerator < degree of denominator

x axis is asymptote& -
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Therefore, y = 0 is the horizontal asymptote.

To justify the horizontal asymptote, show ( ) ( ) .lim limf x a f x aor
x x

= =
" "3 3+ -

x
x

x
x

x

x
9
2

9
2

1

1

x x

2 2

2

2

lim lim
-
-

=
-
-

" "3 3+ +

J

L

K
K
KK

c

N

P

O
O
OO

m

x

x x

1 9

1 2

1 0
0 0

0
x 2

2

lim=
-

-
=

-
-

=
" 3+

(c) f(x) is discontinuous at x = –3, 0, and 3.

Justification by using the definition of continuity:

f(x) is continuous at x = a if:

1. f(a) exists,

2. ( ) ,f x exists and
x a

lim
"

3. ( ) ( )f x f a
x a

lim =
"

At x = –3:

( )

( ) ,

f

f x

x

x

does not exist

or

does not exist

because there is a vertical

asymptote at

discontinuous at

3

3

3
x 3

lim &

-

=-

=-
" -

_

`

a

b
b
b
b

b
b
bb

At x = 0:

( )f xdoes not exist discontinuous at0 0& =

At x = 3:

( )

( ) ,

f

f x

x

x

does not exist

or

does not exist

because there is a vertical

asymptote at

discontinuous at

3

3

3
x 3

lim &

=

=
"

_

`

a

b
b
b
b

b
b
bb
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(d) Sketch. Don’t forget the hole at ,0
9
2

c m that results from the cancellation.

y

x

3

2

1

-1-2-3-4-5 321 54
-1

-2

-3

hole
(0,   )2

9
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105

Derivatives

Calculus can be divided into two main branches: differential calculus and integral calculus,
each based on a different major concept. The first of these is the concept of the derivative. In
general terms, the derivative can be thought of as the instantaneous rate of change of one vari-
able with respect to another variable. For the AP exam, you should know the limit definition of
the derivative as well as the rules for finding the derivatives of polynomials, rational functions,
the trig and inverse trig functions, and logarithmic and exponential functions. Two proofs of
differentiation rules are also listed on the AP outline.

Definition of the Derivative
Differential calculus relies on the definition of the derivative. This definition can appear in two
basic forms, both of which involve limits. The definition of the derivative will appear in some
context on the AP exam; be sure to know both forms.

The derivative of a function f(x), indicated by ( )f xl , is given by

( )
( ) ( )

f x
f x x f x

∆
∆

x∆ 0

lim=
+ -

"

l if the limit exists

The derivative of f(x) at a particular point x = c is given by

( )
( ) ( )

f c x c
f x f c

x c

lim= -
-

"

l if the limit exists

One easy way to get a firm grip on the definition of the derivative is through the context of
slope. In precalculus math, the slope of a line is defined as the ratio of the vertical change to
the horizontal change, or sometimes the ratio of rise to run:

m
x
y

slope of a line
horizontal change
vertical change

run
rise

∆
∆

= = = =

Figure 3.1

∆y

∆x

y

x
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In calculus, the slope of a curve at any point is defined as the slope of the line tangent to the
curve at that point.

Figure 3.2

To find mathematically the value of the slope of the tangent line at a point T, examine a series
of secant lines that contain T, shown in Figure 3.3 as lines h, j, k, and l, intersecting the curve
f(x) at points , , , ,P P P Pand1 2 3 4 respectively.

Figure 3.3

The numerical values of the slopes of the secant lines are getting closer and closer to that of the
slope of the tangent line. In the language of limits, this idea can be expressed as follows:

( )slope of line slopes of linestangent secant
P T

lim=
"

This informal limit is being taken as P approaches T — that is, as the second point of intersection
gets closer to the first point of intersection. More formally, if point T has coordinates (c, f(c)) and
point P has coordinates (x, f(x)), as shown in Figure 3.4, the informal limit changes to

( )slope of tangent line slopes of secant lines
P T

lim=
"

x
y

∆
∆

slope of tangent line
x c

lim=
"

( ) ( )
( )x c

f x f c
f cslope of tangent line

x c

lim= -
-

=
"

l

The third of these three equations is the definition of the derivative of f(x) at x = c.

y

x

tangent

T

lP4
P3

P2
P1

k
j

h

f(x)

y

x

T

tangent f(x)
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Figure 3.4

The first form of the definition of derivative can be found by means of a simple change in nota-
tion. If point T has coordinates (x, f(x)), and point P has an x-coordinate that is x∆ units to the
right of T, then P has coordinates ( , ( ))x x f x x∆ ∆+ + , as shown in Figure 3.5.

Figure 3.5

Now the slope becomes

( ) ( )
x
y

x
f x x f x

∆
∆

∆
∆

x c x∆ 0

lim lim=
+ -

" "

Several different notations are used to indicate the derivative.

derivative of ( ): ( ) ( ( )) ( )f x f x
dx
dy

dx
d

f x D y D f xx x= = = =l

And, for the derivative of a function at a point,

derivative of ( ) ( )f x x c f c
dx
dy

at
x c

&= =
=

l

The general derivative, ( )f c dy dxorl , results in a function of x, whereas the derivative at a
point,

( )f c
dx
dy

or
x c=

l

results in a constant number. The notation above can be modified to fit functions with different
independent variables. For example, for the function ( )s t t t5 3

3
= - , the derivative at t = 3 would

be indicated as

( )s
dt
ds

or3
t 3=

l

T (x, f(x))

P (x + ∆x, f(x + ∆x))

x x + ∆x

y

x

tangent

∆x

y

x

T (c, f(c))

P (x, f(x))

x − c

f(x) − f(c)

f(x)
xc

tangent

secant
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Sample

Find the derivative of ( )f x x2 3
2

= + at the point where x = 3, and then use it to find the
slope of the curve at this point.

( ) ( ) ( ) ( )
x c

f x f c
x

f x f
3

3

x c x 3

lim lim-
-

=
-
-

" "

( ) ( ( ) )
x

x
3

2 3 2 3 3

x 3

2 2

lim=
-

+ - +

"

x
x

3
2 3 21

x 3

2

lim=
-

+ -

"

x
x

3
2 18

x 3

2

lim=
-
-

"

( )
x
x

3
2 9

x 3

2

lim=
-
-

"

( )
( )( )

x
x x

3
2 3 3

x 3

lim=
-

+ -

"

( )x2 3 12
x 3

lim= + =
"

Therefore, ( ) .f xthe slope of the curve at is3 12 3 12&= =l

Sample

Find the general derivative of ( )f x x x5 3
2

= - , and then use it to find the slope of the line
tangent to f(x) at x = 4.

x
f x x f x

x

x x x x x x

∆
∆

∆
∆ ∆5 3 5 3

x x∆ ∆0 0

2 2

lim lim
+ -

=
+ - + - -

" "

^ ^ ^ ^ `h h h h j8 B

( ) ( )

x

x x x x x x x x

∆
∆ ∆ ∆5 5 3 6 3 5 3

x∆ 0

2 2 2

lim=
+ - - - - +

"

8 B

( ) ( )
x

x x x x
∆

∆ ∆ ∆5 6 3

x∆ 0

2

lim=
- -

"

( ( ))x x x∆5 6 3 5 6
x∆ 0

lim= - - = -
"

Therefore, ( ) .f x x5 6= -l
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This expression gives the value of the derivative at any point x. For the slope of the tangent
( ) , ( )m x fat find4 4t = l .

( ) ( )f mso4 5 6 4 19 19t= - =- =-l

Finding the slope of the tangent line or the slope of the curve at a point is just one of many,
many applications of the derivative. The next chapter in this book covers all the different appli-
cations you are likely to encounter on the AP exam. However, all of these derivative applica-
tions can be generalized into a verbal definition of the derivative: The derivative gives the
instantaneous rate of change of one variable with respect to another variable.

Differentiation Rules
Differentiating functions by using the definition is generally time-consuming and tedious.
Fortunately, the definition can be used to derive many basic rules for differentiating various
types of functions, and these roles are much simpler to apply. Only two of the derivations are
listed as potential material on the outline that the College Board provides: ( )/d x dx nx

n n 1
=

- ,
for n a positive integer, and ( )/sin cosd x dx x= . These two derivations are given here; the rest
of the differentiation rules are explained through examples.

The first three differentiation rules are straightforward and appealing.

Constant Rule
Given that c is a constant, ( )

dx
d

c 0=

Translation: The derivative of any constant number is zero.

Example: ( ) ( ) ( )f x f x
dx
d

or6 0 6 0&= = =l

Constant Multiple Rule
( ( )) ( ( ))

dx
d

cf x c
dx
d

f x=

Translation: You may factor out constants before doing the derivative.

Example: ( )y x
dx
dy

dx
d

x5 5 5&= = =
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Sum and Difference Rule
( ( ) ( )) ( ( )) ( ( ))

dx
d

f x g x
dx
d

f x
dx
d

g x! !=

Translation: The derivative of a sum or difference is the sum or difference of the individual 
derivatives.

Example: ( ) ( )y x x y
dx
d

x
dx
d

x x2 2 2 2
2 2

&= + = + = +l

Power Rule
The power rule is one of the most frequently used differentiation rules. The simplest form of
the power rule is one of the required proofs.

If n is any rational number, then ( )
dx
d

x nx
n n 1

=
- .

Translation: To find the derivative of a power, the exponent becomes the coefficient. The new
exponent is 1 less than the old exponent.

Proof of the Power Rule
Although the theorem holds for any rational number, the following proof deals only with the
case where n is an integer.

( )
( )

dx
d

x
x

x x x
∆

∆n

x

n n

∆ 0

lim=
+ -

"

Expand by the binomial theorem.

( )
( )

( ) ( )

x

x nx x
n n

x x x x

∆

∆ ∆ ∆
2

1

x

n n n n n

∆ 0

1 2 2

lim

g

=

+ +
-

+ + -

"

- -
d n

Simplify.

( )
( )

( ) ( )

x

nx x
n n

x x x

∆

∆ ∆ ∆
2

1

x

n n n

∆ 0

1 2 2

lim

g

=

+
-

+ +

"

- -
d n

Cancel the x∆ .

( )
( ) ( )nx

n n
x x x∆ ∆

2
1

x

n n n

∆ 0

1 2 1
lim g= +

-
+ +

"

- - -
de n o

nx
n 1

=
- which was to be shown
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The final limit results in only one term, because all the other terms have at least one factor of
x∆ in them and thus become 0 when the limit is taken.

This derivation could potentially show up as a free-response problem.

Sample

Find ( )
dx
d

x x x3 2 8 3
2 5
- + - .

You need to apply all the rules of differentiation here.

( ) ( ) ( ) ( ) ( )
dx
d

x x x
dx
d

x
dx
d

x
dx
d

x
dx
d

3 2 8 3 3 2 8 3
2 5 2 5
- + - = - + -

( ) ( ) ( )x x x3 2 2 5 8 1 0
1 4 0

= - + -

x x6 10 8
4

= - +

Usually, the second and third steps above are done mentally and not written down.

Sample

For ( ) , ( ).f x x
x

x ffind6
5

6 13 4= - + - l

First, rewrite the radicals as rational exponents; then proceed as above.

( ) ( )f x x
x

x f x x x x6
5

6 13 6 5 6 13
/ /1 2 1 2

&= - + - = - + -
-

( ) ( ) ( ) ( )f x x x x6
2
1

5
2
1

6 1 0
/ /1 2 3 2 0

& = -
-

+ -
- -l

x x
3

2
5

6/ /1 2 3 2= + +

( )
( )

f 4
4
3

2 4
5

6/ /1 2 3 2& = + +l

.
2
3

16
5

6 7
16
13

16
125

7 8125= + + = = =
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Trigonometric Rules
( )sin cos

dx
d

x x=

( )cos sin
dx
d

x x=-

( )tan sec
dx
d

x x
2

=

( )sec sec tan
dx
d

x x x=

( )csc csc cot
dx
d

x x x=-

( )cot csc
dx
d

x x
2

=-

The proof of the derivative of sin x is not specifically listed on the AP outline. The derivation of
the derivative of cos x is very similar to the one for sin x. The proofs for the other four trig rules
use the derivatives of sin x and cos x and the quotient rule that follows.

Prove: ( )sin cos
dx
d

x x=

Proof: ( )
( )

sin
sin sin

dx
d

x
x

x x x
∆
∆

x∆ 0

lim=
+ -

"

( ) ( )sin cos cos sin sin
x

x x x x x
∆

∆ ∆
x∆ 0

lim=
+ -

"

( ) [ ( ) ]cos sin sin cos sin
x

x x x x x
∆

∆ ∆
x∆ 0

lim=
+ -

"

( ) ( )
cos

sin
sin

cos
x

x
x

x
x
x

∆
∆

∆
∆ 1

x∆ 0

lim= +
-

"

< F

By the special trig limits:

( )( ) ( )( )cos sinx x1 0= +

= cos x which was to be shown

Product Rule
If ( ) ( ) ( ), ( ) ( ) ( ) ( ) ( )f x g x h x f x g x h x h x g xthen= = +l l l .

Translation: The derivative of a product of two functions equals (first)(derivative of the second)
+ (second)(derivative of the first)
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Quotient Rule
If ( )

( )
( )

, ( )f x
h x
g x

h xwhere 0!= , then

( )
[ ( )]

( ) ( ) ( ) ( )
f x

h x

h x g x g x h x
2=

-
l

l l

Translation: The derivative of a quotient of two functions equals

( )

( )( ) ( )( )

bottom

bottom derivative of the top top derivative of the bottom
2

-

To date, the proofs of these two rules have not been listed on the outline for the AP exam.
However, it may be worthwhile to look at examples of problems done two ways, first without
the use of the rules and then with them, to verify their validity.

First, for the product rule, find the derivative of the function ( ) ( )( )f x x x4 3
2 5

= . Obviously, this
function can first be simplified, and the derivative taken with the power rule.

( ) ( )( ) ( )f x x x f x x4 3 12
2 5 7

&= =

( ) ( )f x x x12 7 84
6 6

& = =l

This is the logical method to use if presented with such a problem. Now, without simplifying,
use the product rule to find the derivative.

( ) ( )( )f x x x4 3
2 5

=

( ) ( )( ) ( )( )f x x x x x4 15 3 8
2 4 5

= +l

x x x60 24 84
6 6 6

= + = which is the same result as above

Second, for the quotient rule, find ( )f xl for the function ( )f x x x12 2
5 3

= .

Again, simplifying first gives

( ) ( )f x
x
x

x f x x
2
12

6 123

5
2
&= = =l

And applying the quotient rule with the original version yields

( ) ( )
( )

( )( ) ( )( )
f x

x
x

f x
x

x x x x

2
12

2

2 60 12 6
3

5

3 2

3 4 5 2

&= =
-l

x
x x
4

120 72
6

7 7

=
-

x
x

x
4
48

126

7

= = which is the same result as above

Although these two examples are by no means valid as proofs of the product and quotient rules,
they do serve as convincing evidence of the validity of both techniques. With many problems, it
may be impossible to simplify first, and use of the product or quotient rules will be required, as
in the next example.
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Sample

For ( ) , ( ).sinf x x x ffind3
2

= rl

It may help to put parentheses around the first function and the second function before 
differentiating.

( ) ( )( )sin sinf x x x x x3 3
2 2

= =

( ) ( )( ) ( )( )cos sinf x x x x x3 6
2

= +l

( ) ( ) ( ) ( )cos sinf 3 6
2

= +r r r r rl

( ) ( )3 1 0 6
2

= - +r r

3
2

=- r

A variation on this approach is to factor out a 3 to begin with and then choose the first and sec-
ond functions.

( ) [ ]sin sinf x x x x x3 3
2 2

= = ` ^j h

( ) [( )( ) ( )( )]cos sinf x x x x x3 2
2

= +l

( )( ) ( )( )cos sinx x x x3 6
2

= + which is the same as ( )f xl above

Sample

Find .tandt
d

t
t2

J

L

K
K

N

P

O
O

First rewrite the numerator with a rational exponent. Then apply the quotient rule.

tan tandt
d

t
t

dt
d

t
t2 2

/1 2

=
J

L

K
K d

N

P

O
O n

tan

tan sec

t

t t t t2 2
/ /

2

2
1 1 2 1 2 2

:
=

-
-

^

^ ` ` `

h

h j j j

tan

tan sec

t

t
t t t

t

t

1 2

2

2

=

- J

L

K
K

N

P

O
O

tan

tan sec

t t

t t t2
2

2

=
-

This answer could be rewritten in other forms by using trig identities.

114

Part II: Specific Topics

CliffsAP Calculus AB & BC 2nd Edition • 8683 1 Ch03 4 • Jill • 03/14/01 • p 114

8683-1 Ch03.F  3/22/01  7:22 AM  Page 114



cos
sin

cos
sin

cos

cos
cos

t t
t

t
t

t t

t
t

2
1

2

2

2

2

=
-

c

c c

d

m

m m

n

sin

sin cos

t t

t t t2
2

=
-

Some students try to avoid the quotient rule by rewriting quotients as products with negative
exponents. This is a perfectly valid technique to use.

Sample

Find tandt
d

t
t2

J

L

K
K

N

P

O
Oby using the product rule.

[( )( ) ]tan tan
dt
d

t
t

dt
d

t t
2

2
1

=
-

J

L

K
K

N

P

O
O

cot
dt
d

t t2=
/1 2

^ ^h h8 B

2
csc cott t t t2 2

/

2
1 1 2

:= - +
-/1 2

^ ^ ^ `h h h j

2
csc cott t t t2

/ /1 2 1 2
=- +

-

2
csc cott t t t2

/1 2
= - +

-
6 @

2sin sin
cos

t
t
t

t
t2/1 2

=
-

+
-
; E

2sin
sin cos

t
t

t t t2/1 2
=

- +-
; E

sin

sin cos

t t

t t t2
2

=
- which is the same result as above

The Chain Rule
Many functions have arguments that are in themselves functions, such as

( ) ( )sin lny x y xor2 3
2

= =

To differentiate composite functions such as these requires the use of the chain rule.
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Chain Rule
[ ( ( ))] ( ( )) ( )

dx
d

f g x f g x g x= l l

Translation: To find the derivative of a composite function, take the derivative of the exterior
function, retaining the interior function inside this derivative, and then multiply by the deriva-
tive of the interior function.

Although the proof of the chain rule is not required for the AP exam, an example of a problem
that can be differentiated both with and without the chain rule may help convince you that it 
really works. Say you are given ( )y x3

2 4
= , and asked to find dy/dx. First, simplify and apply

the power rule.

( )y x y x3 81
2 4 8
&= =

y x648
7

& =l

Now, without simplifying, apply the chain rule to find the derivative. Identify the interior and
exterior functions by writing it as a composition.

( ) ( ) ( ( )) ( )f x x g x x f g x xand 3 3
4 2 2 4

&= = =

( ) ( )f x x g x x4 6
3

& = =l l

Thus ( ( )) ( ) ( )( )f g x g x f x x3 6
2

=l l l

( ) ( )x x4 3 6
2 3

=

( )x x x4 27 6 648
6 7

= = which is the same result as above

When doing a problem with the chain rule, it is usually too much work to actually write out the
individual functions and their derivatives. More typically, the solution appears this way:

( )y x3
2 4 2 3
&= ( ) ( )y x x4 3 6=l

( )x x x4 27 6 648
6 7

= =

Simplifying first may be impossible or impractical, and you may be required to use the chain
rule, as in the next example.

Sample

For ( ), .siny x
dx
dy

find4 3
x

=
= r

Identify the exterior and interior functions, either mentally or by writing out the composition.

( ) ( ( )) ( )

( )

( )

( )

sin siny x f g x f x x

g x x

where exterior function

and interior function

4 3 4

3

= = =

=
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( )( )cos
dx
dy

x4 3 3& =

( )cos x12 3=

( ) ( )cos
dx
dy

12 3 12 1 12
x

& = = - =-r
= r

Sample

For ( ) , ( ).f x x x x ffind3 2 10 1
4 2

= + l

First rewrite f(x) with a fractional exponent, and then use the product rule, along with the chain
rule. The chain rule portion of the derivative is underlined.

( )f x x x x x x x3 2 10 3 2 10
4 2 4 2 1 2= + = +` j

( )f x x x x x x x x3 2 10 4 10 2 10 122
1 2 1 2 1 2= + + + +-4 2 3l ^ ` ` ^ ^h j j h h9 C

x x x x x x x3 2 10 2 5 12 2 10
2 1 2 1 2= + + + +-4 3 2

` ^ ^j h h

Because the question asks for the derivative at a specific point, it is probably easier to substitute
now, rather than spending a great deal of time simplifying the general derivative.

( ) ( )f 1 3
12

1
7 12 12

2 3

21
24 3

6
21 3

24 3= + = + = +l

6
165 3

2
55 3

= =

You should be aware of the forms in which multiple-choice answers typically appear on the AP
exam. In the foregoing problem, the general derivative ( )f xl would probably have appeared in
factored form, where one term is a polynomial with integral coefficients:

( )f x x x x x x x x3 2 10 2 5 12 2 10
2 1 2 1 2= + + + +-4 3 2l ` ^ ^j h h

x x x x x x x3 2 10 2 5 4 2 10
2 1 2= + + + +-3 2

` ^ ^j h h9 8C B

x x x x x3 2 10 10 45
2 1 2= + +-3 2

` j9 6C @

( ) ( )

x x

x x x

x x

x x

2 10

15 2 9

2 10

15 2 9
2

3 2

2

4

=
+

+
=

+

+

The chain rule is sometimes also written in a different notation, which is useful for listing dif-
ferentiation rules for composite functions.

Alternative Form of the Chain Rule

dx
dy

dx
dy

dx
du

= d cn m where y is a differentiable function of u and u is a differentiable function of x

This results in new forms of the familiar differentiation rules.
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Power Rule with Chain
If u is a differentiable function of x, then ( ) .

dx
d

u nu
dx
dun n 1

=
-

Trig Rules with Chain
( )sin cos

dx
d

u u
dx
du

=

( )cos sin
dx
d

u u
dx
du

=-

( )tan sec
dx
d

u u
dx
du2

=

( )sec sec tan
dx
d

u u u
dx
du

=

( )csc csc cot
dx
d

u u u
dx
du

=-

( )cot csc
dx
d

u u
dx
du2

=-

All differentiation rules from now on will be given in their chain rule forms, u being a differen-
tiable function of x. Occasionally, when there are functions that are “nested” three or more
deep, you may need to use the chain rule more than once.

Sample

If ( ), .secy t
dt
dy

find5
3

=

Rewrite the power with brackets, and then use the power rule to differentiate.

( ) [ ( )]sec secy t t5 5
3 3

= =

[ ( )] ( ( ))sec sec
dt
dy

t
dt
d

t3 5 5
2

& =

[ ( )] [ ( ) ( ) ]sec sec tant t t3 5 5 5 5
2

=

= 15 sec3 (5t) tan (5t)

Note that in the second line above, the chain rule is indicated with derivative notation, rather
than by immediately writing the derivative of the interior function. This technique may be help-
ful when the interior function has its own interior function. If you prefer, skip this second line.
In any event, do not forget about the “extra” factor of 5. The 5 comes from a second use of the
chain rule, where you are finding the derivative of the innermost function (5t).
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Higher-Order Derivatives
Higher-order derivatives result from taking derivatives of derivatives. For example,

if ( )f x x x x3 5 2 12
5 2

= + - +

then ( )f x x x15 10 2
4

= + -l

and ( )f x x60 10
3

= +m

Here the prime notation has been extended to include a double prime, indicating the second 
derivative — that is, the derivative of the first derivative. Taking the derivative of the second de-
rivative yields the third derivative, which is indicated with a triple prime:

( )f x x180
2

=n

This process and notation can be extended to include derivatives of any order. However, to
avoid the need to count many primes, small Roman or Arabic numerals are used in the prime
position for fourth-order derivatives and higher:

( ) ( )f x x f x xor360 360
iv 4

= =

The differential notation can also be modified to allow for higher derivatives:

( )y f x=

( )
dx
dy

f x= l

( )
dx

d y
f x2

2

= m

( )
dx

d y
f x3

3

= n

( ) ( )
dx

d y
f x f x

iv

4

4
4

= =

etc.

Derivatives of Exponential Functions
The easiest derivative rule in calculus involves the exponential function, because the function
y e

x
= is its own derivative. (The proof that y e

x
= is its own derivative is based on the definition

of the natural log function and the properties of inverses. It is not on the AP exam.) Derivative
rules for the other exponential functions, such as y a

x
= , are also quite easy. Exponential func-

tions appear quite regularly on both the multiple-choice and free-response sections of the AP
exam.
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Exponential Rule
( )

dx
d

e e
dx
duu u

=

Translation: The derivative of the exponential function is the exponential function (with the
chain rule when applicable).

Sample

Find ( )
dx
d

e
x2 3 2-

Begin by simply recopying the function, and then put in the chain rule.

( ) ( )( )
dx
d

e e x6
x x2 3 2 32 2

= -
- -

xe6
x2 3 2

=-
-

Sample

For ( ) , ( )
cos

s t
t

e
sfind

4
5

0
t3

= l .

This problem requires use of the quotient rule, plus the trig and exponential rules. Both the ex-
ponential function and the trig function will require use of the chain rule.

( ) ( )
( )

( )( ) ( )( )
cos cos

cos sin
s t

t
e

s t
t

t e e t
4

5
4

4 5 3 5 4 4t t t3

2

3 3

&
$ $

= =
- -l

cos
cos sin

t
e t e t

4
15 4 20 4

t t

2

3 3

=
+

( )

cos

cos sin

t

e t t5 3 4 4 4
t

2

3

=
+

Thus ( )
( )

cos

cos sin
s

e
0

0

5 3 0 4 0
2

0

=
+l

( )
1

5 3 0
15=

+
=

Base-a Exponentials Rule
( ) ( )( )ln

dx
d

a a a
dx
duu u

= c m

Translation: To find the derivatives of base-a exponential functions, put in an “extra” factor of
ln a, recopy the function, and then use the chain rule if needed.
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Although the derivation of this rule is not on the AP exam, it can be used as a pattern for find-
ing these types of derivatives if you don’t want to bother memorizing the rule. The derivation is
based on rewriting the exponential base of e and then using the previous rule.

( )y a y e
lnu a u

+= = because e a
ln a

=

y e
( )( )ln a u

+ =

Now differentiate.

[ ]( )ln
dx
dy

e a
dx
du( )( )ln a u

= c m

( )( )lna a
dx
duu

= c m

Be aware that in the foregoing differentiation, ln a is a constant. When the chain rule is applied,
the factor of ln a shows up just the same way that –6x shows up in the first example above.

Sample

Find the derivative of y 10
cos x2

= .

This derivative can be found in either of two ways: by applying the role directly or by follow-
ing the pattern used in the derivation of the role. Using the rule yields

( )( )( )ln siny
dx
dy

x10 10 10 2 2
cos cosx x2 2
& $= = -

ln sin x2 10 2 10
cos x2

$=-

Following the pattern of the derivation yields

( )y y e10
( )cos ln cosx x2 10 2

&= =

y e
( )( )ln cos x10 2

=

[ ]( )( )ln sin
dx
dy

e x10 2 2
( )( )ln cos x10 2

$= -

( )( )( )ln sin x10 10 2 2
cos x2

$= -

ln sinx2 10 10
cos x2

$=-

Derivatives of Logarithmic Functions
Derivatives of the natural logarithm function, and those of other logarithms of other bases, are
often used as free-response problems on the AP exam. You should already be familiar with the
properties of logarithms, as well as with the graphs of log functions.
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Natural Log Rule
( )ln

dx
d

u u dx
du1

= or, alternatively ( )ln
dx
d

u u
u

=
l

Translation: The derivative of the natural log is found by taking the reciprocal of the argument
and then applying the chain rule if needed.

Notice that the natural log function does not appear anywhere in the derivative. Although this
may seem strange, it is easily proved by examining the definition of the natural log function
(see pages 273–274).

Sample

Find the slope of the line tangent to ( ) ( )lnf x x x4 3
2

= + at the point where x = 2.

For slope, find the value of the derivative at x = 2 — that is, ( )f 2l .

( ) ( ) ( ) ( )lnf x x x f x
x x

x4 3
4 3

1
4 6

2

2&= + =
+

+l c m

x x
x

4 3
4 6

2=
+
+

So f 2
8 12
4 12

20
16

5
4

=
+
+

= =l^ h

Therefore, the slope of the tangent line at x is2
5
4

= .

Base-a Logarithms Rule
( )

( )
log

ln lndx
d

u
a u dx

du
a u dx

du1 1 1
a = =c c c cm m m m

Translation: To find the derivative of base-a logarithms, put in an “extra” factor of lna1 , the
reciprocal of the argument, and then apply the chain rule if needed.

As with the base-a exponentials, it may be prudent to know the derivation of this rule, rather than
simply memorizing it. The derivation uses the change-of-base formula from precalculus math,

log
ln
ln

m
a
m

a =

(In fact, the change-of-base formula holds true for any base, not just base e. Base e is chosen to
allow use of the previous derivative rule.)

Prove: log
lndx

d
u

a u dx
du1 1

a =^ c c ch m m m

Proof: ( )log
ln
ln

ln
lny u y

a
u

a
u

1
a += = = c m

lndx
dy

a u dx
du1 1

& = c c cm m m the change-of-base formula which was
to be shown
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Sample

Find the derivative of ( ) ( ).log tanp r r34=

Applying the rule directly yields

( ) ( ) ( ) ( )log tan
ln tan

secp r r p r
r

r3
4

1
3

1
3 34

2
& $= =l c cm m

ln tan
sec

r
r

4
3

3
3

2

=c dm n

Sometimes the answer may appear in a different form in the multiple-choice section, as shown
here:

ln
cos
sin
cos

r
r
r

4
3

3
3
3

1
2

=

J

L

K
K
KK

c

N

P

O
O
OO

m

ln cos sinr r4
3

3 3
1

=c cm m

( )
ln

sec cscr r
4

3
3 3=c m

Alternatively, following the pattern of the derivation yields

( ) ( ) ( )
( )

( )log tan
ln

ln tan
ln

ln tanp r r p r
r

r3
4

3
4

1
34 += = = c m

( ) ( )
ln tan

secp r
r

r
4

1
3

1
3 3

2
& $=l c cm m

Finish as above.

Derivatives of Inverse Trigonometric Functions
The derivatives of the inverse trig functions do not contain any trig functions, let alone any in-
verse trig functions. The proofs of all six formulas are very similar, and even though they have
not been listed on the outline for the AP exam to date, the proof for the derivative of arcsiny x=
is included here. The property of the derivatives of inverses that is used in this proof could be
on the AP exam.

Comment on notation: As mentioned previously, several equivalent notations for the inverse
trig functions can be used:

arcsiny x= siny xArc= siny x
1

=
-

Recent AP exams have used the first two; most calculators use the third.
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Inverse Trig Rules
( )arcsin

dx
d

u
u dx

du

1

1
2

=
-

c m

( )arccos
dx
d

u
u dx

du

1

1
2

=
-

-
c m

( )arctan
dx
d

u
u dx

du
1

1
2=

+
c m

( )cot
dx
d

u dx
du

arc u
1

1
2=

+
-

c m

( )sec
dx
d

u
u u dx

du
arc

1

1
2

=
-

c m

( )csc
dx
d

u
u u dx

du
arc

1

1
2

=
-

-
c m

Memorization hint: The derivatives of co-functions are exact opposites. For example, the derivative
of arccos u (a co-function) differs from the derivative of arcsin u only by the –1 in the numerator.

Sample

Find the derivative of ( ).secy earc
x3

=

Apply the appropriate rule, with .u e
x3

=

( )
( )

( )

( )

secy e
dx
dy

e e dx
d

e

e e
e

e

arc
1

1

1

1
3

1

3

x

x x

x

x x

x

x

3

3 3 2

3

3 6

3

6

&

$

= =
-

=
-

=
-

The chain rule in the first line of the derivative is written in derivative notation to begin with.
This is better than attempting too much mental work in one step. Also note that the absolute-
value bars in the third line were dropped because e x3 x is positive for any value of x.

Derivatives of Inverses
If f(x) and g(x) are inverses, then ( )

( ( ))
.g x

f g x
1

=l
l

Proof: Because f(x) and g(x) are inverses, ( ( )) .f g x x=

Differentiate this last line with respect to x.

( ( )) ( ) ( )
( ( ))

f g x g x g x
f g x

1
1

&= =l l l
l

which was to be shown
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The following proof is for the basic derivative of arcsin x, without the chain rule.

Prove: ( )arcsin
dx
d

x
x1

1
2

=
-

Proof: First, let

( ) ( )sin arcsinf x x g x xand= =

( ) ( ) ( )cos arcsinf x x g x
dx
d

xand& = =l l

Because f(x) and g(x) are inverses, apply the foregoing result.

( )
( ( )) ( )cos arcsin

g x
f g x x

1 1
= =l
l

To simplify this expression, label a triangle, as shown here, with acute .angle i

Figure 3.6

sin arcsinx x&= =i i

( )cos arcsin cosx& = i

Using the Pythagorean theorem, label the rest of the triangle as shown.

Figure 3.7

cos x1
2

& = -i

Returning to the proof,

( ) ( )
( ( )) ( )

arcsin
cos arcsindx

d
x g x

f g x x
1 1

= = =l
l

cos x

1

1

1
2

= =
-i

which was to be shown.

1 x

θ

√1 − x2

1 x

θ
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Implicit Differentiation
Implicit differentiation is not so much a differentiation rule to memorize as a technique to use
in conjunction with the other differentiation rules. Implicit differentiation is used when it is ei-
ther difficult or impossible to express the function or relation explicitly — that is, as a function
of a single independent variable. Under these conditions, simply differentiate both sides of the
equation one term at a time, using whatever rules are needed (product, quotient, trig, and so
on). The important thing to remember, however, is the chain rule. You will be differentiating
with respect to a specific variable (say x). Thus, whenever you differentiate an expression
that is not strictly in terms of x (say an expression with y in it), you must be sure to include the
appropriate chain expression: dy dx. Be sure to do this every time you differentiate such an 
expression, but only at that time.

Sample

Given that y x x y6 3 5 12- = + -2 2 , find dy dx.

Solving for y explicitly would be difficult and would result in a rather messy expression to try
to differentiate, so use implicit differentiation. Differentiate term by term with respect to x,
putting in dy dx when differentiating a term with y in it.

y x x y6 3 5 12
2 2
- = + -

y
dx
dy

x
dx
dy

2 12 3 5 0& - = + -

Now solve this equation for the expression dy dx.

y
dx
dy

dx
dy

x2 5 12 3- = +

( )
dx
dy

y x2 5 12 3- = +

dx
dy

y
x

2 5
12 3

=
-
+

The final answer is in terms of both x and y. This is fairly typical of problems done with im-
plicit differentiation. If you are asked to evaluate such a derivative, you may need to take the
preliminary step of finding other values first, as shown in the next example.

Sample

Evaluate 
dx
dy

y x x ywhere 6 3 5 12
x 1

2 2
- = + -

=

.

From above,
dx
dy

y
x

2 5
12 3

=
-
+
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Because x and y are both required to evaluate this expression, substitute x = 1 into the original
equation and solve for y.

y x x y6 3 5 12
2 2
- = + -

x y y1 6 3 5 12
2

&= - = + -

y y y5 3 0
2

5 132
&

!
- + = =

Therefore, ( )
dx
dy

2
2

5 13
5

12 1 3

13

15
13

15 13

x 1 ! !
!=

-

+
= =

=
J

L

K
K

N

P

O
O

Sample

For sin x y e y2 3 2 7+ = - +x4
^ h , find dy dx.

It would be nearly impossible to solve this equation for y, so differentiate term by term with re-
spect to x, and then solve for dy dx.

( )sin x y e y2 3 2 7
x4

+ = - +

[ ( )]cos x y
dx
dy

e
dx
dy

2 3 2 3 4 2 0
x4

& $+ + = - +< F

( ) ( )cos cosx y
dx
dy

x y e
dx
dy

2 2 3 3 2 3 4 2
x4

+ + + = -

( ) ( )cos cos
dx
dy

x y
dx
dy

x y e3 2 3 2 2 2 3 4
x4

+ + =- + +

[ ( ) ] ( )cos cos
dx
dy

x y x y e3 2 3 2 2 2 3 4
x4

+ + =- + +

Therefore
( )
( )

cos
cos

dx
dy

x y
x y e

3 2 3 2
2 2 3 4

x4

=
+ +

- + +

It is also possible to find higher-order derivatives by using implicit differentiation.

Sample

Find d y dx
2 2 implicitly, where x y 8

2 2
- = .

Begin by finding the first derivative.

x y 8
2 2
- =

x y
dx
dy

2 2 0& - =

dx
dy

y
x

y
x

2
2

=
-
-

=
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Now differentiate both sides of this last line with respect to x. The left side becomes the second
derivative. Use a quotient rule for the right side.

( )( ) ( )

dx

d y

y

y x
dx
dy

1

2

2

2=

- d n

Now substitute for dy/dx.

( )( ) ( )

dx

d y

y

y x
dx
dy

y

y x y
x1

2

2

2 2=

-

=
-d cn m

y

y y
x

y
y

2

2

=
-

d n

y

y x
3

2 2

=
-

This is a perfectly acceptable answer. However, if it does not appear as one of the choices on a
multiple-choice problem, check to see whether it is possible to substitute from the original
equation. In this case,

x y y x8 8
2 2 2 2

&- = - =-

dx

d y

y

y x

y
8

2

2

3

2 2

3& =
-

=
-

Logarithmic Differentiation
Like implicit differentiation, log differentiation is a technique to be used in conjunction with
other derivative rules, rather than a rule itself. When a function has the independent variable in
both base and exponent, such as y x

x3 1
=

+ , you cannot use the power rule or the exponential
rule, although it is tempting to do so. You need to take the log of both sides in order to apply
the log properties and bring the exponent “down” to the base position. To successfully apply
log differentiation, remember the following important properties from previous sections:

( )ln ln lna b a
dx
d

y y dx
dy

and
1b

= =

Sample

Given ( ) , ( )f x x f xfind
x3 52

=
- l .

Because there are x’s in both the base and the exponent, use log differentiation.

( )f x x
x3 52

=
-

y x
x3 52

=
-
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Take the natural log of both sides.

( ) [ ]ln lny x
x3 52

=
-

Use the log property: .ln lna b a
b
=

( )( )ln lny x x3 5
2

= -

Differentiate both sides with respect to x, including dy dx for the chain rule.

( ) ( )( )lny dx
dy

x x x x
1

3 5
1

6
2

= - +c m

Solve for dy dx.

ln
dx
dy

y x x x x3
5

6= - +; E

Substitute for y.

( ) lnx x x x x3
5

6
x3 52

= - +
-
; E

This answer is perfectly fine. However, if it is not one of the choices on a multiple-choice ques-
tion, consider doing the following force factoring:

( ) [ ]ln
dx
dy

x x x x x
1

3 5 6
x3 5 2 22

= - +
-

c m

( )( )[ ]lnx x x x x3 5 6
x3 5 1 2 22

= - +
- -

( ) ( )[ ]lnf x x x x x3 5 6
x3 6 2 22

& = - +
-l

Sample

Given ( )f x x
x3 52

=
- , find the equation of the line tangent to the curve at the point where 

x = 1.

From the previous example,

( ) ( )[ ]lnf x x x x x3 5 6
x3 6 2 22

= - +
-l

( ) ( )( )f 1 1 3 5 6 0 2& $= - + =-l

which is the slope of the tangent line. And because f(1) = 1, the equation is

( )y x1 2 1- =- -

y x2 3=- +
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Parametric Derivatives (BC Only)
The parametric forms of the first and second derivatives are a direct result of the chain rule. The
usual applications for derivatives, e.g., slope of a tangent line and concavity, use these formulas.

Parametric Form of the Derivative
If a smooth* curve is given parametrically by x = f(t) and y = g(t), then the derivative, dy/dx, is
given by

,
dx
dy

dt
dx
dt
dy

dt
dx

0!=

*Note: A curve is smooth if both dx/dt and dy/dt are continuous and not simultaneously 0.
In practice, this means that the derivative of a parametrically defined curve does NOT 
exist at a sharp turn, known as a “cusp,” where both dx/dt AND dy/dt are 0.

Parametric Form of the Second Derivative
To find the second derivative of a parametrically defined function, differentiate both sides of
the first derivative equation with respect to x. However, since the first derivative is a function of
the parameter t, it is necessary to include the chain rule:

( )
dx
dy

dt
dt
dt
dy

D t= = some function of t, call it D(t)

Differentiating both sides with respect to x,

( )

( )

dx

d y
D t

dx
dt

dx

d y

dt
dx

D t

dt
dx
dt

d
dx
dy

2

2

2

2

$=

= =

l

l

< F

Sample

For the curve below, find the slope of the tangent line at any point. Use it to determine if
the graph has any horizontal tangents. Also determine where the graph is concave up and
concave down.

x = 5 – t 2 y = t2 + 3t
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A sketch of this graph is shown below.

For the first derivative,

dx
dy

dt
dx
dt
dy

t
t
2

2 3
= =

-
+

which is the slope of the tangent line at any point.

For a horizontal tangent, the derivative must be 0, so here the numerator needs to be 0 while the
denominator is NOT 0.

2t + 3 = 0

2t = –3

t = –1.5

Thus, the graph has a horizontal tangent where t = –1.5, at the point (2.75, –2.25).

For the second derivative,

( )

( )( ) ( )( )

( )

dx

d y

dt
dx
dt

d
t

t

t
t

t t

t
t t

t

t

2
2 3

2
2

2 2 2 3 2

2
4 4 6

8
6

4
3

2

2

2

3

3

3

=

-
+

-
-

- - + -

=
-

- + +

-

=
-

=

=

; E
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For critical numbers,

. . .
dx

d y

dx

d y

dx

d y

or D N E

never

02

2

2

2

2

2

=

+ -

0

Thus, the graph is concave up for t < 0 and concave down for t > 0, so (5, 0) (where t = 0) is an
inflection point.

Differentiation with Polar Curves (BC Only)
Differentiating polar equations typically requires finding one of two different expressions,
dr di or dy/dx. The first, dr di, gives the instantaneous rate of change of r with respect to i.
It might be necessary to find dr di for a simple multiple-choice problem, or to find out the
rate of change of the radius with respect to the angle as a particle moves along a polar curve.
The second expression, dy/dx, is used to find the slope of a tangent line, and can be derived
from the basic polar expressions.

Sample

Find dr di for ( )sinr 3 2 3= + i .

( )

( )

( )

sin

cos

cos

r

d
dr

3 2 3

2 3 3

6 3

$

= +

=

=

i

i
i

i

Caution: The expression dr di does NOT represent the slope of the line tangent to a polar
curve.

Slope in Polar
The basic polar equations, cosx r= i and siny r= i, can each be differentiated with respect to i.
The quotient of these two expressions, dy di and d dx i, then yields the formula for dy/dx and
the slope of a tangent line.
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( ) ( )

cos sin

sin cos cos sin

sin cos

cos sin

x r y r

d
dx

r
d
dr

d
dy

r
d
dr

dx
dy

d
dx
d
dy

r
d
dr

r
d
dr

= =

= - + = +

= =
- +

+

i i

i
i i

i i
i i

i

i

i

i i
i

i i
i

c cm m

It may be easier to derive this formula as above than to try and memorize it.

Sample

Find the slope of the line tangent to cosr 2 2= - i at the point where 4=i r .

( ) ( )
( ) ( )

sin cos

cos sin

cos sin cos sin
cos cos sin sin

dx
dy

r
d
dr

r
d
dr

2 2 2
2 2 2

=
- +

+

- - +
- +

i i
i

i i
i

i i i i
i i i i

=

( ) ( )( )

( ) ( )

( ) ( )( )

( )( ) ( )

( ) ( )

( )( ) ( )

( )

cos sin cos sin

cos cos sin

dx
dy

2 2 4 4 2 4 4

2 2 4 4 2 4

2 2
2
2

2
2

2
2
2

2
2

2 2
2
2

2
2

2
2
2

2 2
2
2

2
2
1

2 2
2
2

2
2
1

2 1 1

2 1 1

2 2

2

4

2

2

$

$

=
- - +

- +

- - +

- +

=

- - +

- +

=
- - +

- +

-

r r r r

r r r

=i r

=

=

The slope formula can also be used to determine where a polar graph has a vertical or horizon-
tal tangent line.
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Sample

Find the polar coordinate of all points where cosr 2 2= - i has horizontal and vertical
tangent lines.

From the example above, an expression for the slope at any point is given by

( )
( )

cos sin sin cos
cos cos sin

dx
dy

2 2 2
2 2 2

2

=
- - +

- +
i i i i
i i i

To find horizontal tangents, the slope must be 0. This will occur where the numerator is equal
to 0.

( )

( )

( )( )

, :

)( , )( ,

cos cos sin

cos cos cos

cos cos

cos cos

cos cos

cos cosor

2 2 2 0

2 2 2 1 0

4 2 2 0

2 1 0

2 1 1 0

2
1

1

3
2

3
4

0

3
2

3
3

4
3

curve has a sharp turn, so no tangent line

2

2 2

2

2

Ñ

- + =

- + - =

- + + =

- - =

+ - =

=- =

= =

i i i

i i i

i i

i i

i i

i i

i r r i

r r

The vertical tangents will occur where the denominator is 0 while the numerator is not.

( )

( )

,

( , ) ) )( , ( ,

cos sin sin cos

sin sin cos sin cos

sin sin cos

sin cos

sin cos

k

2 2 2 0

2 2 2 0

2 4 0

2 1 2 0

0
2
1

3 3
5

4
3 3

5
1 1

- - + =

- + + =

- + =

- + =

= =

= =

i i i i

i i i i i

i i i

i i

i i

i r i r r

r r r

Limits and Continuity of Vector-Valued Functions
To find the limit of a vector-valued function, simply find the limits of the real-valued functions
that make up the i and j components. The definition of continuity is completely analogous to
that for real-valued functions.
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Limit and Continuity of a Vector-Valued Function
If R(t) = f(t) i + g(t) j is a vector-valued function, then

( ) [ ( )] [ ( )] .t f t g tR i j
t a t a t a

lim lim lim= +
" " "

R(t) is continuous at the point limt a t aif R R
t a

= =
"

^ ^h h [assuming the limit exists].

R(t) is continuous on an interval if it is continuous at every point in the interval.

Sample

For ( ) ( )lnt
t

tR i j
2

1
=

+
+c m , find lim tR

t 1"
^ h. For what values of t is R(t) continuous?

( )tR i j

i

3
1

0

3
1

t 1

lim = +

=

"

t 2
1
+

is discontinuous only at t = –2

ln t is continuous on its domain, t > 0

ÑR(t) is continuous on its domain, t > 0

Differentiation of Vector-Valued Functions
(BC Only)
The limit definition for the derivative of a vector-valued function is virtually identical to the
one for real-valued functions. This definition can be used to prove theorems similar to the 
familiar ones for finding derivatives analytically: To find the derivative of a vector-valued 
function, simply find the derivatives of the real-numbered functions that make up the x and y
components.

Derivative of a Vector-Valued Function
If R(t) = f(t) i + g(t) j is a vector-valued function, then

by definition ( )
( ) ( )

t
t

t t t
R

R R
∆

∆
t∆ 0

lim=
+ -

"

l

which implies that R'(t) =f '(t) i + g'(t)j
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Sample

For S(t) = (t – t3)i + (tan 3t)j , find S'(0).

S'(t) = (1 – 3t2)i + (3sec23t)j
S'(0) = 1i + 3j

Higher order derivatives of vector-valued functions are found in the same way: Simply find the
higher order derivative of the real-valued x and y components. Higher order derivatives can be
used to solve position/velocity/acceleration problems where the particle moves not along a line,
but follows a curve (vector-valued function or parametric equation) in a plane.

Sample

A particle moves along a curve defined by the vector-valued function
( ) ( ) ( ) ,t t tR i j t2 3 1 3 10 0

2 $= + + - .

Sketch a graph of the path and sketch the velocity and acceleration vectors at the 
point (4, –7).

The path of the particle is shown below, from using a calculator in parametric mode.

The velocity function is found by differentiating the position.

( ) ( ( ) ) ( )t t tV R i jt2 3 1 3 62
1 1 2: := = + +-l^ h

t
ti j

3 1

3
6=

+
+ ^ h

To find the velocity at a point, first find the t value that corresponds to the (x, y) point.

x t y t

t

t

t

or4 2 3 1 4 7 3 10 7

3 1 2

3 1 4

1

2

2

2

& &= + = =- - =-

+ =

+ =

=

t3 3=

t 1=

,t tbut1 0! $=
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Now, find V(1)

( )V i j

i j

1
3 1

3
6 1

2
3

6

$=
+

+

= +

So the velocity vector is i j
2
3

6+

For the acceleration, find V'(t).

( ) ( )'t t t
t

A V i j i j3 3 1 3
2 3 1

9
6 62

1 3 2: := = +
+

+ +=-

J

L

K
K^

N

P

O
Oh 7 A

And as with the velocity vector,

( )A i j

i j

1
2 3 1

9
6

4
9

6

=
+

+

= +

so the acceleration vector is i j
4
9

6+

Both the velocity and acceleration vectors are shown in the second sketch of the particle’s path,
with the initial position of the vectors at the given point (4, –7).

Differentiability and Continuity
The AP exam frequently includes questions that involve the relationship between differentiabil-
ity and continuity.

Differentiability Implies Continuity
If f(x) is differentiable at x = c, then f(x) is continuous at x = c.

Translation: In order for the derivative to exist at some point, the function must be continuous
at that point.

V
A

T=1
X=4 Y= -7

X1 =  (3T+1) Y1 =3T 2–10^
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Caution: This theorem does not work the other way around. Just because a function is continu-
ous at a point, it is not guaranteed to be differentiable at that point. See the following example.

Sample

For the function ( ) xf x 2 3= , find f'(0).

Apply the power rule.

( )( ) x f x x
x x

f x
3
2

3
2

3

22 3 1 3
1 3

3
& = = == -l

So ( )f 0
3 0

2
0
2

3
= =l which is undefined

Therefore, the derivative does not exist at x = 0. Graphically, y x2 3= looks like this:

Figure 3.8

The function is obviously continuous at x = 0, but it is not differentiable, as shown above. Note
that at x = 0 the graph has a “sharp turn.” A sharp turn such as this implies that the derivative
does not exist. Graphing is a quick and easy way to decide on differentiability at a point, but it is
not sufficient justification on a free-response problem. For a free-response problem, either apply
the differentiation rules as above, or use the definition of the derivative, as in the next example.

Sample

Show that f(x) is not differentiable at x = 2 when

( )
>

f x
x x

x x

for

for

3 2

2
1

2

2 #
=

-
*

It may help to begin with a sketch. If the function is discontinuous at x = 2, it cannot be differ-
entiable at x = 2.

f(x) = x2/3

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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Figure 3.9

Because f(x) is continuous at x = 2, find the derivative.

( )
>

f x
x x

x x

for

for

3 2

2
1

2

2 #
=

-
* ( )

<

>
f x

x x

x

for

for

2 2

2
1

2
& =l *

Now compare the derivative from the left, ( )f 2
-l , and the derivative from the right, ( ).f 2

+l

( ) ( ) ( )f fand2 2 2 4 2
2
1

= = =
- +l l

Because ( )f 2
-l and ( )f 2

+l are not equal, ( )f 2l does not exist; that is, f(x) is not differentiable at
x = 2.

Free-response problems may require the use of the definition of the derivative to justify that
f(x) is not differentiable at x = 2. Recall the definition of derivative at a point:

( )
( ) ( )

f c x c
f x f c

x c

lim= -
-

"

l

Use this definition and one-sided limits to show that the derivative from the left, ( )f 2
-l , and the

derivative from the right, ( )f 2
+l , are not equal. From the left,

( )
( ) ( ) ( )

f
x

f x f
x

x
2

2
2

2
3 1

x x2 2

2

lim lim=
-
-

=
-

- -

" "

-

- -

l

x
x

2
4

x 2

2

lim=
-
-

"
-

( )x 2 4
x 2

lim= + =
"

-

And from the right,

( )
( ) ( ) ( )

f
x

f x f
x

x
2

2
2

2
2
1 1

x x2 2

lim lim=
-
-

=
-

-

" "

+

+ +

l

( )

x

x

2
2
1 2

2
1

x 2

lim=
-

-
=

"
+

Therefore, because ( ) ( )f f2 2!
- +l l , the function is not differentiable at x = 2.

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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1. If ,y
x

x
dx
dy

then
2 5

3
=

-
-

=,

A.
( )x

x
2 5

17 10
2

-
-

B.
( )x2 5

13
2

-

C.
( )x

x
2 5

3
2

-
-

D.
( )x2 5

17
2

-

E.
( )x2 5

13
2

-
-

2. If y x
x

2
2

1
= - , then the derivative

of y with respect to x is given by

A. x
x x

1
+

B.
x x x

1 1
+

C.
x x

x

4

4 1-

D.
x x x

1

4

1
+

E.
x x x

4 1
+

3. The function ( )f x x 4
2

= - is NOT 
differentiable at

A. x = 2 only 

B. x = –2 only

C. x = 2 or x = –2

D. x = 0 only

E. x = 2 or x = –2 or x = 0

4. If f '(a) does NOT exist, which of the
following MUST be true?

A. f(x) is discontinuous at x = a.

B. ( )f x
x a

lim
"

does not exist.

C. f has a vertical tangent at x = a.

D. f has a “hole” for x = a.

E. None of these is necessarily true.

5. For ,y x
dx
dy

find3 2= - .

A.
x2 3 2

1

-

B.
x3 2

1

-

C.
x3 2

2

-

D.
x3 2

1

-

-

E.
x3 2

2

-

-

6. Given that j, k, and m are constants, and
that ( )f x m kx2= - , find ( ).f jl

A. m

B. m – 2jk

C. –2jk

D. –2k

E. j

7. The slope of the curve y x x6
/1 2

= + at
the origin is

A. 4

B. 3

C. 1

D. 0

E. undefined
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8. If g(x) = ln(x), which of the following is
equal to ( )?g xl

A. ( )ln
k
x k

k 0

lim
+

"

B.
k

x k x
1 1

k 0

lim
+

-

"

C. ln ln
k

x k

k 0

lim
-

"

D. ( )ln ln
k

x k x

k 0

lim
+ -

"

E. ( )ln ln
x k

x k x

k 0

lim -
+ -

"

9. Let ( ) .f x x
3

= Using the chain rule,
determine an expression for

[ ( ( ( )))].
dx
d

f f g x

A. [ ( )] ( )g x g x3
2 l

B. ( )x g x3
2 3l

C. [ ( )]g x3
2

D. ( )g x
3l

E. none of these

10. If x and y are both differentiable
functions of t, and xy = 20, find

( ) ( ) .x t y t xwhen and10 2= =l l

A. –2

B. –1

C. 0

D. 3

E. 8

11. If ( ) tanf x x5= , then f '(π/5) is

A. 5

B. 1

C. –1

D. –5

E. undefined

12. If ( ),siny x
dx
dy

then1 2
3

= - =

A. ( )sin x3 1 2
2

-

B. ( )cos x2 1 2
3

- -

C. ( )sin x6 1 2
2

- -

D. ( ) ( )sin cosx x6 1 2 1 2
2

- - -

E. ( )cos x6 1 2
2

- -

13. If f(x) = sin x and g(x) = cos x, then the
set of all x for which ( ) ( )f x g x=l l is

A. k
4

+
r r

B. k
2

+
r r

C. k
4

3
+
r r

D. k
2

2+
r r

E. k
2

3
2+

r r

14. If ,y x
dx

d y
then3

50

50

50

= =

A. 0

B. x150
49

C. 3(50!)

D. 150!

E. 3(500!)x

15. If ,y x
dx

d y
then16

2

2

2

= + =

A.
( )x4 16

1
/3 2

+
-

2

B. ( )x4 3 16
2
+

C.
( )x

x
16

/1 2
+2

D.
( )x

x
16

2 16
/3 2

+
+

2

2

E.
( )x 16

16
/3 2

+2
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16. Given ( ) ( ), ( )logf x x f3 2 13= - =l

A.
ln3
2

B.
ln3

2-

C.
ln3
1

D. ln 3

E. –2 1n 3

17. If ,ln sec tany x x ythen= - =m

A. secx-

B. sec tan secx x x
2

-

C. tanx

D. sec tanx x-

E. sec tanx x+

18. If ( ) ,lnf x x x
dx
df

then
3

= =

A. lnx x x3
2 2

+

B. ( )( )lnx x3 1
2
+

C. lnx x x
2 2

+

D. lnx x3
2

E. 3x

19. ( )ln
dx
d

e
x2

=

A.
e
1

x2

B.
e
2

x2

C. 2x

D. 1

E. 2

20. If ( ) ( ), ( )ln lnf x x f ethen is= l

A. e

B. 1

C. e1

D. 0

E. undefined

21. If ,y x
dx
dy

then
( )x3

= =

A. ( )lnx x1 3
( )x 23

+
+

B. x
( )x 23 +

C. x4
( )x 23 +

D. ( )lnx x1 3
3

+

E. ( )lnx x
( )x3

22. If , ( )y e ythen 0
x2

= =
- m

A. 2

B. e2

C. 0

D. –2

E. –4

23. If ( ) , ( )f x e f xthen
3
1 x3 2

=
- l

A. e
3
2 x3 2- -

B. e
6
1 x3 2- -

C. e
12
1 x4 2-

D. e
x2-

E. e
3
1 x3 2-
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24. Let ( )f t
e e

2

t 2

=
-t

. Find f"(0).

A. 0

B.
16
3

C.
4
1

D.
8
3

E.
4
3

25. arctan
dx
d

x2 =^ h

A.
x1 4

2
2

+

B.
x1 4

1
2

+

C.
x4 1
2
2
-

D.
x4 1

1
2
-

E.
x1 2

1
2

+

26. If > , arcsinx
dx
d

xthen0
1

=c m

A.
x x 1

1
2
-

-

B.
x

x

1
2
-

-

C.
x

x

1
2

-

D.
x x1

1
2 2

-

-

E.
x x 1

1
2
-

27. The equation of the tangent to the curve
x y2 1

2 4
- = at the point (1, 1) is

A. y x=-

B. y x=

C. y x4 5 1 1+ + =

D. x y2 3 0- + =

E. x y4 5 0- + =

28. If < < ,sin lnx y x
dx
dy

and then0= =r

A. cose x
sin x

B. cose x
sin x-

C. cosx
e

sin x

D. e
cos x

E. e
sin x

29. If xy x y3 4 2 0
2
- + - = and is a

differentiable function of x, then
dx
dy

=

A.
xy

y
2
1

2
- +

B.
y2 4
3
+

C.
xy2 4

3
+

D.
xy

y
2 4
3

2

+
-

E.
xy

y
2 4
5

2

+
-

30. If ( ) ,sin xy y
dx
dy

then= =

A. sec(xy)

B. y cos(xy) – 1

C.
( )

( )
cos

cos
x xy

y xy1 -

D.
( )

( )
cos

cos
x xy

y xy
1 -

E. cos(xy)
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Answers to Multiple-Choice Questions

1. E. Use the quotient rule.

( )

( )( ) ( )( )
y

x
x

dx
dy

x

x x
2 5

3
2 5

2 5 1 3 5
2&=

-
-

=
-

- - - -

( )x
x x
2 5

2 5 5 15
2=

-
- + -

( )x2 5
13

2=
-
-

2. D. Rewrite with fractional and negative exponents, and then differentiate term by term.

y x
x

y x x2
2

1
2

2
1/ /1 2 1 2

+= - = -
-

dx
dy

x x2
2
1

2
1

2
1/ /1 2 3 2

& : := -
-- -

c m

x x
4
1/ /1 2 3 2

= +
- -

x x x

1

4

1
= +

3. C. A quick sketch will show that f(x) has sharp turns at both x = 2 and x = –2.

4. E. If the derivative at a point does not exist, the function may be discontinuous, but it
does not have to be discontinuous, such as with ( )f x x

/2 3
= . Thus you can eliminate

choices A and D. If the derivative at a point does not exist, the limit may not exist, but it
also may exist, as with ( )f x x

/2 3
= again. This eliminates choice B. A vertical tangent line

at a point would mean that the derivative does not exist, but the derivative may be
nonexistent in a variety of ways, so C is also eliminated. The conclusion is that none of A
through D must be true, though they all could be true.

5. D. Rewrite with a fractional exponent and apply the power rule. Be careful with the 
chain rule.

( )y x y x3 2 3 2
/1 2

&= - = -

( ) ( )
dx
dy

x
x2

1
3 2 2

3 2

1/1 2
= - - =

-

--

y

x

6

4

2

-2-4-6 642
-2

-4

-6
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6. D. ( ) ( )f x m kx f x k2 2&= - =-l

Thus ( )f j k2=-l

If this type of problem bothers you, try substituting actual numbers for j, k, and m.

( )f x m kx2= -

might be thought of as ( )f x x5 2 6$= -

( )f x 2 6& $=-l

which would be equivalent to –2k since k was chosen as 6.

7. E. For slope of the curve, find the slope of the tangent at that point. That is, find .
dx
dy

x 0=

y x x
dx
dy

x
x

6 6
2
1

1
3

1
/ /1 2 1 2

& := + + = +
-

dx
dy

0

3
1

x 0

= +
=

which is undefined

8. D. The answers are in the form of the limit definition of the derivative,

( )
( ) ( )

f x
x

f x x f x
∆
∆

x∆ 0

lim=
+ -

"

l

but with an obvious notation change: , ( ) ( ).x k f x g xand∆ = =

( )
( ) ( )

g x
k

g x k g x

k 0

lim& =
+ -

"

l

( )
( )ln ln

g x
k

x k x

k 0

lim& =
+ -

"

l

9. A. By the chain rule,

[ ( ( ))] ( ( )) ( )
dx
d

f g x f g x g x= l l

For this problem,

( ) ( )f x x f x x3
3 2
&= =l

so ( ( )) ( ) [ ( )] ( )f g x g x g x g x3
2

=l l l
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10. A. The question asks for ( )x tl or dx dt. Realize that t is the independent variable in this
problem.

xy x y y20
20

20
1

&= =-
-

and now differentiate with respect to t

( )
dt
dx

y
dt
dy

20 1
2

& = -
-

y dt
dy20

2=
-

e o

We are also given dy dt 10= , and x y2 10&= = . Thus

( )
dt
dx

10
20

10 2
x 2

2=
-

=-
=

11. A. ( ) ( ) [ ( )]( )tan secf x x f x x5 5 5
2

&= =l

secf
5

5 5
5

2

& =
r rlc cm m< F

( ) ( )sec5 5 1 5
2 2

= = - =r

12. D. ( ) [ ( )]sin siny x y x1 2 1 2
3 3

+= - = -

[ ( )] [ ( )]( )sin cos
dx
dy

x x3 1 2 1 2 2
2

& = - - -

( ) ( )sin cosx x6 1 2 1 2
2

=- - -

13. C. ( ) ( )

( ) ( )

sin cos

cos sin

f x x f x x

g x x g x x

&

&

= =

= =-

l

l
4

( ) ( ) cos sinf x g x x x& += =-l l

Sine and cosine are exact opposites when

x k x kor
4

3
2

4
5

2= + = +
r r r r

which is equivalent to

x k
4

3
= +
r r
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14. C. Actually finding 50 derivatives is impractical on a timed test. Find the first three or
four derivatives, and see if a pattern develops.

y x
dx
dy

x3 3 50
50 49
& $= =

dx

d y
x3 50 492

2
48

& $ $=

dx

d y
x3 50 49 483

3
47

& $ $ $=

dx

d y
x3 50 49 48 474

4
46

& $ $ $ $=

etc.

dx

d y
x3 50 49 48 47 249

49
1

& $ $ $ $ g=

dx

d y
x3 50 49 48 47 2 150

50
0

& $ $ $ $ $g=

= 3(50!)

15. E. ( )y x y x16 16
/2 2 1 2

&= + = +

( ) ( )
dx
dy

x x
2
1

16 2
/2 1 2

= +
-

( )x x 16
/2 1 2

= +
-

( ) ( ) ( ) ( ) ( )
dx

d y
x x x x

2
1

16 2 16 1
/ /

2

2
2 3 2 2 1 2

& =
-

+ + +
- -

; E

( ) ( )x x x16 16
/ /2 2 3 2 2 1 2

=- + + +
- -

( ) [ ( ) ]x x x16 16
/2 3 2 2 2 1

= + - + +
-

( )x 16
16

/2 3 2=
+

16. B. Use the formula for derivatives of base-a logarithms.

( )log
lndx

d
u

a u dx
du1 1

a = c c cm m m

( ) ( ) ( ) ( )log
ln

f x x f x
x

3 2
3

1
3 2

1
23 &= - =

-
-l c cm m

ln x3
2

3 2
1

=
-

-c cm m

( )
ln ln

f 1
3
2

3 2
1

3
2

& =
-

-
=

-l c cm m
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17. D. Use the formula for the derivative of the natural log.

( )ln
dx
d

u u dx
du1

=

( )ln sec tan sec tan sec tan secy x x y x x x x x
1 2

&= - = - -l

( )
sec tan

sec tan sec
secx x

x x x
x= -

-
=-

sec tany x x& =-m

18. A. Use the product rule for this problem.

( ) ( ) ( ) ( )( )ln lnf x x x
dx
df

f x x x x x
1

3
3 3 2

&= = = +l c m

lnx x x3
2 2

= +

19. E. Use the log property to simplify first.

( ) ( )ln
dx
d

e
dx
d

x2 2
x2

= =

20. C. Use the formula for the derivative of the natural log.

( )ln ln
dx
d

u u dx
du

u xwhere
1

= =

( ) ( ) ( )ln ln
ln

f x x f x
x x

1 1
&= =l c cm m

( )
ln

f e
e e e

1 1 1
& = =l c cm m

21. A. Because the independent variable appears in both the base and the exponent, use log
differentiation.

y x
( )x3

=

( ) ( )ln lny x
( )x3

=

( )( )ln lny x x
3

=

( ) ( )( )lny dx
dy

x x x x
1 1

3
3 2

& = +c m

( )

( )

ln

ln

dx
dy

y x x x

x x x

3

1 3

( )

( )

( )

x

x

x

2 2

2 2

2

2

3

3

3

= +

= +

+

( )

( )

ln

ln

x x x x

x x

3

1 3

= +

= +
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22. D. ( )( )y e y e x2
x x2 2

&= = -
- -l

( )( ) ( )[( )( )]y e x e x2 2 2
x x2 2

& = - + - -
- -m

e x e2 4
x x22 2

=- +
- -

( )e x2 4
x 22

= - +
-

( ) ( ) ( )( )y e0 2 0 1 2 2
0

& = - + = - =-m

23. A. ( ) ( ) ( )f x e f x e
3
1

3
1

2
x x3 2 3 2
&= = -

- -l

e
3
2 x3 2

=
- -

24. D. ( ) ( )

( )

( )

( )

f t
e e

e e

f t e e

e e

f t e e

e e

f e e

2 2
1

2
1

2
1

4
1

2

4
1

2
2
1

8
1

4

0
8
1

4
8
1

4 1
8
3

/
/

/

/

/

/

t t
t t

t t

t t

t t

t t

2
2

2

2

2

2

0 0

=
-

= -

= -

= -

= -

= -

= - = - =

l

m

m

c

`

c

`

` ^

m

j

m

j

j h

25. A. Use the arctan rule, with u = 2x.

( )arctan
dx
d

u
u dx

du
1

1
2=

+

( )
( )

( )arctan
dx
d

x
x x

2
1 2

1
2

1 4
2

2 2=
+

=
+

26. A. Use the arcsin rule, with u x1= .

( )arcsin
dx
d

u
u dx

du

1

1
2

=
-

arcsin
dx
d

x

x
x

1

1
1

1 1
2 2=

-

-
c

c

cm

m

m

x
x x1

1 1

2

2 2=
-

-
c m

x

x

x x x1

1

1

1
2 2 2

=
-

-
=

-

-
c m
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27. B. Solving for y looks difficult, so use implicit differentiation.

x y2 1
2 4
- =

x y
dx
dy

4 4 0
3

& - =

dx
dy

y
x

y
x

4
4

3 3=
-
-

=

dx
dy

m
1
1

1 1
x
y

1
1

&= = =
=
=

Thus the equation of the tangent is y – 1 = 1(x – 1), or y = x.

28. A. Use implicit differentiation.

sin lnx y=

cos cosx y dx
dy

dx
dy

y x
1

&= =

Because y does not appear in any of the answers, solve the original equation for y and then
substitute.

sin lnx y y e
sin x

+= =

cos cos
dx
dy

y x e x
sin x

= =

Another approach:

sin lnx y y e
sin x

+= =

cos
dx
dy

e x
sin x

=

29. D. Use implicit differentiation. The first term requires use of the product rule.

xy x y3 4 2 0
2
- + - =

( ) ( )( )x y
dx
dy

y
dx
dy

2 1 3 4 0 0
2

& + - + - =d n

( )
dx
dy

xy y2 4 3
2

+ = -

dx
dy

xy
y

2 4
3

2

=
+

-
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30. D. Use implicit differentiation. The chain rule requires use of the product rule.

( )sin xy y=

( ) ( )cos xy x
dx
dy

y
dx
dy

1& + =< F

[ ( )] [ ( )]cos cosxy x
dx
dy

xy y
dx
dy

+ =

[ ( )] ( )cos cosxy x
dx
dy

dx
dy

xy y- =-

[ ( ) ] ( )cos cos
dx
dy

x xy y xy1- =-

( )
( )

cos
cos

dx
dy

x xy
y xy

1
=

-
-

( )
( )

cos
cos
x xy

y xy
1

=
-

Sample Free-Response Question: Derivatives

1. Let f be the function given by ( )
>

f x
x x

ax b x

for

for

1

1

2 #
=

+
*

A. Find an expression for a in terms of b such that f(x) is continuous. Use the definition
of continuity to justify your answer.

B. Find specific values of a and b such that f(x) is differentiable. Use the definition of
the derivative to justify your answer.

C. Use your results from parts A and B to sketch f(x).

Answer to Free-Response Question

1. For part A, begin by stating the definition of continuity at a point.

A. f(x) is continuous at x = c iff 

( )

( )

( ) ( )

f c

f x

f x f c

exists

exists
x c

x c

lim

lim =
"

"

Z

[

\

]
]
]]

]
]
]

Here ( )
>

( ) ( )f x
x x

ax b x
f x f

for

for

1

1
1

x

2

1

lim&
#

=
+

=
"

* ; this will ensure continuity.
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( ) ( )

( ) ( )

( )

( )

f x ax b a b

f x x

f

f x1

1 1

x x

x x x

1 1

1 1

2

1

lim lim

lim lim lim&

= + = +

= =

=

" "

" " "

+ +

- -

_

`

a

b
bb

b
bb

( )f a b a bso1 1 1+= + = = -

For part B, recall that a function must be continuous to be differentiable, so the relationship be-
tween a and b established in part A must still hold true. Now state the definition of the deriva-
tive, and use it to find a second relationship between a and b.

B. f(x) is differentiable at x = c iff

( ) ( ) ( ) ( )
x c

f x f c
x c

f x f c

x c x c

lim lim-
-

= -
-

" "
- +

( ) ( ) ( )

( )( )
( )

( ) ( ) ( ) ( )

( )

x c
f x f c

x
x f

x
x

x
x x

x

x c
f x f c

x
ax b f

x
ax b a b

x
a x

a a

1
1

1
1

1
1 1

1 2

1
1

1

1
1

x c x x

x x

x c x x

x x

1

2

1

2

1 1

1 1

1 1

lim lim lim

lim lim

lim lim lim

lim lim

-
-

=
-

=
-
-

=
-

+ -
= + =

-
-

=
-

+ -
=

-
+ - +

=
-
-

= =

" " "

" "

" " "

" "

- - -

- -

+ + +

+ +

_

`

a

b
b
b
bb

b
b
b
bb

a 2& = for differentiability

But a function must be continuous to be differentiable, so, from part A,

a b 1+ =

Thus a = 2 and b = –1 guarantee differentiability.

For part C, sketch the function.

C. ( )
>

f x
x x

x x

for

for

1

2 1 1

2 #
=

-
*

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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153

Applications of the Derivative

Applications of the derivative provide material for many of the free-response problems on the
AP exam. These include finding tangent and normal lines, relating rates of change, optimizing
applications, and sketching curves.

Tangent and Normal Lines
Finding the line that is tangent to a curve at a point is frequently the first application of the de-
rivative that calculus students learn. Because the derivative can be considered as the instanta-
neous rate of change of the slope (rise over run), finding the derivative at a point gives the slope
of the tangent. The line that is normal to a curve at a point is simply the line that is perpendic-
ular to the tangent line, as shown in the following graph. Perpendicular lines have slopes that
are negative reciprocals, so finding the slope of the normal line requires finding the negative
reciprocal of the derivative.

Figure 4.1

To find the equation of the tangent or normal line:

1. Find the slope of the line by first evaluating the derivative at the given point.

a. For tangent lines, the slope (mt) is just this derivative.

b. For normal lines, the slope (mn) is the negative reciprocal of the derivative.

2. Find the point of tangency by evaluating the function at the given point.

3. Apply the point/slope form to the results from the first two steps.

y

x

normal line
tangent line

f(x)(t, f(t))
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Sample

Find the equation of the line that is tangent to the curve ( ) cos sinf x x x3 2= - at the point 

where x
7

=
r.

Find the slope of the tangent line by finding the derivative at x
7

=
r, that is, f

7
rlc m.

( ) ( ) ( )( )cos sin sin cosf x x x f x x x3 2 3 2 2&= - = - -l

( ) sin cosf
7

6
7

2
7

& =- -
r r rl

. . , .mso5 591957763 5 6 5 6t. .- - =-

.cos sinf
7

3
7

2
7

1 436525666.= -
r r r

c c cm m m

.1 4.

Therefore, , .
7

1 4
r

c m is the point of tangency.

Apply the point/slope form: ( )y y m x x1 1- = -

. .y x1 4 5 6
7

- =- -
r

c m

If this answer does not appear as one of the choices on a multiple-choice problem, you may
need to change its form by switching to fractions, simplifying, or solving for y. Always exam-
ine the format of the multiple-choice answers as a guide to the form to work toward.

Sample

Find the equation of the line normal to the curve ( )g x e
x2 3

=
- at the point where x = 0.

( ) ( ) ( )( )g x e g x e 2
x x2 3 2 3
&= =

- -l

( )g e
e

m
e

0 2
2 2

t
3

3 3& &= = =
-l

But the problem asks for the normal line, which is perpendicular to the tangent line.

m m

e

e
e

1
2
1

2 2
1

n
t

3

3
3

& =
-

=
-

=- =-

since ( ) ,g e
e e

0
1

0
13

3 3&= =
-

c m is the point of tangency.
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Apply the point/slope form: ( )y y m x x1 1- = -

( )y
e

e x
1

2
1

03

3
- =- -

y e x
e2

1 13

3=- +

Other forms might be found as multiple-choice answers because of the use of a calculator.

Sample

Find the x and y coordinates of any points where the graph of 

f x x x x
3
2

2
1

3 1
3 2

= - - +^ c ch m m has a horizontal tangent line.

For the tangent line to be horizontal, its slope must be 0; that is, f'(x) = 0.

( ) ( ) ( ) ( )f x x x x f x x x
3
2

2
1

3 1
3
2

3
2
1

2 3
3 2 2

&= - - + = - -l

( )f x x x2 3
2

= - -l

( )f x x x0 2 3 0
2

&= - - =l

( )( )x x2 3 1 0- + =

x xor
2
3

1= =-

( ) ( ) ( ) ( )f
2
3

3
2

2
3

2
1

2
3

3
2
3

1
8
193 2

= - - + =-

( , )horizontal at
2
3

8
19tangent& -

( ) ( ) ( ) ( )f 1
3
2

1
2
1

1 3 1 1
6
173 2

- = - - - - - + =

( , )1
6
17horizontal tangent at& -

Although it is not necessary for this problem, sketching the graph may help clarify the idea of
finding horizontal tangents.

Figure 4.2

y

x

f(x)
horizontal
tangents
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Sample

Find the x-coordinates of any points where the graph of y x3= has a vertical tangent line.

For the tangent line at a point to be a vertical line, its slope must be nonexistent or undefined,
and f(x) must be continuous at the point. That is,

( )
tan

f x
cons t

0
=l and f(x) continuous

'f x x x f x x
x3

1

3

13 3
1

3
2

3
2&= = = =

-
^ ^h h

( )f y x xand is continuous at0
0
1

03& = = =l

Thus there is a vertical tangent at x = 0. Again, a sketch may help you visualize the vertical tan-
gent, although it is not required.

Figure 4.3

Position, Velocity, and Acceleration
Recall that the most general definition of the derivative is the instantaneous rate of change of
one variable with respect to another. Applying this concept in the context of the movement of a
particle along a fixed horizontal line results in a relationship among the particle’s position, ve-
locity, and acceleration (PVA) at any instant in time.

For this section,

s(t) represents the particle’s displacement or position at any time t.

v(t) represents the particle’s instantaneous velocity at any time t.

a(t) represents the particle’s instantaneous acceleration at any time t.

y

x

y =3√x
verticle
tangent 1

1-1

(x = 0)

-1

156

Part II: Specific Topics

CliffsAP Calculus 3rd Edition • 8683 1 Ch04 4 • Jill • 03/14/01 • p 156

8683-1 Ch04.F  3/22/01  7:27 AM  Page 156



Theorem for PVA

( ) ( )
dt
d

s t v t= ( ) ( )
dt
d

s t a t2

2

= ( ) ( )
dt
d

v t a t=

Or, in prime notation,

( ) ( )s t v t=l ( ) ( )s t a t=m ( ) ( )v t a t=l

These relationships may look unfamiliar, but they are really just the calculus version of what
happens when you drive a car. For example, if you travel for 3 hours and cover 180 miles, your
average speed, or velocity, is given by

t
s

change in time
change in position

hour
miles

3
180

60= = =
D
D

Of course, your speed at any instant in time may be more or less than 60 mph; 60 is your aver-
age speed, or velocity. To find your instantaneous velocity, apply calculus to this relationship
by considering the interval of time to be arbitrarily small ( )t 0"D :

( )
( ) ( )

( )v t
t
s

t
s t t s t

s t
t t0 0

lim lim= =
+ -

=
D
D

D
D

" "D D

l

Acceleration is the instantaneous rate of change of velocity with respect to time, or

( )
( )

( ) ( )
( )a t

t
v

t
v t t v t

v t
t t0 0

lim lim= =
+ -

=
D
D

D
D

" "D D

l

On the AP test, for particle problems involving motion along a horizontal line, the positive di-
rection is almost always to the right of the origin. The time interval is frequently limited to
t 0$ , but it is occasionally restricted further or even left as the set of real numbers; read the di-
rections. The following translations of English to calculus may help with PVA problems:

English Calculus

particle at rest v(t) = 0

particle moving right v(t) > 0

particle moving left v(t) < 0

particle changes direction v(t) changes sign

total distance traveled from time t1 to time t2 ( ) ( ) ( ) ( )s t s t s t s tc c1 2- + -
where tc = time when particle changes direction

You should be able to indicate the proper units for the position, velocity, or acceleration if re-
quired to do so.
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Function Units Examples / Abbreviations

s(t) linear units feet or meters: ft or m

v(t) linear units per unit of time feet per second: ft/s
meters per second: m/s

a(t) linear units per unit of time squared feet per second squared: ft/s2

centimeters per second squared: cm/s2

Sample

A particle moves along a horizontal line such that its position at any time t 0$ is given
by ( )s t t t t6 9 1

3 2
= - + + , where s is measured in meters and t in seconds.

A. Find any time(s) when the particle is at rest.

B. Find any time(s) when the particle changes direction.

C. Find any intervals when the particle is moving left.

D. Find the total distance the particle travels in the first 2 seconds.

E. Find the velocity of the particle when the acceleration is 0.

Justify all answers in detail.

It may be helpful to begin by finding v(t) and a(t) so that they are handy when you need them.

( ) ( ) ( )s t t t t v t t t a t t6 9 1 3 12 9 6 12
3 2 2

& &= - + + = - + = -

( )t t3 4 3
2

= - +

( )( )t t3 1 3= - -

(a) “At rest” ( )v t 0& =

( )v t t twhen or0 1 3& = = =

(b) Changes direction” ( )v t& changes sign

The potential places where v(t) changes sign are, of course, where v(t) = 0 — that is, where 
t = 1 and t = 3. However, you must still justify that v(t) changes sign by using a number line or
a chart. Whichever diagram you prefer, label it clearly as v(t).

t <t0 1# t = 1 1 < t < 3 t = 3 t > 3

v(t) pos 0 neg 0 pos

v(t)
1

pos neg pos

0 3
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Thus the particle changes direction at t = 1 and t = 3.

(c) “Moving left” ( ) <v t 0&

From the number line or chart, v(t) < 0 when 1 < t < 3.

(d) “Total distance t = 0 to t = 2” ( ) ( ) ( ) ( )s s s s0 1 1 2& - + -

1 5 5 3= - + -

m4 2 6= + =

(e) “Velocity when acceleration = 0” ( )a t 0=

t6 12 0- =

t 2=

( ) ( )( ) /v m s2 3 2 1 2 3 3= - - =-

Although it is not requested in this problem, a diagram showing the motion of the particle may
help answer some PVA questions and may also serve as a way of checking your calculus. The
motion is along a horizontal line, which should be labeled so as to include all “important” times
and locations, such as when the particle is at rest, when it is changing direction, and so on.

t s(t)

0 1

1 5

2 3

3 1

The single axis here is labeled to correspond with the values in the table above. For other PVA
problems, the axis may require a far different configuration. Complete the table of important
values first, and then choose the appropriate system of labels. Even though the motion is along
a single horizontal line, the path is described along three different horizontal lines in order to
show the changes in direction. Note that the times are shown next to the changes. Trace the
path of the particle from t = 0 to t = 2; now, examine again the work for part (d) above. The
first absolute bars give the distance traveled as the particle moves right from t = 0 to t = 1. At
t = 1, the particle changes direction. The second set of absolute-value bars gives the distance
the particle moves left from t = 1 to t = 2.

s(t)
10 32 54

t = 3 t = 2

t = 1

t = 0
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Sample

A particle travels along a horizontal line such that at any time t 0$ , its velocity is given
by ( ) ( ) ( )v t t t3 2 5

2
= - - meters per second.

(a) At what times, if any, does the particle change direction?

(b) Find the acceleration of the particle at any times when it is at rest.

Justify all answers in detail.

(a) “Change direction” ( )v t& changes sign

First, find when v(t) = 0, and then find when it changes direction.

( ) ( ) ( )v t t t t tor3 2 5 0 2 5
2

&= - - = = =

t 0 < t < 2 t = 2 2 < t <5 t = 5 t > 5

v(t) neg 0 neg 0 pos

Thus the particle changes direction when t = 5 only.

(b) Find a(t) using the product rule to find the derivative of v(t).

( ) ( ) ( )v t t t3 2 5
2

= - -

( ) [( ) ( ) ( )( )( ) ( )]a t t t t3 2 1 5 2 2 1
2 1

& = - + - -

( )[( ) ( )]t t t3 2 2 2 5= - - + -

( ) ( )( )a t t t3 2 3 12= - -

“At rest” ( )v t t tor0 2 5& &= = = from part (a)

( ) ( )( ) /a m s2 3 0 6 0
2

= - =

( ) ( )( ) /a m s5 3 3 3 27
2

= =
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Related Rates
One typical kind of calculus problem that often appears on the AP exam involves finding the
instantaneous rate of change of two variables that are related by a third variable. Here is an 
example:

Sample Problem
A paper cup in the shape of a cone has a 3-inch top diameter and is 5 inches high. Water is be-
ing poured into the cup at the rate of 2

1 cubic inch ( )in
3 per second. How fast is the water rising

when the water level is halfway up the cup?

Figure 4.4

For related-rates problems, realize that even though a known rate may be constant, the rates re-
lated to it may not be constant. In this problem, for example, even though the water is pouring
in at a constant rate of 2

1 ( )in
3 , the rate of change of the height of the water level in the cup is

not constant. At the bottom of the cup there is very little volume to fill, so the level rises very
quickly (from level 1 to level 2 in the left cone in Figure 4.5). Further up the cup, it takes a
much longer time to change the water level the same amount, because there is more volume to
fill (from level 3 to level 4 in the right cone in Figure 4.5).

Figure 4.5

level 2

level 1

level 4

level 3

5-

4-

3-

2-

1-
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Most related-rates problems can be solved with the following five-step process:

1. Sketch and define.

Most related-rates problems are “real life” situations that have one or more pictures ac-
companying them. Begin with a large sketch and label it to define variables. If it isn’t ob-
vious what variables will be needed, return to the sketch and label as you progress through
the problem. Pick logical letters to represent the needed quantities; for example, use r for
a radius instead of x.

2. Symbolize.

One key to solving related-rates problems is to be able to symbolize both the given infor-
mation and the unknown quantity you are seeking. Follow this format:

“find ____” usually a differential quantity like 
dt
dy

“when ____” a point in time, usually specified by noting when a variable reaches a
certain value

“given ____” usually a differential quantity like 
dt
dv

3. Write the equation.

a. Write an equation that will provide a relationship between the variables in the problem.
Related-rates equations usually come from three sources: trigonometry, the Pythagorean
theorem, and formulas (provided on AP exam).

b. For some problems, you may have to modify the equation you wrote in step a. The
equation must contain only the variables in the “find _____ when _____, given _____” in
step 2 above. The method used to modify the equation depends on the type of problem: It
may require algebra, geometry, or trig.

4. Differentiate.

All rates are taken with respect to time (for example, feet per second or miles per hour),
so differentiation is done with respect to time, symbolized with a lowercase t. Implicit dif-
ferentiation is needed: Whenever a variable quantity is differentiated, the appropriate dif-
ferential quantity must be inserted, such as dv/dt.

5. Solve and substitute.

Solve the differentiated equation for the quantity listed in the “find ____” section, and
then substitute the known information. You may need to solve a small side problem in or-
der to discover values of other variables at the “when _____” point in time. It may help to
sketch another version of the picture that represents the one moment in time in question.
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Sample

Use the five-step process to solve the first sample problem: A paper cup in the shape of a
cone has a 3-inch top diameter and is 5 inches high. Water is being poured into the cup at
the rate of 2

1 in3 per second. How fast is the water rising when the water level is halfway
up the cup?

1. Sketch and define.

Begin with a sketch. Label the top diameter and height. Show some arbitrary amount of
water in the cup. Let r and h be the radius and height, respectively, of the filled portion of
the cup.

Figure 4.6

2. Symbolize.

“how fast water level is rising”
dt
dh

find&

“halfway up the cup” . .hwhen in2 5& =

“poured into the cup at . . .” /
dt
dv

given in s
2
1 3

& =

Figure 4.7

3. Write the equation.

The equation must relate the volume (V) and the height (h) of a cone. On the AP exam, the
equation will be given to you. It is

V r h
3
1 2

= r

halfway
h = 2.5 in.

r

3 in.

5 in.
h
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This equation has an “extra” variable: r. The “find ____ when ___, given ____” in step 2
has only v and h, so the given formula must be modified. Seek a relationship between r
and either h or v.

Figure 4.8

Examine triangles ABC and DEC in the picture. The two triangles are similar, which means
that corresponding parts are in proportion:

AC
AB

DC
DE

h
r

r h
5
2
3

10
3

& &= = =

V r h V
h

h
3
1

3
1

10
32

2

&= r r c m

V
h

h
3
1

100
9

2

= r

V h
100
3 3

=
r

4. Differentiate both sides with respect to t.

V h
100
3 3

=
r

dt
dV

h
dt
dh

100
3

3
2

=
r

dt
dV

h
dt
dh

100
9 2

=
r

5. Solve for 
dt
dh and substitute.

dt
dh

h dt
dV

9
100

2=
r

( )dt
dh

9
2
5

100
2
1

.h 2 5
2

=
r=

c m

./in s
9
100

25
4

2
1

9
8

= =r rc c cm m m

Here are a few more hints to help you avoid some of the most common mistakes made when
doing related-rates problems.

3
2

5 in.

in.

A B

ED

h

r

C
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1. Be sure to substitute at the right time.

Be careful that you do not substitute a numerical value for a variable until after you differ-
entiate. In the previous problems, for example, in an effort to eliminate r, it is tempting (but
incorrect) to replace r with 2.5, the value of r at the specified point in time. Because r
changes during the problem, you cannot substitute a constant for r until after you differenti-
ate. However, do use constants when appropriate. If a particular quantity does not change at
all during the entire problem, then it should be represented by a constant and not a variable.

2. Differentiate with respect to time.

A very common mistake with related-rates problems is applying implicit differentiation
incorrectly — that is, forgetting to include dt

dy when differentiating y, dt
dx when differentiat-

ing x, dt
di when differentiating i, and so on.

3. Include units.

When a problem is finished, be sure to include the appropriate units for the answer. Rates
should be done as measurement units per unit of time. For example,

for linear rates: feet per second or 
meters per second

for area rates: square feet per second or
square meters per second

for volume rates: cubic feet per second or cubic meters per second

for angular rates: radians per second

4. “Rate of change” means derivative.

In setting up related-rates problems, remember that an instantaneous rate of change is 
represented by the derivative. Any quantity that is described as changing per second (or
minute or other unit of time), needs to be represented with a derivative like dt

dy .

5. “Decreasing” quantities should have negative rates.

If a quantity is decreasing over the course of time, it is best to represent its rate of change
with a negative number; for example, /ft s8dt

dy
=- .

6. The derivative of a constant is 0.

Any time a constant is differentiated, the derivative should be 0. This comes up frequently
in Pythagorean theorem problems.

Sample

For the previous sample problem on page 163, find the rate at which the exposed surface
area of the water is changing when the water level is halfway up the cup.
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1. Sketch and define.

Let A = the exposed surface area.

Figure 4.9

2. Symbolize.

“rate of change of surface area”
dt
dA

find&

“halfway up the cup” .hwhen 2 5& =

“poured into the cup at /
dt
dV

given in s
2
1 3

& =

and, from the previous problem, ./
dt
dh

in s
9
8

= r

3. Write the equation.

The exposed surface area of the water is a circle, so use the formula for the area of a cir-
cle. (Very simple formulas such as this may not be provided on the AP exam.)

A r
2

=r

Because of the “find _____ when ______, given ______” in step 2, the equation must be
in terms of A, h, and/or V; r must be eliminated.

r h
10
3

= from the previous problem

A
h

h
10
3

100
9

2
2

& = =r r
c m

4. Differentiate both sides with respect to t.

( )
dt
dA

h
dt
dh

100
9

2=
r

5. Solve and substitute.

( ) /
dt
dA

in s
100
9

5
9
8

5
2

.h 2 5

2
= =
r

r
=

c m

The answer to the previous example was used to help solve this problem. A similar situa-
tion may arise on the free-response section of the AP exam. You may have to use, for ex-
ample, the answer to part (b) to do part (c). If you cannot get an answer to part (b) and you
need it to finish (c), make up a reasonable value for the missing answer, and use it to fin-
ish part (c). Explain on your test what you are doing, and show clearly where the made-up
value enters. Do not write a paragraph about how you would finish the problem if you
could; make something up and actually do the problem.

A
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Sample

A 12-foot ladder leans against the side of a house. The base of the ladder is pushed
toward the house at a rate of 2 feet per second. When the bottom of the ladder is 3 feet
from the house, find

(a) how fast the top of the ladder is moving up the side of the house.

(b) how fast the area of the triangle created by the ladder, the side of the house, and the
ground is changing.

(c) how fast the angle the ladder makes with the ground is changing.

(a)1.Sketch and define.

Label the triangle ABC. Let x = BC and y = AB.

Figure 4.10

2. Symbolize.

“top of the ladder moving up . . .”
dt
dy

find&

“bottom is 3 feet from house” xwhen 3& =

“pushed toward the house . . .”
dt
dx

given 2& =-

3. Write the equation.

Triangle ABC is a right triangle throughout the problem, so the Pythagorean theorem can
be applied.

x y 12
2 2 2
+ =

No variables need to be eliminated because the “find ______ when _______, given
_______” has x and y only, as does the equation. Note that a variable was not used for the
hypotenuse of the triangle. The hypotenuse is the ladder, and because the length of the
ladder does not change throughout the entire problem, the constant value of 12 should be
used in the equation.

y12

A

x BC
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4. Differentiate both sides with respect to t.

x y 12
2 2 2
+ =

x
dt
dx

y
dt
dy

2 2 0+ =

5. Solve and substitute.

x2y
dt
dy

dt
dx

dt
dy

y
x

dt
dx

dt
dy

y
x

dt
dx

2

2
2

=-

=
-

=
-

You need to find a value of y that corresponds to the given value of x in order to substitute.
Drawing a picture that represents the moment when x = 3 may help.

Figure 4.11

y y3 12 135 3 15
2 2 2

&+ = = =

( ) . /
dt
dy

ft s
3 15

3
2

15

2
0 52

x 3

.=
-

- =
=

(b)1.Sketch and define. (See Figure 4.10.)

Let a = area of triangle ABC

2. Symbolize.

“area of triangle changing”
dt
da

find&

“bottom is 3 feet from house” xwhen 3& =

from the previous problem y 3 15=

“pushed toward the house
dt
dx

given 2& =-

from the previous problem
dt
dy

15

2
=

y12

3
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3. Write the equation.

The area of a triangle is given by

( )( )area base height
2
1

=

a xy
2
1

=

The equation can be differentiated now, because the “find ______ when ______, given
______” section has enough information in it.

4. Differentiate with respect to t. Use the product rule.

a xy
2
1

=

dt
da

x
dt
dy

y
dt
dx

2
1

= +< F

5. Solve and substitute.

( ) ( )( ) /
dt
da

ft s
2
1

3
15

2
3 15 2

2
= + -

J

L

K
K

N

P

O
O

R

T

S
S
S

V

X

W
W
W

This answer is acceptable on the AP exam. Answers do not have to be simplified unless a
decimal answer is requested, in which case you would, of course, use a calculator. But if
you prefer a simpler form, use

/
dt
da

ft s
15

3
3 15

15
42 15 2

= - =
-

(c) 1. Sketch and define.

Let θ = the angle the ladder makes with the ground.

Figure 4.12

2. Symbolize.

“angle is changing”
dt
d

find&
i

“bottom is 3 feet from house” xwhen 3& =

from the previous problem y 3 15=

y

θ

A

x BC
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“pushed toward the house . . .”
dt
dx

given 2& =-

from the previous problem
dt
dy

15

2
=

3. Write the equation.

Trig is required for any problem that asks for the rate of change of an angle. Several dif-
ferent trig functions may work:

sin
y

12
=i or cos

x
12

=i or even tan x
y

=i

The cosine equation requires only information given at the beginning of the problem, and
no intermediate results from previous parts, so use it.

4. Differentiate both sides with respect to t.

cos
x

12
=i

sin
dt
d

dt
dx

12
1

- =i i

5. Solve and substitute.

sindt
d

dt
dx1

12
1

=
-

i
i

You need to find sin θ before substituting. You can use a calculator, but just applying the
trig ratios is probably easier:

( ) /
dt
d

rad s
15

4
12
1

2
3 15

2

x 3

-
- =

i
=

J

L

K
K c

N

P

O
O m

Figure 4.13

12

3

√153 =sin θ =
12
√153

4
√15

θ
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Relative Extrema and the First Derivative Test
The derivative can play a key role in determining what the graph of a function looks like, be-
cause it can be used to determine where a function is increasing or decreasing.

Theorem on Increasing and Decreasing
If ( ) <f x 0l for all x in some interval (a, b), then f(x) is decreasing on (a, b).

If ( ) >f x 0l for all x in some interval (a, b), then f(x) is increasing on (a, b).

Examine the slopes of the following tangent lines. For < <x4 2
1- - , the slopes of the tangent

lines l, m, and n are obviously positive, so ( ) >f x 0l , and the function is clearly increasing. For
< <x 42

1- , the slopes of the tangent lines p, q, and r are negative, so ( ) <f x 0l and the function is
decreasing.

Figure 4.14

To determine where a function is increasing and decreasing, take these steps:

1. Find critical numbers — that is, where

( )f x 0=l or ( )f xl does not exist

2. Find the sign of ( )f xl in each of the intervals determined by the critical numbers.

3. Apply the foregoing theorem:

( ) > ( )

( ) < ( )

f x f x

f x f x

0

0

is increasing

is decreasing

&

&

l

l

positive
slopes negative

slopes

m

l

n
p

q

r

y

x

3

2

4

1

-1-2-3-4 32 41
-1

-2

-3

-4
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Sample

Find all intervals where ( )f x x x x4 3 18 6
3 2

= - - + is increasing and all intervals where it
is decreasing.

Find critical numbers and do interval testing.

( ) ( )f x x x x f x x x4 3 18 6 12 6 18
3 2 2

&= - - + = - -l

( )x x6 2 3
2

= - -

( )( )x x6 2 3 1= - +

critical numbers ( )f x 0& =l or ( )f xl does not exist

Therefore, x xand 12
3= =- are critical numbers.

Now find the sign of ( )f xl in the intervals determined by these critical numbers.

x x < –1 x = –1 < <x1
2
3

- x
2
3

= >x
2
3

( )f xl positive 0 negative 0 positive

f (x) increasing decreasing increasing

Note that conclusions from the interval testing are shown in the last row, which is labeled f (x).
To justify that a function is increasing or decreasing on the AP exam, you must use this or a
similar format.

The test for increasing and decreasing functions is closely related to the idea of extreme values
of a function, also known as the maxima and minima. In the previous problem, f(x) had two
critical numbers, x = –1 and x = 2

3. A graph of the function shows that these two points are the
relative maximum and the relative minimum of f (x), respectively.

Figure 4.15

y

x

15

10

5

-1-2-3 321
-5

-10

-15

(−1, 17)
max

f(x) = 4x3 − 3x2 − 18x + 6

(   , −14  )
min

3
2

1
4
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This relationship between extrema and the derivative can be summarized as follows:

First Derivative Test for Extrema
Given that x = c is a critical number of the function f(x):

If ( )f xl changes sign from positive to negative at x = c, then f(x) has a relative maximum
at x = c.

If ( )f xl changes sign from negative to positive at x = c, then f(x) has a relative minimum
at x = c.

A shorthand notation for this theorem is

( ): maxf x x cat rel" &+ - =l

( ): minf x x cat rel" &- + =l

Sample

Find the relative extrema of sin cosy x x2= - in the interval [ , ]0 2r . Justify your answer
by using the first derivative test.

Find critical numbers and do interval testing.

sin cos cos siny x x y x x2 2&= - = +l

critical numbers ( ) ( )f x f xor0& =l l does not exist

cos sinx x2 0+ =

( )sin cos cosx x xthat is not a solution2 0assuming=- =

.tanx x k radians
2
1

0 46& .=- - + r

Thus in the interval [ , ], . . .x xor0 2 2 68 5 82. .r

Now do interval testing on yl.

x < .x0 2 68# x = 2.68 2.68 < x < 5.82 x = 5.82 . < x5 82 2# r

yl positive 0 negative 0 positive

y increasing rel max decreasing rel min increasing

Thus there is a relative maximum at (2.68, 2.24) and a relative minimum at (5.82, –2.24).
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Sample

Find the relative extrema of f x x x3 3
2

= -^ h , and sketch the function on the interval
[ , ]1 27- .

Find critical numbers and do interval testing.

'f x x x f x x3 3
3
2

13
2

3
1

&= - = -
-

^ ^ ch h m

x x

x2
1

2
3 3

3

= - =
-

critical numbers ( )f x 0& =l or ( )f xl does not exist

Therefore, x = 8 and x = 0 are critical numbers.

x <x1 0#- x = 0 0 < x < 8 x = 8 < x8 27#

( )f xl neg D.N.E. pos 0 neg

f (x) decr rel min incr rel max decr
sharp turn

Thus there is a relative minimum at (0, 0) and a relative maximum at (8, 4).

The relative minimum at x = 0 is indicated in the chart as a “sharp turn.” Because the domain of
f(x) is all real numbers, but the derivative at x = 0 does not exist, there are two possibilities for
the graph at x = 0: a vertical tangent or a sharp turn. Only the sharp turn is consistent with x = 0
also being the relative minimum.

Figure 4.16

Caution: Do not assume that all critical numbers are some type of extremum. The derivative
must change sign on either side of the critical number in order for the critical number to be an
extremum. Always justify extrema by showing the sign change in the derivative.

y

x

3

2

4

1

(0, 0)
rel min

15105 2520

y = 3x
2/3 − x

(−1, 2)

(27, 0)

rel max
(8, 4)
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Sample

Find any relative extrema of ( )g x x x x3 8 6
4 3 2

= - + .

Find the critical numbers and do interval testing.

( ) ( )g x x x x g x x x x3 8 6 12 24 12
4 3 2 3 2

&= - + = - +l

( )x x x12 2 1
2

= - +

( )x x12 1
2

= -

critical numbers ( ) ( )f x f xor0& =l l does not exist

Therefore, x = 0 and x = 1 are critical numbers.

x x < 0 x = 0 0 < x < 1 x = 1 x > 1

( )f xl neg 0 pos 0 pos

f (x) decr rel min incr no extremum incr

The only extremum is a relative minimum at (0, 0). A sketch of g(x) follows.

Figure 4.17

Concavity and the Second Derivative Test
A second way to use derivatives to help sketch curves is with the second derivative, because the
second derivative can be used to find the concavity of a graph. Visually, concavity is easy to
recognize. If a graph is “smiling” at you, it is concave up; if it is “frowning” at you, it is con-
cave down.

(1, 1)

(0, 0)
rel min

y = 3x
4
 − 8x

3
 + 6x

2

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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Figure 4.18

Not surprisingly, a more mathematical definition of concavity involves derivatives:

Definition of Concavity
A function f(x) is concave up on an interval if ( )f xl is increasing on the interval.

A function f(x) is concave down on an interval if ( )f xl is decreasing on the interval.

This definition can be demonstrated by examining the following graphs, while keeping in mind
that the slope of a tangent line is given by the first derivative of the function. On the left, four
tangent lines , , ,l l l land1 2 3 4, have been sketched. The slopes of the tangent lines , , ,l l l land1 2 3 4

are (approximately)  ,m 11=- / , ,m m mand1 2 1 32 3 4=- = = . This series of numbers is obviously
increasing, so the derivative is increasing. On the right, the situation is reversed: the slopes

, , ,m m m mand2 1 0 15 6 7 8= = = =- are decreasing, and thus so is the derivative.

Figure 4.19

The foregoing definition is just that: a definition of concavity. There is, however, an easier and
more commonly used test for concavity.

Concave up:
f'(x) increasing

Concave down:
f'(x) decreasing

y

x

3

2

1

-1-2-3 321
-1

-2

-3

y

x

3

2

1

-1-2-3 321
-1

-2

-3

l5

l6l1
l4

l3l2

l7
l8

Concave up: "smiling" Concave down: "frowning"

y

x

y

x
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Theorem: Test for Concavity
If ( ) >f x 0m on an interval, then f(x) is concave up on that interval.

If ( ) <f x 0m on an interval, then f(x) is concave down on that interval.

This test is derived by combining the definition of concavity with the test for increasing and de-
creasing functions in the previous section. Here is a shorthand notation that incorporates the
definition and the test:

concave up ( ) ( )f x f x positiveincreasing+ +l m

concave down ( ) ( )f x f x negativedecreasing+ +l m

To find the concavity of a function:

1. Find where ( ) ( )f x f xor0=m m does not exist (sometimes known as the second derivative
critical numbers).

2. Find the sign of ( )f xm in each of the intervals determined by the numbers in the first step.

3. Apply the test-for-concavity theorem.

Sample

Find all intervals where the graph of y x x2 6
3 2

= - is concave up.

Find the second derivative critical numbers and do interval testing.

y x x y x x

y x

2 6 6 12

12 12

3 2 2
&

&

= - = -

= -

l

m

y yor does not exist0=m m

x

x

12 12 0

1

- =

=

x x < 1 x = 1 x > 1

ym neg 0 pos

y concave down concave up

Thus the graph is concave up on x > 1.
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Definition of Point of Inflection
If a function changes concavity at a point, that point is called a point of inflection (POI), pro-
vided that a tangent line exists at that point.

In the foregoing example, (1, –4) is a point of inflection, and a sketch of y x x2 6
3 2

= - shows
the change in concavity.

Figure 4.20

On the AP exam, free-response problems often deal with finding relative extrema and points of
inflection, and then they require a sketch of the graph, along with justification of your solution.
The next example is a typical free-response problem. Note that you are asked for several other
pieces of information, as well as for the extrema and POI. When drawing the sketch at the end
of the problem, take into account all of the information you have discovered, and be consistent.

Sample

Consider the function ( )f x x x8
4 2

= -

(a) Show that f(x) is symmetric with respect to the y-axis.

(b) Find all the zeros of f(x).

(c) Find the x- and y-coordinates of all relative extrema, and identify them as relative
maxima or minima.

(d) Find the x- and y-coordinates of all points of inflection.

(e) Using the information from parts (a) through (d), sketch the graph of f(x).

Justify all your answers.

(2, −8)

(1, −4)
point of

inflection
(POI)

y = 2x
3
 − 6x

2

y

x

6

4

2

-2-4-6 642
-2

-4

-6
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(a) To justify symmetry with respect to the y-axis, show that ( ) ( )f x f x- =

( ) ( ) ( ) ( )f x x x f x x x8 8
4 2 4 2

&= - - = - - -

x x8
4 2

= -

( )f x=

Thus ( ) ( ), ( )f x f x f xso- = is symmetric with respect to the y-axis.

(b) For zeros, find where ( ) .f x 0=

( )f x x x8 0
4 2

= - =

( )x x 8 0
2 2

- =

x x

x x

or

or

0 8

0 2 2

2 2

!

= =

= =

Thus the zeros are ( , ),( , ), ( , ).and0 0 2 2 0 2 2 0-

(c) For extrema, find ( )f xl find the critical numbers, and do interval testing.

( ) ( )

( )

f x x x f x x x

x x

8 4 16

4 4

4 2 3

2

&= - = -

= -

l

critical numbers: ( ) ( )f x f xor0=l l does not exist

Therefore, x xand0 2!= = are critical numbers.

x x < –2 x = –2 –2 < x < 0 x = 0 0 < x < 2 x = 2 x > 2

( )f xl neg 0 pos 0 neg 0 pos

f(x) decr rel min incr rel max decr rel min incr

Thus (–2, –16) and (2, –16) are relative minima and (0, 0) is a relative maximum.

(d) For POI, find ( )f xm critical numbers and do interval testing.

( ) ( )

( )

f x x x f x x

x

4 16 12 16

4 3 4

3 2

2

&= - = -

= -

l m

critical numbers: ( ) ( )f x f x

x

or does not exist0

3 4 0
2

=

- =

m m

x
3

2
3

2 3
! != =
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x <x
3

2 3
- x

3
2 3

=- < <x
3

2 3
3

2 3-
x

3
2 3

= >x
3

2 3

( )f xm pos 0 neg 0 pos

f(x) concave up POI concave down POI concave up

Therefore, , ,and
3

2 3
9
80

3
2 3

9
80

- - -
J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
Oare points of inflection.

(e)

Figure 4.21

Some students prefer to find both derivatives and their critical numbers first and then put both
types of critical numbers into a single chart to do the interval testing. This method is not rec-
ommended, however, because it can result in testing more intervals than are necessary. It also
can lead to incorrect conclusions, such as a first derivative critical number turning into a point
of inflection.

Second Derivative Test for Extrema
Concavity also provides a second method for justifying relative extrema.

Given that ( ) ( )f c f xand0=l m exists in an interval about x = c:

If ( ) < ,f c x cthen0 =m is a relative maximum.

If ( ) > ,f c x cthen0 =m is a relative minimum.

If ( )f c 0=m , the test fails, and you should use the first derivative test.

Caution: When applying this test, be sure you put the first derivative critical numbers into the
second derivative.

  rel max
(0, 0)

(−2, −16)
rel min

(2, −16)
rel min

f(x) = x
4
 − 8x

2

y

x

15

10

5

-1-2-3 321
-5

-10

-15 POI
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This test may seem a bit backward: if the second derivative is negative, the result is a relative
maximum. But if you picture a relative maximum, you will see that the function is clearly con-
cave down around the maximum; hence ( ) <f x 0m . Similarly, for a relative minimum, the func-
tion is concave up around the minimum; hence ( ) >f x 0m .

Figure 4.22

Sample

Use the second derivative test to find the extrema ( )f x x x x3 8 6
4 3 2

= - + (This is the same
problem as the last one in the previous section, page 175).

( ) ( )f x x x x f x x x x3 8 6 12 24 12
4 3 2 3 2

&= - + = - +l

( )x x x12 2 1
2

= - +

( )x x12 1
2

= -

( )f x x xor0 0 1&= = =l

Now find the second derivative, and test the sign at x = 0 and x = l.

( ) ( )f x x x x f x x x12 24 12 36 48 12
3 2 2

&= - + = - +l m

( )x x12 3 4 1
2

= - +

( ) ( ) >f f0 12 0 0& &=m m relative minimum at (0, 0)

( )f 1 0 &=m test fails, use first derivative test (see page 173)

Absolute Extrema and Optimization
A common application of the derivative involves finding the absolute extrema of a function.
Absolute extrema are just what they sound like: the very largest or smallest values of a func-
tion. Absolute extrema can occur at the relative extrema of the function or at the endpoints of a
given closed interval. This concept is summarized in the following theorem.

rel min

concave up

rel max

concave down

y

x
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Extreme Value Theorem
If a function is continuous on a closed interval, then the function is guaranteed to have an 
absolute maximum and an absolute minimum in the interval. To guarantee the existence of 
absolute extrema, the interval must be closed. However, some functions may have absolute 
extrema even when the interval is open, or even when the domain is the set of real numbers.
Study the following examples. Some of the absolute extrema occur at endpoints, and others 
occur at the relative extrema.

Figure 4.23

on [–2, 2] absolute maximum at (–1, 3)
absolute minimum at (1, –2)

on [–2, 0] absolute maximum at (–1, 3)
absolute minimum at (–2, 0) and (0, 0)

on [0, 3] absolute maximum at (3, 4)
absolute minimum at (1, –2)

on ( , )0 3 no absolute maximum
absolute minimum at (1, –2)

on (–2, 1) absolute maximum at (–1, 3)
no absolute minimum

Sample

Find the absolute extrema of f x x 13
2

= -^ h on each of the following intervals:

(a) [–1, 2]

(b) (–1, 2)

(c) [ , )0 3

(d) ( , )0 3

(e) the real numbers

(3, 4)
(−1, 3)

(1, −2)

y

x

3

2

4

1

-1-2-3 321
-1

-2

-3

182

Part II: Specific Topics

CliffsAP Calculus 3rd Edition • 8683 1 Ch04 4 • Jill • 03/14/01 • p 182

8683-1 Ch04.F  3/22/01  7:29 AM  Page 182



Begin by finding the relative extrema, if any. A sketch may help.

Figure 4.24

'f x x f x x
x

1
3
2

3

2
3

3
2

3
1

&= - = =
-

^ ^h h

critical numbers: ( ) ( )f x f xor0=l l does not exist

x = 0

x x < 0 x = 0 x > 0

( )f xl neg D.N.E. pos

f(x) decr rel min incr
sharp turn

Therefore, f(x) has a relative minimum at (0, –1).

(a) on [–1, 2] x –1 0 2

f(x) 0 –1 0.59

absolute minimum at (0, – 1)
absolute maximum at approximately (2, 0.59)

(b) on (–1, 2) no absolute maximum
absolute minimum at (0, –1)

(c) [0, ∞) no absolute maximum
absolute minimum at (0, –1)

(d) on (0, ∞) no absolute maximum
no absolute minimum

(e) on the real numbers no absolute maximum
absolute minimum at (0, –1)

Word problems that apply the concept of extrema are characterized as optimization problems.
Study the following example.

y

x

3

2

1

-1-2-3 321
-1

-2

-3
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Sample Problem
An Australian rancher wants to build a rectangular enclosure to house his flock of emus. He
has only $900 to spend on the fence, and naturally he wants to enclose the largest area possible
for his money. He plans to build the pen along a river on his property, so he does not have to
put a fence on that side. The side of the fence that is parallel to the river will cost $5 per foot to
build, whereas the sides perpendicular to the river will cost $3 per foot to build. What dimen-
sions should he choose?

This problem requires finding the maximum area, under the constraint of spending $900. The
techniques of finding the extreme values of a function are useful here. To solve optimization
problems:

1. Define variables to represent the quantities in the problem. A sketch may be needed.

2. Identify the quantity to optimize with a short phrase, such as “maximize area.”

3. Write equation(s):

(a) involving the quantity to be optimized.

(b) involving any constraints, if needed.

4. Combine the two equations in step 3 to get an equation that expresses the quantity to be
optimized in terms of a single independent variable. Find the domain of this independent
variable.

5. Find the absolute extreme value required by the problem. If the domain is a closed inter-
val, check the function values at the endpoints of the interval.

6. Answer the question.

Sample

Solve the foregoing sample problem.

Sketch the pen and river, and define the variables.

Figure 4.25

river

x

y

x
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maximize area: A

A = xy

x x y x y3 3 5 900 6 5 900&+ + = + =

y x5 900 6= -

y
x

5
900 6

=
-

Substituting the constraint into the area equation yields

A xy x
x

5
900 6

= =
-

c m

( )A x x
5
1

900 6
2

= - Domain: x > 0

dx
dA

x900 12= -

critical numbers:
dx
dA

dx
dA

or0= does not exist

x
12
900

75= =

Justify the maximum.

x 0 < x < 75 x = 75 x > 75

dx
dA pos 0 neg

A incr rel max decr

( )
x y75

5
900 6 75

90&= =
-

=

Thus x = 75 yields the maximum value on the domain.

Therefore, the farmer should build his enclosure to measure 75 feet by 90 feet.

Sample

Find the point on the parabola y x
2
1

2
2

= - that is closest to the origin.

Figure 4.26

(x,y)
s

y

x

3

2

1

-1-2-3 321
-1

-2

-3 y =   x
2
 = 21

2
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minimize distance: s

( ) ( )s x y

y x

0 0

2
1

2

2 2

2

= - + -

= -

Substituting the constraint into the distance formula yields

s x x
2
1

2
2 2

2

= + -c m

The minimum value of s will occur when the radicand is a minimum, so let the radicand be
represented by a single variable — say r.

:

r x x

r x x x

r x x x

dx
dr

x x

Domain

2
1

2

4
1

2 4

4
1

4

2

the real numbers

2 2
2

2 4 2

4 2

3

!

= + -

= + - +

= - +

= -

c m

critical numbers:
dx
dr

dx
dr

or0= does not exist

x x2 0
3
- =

( )x x 2 0
2
- =

x xor0 2!= =

Justify the minimum.

x <x 2- x 2=- < <x2 0- x = 0 < <x0 2 x 2= >x 2

dx
dr neg 0 pos 0 neg 0 pos

r decr rel min incr rel max decr rel min incr

Thus the points on the parabola that are closest to the origin are ( , ) ( , )and2 1 2 1- - -

If the problem had asked for the actual minimum distance, and not the points where the mini-
mum occurred, the answer would have been the value of s (not r) that corresponds to x 2= .

Sample

Anna is in a rowboat 3 miles from a straight coast. She wants to go to George’s house 2
miles down the coast. Anna can row at 4 mph and can jog at 6 mph. Where should she
land on the coast in order to arrive at George’s house in the shortest time possible?
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Make a sketch and define the variables.

Figure 4.27

minimize: T where

T = (time on water) + (time on land)

T t tw l= +

r t d t r
d

&$ = =

Substituting the constraint into the time equation yields

T r
d

r
d

w

w

l

l= +

T
x x
4

9
6

2
2

=
+

+
- Domain: x0 2# #

T x x
12
1

3 9 4 2
2 2

1

= + + -` j; E

dx
dT

x x
12
1

2
3

9 2 2
2 2

1

= + -
-

` ^j h; E

x

x
12
1

9

3
2

2
=

+
-

R

T

S
SS

V

X

W
WW

x

x x
12
1

9

3 2 9
2

2

=
+

- +
R

T

S
SS

V

X

W
WW

critical numbers:
dx
dT

dx
dT

or0= does not exist

x x3 2 9
2

= +

x x9 4 36
2 2
= +

x
5
362

=

.x
5

6
2 7! !.=

George

2 miles

2 − xx

3
miles

Anna
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Because the only critical numbers are outside the domain, the extrema must occur at the end-
points.

x 0 2

T .
12
13

1 083. .
4
13

0 901.

Therefore, Anna should row directly toward George’s and not jog at all.

Rolle’s Theorem and the Mean Value Theorem
Two theorems that are applied to many calculus proofs are Rolle’s theorem and the mean value
theorem. Although you will not be required to apply them to proofs on the AP exam, either (or
both) might appear on multiple-choice questions or perhaps as one part of a free-response
problem. These problems are some of the easiest applications of the derivative, if you have
memorized the hypothesis and conclusion of the theorems. They are impossible if you haven’t.

Rolle’s Theorem
If f(x) is continuous on [a, b] and differentiable on (a, b), and if f(a) = f(b), then there exists at
least one number c in (a, b) such that ( )f c 0=l .

Translation: As long as the function is continuous, with no sharp turns or vertical tangents, and
as long as f(a) = f(b), then there is at least one place where the graph has a horizontal tangent.

To satisfy the hypothesis of Rolle’s theorem, you must show that all three conditions are satis-
fied: continuity, differentiability, and f(a) = f(b). Frequently, the last condition is modified to
f(a) = f(b) = 0 because this makes the condition easier to satisfy. On the AP exam, the interval
may be specified, but be sure to show that the hypothesis is satisfied. Graphically, Rolle’s theo-
rem looks like this:

Figure 4.28

horizontal
tangent

horizontal
tangent

Rolle's Theorem

(b, 0)(a, 0)

(c1, f(c1))

(c2, f(c2))

c2c1

y

x

f(x)
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Sample

For the function ( )f x x x3 2
2

= - , show that the hypothesis of Rolle’s theorem is satisfied
on the interval ,0 3

2
7 A, and find the number guaranteed by Rolle’s theorem.

Show that the three criteria are satisfied; then solve ( )f x 0=l

1. All polynomial functions are everywhere continuous.

2. All polynomial functions are differentiable.

3. ( ) ( ) ( )f 0 3 0 2 0 0= - =

( ) ( ) ( ) ( )f
3
2

3
3
2

2
3
2

3
9
4

3
4

0
2

= - = - =

Therefore, the hypothesis of Rolle’s theorem is satisfied.

( ) ( )f x x x f x x3 2 6 2
2

&= - = -l

Thus ( )f x x0 6 2 0&= - =l

x
3
1

=

A sketch of the graph shows the horizontal tangent at x = 1/3.

Figure 4.29

Mean Value Theorem
If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists at least one number c
in the interval such that

( )
( ) ( )

f c
b a

f b f a
=

-
-

l

Translation: As long as the function is continuous, with no sharp turns or vertical tangents,
there is at least one place where the graph has a tangent line that is parallel to the line through
the endpoints.

f(x) = 3x2 − 2x

-1 1

-1

1

y

x

(  , −  )1
3

1
3

horizontal
tangent
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Graphically, the mean value theorem looks like this:

Figure 4.30

Sample

For the function f(x) = ln x, show that the hypothesis of the mean value theorem is
satisfied on the interval [1, 3], and find the number guaranteed by the conclusion of the
mean value theorem to the nearest hundredth. Sketch a graph showing the tangent line at
this point.

Show that both parts of the hypothesis are satisfied, and then solve the equation

( )
( ) ( )

f x
b a

f b f a
=

-
-

l

1. y = ln x is continuous on its domain, x > 0, and so is continuous on [1, 3].

2. ( ) ( )f x x f x
1
&=l is differentiable on x > 0 and so on (1, 3).

( )
( ) ( ) ln ln

f x
b a

f b f a
x
1

3 1
3 1

&=
-
-

=
-
-l

ln
x
1

2
3

=

.
ln

x
3

2
1 82.=

Sketch:

Figure 4.31

f(x) = In x

1.82

parallel
lines

tangent

(1.82, In 1.82)
line through
the endpoints

y

x
1

1

-1

2 3

f(x)

(a,f(a))

(c,f(c))
(b,f(b))

parallel

tangent
line

line through
the endpoints

y

x

Mean Value Theorem
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Differentials
One of the notations used to represent the derivative, dy/dx, is known as differential notation.
The expression dy/dx should be thought of as a quotient of two separate quantities, dy and dx,
each known as a differential. Individually, differentials are used for approximating values of
variables and in solving differential equations.

In the following graph of f(x), the tangent line at (1, 1) is shown as line l. A point B has been
chosen to the right of (1, 1). Point C is on the tangent line directly above B, and point D is on
the graph of f(x) directly above B and C.

Figure 4.32

Considering the slope of tangent line l both as the ratio of vertical change to horizontal change
and as the derivative,

m
AB
BC

m
dx
dy

andl l= =

makes it possible to think of the individual differentials as

dx AB dy BCand= =

Now, if AB is also considered as an increment in x that corresponds to an increment of BD in
the function values of f(x), then

x AB y BDand= =D D

Figure 4.33

l

y

x

dy ∆y
0,As ∆x

dy ∆y

∆x or dx 
1

1 2 3

2

3

(1, 1)

A B

C

D l

f(x)

3

2

1

1 2 3

y

x
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From Figures 4.32 and 4.33 it should be clear that BC and BD are approximately equal and that
this approximation will be better for smaller values of AB. Thus

BC BD. for “small” values of AB

dy y∆& . for “small” ∆x

And because ( ) ( )
dx
dy

f x dy f x dx&= =l l

it is clear that ( )y dy f x dx. =D l

This last line is the form in which differentials are used for approximations.

Sample

Use differentials to approximate the change in y x
3

= as x increases from 1 to 1.002, and
compare your answer to the actual change in the function values over the same interval.

For this problem,

( ) ( )f x x f x x3
3 2
&= =l

.dx x xand0 002 1= = =D

( )y dy f x dx. =D l

( ) ( . ) .y 3 1 0 002 0 006
2

& . =D

For the actual change in f(x),

( ) ( . ) ( . ) .f fand1 1 1 002 1 002 1 006012008
3

= = =

. .y 1 006012008 1 0 006012008& = - =D

Thus the differential approximation is correct to three decimal places.

Without a calculator, using differentials to approximate a change in a function is generally eas-
ier than finding the actual change in the function. The differential employs the derivative,
which is usually simpler than the original function and thus results in an easier and shorter cal-
culation. Furthermore, the differential requires only one operation, whereas calculating the ac-
tual change in a function requires evaluating the function at two separate points and then
finding the difference. The differential can also be used to estimate propagated error, as in the
next example.

Sample

The radius of a sphere is measured to be 2.5 inches, correct to within 0.01 inch.
Approximate the error propagated in calculating the volume of the sphere.
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Use dV to approximate VD .

V r
dr
dv

r
3
4

4
3 2
&= =r r

( )( )V dV r dr4
2. = rD

( . ) ( . )V 4 2 5 0 01
2
!. rD

.V in0 785
3

!.D

L’Hôpital’s Rule (BC Only)
Another method for finding limits uses derivatives. This method, known as L’Hôpital’s rule, is
useful when direct substitution results in the indeterminate form or0

0
3
3. Problems on the AB

exam will not require the use of L’Hôpital’s rule; however, it may be possible to use it as an al-
ternative or backup method for some limit problems. The BC exam will require the use of
L’Hôpital’s rule in many types of problems. Be sure to remember both the hypothesis and the
conclusion of L’Hôpital’s rule.

Theorem: L’Hôpital’s Rule

If 
( )
( )

,
( )
( )

( )

( )
g x
f x

g x
f x

g x
f x

or then
0
0

x x x

lim lim lim3
3

= =
" " "

l
l

Notation: For this theorem, lim limis used to represent
x x c" "

, , , ,lim lim lim lim
x c x c x x" " " "3 3-+ -

, /3 3 is used to
represent , , , or3

3
3
3

3
3

3
3

+
+

+
-

-
+

-
- .

Caution: To apply L’Hôpital’s rule, find the derivatives of the numerator and denominator indi-
vidually; do not apply the quotient rule, even though it is a quotient.

Sample

Find sin
x

x

x 0

lim
"

by using L’Hôpital’s rule.

Substituting 0 into the numerator and denominator directly yields

sin
0

0
0
0

=

This is one of the indeterminate forms, so the hypothesis of L’Hôpital’s rule is satisfied.

sin cos
x

x x
1 1

1
1

x x0 0

lim lim= = =
" "

This is one way to prove the special trig limits discussed previously. But L’Hôpital’s rule can
be used with any functions that yield the indeterminate form.

L’Hôpital’s rule can sometimes be used as an alternative to other limit techniques.
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Sample

Find 
x
x

2
4

x 2

2

lim
-
-

"

by using L’Hôpital’s rule.

Substituting 2 directly yields

2 2
2 4

0
0

2

-
-

=

so the hypothesis of L’Hôpital’s rule is satisfied.

( )
x
x x

2
4

1
2

1
2 2

4
x x2

2

2

lim lim
-
-

= = =
" "

This limit can also be found with the previously discussed techniques.

( )( )
x
x

x
x x

2
4

2
2 2

x x2

2

2

lim lim
-
-

=
-

+ -

" "

( )x 2 4
x 2

lim= + =
"

Both methods give the appropriate limit; use whichever technique you prefer.

Sample

Find 
x x

x
5

3 2

x
2

2

lim
+

-

" 3

by using L’Hôpital’s rule.

Direct substitution yields the indeterminate form 3
3, so the hypothesis of L’Hôpital’s rule is

satisfied.

x x
x

x
x

5
3 2

2 5
4

x x
2

2

lim lim
+

-
=

+
-

" "3 3

At this point L’Hôpital’s rule can be applied again, because direct substitution into the last limit
still yields the indeterminate form ∞/∞.

x x
x

x
x

5
3 2

2 5
4

2
4

2
x x x

2

2

lim lim lim
+

-
=

+
-

=
-

=-
" " "3 3 3

This limit, too, could have been found with the previous techniques (see the section on limits at
infinity).

Sample

Find lim
x

e
3

1
x

x

0

5
-

"

.

194

Part II: Specific Topics

CliffsAP Calculus 3rd Edition • 8683 1 Ch04 4 • Jill • 03/14/01 • p 194

8683-1 Ch04.F  3/22/01  7:30 AM  Page 194



Substituting 0 directly yields

e
3 0

1
0

1 1
0
0

0
-

=
-

=
^ h

so the hypothesis of L’Hôpital’s rule is satisfied.

lim lim
x

e e

e

3
1

3

5 0

3

5

3

1 5

3
5

x

x

x

x

0

5

0

5

0

-
=

-

= = =

" "

^

^ ^

h

h h

The major hazard in applying L’Hôpital’s rule is in overapplying it — that is, applying it when
the hypothesis is not satisfied.

Sample

The following problem is done incorrectly. Find where L’Hôpital’s rule is applied when
it should not be applied.

lim lim

lim

lim

x
e

x
e

x
e

e

incorrectan solution

1
2

2

1
2

2

x

x

x

x

x

x

x

x

0
2

2

0

2

0

2

0

2

-
=

=

=

=

" "

"

"

L’Hôpital’s rule is applied incorrectly in deriving line 3 from line 2. Direct substitution of 0
into e2x/x yields e0/0 = 1/0. Thus the hypothesis of L’Hôpital’s rule is not satisfied.
Occasionally, other indeterminate forms, such as ∞ – ∞ or 0 ⋅ ∞, may arise from limits. Limits
such as these may be solved with L’Hôpital’s rule, but only after some algebraic manipulation
that results in 0/0 or ∞/∞.

Sample

Find lim
sinx x

1 1
x 0

-
"

c m.

Direct substitution into the argument yields ∞ – ∞.

lim
sin

lim
sin
sin

x x x x
x x1 1

x x0 0
- =

-
" "

c cm m
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L’Hôpital’s rule can now be applied to this last limit, because direct substitution yields

sin
sin

lim
sin

lim
sin
sin

lim
cos sin

cos

lim
sin cos cos

sin

sin cos cos

x x x x
x x

x x x
x

x x x x
x

0 0
0 0

0
0

1 1

1

0 0 0 0
0

2
0

0

x x

x

x

0 0

0

0

-
=

- =
-

=
+

-

=
- + +

=
+ +

= =

" "

"

"

c c

c

c

m m

m

m

Sample

Find lim
ln

x
x

1
x " 3

^ ch m.

Direct substitution yields ∞ ⋅ 0.

lim
ln

lim
ln

x
x x

x1
x x

=
" "3 3

^ c ch m m

The last limit yields ∞/∞, so L’Hôpital’s rule can be applied.

/

lim
ln

lim
ln

lim

lim

x
x x

x

x

x

1

1
1

x x

x

x

3

=

=

=

=

" "

"

"

3 3

3

3

^ c c

c

h m m

m

This solution is correct, even though it is ∞. L’Hôpital’s rule doesn’t guarantee that the limit
will exist.

Occasionally, a more involved applications of L’Hôpital’s rule may be required. This occurs
when powers such as or1 0

03 arise from direct substitution. For these power applications of
L’Hôpital’s rule, it is necessary to take the natural log of both sides of the function in order to
use the log property to move the exponential function into the base location.
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Sample

Find ( ) .sin x2
x

x

0

lim
"

+

( )

( )

( )

( ) [ ( )]

( )

( ),

sin

ln ln sin

ln ln sin

ln ln sin

ln sin

sin
cos

sin
cos

tan

sec

ln

y x

y x

y x x

y x x

x

x

x

x
x

x
x x

x
x

x
x

y

let

so

2

2

2

2

1
2

1
2

2 2

2
2 2

2
2

0
0

2 2
4

0

x

x

x x

x

x

x

x

x

x

0 0

0

0
2

0

2

0

2

0
2

0

lim lim

lim

lim

lim

lim

lim

lim

3
3

=

=

=

=

= =
-

=
-

=
-

=
-

=

=
-

=

" "

"

"

"

"

"

"

+ +

+

+

+

+

+

+

c

d

c

m

n

m

The exponential function is continuous on its domain, so it is possible to apply a theorem about
the limit of a composite function here. Translated, this gives “the limit of the log” as the same
as the “log of the limit,” and so the last line above now becomes

( )ln lim

lim

y

y e

0

1

x

x

0

0

0
&

=

= =

"

"

+

+

L’Hôpital’s rule is required for limits where direct substitution yields the following indetermi-
nate forms.

Summary of Forms Requiring L’Hôpital’s Rule
, , ( ), , ,( ) ,

0
0

0 0 1
0 0 0

! !3
3 3 3 3 3+

+
- -

Note that 0 3+ is NOT an indeterminate form: 0 0=
3+ and does NOT require L’Hôpital’s rule.
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1. Find the x-coordinate of the absolute
minimum of ( )f x x

3
= – x x 1

2
- + on the

interval [–2, 2].

A. –2

B.
3
1

-

C. 0

D. 1

E. 2

2. The function ( )f x x x2
3 2

= - is
increasing on which of the following
interval(s)?

A. x < 0 only

B. >x
3
4 only

C. < <x0
3
4

D. < >x xor0
3
4

E. < >x xor0
4
3

3. Given ( )f x x x
5
1

24
15 4

= - find where the
relative extrema of f'''(x) occur.

A. ,x 0
12
1

=

B. x
8
1

=

C. x
24
1

=

D. ,x 0
8
1

=

E. ,x 0
6
1

=

4. The position of a particle moving along
a horizontal line at any time t is given
by ( )s t t t3 2 8

2
= - - . For what value(s)

of t is the particle not moving?

A. t tor2
3
4

= =-

B. t = 3 only

C. t
3
1

= only

D. t = 1 or t = 4

E. t = 2 only

5. A particle moves in a straight line such
that its distance at time t from a fixed
point on the line is given by t t8 3

2
-

units. What is the total distance covered
by the particle from t = 1 to t = 2?

A. 1 unit

B. units
3
4

C. units
3
5

D. 2 units

E. 5 units

6. A particle moves along a horizontal
path such that its position at any time
t is given by ( ) ( )s t t2 3

3
= - . The

number of times the particle changes
direction is

A. 0

B. 1

C. 2

D. 3

E. not determinable from the
information given
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7. A particle moves along a horizontal
path such that its position at any time t
is given by the equation siny e t

t
=

- . For
what value(s) of t will the particle
change direction?

A. t k
2

2= +
r r

B. t k
2

2= +
r r

C. t k t kor
4

2
4

3
2= + = +

r r r r

D. t k
4

= +
r r

E. t k
4

3
2= +

r r

8. Find the number guaranteed by Rolle’s
theorem for the function ( )f x x x3

3 2
= -

on the interval x0 3# # .

A. 1

B. 2

C.
2
3

D. 2

E. 3

9. A sphere is increasing in volume at the
rate of / .cm s3

3r At what rate is its
radius changing when the radius is 2

1cm?
(The volume of a sphere is given by

V r
3
4 3

= rc m .)

A. /cm sr

B. 3 cm/s

C. 2 cm/s

D. 1 cm/s

E. /cm s
2
1

10. A balloon rises straight up at 10 ft/s. An
observer is 40 ft away from the spot
where the balloon left the ground. Find
the rate of change (in radians per
second) of the balloon’s angle of
elevation when the balloon is 30 ft off
the ground.

A.
20
3

B.
25
4

C.
5
1

D.
3
1

E.
64
25

11. A point moves along the curve 
y = x2 + 1 such that its x-coordinate is
increasing at the rate of 1.5 units per
second. At what rate is the point’s
distance from the origin changing when
the point is at (1, 2)?

A. /units s
10

7 5

B. /units s5

C. /units s
2

3 5

D. /units s3 5

E. /units s
2
15

12. Find the equation of the line tangent to
the curve lny e x

x
= at the point where 

x = 1.

A. y ex=

B. y e 1
x

= +

C. ( )y e x 1= -

D. y ex 1= +

E. y x 1= -
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13. The function ( )f x x4
23= - has a

vertical tangent at

A. x = 0

B. x = –2 and x = 2

C. x = 0, x = –2, and x = 2

D. x = –1 and x = 1

E. none of these

14. The slope of the line normal to the
curve h(x) = 2 cos 4x at x

12
=
r is

A. 4 3-

B. –4

C.
12

3

D.
4
1

E. 4 3

15. A farmer builds a fence to enclose a
rectangular region along a river (no
fence is needed along the river) and to
divide the region into two areas by
adding a fence perpendicular to the
river. She has 600 ft of fencing and
wants to enclose the largest possible
area. How far from the river should she
build that part of the fence that is
parallel to the river?

A. ft10 6

B. 75 ft

C. 100 ft

D. 150 ft

E. 200 ft

16. A particle travels along a horizontal
path so that its position at any time
( )t t 0$ is given by ( )s t t e3

t3 2
= -

- . The
number of times the particle changes
direction is

A. 0

B. 1

C. 2

D. 3

E. none of these

17. Given the function f x e
x
2=^ h on the

closed interval [–1, 4], if c is the
number guaranteed by the mean value
theorem, then c (correct to three
decimal places) is approximately

A. 0.998

B. 1.163

C. 1.996

D. 2.065

E. 2.325

*18. lnx x
x 0

lim $ =
"

A. –e

B. 1

C. 0

D. –1

E. e

*BC topic only
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*19. A particle moves in the xy-plane such
that at time t > 0 its position vector is

, ( )lne t3
t 22

+a k. At t = 1, its velocity
vector is 

A. (e, ln 4)

B. ( , )1
2
1

C. (e + 2, 1)

D. ( , )e2
2
1

E. (e + 2, e)

*20.
x x

x
1

2
1

x 1

2lim
-

-
-

=
"

+

c m

A. –3

B.
2
3

-

C. –1

D. 0

E. 1

*21. If x t 1
3

= - and y t
2

= , then 
dx

d y
2

2

=

A.
t3
2
2

-

B. 6t

C.
t9
2
4

-

D. 2

E.
t3

2

*22. x
x

xlim
" 3

-
e $ =

A. 3-

B. e
1

-

C. 0

D. e
1

E. 3

*23. ( )lim x 1
x

x
1

- =
" 3

A. –e

B. –1

C. 0

D. 1

E. e

*BC topic only
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Answers to Multiple-Choice Questions

1. A. Find the relative extrema and compare them with the endpoints.

( ) ( )f x x x x f x x x1 3 2 1
3 2 2

&= - - + = - -l

( )( )x x3 1 1= + -

critical numbers: ( ) ( )f x f xor0=l l does not exist

x xor
3
1

1& =
-

=

Find the function values that correspond to the critical numbers, to x = –2, and to x = 2

x f(x)

–2 9

3
1-

27
32

1 0

2 3

Thus the absolute minimum occurs where x = –2.

2. D. Find the critical numbers and do interval testing.

( ) ( )f x x x f x x x2 3 4
3 2 2

&= - = -l

( )x x3 4= -

critical numbers: ( ) ( )f x f xor0=l l does not exist

x xor0
3
4

= =

Thus f(x) is increasing on x < 0 and on >x
3
4.

3. C. The problem requires the relative extrema of the third derivative. To find these
extrema, begin by finding the derivative of the third derivative, that is, ( )f x

iv .

( ) ( )f x x x f x x x
5
1

24
1

6
15 4 4 3

&= - = -l

( )f x x x4
2
13 2

= -m

( )f x x x12
2

= -n

( )f x x24 1
iv

= -

f'(x)
0

+ − +
4
3
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critical numbers: ( ) ( )f x f xor0
iv iv

= does not exist

x
24
1

=

Interval testing on ( )f x
iv shows that x

24
1

= is a relative minimum.

4. C. “not moving” ( )v t 0& =

( ) ( )s t t t v t t3 2 8 6 2
2

&= - - = -

( )v t t0
3
1

&= =

5. C. “total distance”& check for sign change in v(t) and apply ( ) ( ) ( ) ( )s s t s t s1 2c c- + -

( ) ( )s t t t v t t8 3 8 6
2
&= - = -

( )v t t0
3
4

&= =

Because v(t) changes sign t
3
4

= , the particle changes direction at t
3
4

=

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s t s t s s s s s1 2 1
3
4

3
4

2

5
3

16
3

16
4

3
1

3
4

3
5

c c- + - = - + -

= - + -

= + =

6. A. “changes direction” ( )v t& changes sign

( ) ( ) ( ) ( ) ( ) ( )s t t v t t t2 3 3 2 3 2 6 2 3
3 2 2
&= - = - = -

v(t) is positive for all values of t.

Thus the particle never changes direction.

7. D. “changes direction” ( )v t& changes sign

( ) ( ) ( )( ) ( )( )sin cos sins t e t v t e t t e
t t t

&= = + -
- - -

( )cos sine t t
t

= -
-

( )cos sint t v t eor0 0 0
t

&- = = =
-

cos sint t=

t k
4

= +
r r and v(t) changes sign at these values

v(t)
+ −

4
3
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8. D. Because f(x) is continuous and differentiable on the interval, and because f(0) = f(3),
Rolle’s theorem applies. Find where ( )f x 0=l

( ) ( ) ( )f x x x f x x x x x3 3 6 3 2
3 2 2

&= - = - = -l

( )f x x xor0 0 2&= = =l

Thus in the given interval, x = 2 is the number guaranteed by Rolle’s theorem.

9. B. Find , /
dt
dr

r
dt
dV

when given cm s
2
1

3
3

= = r

V r
dt
dV

r
dt
dr

3
4

3
4

3
3 2
&= =r r

dt
dr

r dt
dV

4
1

2=
r

/
dt
dr

cm s

4
2
1

1
3 3

r

2

2
1

= =

r
r

=
c

^

m

h

10. B. Find , /
dt
d

h
dt
dh

when ft given ft s30 10= =
i

tan tan
h

h
40

40&= =i i

sec
dt
dh

dt
d

40
2

= i i

cos
dt
d

dt
dh

40
1 2

=
i i

( )
dt
d

40
1

5
4

10
h 30

2

=
i

=

c m

/rad s
25
4

=

40 ft

50 ft

30 ft

cos θ = 

θ

4
5

40 ft

h

θ
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11. C. Find ds/dt when x = 1 and y = 2, given 
dt
dx

2
3

= units/s.

( ) ( )s x y0 0
2 2

= - + -

s x y
2 2 2
= +

( )s x x 1
2 2 2 2
= + +

( )( )s
dt
ds

x
dt
dx

x x
dt
dx

2 2 2 1 2
2

= + +

dt
ds

s
x x

dt
dx3 2

3

=
+

dt
ds

5

5
2
3

2
3 5

x 1

= =
=

c m

12. C. Find the slope of the tangent by finding ( )f 1l , find the point of tangency, and use the
point/slope form.

( ) ( )( )ln lny e x
dx
dy

e x x e
1x x x

&= = +c m

( )( ) ( )( ) ,ln
dx
dy

e e e e1 1 0
x 1

1 1
= + = + =

=

so m et =

x y1 0&= = , so the point of tangency is (1, 0)

( ) ( )y e x y e x0 1 1&- = - = -

13. B. f x x f x x4 4
23 2 3

1

&= - = -^ ^ `h h j

'f x x x
3
1

4 2
2 3

2

= - -
-

^ ` ^h j h

x

x

3 4

2
2 3

2=
-

-

` j

f’'(x) does not exist at x = ± 2, and the tangent lines exist. Thus there is a vertical tangent
at x = 2 and at x = –2.

y

x

3

2

1

-1-2-3 321
-1

-2

-3

(x, y)

s
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14. C. The slope of a normal line is the negative reciprocal of the derivative.

( ) ( ) ( )( )cos sin sinh x x h x x x2 4 2 4 4 8 4&= = - =-l

sinh
12

8
3

8
2
3

4 3=- =- =-
r rl

J

L

K
Kc c

N

P

O
Om m

,m mso4 3
4 3

1
12

3
t n& =- = =

15. C.

maximize area: A = xy

( )

: x y y x

A x x x x

dx
dA

x

constraint 600 3 600 3

600 3 600 3

600 6

2

&

&

= + = -

= - = -

= -

critical numbers:
dx
dA

dx
dA

or0= does not exist

x = 100

Justify the maximum.

x 0 < x <100 100 x > 100

dx
dA pos 0 neg

A incr rel max decr

Therefore, the farmer should build the part of the fence that is parallel to the river 100 ft
from the river.

16. C. To find when a particle changes direction, find any times when the velocity changes
sign.

( )v t t e9
t2 2

= -
-

river

x x

y

x
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A calculator graph shows that v(t) has one zero around t = 8, and at least one more around
t = 0.

Since this scale was rather large, ( x yand10 10 20 300# # # #- - , changing to a closer
scale may give a better view to determine the zeros near t = 0. Using . .x0 3 0 3# #- and

y1 1# #- clearly shows that v(t) also changes sign near x = –0.1 and x = 0.15. Thus for
t > 0, v(t) changes sign twice, once at about t = 0.15 and again around t = 8.5.

17. C. For the mean value theorem, ( )
( )

( ) ( )
f x

f f
4 1
4 1

=
- -
- -

l

.

ln

ln

e
e e

e e e

x
e e

x e e

2
1

5

5
2

2 5
2

2
5
2

1 996

2

2

2

2

x

x

2

2
1

2 2
1

2
1

2
1

.

=
-

= -

= -

= -

-

-

-

-

a

ac

ac

k

km

km

18. C. " "lim lnx x form 0
x 0

$ $ 3-
"

so cannot apply L’Hôpital’s Rule

" "lim
ln

x

x
form

1x 0 3
3

=
-

"

so L’Hôpital’s Rule is applicable

lim

lim

x

x

x

1

1

0

x

x

0
2

0

=
-

= -

=

"

"

^ h

19. D. position vector is , ( )lne t3
t 22

+a k

differentiating, velocity vector is ,e t
t

t
2

3
2t

2

2

$
+

c m

at t = 1, velocity vector is , ,e e2 2
3 1

2
2
11

$ =
+c cm m 207
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20. B.
x x

x
1

2
1x 1

2
lim

-
-

-"
+
c m form 3 3- so L’Hôpital’s Rule cannot be used

( )

x

x x

x
x x

x
x

1

2 1

1
2

2
2 1

2
3

x

x

x

1
2

1
2

2

1

lim

lim

lim

=
-

- +

=
-

- - -

=
- -

=
-

"

"

"

+

+

+

d

d

c

n

n

m

form “
0
0” so L’Hôpital’s Rule applicable

21. C. x t y t

dy
dx

t
dt
dy

t

1

3 2

3 2

2

= - =

= =

Then 
dx
dy

dt
dx
dt
dy

t
t

t dt
d

dx
dy

t3
2

3
2

3
2

2 2&= = = =
-

< F

Next 
dx

d y
dx
d

dx
dy

dt
dx

dt
d

dx
dy

t
t

t3
3

2

9
2

2

2

2

2

4= = =

-

=
-

<

<

F

F

Or, by eliminating the parameter t, and then differentiating:

x = t3 – 1

x + 1 = t3

x t1 3
1

+ =^ h

since y = t2

y x 1 3
2

= +^ h

dx
dy

x
3
2

1 3
1

= +
-

^ h

dx

d y
x

9
2

12

2

3
1

=
-

+
-

^ h

x

t

9 1

2

9
2
4

3
4=

+

-

=
-

^ h
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22. C. x
x

xlim
" 3

-
e $ form “0 ⋅3” so L’Hôpital’s Rule is not applicable

e
x

x

xlim=
" 3

form “3
3” so can apply L’Hôpital’s Rule

e
x

e x

2

1

2

1

0

x
x

x
x

lim

lim

=

=

=

"

"

3

3

23. D.

:lim

lim

ln ln lim

ln lim ln

x

y x

y x

y x

Let

1

1

1

1

since we have a variable base and a variable power, we proceed as follows
x

x

x

x

x

x

x

x

1

1

1

1

-

= -

= -

= -

"

"

"

"

3

3

3

3

^

^

^

^

h

h

h

h

:

:

D

D

ln lim lny x x
1

1
x

= -
" 3

^ h; E form “0 ⋅3” so L’Hôpital’s Rule is unusable here

ln lim
ln

y x
x 1

x
=

-

" 3

^ h
> H form “3

3” so can apply L’Hôpital’s Rule

ln lim

ln lim

ln

lim

y x

y
x

y

y e

x

Therefore

so

1
1

1

1
1

0

1

1 1

x

x

x

0

x
1

= -

=
-

=

= =

- =

"

"

"

3

3

3
^ h
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Sample Free-Response Questions:
Applications of the Derivative

1. The graph that follows is the graph of ( )f xl — that is, the derivative of f(x). The function
f(x) has these properties:

(i) f(x) has domain [–2, 5].

(ii) f(x) is everywhere differentiable on its domain.

(iii) f(–2) = 3 and f(5) = 1.

(iv) f(x) has exactly four zeros on its domain.

(a) For what x-coordinate(s), if any, does f(x) have relative extrema? Classify these
extrema as maxima or minima. Justify your answer.

(b) For what x-coordinate(s), if any, does f(x) have a point of inflection? Justify your
answer.

(c) Sketch a possible graph of f(x) that fits the information given.

2. Let f(x) be a continuous function with domain [–7, 0] such that
( ) ( )( )cos sinf x x x x e1

x
= - +l

(a) Find any values of x for which f(x) has a relative minimum. Justify your answer.

(b) Find any values of x for which f(x) has a relative maximum. Justify your answer.

(c) Find the x-coordinates of any points of inflection of the graph of f(x). Justify your
answer.

f'(x)

y

x

3

2

1

-1-2-3 321 54
-1

-2

-3
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Answers to Free-Response Questions

1. The information given via the graph of ( )f xl is in an unfamiliar form. It may be helpful to
begin by recasting the information into the more familiar chart form and then to fill in
conclusions from this form.

(a) critical numbers: ( ) ( )f x f xor0=l l does not exist

x = –1 or x = 2 or x = 3

x –2 < x < –1 x = –1 –1 < x < 2 x = 2 2 < x < 3 x = 3 3 < x < 5

( )f xl neg 0 pos 0 neg 0 pos

f(x) decr rel min incr rel max decr rel min incr

Therefore, f(x) has a relative minimum at x = –1 and at x = 3 and a relative maximum
at x = 2.

(b) To find any points of inflection, recall the definition of concavity:

( ) ( )f x f xconcave up is increasing+ l

( ) ( )f x f xconcave down is decreasing+ l

From the graph,

( ) < < < <

( ) < < .

.f x x x

f x xand

2 0 5

0 2 5

2 5is increasingon and

is decreasingon
&

-l

l
4

x –2 < x < 0 x = 0 0 < x < 2.5 x = 2.5 2.5 < x < 5

( )f xl incr rel max decr rel min incr

f(x) concave up POI concave down POI concave up

Therefore, f(x) has points of inflection at x = 0 and x = 2.5.

(c) One possible graph of f(x) is shown below.

zeros: z1,z2 z3,z4

f(5) = 1

f(−2) = 3

rel min rel min

rel max

POI POI

y

x

3

2

1

-1-2-3 321 54
-1

-2

-3

z1 z2 z3 z4
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2. (a) and (b) The function f(x) will have relative extrema at any points where ( )f xl changes
sign. The graph of ( )f xl is shown below with a window of X[–7, 0] and Y[–3, 8].

To the nearest hundredth, the zeros of ( )f xl are x = –4.99 and x = –2.02. Therefore,
f(x) has a relative maximum at x = –4.49, since ( )f xl changes from positive to
negative at that point. Similarly, f(x) has a relative minimum at x = –2.02, since ( )f xl

changes from negative to positive.

(c) The function f(x) has a point of inflection where a change in concavity occurs and the
tangent line exists. By definition, a function f(x) is concave up when its derivative

( )f xl is increasing, and f(x) is concave down when ( )f xl is decreasing. From the graph
of ( )f xl in part (a) ( )f xl has three relative extrema; that is, places where ( )f xl changes
from increasing to decreasing or vice versa. The relative extrema of ( )f xl are at 
x = –0.89, x = –3.42, and x = –6.44 so these are the inflection points of f(x).

An alternative approach might be to graph ( )f xm and observe that ( )f xm changes from
positive to negative at x = –0.89, negative to positive at x = –3.42, and positive to
negative at x = –6.44, thus confirming that f(x) has inflection points at these
coordinates.
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213

Antiderivatives and Definite Integrals

The second major branch of calculus, integral calculus, is based on the concept of the antideriv-
ative. As with derivatives, there are a number of antidifferentiation rules you should memorize,
plus some general techniques that must be applied along with these rules. The definition of the
antiderivative has recently been added to the AP outline, as have several methods for approxi-
mating the definite integrals.

Antiderivatives
Until now, the problems and applications in this book have all dealt with the concept of finding
the derivative of a function — that is, differential calculus. From here on, the problems and ap-
plications will involve the opposite concept: finding the antiderivative of a function. Finding
an antiderivative is just what it sounds like, as shown by the following definition.

Definition of an Antiderivative
Given a function f(x) and its derivative g(x) (that is, ( ) ( ))g x f x= l , then f(x) is called an 
antiderivative of g(x).

To see how this definition works, consider three functions, ( ), ( ), ( )f x f x f xand1 2 3 , and their 
derivatives.

( )f x x 21
2

= - ( )f x x21 =l

( )f x x2
2

= ( )f x x22 =l

( )f x x 243
2

= + ( )f x x23 =l

By the foregoing definition, all the functions in the left column are antiderivatives of the func-
tion g(x) = 2x. Obviously, the three functions on the left are different, although they differ by
only a constant. This difference is why the definition is phrased in terms of an antiderivative
rather than the antiderivative.

Theorem on Antiderivatives
If f(x) is an antiderivative of g(x), then any function of the form f(x) + C, where C is any con-
stant, is a member of the family of antiderivatives of g(x). The expression f(x) + C is called the
general antiderivative of g(x).

When asked to find the antiderivative of a function, you should typically leave the answer in
the form f(x) + C, unless a given constraint makes it possible to find a specific value for C.
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Notation
A special notation is used to indicate that an antiderivative is to be found:

( ) ( )g x dx f x C= +#

With this notation, the initial example can be rewritten as

x dx x C2
2

= +#

Vocabulary
The operation of finding antiderivatives can be called antidifferentiation or integration. The an-
tiderivative can also be called the indefinite integral. In the expression ( ) , ( )f x dx f x# is known
as the integrand, and dx is the differential that indicates that the variable of integration is x.

The operations of finding the derivative and the antiderivative are inverses; that is,

( ) ( ) ( ) ( )
dx
d

f x dx f x f x dx f x Cand= = +# # l; E

This relationship provides an entire set of rules for finding antiderivatives that are based on the
previous rules for finding derivatives:

Constant Multiple Rule
( ( )) ( ) ( ) ( )

dx
d

cf x c
dx
d

f x cf x dx c f x dx&= = ##

Sum and Difference Rule
( ( ) ( )) ( ) ( )

dx
d

f x g x
dx
d

f x
dx
d

g x! !=

[ ( ) ( )] ( ) ( )f x g x dx f x dx g x dx& ! != ###
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Trig Rules

( )

( )

( )

( )

( )

( )

sin cos cos sin

cos sin sin cos

tan sec sec tan

sec sec tan sec tan sec

csc csc cot csc cot csc

cot csc csc cot

dx
d

u u
dx
du

u du u C

dx
d

u u
dx
du

u du u C

dx
d

u u
dx
du

u du u C

dx
d

u u u
dx
du

u u du u C

dx
d

u u u
dx
du

u u du u C

dx
d

u u
dx
du

u du u C

2 2

2 2

&

&

&

&

&

&

= = +

=- =- +

= = +

= = +

=- =- +

=- =- +

#

#

#

#

#

#

Power Rule
( ) ( )

dx
d

u nu
dx
du

u du
n
u

C n
1

1
n n n

n
1

1

& != =
+

+ -
-

+

#

Translation: To find the antiderivative of a power, increase the exponent by l, and divide by this
new exponent.

Sample

Find ( )x x x x dx3 2
2
1

7 1
2 4 3
+ - - +# .

The antiderivative can be broken up into five separate antiderivatives, and each one done indi-
vidually using the rules above.

( )x x x x dx3 2
2
1

7 1
2 4 3
+ - - +#

x dx x dx x dx xdx dx

x dx x dx x dx xdx x dx

x x x x x
C

x x x x x C

3 2
2
1

7 1

3 2
2
1

7

3
3

2
5 2

1
4

7
2 1

5
2

8
1

2
7

2 4 3

2 4 3 0

3 5 4 2 1

3 5 4 2

= + - - +

= + - - +

= + - - + +

= + - - + +

#####

#####

To save time, the intermediate steps are usually done mentally, and only the last one or two
lines are written down.
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Sample

Find ( )x x dx3 5 3
2

+
-# .

Rewrite the radical with a fractional exponent and apply the antiderivative rules.

( ) ( )x x dx x x dx3 5 3 53 2 3
2 1 2

+ = +
- -# #

x x

x x C

C3 5

2 15

2
3

2

3
1

3

2 3

3 1

3 1

= + +

= + +

Sample

Find 
x

x x dx
3

5 13
-

# .

Simplify first.

x

x x
dx x x dx

3

5
3
5

3
1

3 1

2 2
5 3-

= -
-

-# # c m

x x
C

3
5

3
1

2
7

2

2
1

2
7 1

= - +-

-

x x C
21
10

3
22 2

7 1

= + +
-

This answer is fine. However, if it does not appear as a choice on a multiple-choice problem,
you may need to factor. The goal is to factor in such a way that one term is a polynomial with
integral coefficients. Begin by forcing the integral coefficients, and then factor out the lowest
power of x.

x x C

x x C

x x C

x

x
C

21
10

3
2

21
2

5 7

21
2

5 7

21

2 5 7

2 2

2 2

2 4

4

7 1

7 1

1

= + +

= + +

= + +

=
+

+

-

-

-

`

`

`

j

j

j

Sample

Given that ( ) sec tang t t t1= +l and that ( )g 2=r , find g(t).

g(t) is the antiderivative of ( )g tl .

( ) ( )

( )

sec tan

sec

g t t t dt

g t t t C

1= +

= + +

#
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Now use the given boundary condition to find a specific value of C.

( ) secg C 2= + + =r r r

C1 2- + =r

C 3= -r

Thus ( ) secg t t t 3= + + -r

The Chain Rule for Antiderivatives
As with derivatives, the chain rule for antiderivatives must be applied on the AP exam fre-
quently. The antiderivative form is simply the derivative form backwards: The integrand takes
the form of the end result of a derivative chain rule — that is, ( ( )) ( )f h x h xl . Once the integrand
is in this form, find the antiderivative of f — that is, some function g such that g f=l .

Chain Rule for Antiderivatives
( ( )) ( ) ( ( ))f h x h x dx g h x C= +# l where g is an antiderivative of f, that is — where

( ) ( ) ( ) ( )g u f u f u du g u Cor= = +#l

The chain rule needs to be applied when the integrand is a composition of functions — that is,
where there is an interior function present. For example,

( )cos x dx3#

has an integrand that is the composition of the cosine function and y = 3x:

( ) ( ) ( ( )) ( )cos cosf x x h x x f h x xand 3 3&= = =

In order to be able to find this antiderivative, it is necessary to force the integrand to look like
the end result of a derivative chain rule, so that the “old” derivative rules can be applied in 
reverse.

[ ( )] ( )( ) ( )( ) ( )sin cos cos sin
dx
d

x x x dx x C3 3 3 3 3 3&= = +#

But the problem asks only for ( )cos x dx3# , and not for ( )( )cos x dx3 3# . An “extra” factor of 3
needs to be present as part of the integrand. Of course, simply putting in a factor of 3 would be
incorrect, however helpful. The extra 3 can be introduced, however, if it is balanced by a can-
celing factor of 1/3.

( ) ( )( )( )cos cosx dx x dx3 3 3
3
1

= ##
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Now the factor of 1/3 can be factored out of the integrand.

( ) ( )( )( )

( )( )

( )

cos cos

cos

sin

x dx x dx

x dx

x C

3 3 3
3
1

3
1

3 3

3
1

3

=

=

= +

##

#

Sample

Find x dx3 5+# .

Rewrite the integrand with a rational exponent.

x dx x dx3 5 3 5 2
1

+ = +# # ^ h

The interior function in this case is ( ) , ( )h x x h xand3 5 3= + =l . Introduce factors of 3 and 1/3.

x dx x dx3 5 3 5 2
1

+ = +# # ^ h

( )x dx

x
C

x C

3
1

3 5 3

3
1 3 5

9
2

3 5

2

2
3

2

2

1

3

3

= +

=
+

+

= + +

# ^

^

^

h

h

h

Sample

Find ( )x x dx3 5
2 6
-# .

The interior function is ( )h x x3 5
2

= - , and ( )h x x6=l . The factor of x is already present in the
integrand, so insert factors of 6 and 1/6.

( ) ( ) ( )

( )

( )

x x dx x x dx

x
C

x C

3 5
6
1

3 5 6

6
1

7
3 5

42
1

3 5

2 6 2 6

2 7

2 7

- = -

=
-

+

= - +

# #
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Sample

Find cosx x dx
2# .

In this problem the interior function is ( )h x x
2

= , and ( )h x x2=l . Thus the integrand must have a
factor of 2x present. Because the x is already in the integrand, simply introduce a factor of 2
and a canceling factor of 1/2.

( )( )cos cos

sin

x x dx x x dx

x C

2
1

2

2
1

2 2

2

=

= +

# #

Many students often wonder what happens to the derivative of the interior function; specifi-
cally, why doesn’t it show up as part of the answer? In the foregoing problem, for example,
what happens to the 2x? The best answer to this question can be found by checking the integra-
tion by doing the derivative.

( )( )sin cos cos
dx
d

x C x x x x
2
1

2
1

2
2 2 2
+ = =c m

which verifies the result of the integration ( / )cos sinx x dx x C1 2
2 2

= +# .

Caution: Never try to introduce variables as “extra” factors, even with the corresponding can-
celing factors. Only constants can be “fudged,” not variables. For example,

( )( )cos cosx dx x x x dx
12 2
! ##

Introducing variable factors is incorrect and will result in totally wrong answers.

Sample

Find cos sinx x dx4 4
2# .

The interior function in this case may not be so easy to find. Rewrite the first part of the inte-
grand with parentheses.

( )cos sin cos sinx x dx x x dx4 4 4 4
2 2

= ##

The interior function is ( ) , ( )cos sinh x x h x xand4 4 4= =-l . Introduce factors of –4 and –1/4.

( ) ( ) ( )

( )

cos sin cos sin

cos

cos

x x dx x x dx

x
C

x C

4 4
4
1

4 4 4

4
1

3
4

12
1

4

2 2

3

3

=
-

-

=
-

+

=
-

+

# #

The rule used for the integration in this last problem was the power rule, in spite of all the trig.
With complicated problems such as this one, a more formal method of applying the chain rule
may be required. This formal technique is known as u-substitution. U-substitution is simply a
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change of variables, in which a complicated function is replaced by a single variable. It is gen-
erally the interior function that is replaced by u. However, all parts of the entire integrand must
be expressed in terms of u also.

Sample

Find  cos sinx x dx4 4
2# by u-substitution.

Rewriting yields

( )cos sin cos sinx x dx x x dx4 4 4 4
2 2

=# #

Now, for u-substitution, let cosu x4= .

sin

sin

sin

dx
du

x

du x dx

x dx
du

4 4

4 4

4
4

&

&

&

=-

=-

=
-

( )

( )

cos sin

cos

cos

x x dx u
du

u du

u
C

u C

x C

x C

4 4
4

4
1

4
1

3

12
1

12
1

4

12
1

4

2 2

2

3

3

3

3

=
-

=
-

=
-

+

=
-

+

=
-

+

=
-

+

##

#

c m

The answer must always appear in terms of the same independent variable as the original prob-
lem, which is why the u is replaced with cos 4x above. This form of the problem perhaps
demonstrates more clearly that the integration rule being applied is the power rule.

For some antiderivatives, u-substitution is required to solve the problem.

Sample

Find 
x

x
dx

6+
# .

For this type of problem, different selections of u may be possible. In general, for antideriva-
tives with radical expressions in them, choosing u to equal either the radicand or the radical
generally works.
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u x u x6 6
2

&= + = +

x u

du
dx

u

dx udu

6

2

2

2
= -

=

=

( )

( )

( )

( )

x

x
dx u

u
udu

u du

u
u C

u u C

x x C

x x C

6

6
2

2 6

2
3

6

3
2

18

3
2

6 6 18

3
2

6 12

2

2

3

2

+
=

-

= -

= - +

= - +

= + + - +

= + - +

# #

#

d n

Exponential Antiderivatives
The rule for finding the antiderivative of the exponential function is just as simple as that for
finding the derivative. Be sure to apply the chain rule when necessary.

Exponential Antiderivative
e du e C

u u
= +#

Sample

Find e dx
x9 2-# .

The exponent is ,u x du dxso9 2 2= - =- . Introduce factors of –2 and –1/2.

( )e dx e dx

e C

2
1

2

2
1

x x

x

9 2 9 2

9 2

=
-

-

=
-

+

- -

-

# #
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Sample

Find xe dx
x4 2 2-# .

For this problem u x4 2
2

= - , so du xdx4=- .

( )xe dx e x dx

e C

4
1

4

4
1

x x

x

4 2 4 2

4 2

2 2

2

=
-

-

=
-

+

- -

-

# #

Sample

If g'(t) = ecos t sin t and g(0) = 9, find g(π/2).

The antiderivative of the derivative will yield the general function, g(t) + C, and then substitute
to find C.

( ) ( ) ( )sin sine tdt e t dt g t e C1
cos cos cost t t

&= - - =- +# #
( )g e C0 9

cos 0
=- + =

C e9= +

Thus ( )g t e e9
cos t

=- + +

g e e
2

9
( / )cos 2

& =- + +
r r

c m

e e9
0

=- + +

e e1 9 8=- + + = +

Antiderivatives that involve exponential functions with other bases can be integrated in either
of two ways: by memorizing the rule or by rewriting the exponential as a function of e and ap-
plying the foregoing rule.
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Antiderivative of Other Exponentials

ln
a dx

a
a C

1x x
= +#

Sample

Find dx2
x3 4-# .

( )

ln

dx dx

C

2
4
1

2 4

4
1

2
1

2

x x

x

3 4 3 4

3 4

=
-

-

=
-

+

- -

-

# #

or

( )

( )
ln

ln

ln

ln

dx e dx

e dx

e dx

e C

C

2

4 2
1

4 2

4 2
1

4 2
1

2

( )( )

( )( )

( )( )

ln

ln

ln

ln

x x

x

x

x

x

3 4 2 3 4

2 3 4

2 3 4

2 3 4

3 4

=

=

=
-

-

=
-

+

=
-

+

- -

-

-

-

-

##

#

#

Antiderivatives and the Natural Log
In the power rule for the antiderivative, a restriction is placed on the exponent; it is that n 1!- .
Obviously, if the usual power rule were applied to an exponent of –1, the result would be an
undefined expression.

x dx
x
0

1
0

=
-# which is undefined

This “gap” in the power rule is filled by the natural log function. Previously, the derivative of
the natural log function was given as

( )ln
dx
d

u u dx
du1

=

The corresponding antiderivative formula follows.
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Antiderivative Rule for the Natural Log
lnu du u C

1
= +#

The absolute-value bars on the natural log guarantee that the expression is defined. When ap-
plying this rule, keep in mind that the numerator must be the derivative of the denominator. To
help them remember this, some students prefer to write the rule in this form:

lnu
u

u C= +# l

The actual proof of both the derivative and antiderivative formulas will be shown in the next
chapter.

Sample

Find 
x

dx
3 2

5
+# .

Factor out the 5, and then introduce factors of 3 and 1/3 to set up the chain rule.

ln

x
dx

x
dx

x
dx

x C

3 2
5

5
3 2

1

3
5

3 2
3

3
5

3 2

+
=

+

=
+

= + +

# #

#

Sample

Find 
sin

cos
x

x
dx

2 3
3

-# .

The derivative of the denominator is ( )sin cos
dx
d

x x2 3 3 3- =- .

sin
cos

sin
cos

ln sin

x
x

dx
x
x

dx

x C

2 3
3

3
1

2 3
3 3

3
1

2 3

-
=

-
-

-

=
-

- +

##
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Sample

Find 
e

e
dx

4
x

x

2

2

+
# .

This problem, though it is easy, can be deceptive. Remember (1) that when the numerator of an
integrand is the derivative of the denominator, the result is a natural log, and (2) that the expo-
nential function is its own derivative.

( )ln

e
e

dx
e

e
dx

e C

4 2
1

4
2

2
1

4

x

x

x

x

x

2

2

2

2

2

+
=

+

= + +

# #

Sample

Find 
x
x

dx
1
2

2

+
-# .

Because the degree of the numerator is higher than the degree of the denominator, begin by 
dividing

x x
x

x x

x

x

1 2
1

2

1

1

2

2

+ -
-

+

- -

- -

-

g

or use synthetic division.
1 1 0 2

1 1

1 1 1

- -

-

- -

ln

x
x x

dx x
x

dx

x
x x C

1
1

1
1

2
1

2

2

&
+
-

= - -
+

= - - + +

## c m

The antiderivative rule for the natural log can be applied to find four more trig 
antiderivatives.

tan cos
sin

cos
sin

ln cos

udu u
u

du

u
u

du

u C

1

=

=-
-

=- +

# #

#
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Similarly,

cot ln sin

sec ln sec tan

csc ln csc cot ln csc cot

u du u C

u du u u C

u du u u C u u C

= +

= + +

=- + + = - +

#

#

#

Trig Integrals
Antiderivatives that involve the trig functions frequently require the use of one or more identi-
ties before they can be solved. The most commonly used identities are the Pythagorean identi-
ties, the power-reducing identities, and the product-sum identities (see pages 32–33 for a list of
trig identities).

Sample

Find .sin cosx xdx
3 2#

When one of the powers of sine or cosine is odd and the other even, the simplest method is to
keep out one factor of the odd function and convert the rest with a Pythagorean identity.

( )( )

( ) ( ) ( ) ( )

( )

sin cos sin cos sin

cos cos sin

cos cos sin

cos sin cos sin

cos sin cos sin

cos cos

cos cos

x xdx x x x dx

x x x dx

x x x dx

x x dx x x dx

x x dx x x dx

x x
C

x x C

1

3 5

15
1

5 3

3 2 2 2

2 2

2 4

2 4

2 4

3 5

3 2

=

= -

= -

= -

=- - + -

=
-

+ +

=
-

- +

##

#

#

##

##

` ` ^j j h

A few of these steps can be consolidated as desired. Either of the last two lines could be poten-
tial forms for answers on a multiple-choice question.
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Sample

Find .sin cosx x dx3 3
2 2#

When both powers are even, use the power-reducing identities to change the integrand to odd
powers of cosine.

sin cos
cos cos

x x dx
x x

dx3 3
2

1 6
2

1 62 2
=

- +# # c cm m

( )

[ ( )]

( )

( )( )

( )

cos

cos

cos

cos

cos

cos

sin

sin

x dx

x
dx

x dx

x dx

dx x dx

dx x dx

x x C

x x C

4
1

1 6

4
1

1
2

1 12

4
1

2
1

2 1 12

8
1

1 12

8
1

8
1

12

8
1

8
1

12
1

12 12

8
1

96
1

12

96
1

12 12

2

$

$

= -

= -
+

= - +

= -

= -

= -

= - +

= - +

#

#

#

#

##

##

c m< F

This type of problem would probably be one of the more difficult to appear on the AP exam.

Sample

Find .tan x dx
3#

For problems involving tangents and/or secants, recall that

( )tan sec
dx
d

u u
dx
du2

= and ( )sec sec tan
dx
d

u u u
dx
du

=

Trial and error may be necessary before you find the combination of identities that produces a
solution.

( )( )

( )( )

tan tan tan

tan sec

tan sec tan

tan
ln cos

xdx x x dx

x x dx

x xdx xdx

x
x C

1

2

3 2

2

2

2

=

= -

= -

= + +

# #

#

# #
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The first integrand above can actually be integrated another way:

( )( )

tan tan sec tan

sec sec tan tan

sec
ln cos

xdx x xdx xdx

x x x dx xdx

x
x C

2

3 2

2

= -

= -

= + +

###

##

Although the two answers appear different, they really differ only in the value of their respec-
tive constants, as shown below:

tan
ln cos

sec
ln cos

sec
ln cos

sec
ln cos

x
x C

x
x C

x
x C

x
x C

2 2
1

2 2
1

2

2

1

2

1

2

1

2

2

+ + =
-

+ +

= + + -

= + +

c m

Sample

Find sin cosx xdx5 3# .

Use the product-sum identity:

( ) ( ) [ ( ) ( ) ]sin cos sin sinmx nx m n x m n x
2
1

= - + +

( )

( ) ( )( )

sin cos sin sin

sin sin

cos cos

x xdx x x dx

x dx x dx

x x C

5 3
2
1

2 8

2
1

2
1

2 2
2
1

8
1

8 8

4
1

2
16
1

8

$ $

= +

= +

=
-

- +

##

##

Antiderivatives of Inverse Trig Functions
The formulas for the antiderivatives of the inverse trig functions are just the reverse of the de-
rivative formulas. Fortunately, you need to memorize only three formulas. These three, along
with the techniques of completing the square, are sufficient for solving any problems that ap-
pear on the AP exam.
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Inverse Trig Antiderivatives
arcsin

arctan

sec

a u
du a

u
C

a u
du a a

u
C

u u a
du a a

u
Carc

1

1 1

1 1

2 2

2 2

2 2

-
= +

+
= +

-
= +

#

#

#

Sample

Find 
t

dt
9 4

1
2

+
# .

This integral is in the pattern for the inverse tangent, where a = 3 and u = 2t. Note that it is nec-
essary to insert factors of 2 and 1/2 because du = 2dt.

( ) ( )

( ) ( )

arctan

t
dt

t
dt

t
dt

t
C

9 4
1

3 2
1

2
1

3 2
2

6
1

3
2

2 2 2

2 2

+
=

+

=
+

= +

##

#

Sample

Find 
x x

dx
3 6 2

1
2

- + -
# .

At first glance, it does not seem that this problem will fit into any of the inverse trig forms.
Completing the square on the radicand will make it look more familiar.

( ?)

( )

( )

( )

( )

( )

( )

x x x x

x x

x

x

x

x x
dx

x
dx

x
dx

3 6 2 3 2 2

3 2 1 2 3

3 1 1

1 3 1

3
3
1

1

3 6 2

1

3
3
1

1

1

3

1

3
1

1

1

2 2

2

2

2

2

2
2

2

&

- + - =- - + -

=- - + - +

=- - +

= - -

= - -

- + -
=

- -

=
- -

##

#

;

;

E

E
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This is now in the form for inverse sine, where /a 1 3= and u = x – 1.

( )

arcsin

arcsin

x
C

x C

3

1

3
1
1

3

1
3 1

=
-

+

= - +9 C

Sample

Find 
e

dx
1

1
x2
-

# .

In the denominator, a perfect square is already present in the radicand, although it may not be
easy to spot. Applying u-substitution may help.

Let lnu e x u
x
&= =

dx u du
1

& =

sec

sec

e
dx

u u du

u u
du

u C

e C

arc

arc

1

1

1

1 1

1

1

x

x

2 2

2

-
=

-

=
-

= +

= +

# #

#

c m

Other algebraic techniques similar to the ones in the foregoing examples may be needed for in-
verse trig problems.

Sample

Find 
x
x

dx
9

9 5
2

3

+
-# .

If the degree of the numerator is greater than the degree of the denominator, divide first.

x9
x x

x x

x

9 9 5

9 81

81 5

2 3

3

+ -

+

- -

g

x
x

dx x
x

x
dx

9
9 5

9
9

81 5
2

3

2&
+
-

= -
+
+# # c m
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Another algebraic maneuver is to change one fraction into a sum of two separate fractions.

( )ln arctan

x
x

x
dx x

x
x

x
dx

xdx
x

x
dx

x
dx

xdx
x

x
dx

x
dx

x
x

x
C

9
9

81 5
9

9
81

9
5

9 81
9

5
9

1

9
2
81

9
2

5
9

1

2
9

2
81

9
3
5

3

2 2 2

2 2

2 2

2
2

-
+
+

= -
+

-
+

= -
+

-
+

= -
+

-
+

= - + - +

# #

# ##

# # #

c cm m

Integration by Parts (BC Only)
Integration by parts is a method used to “reshuffle” parts of an integrand that is unsolvable into
a new integrand that can be solved.

Theorem: Integration by Parts
u dv uv v du= - ##

The formula can be proved quickly by using the product rule:

( )

( )

( )

dx
d

uv u
dx
dv

v
dx
du

d uv u dv v du

d uv u dv v du

uv u dv v du

u dv uv v du

= +

= +

= +

= +

= -

###

##

##

This may seem like an unprofitable exchange, but if the parts are chosen correctly, the modified
version on the right can truly be simpler to solve. Note that the u in the original integrand ap-
pears only as du in the second version and that the dv from the original shows up as v in the
new version. This leads to some general rules for choosing the parts:

1. Let u equal the part that has the simpler derivative or that simplifies better through 
differentiation.

2. Let dv be the part that can be integrated more easily.

These are general rules only; trial and error may be the only way to find the solution to a par-
ticular antiderivative via integration by parts.
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Sample

Find cosx x dx# using integration by parts.

Because x has a very simple derivative, whereas cos x has a derivative that is just another trig
function, choose

cos

cos

sin

cos sin sin

sin cos

u x dv x dx

du dx dv x dx

v x

u dv uv v du

x x dx x x x dx

x x x C

= =

= =

=

= -

= -

= + +

##

##

##

Sample

Find ( ) .x e dx1
x

-#

This problem requires integration by parts.

( )

( ) ( ) ( )

( )

( )

u x dv e dx

du dx dv e dx

v e

u dv uv v du

x e dx x e e dx

x e e dx

e xe e C

e xe C

e x C

1

1 1

1

2

2

x

x

x

x x x

x x

x x x

x x

x

&

= - =

=- =

=

= -

- = - - -

= - +

= - + +

= - +

= - +

##

##

# #

#

Occasionally, repetition of integration by parts may be needed.
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Sample

Find .cosx x dx
2#

cos

cos

sin

cos sin sin

sin sin

u x dv x dx

du x dx dv x dx

v x

x x dx x x x x dx

x x x x dx

2

2

2

2

2 2

2

= =

= =

=

= -

= -

##

##

#
The second integral is still not solvable; use parts again.

[ ( ) ( ) ]

sin

sin

cos

cos sin sin

sin cos cos

sin cos cos

sin cos sin

u x dv x dx

du dx dv x dx

v x

x x dx x x x x dx

x x x x x dx

x x x x x dx

x x x x x C

2

2

2 2

2 2

2 2

2

2

2

= =

= =

=-

= -

= - - - -

= + -

= + - +

##

##

#

#

You are already familiar with antiderivatives that yield the natural log function. Integration by
parts now provides a method for finding the antiderivative of the natural log function, although
there seems to be only one “part.”

?

( )( )

ln

ln

ln ln

ln

ln

x dx

u x dv dx

du x dx dv dx

v x

x dx x x x x dx

x x dx

x x x C

1

1

1

=

= =

= =

=

= -

= -

= - +

#

##

##

#

It may be worthwhile to memorize this formula for the antiderivative on ln x, because it does
occur frequently on the AP exam. The method above can also be applied to finding the anti-
derivatives of the inverse trig functions.
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?arctan

arctan

xdx

u x dv dx

du
x

dx v x
1

1
2

=

= =

=
+

=

#

( )( )

( )

arctan arctan

arctan

arctan ln

xdx x x x
x

dx

x x
x
x

dx

x x x C

1
1

2
1

1
2

2
1

1

2

2

2

= -
+

= -
+

= - + +

##

#

The formulas for the antiderivatives of the inverse trig functions are too complicated to be
worth memorizing.

Integration by Partial Fractions (BC Only)
Some rational functions that are at first apparently not integrable can be broken down into two
or more separate fractions using the method of partial fractions. These separate fractions can
then be integrated individually. For example,

x x
dx

6
5

2
+ -

#

is not at first glance integrable.

However, from basic algebra, the two fractions below have a difference that is equal to the 
original integrand. The two separate fractions are easily integrated as natural logs.

( )( ) ( )( )

( )

x x x x
x

x x
x

x x

x x

x x

2
1

3
1

2 3
3

3 2
2

6

3 2

6
5

2

2

-
-

+
=

- +
+

-
+ -

-

=
+ -

+ - -

=
+ -

and

ln ln
x

dx
x

dx x x C
2

1
3

1
2 3

-
-

+
= - - + +# #

The process of creating the decomposition follows basic algebra rules. Begin by factoring the
denominator into linear factors. For each linear factor present in the denominator, write a frac-
tion with the unknown numerator as a variable (A, B, etc.)

( )( )x x x x

x x x
A

x
B

6
5

3 2
5

6
5

3 2

2

2

+ -
=

+ -

+ -
=

+
+

-
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Next, multiply both sides of the resulting equation above by the original denominator in its fac-
tored form, thus eliminating the fractions.

( ) ( )

x x x
A

x
B

A x B x

6
5

3 2

5 2 3

( )( ) ( )( )x x x x

2

3 2 3 2

+ -
=

+
+

-

= - + +

+ - + -

c m ; E

There are now two ways to proceed to determine the values of A and B: (1) choose useful val-
ues for x and solve by inspection, or (2) expand the expression on the left and equate coeffi-
cients.

Method 1: Choose x = 2, and then x = –3

( ) ( ) ( ) ( )x A B x A B

B A

B A

2 5 0 5 3 5 5 0

5 5 5 5

1 1

& &= = + =- = - +

= =-

= - =

Method 2: Expanding Yields

5 = Ax – 2A + Bx + 3B

5 = (A + B)x + (–2A + 3B)

Equating the coefficients on the x terms gives

A + B = 0

while equating the constants gives

–2A + 3B = 5

This system of equations can be solved:

A B A B0 &+ = =-

–2A + 3B = 5

–2(–B) + 3B = 5

5B = 5

B = 1

A = –1

Both methods now yield the equation below.

,

ln ln

ln

x x x x

x x
dx

x
dx

x
dx

x x C

x
x

C

so

6
5

3
1

2
1

6
5

3
1

2
1

3 2

3
2

2

2

+ -
=

+
-

+
-

+ -
=

+
-

+
-

=- + + - +

=
+
-

+

###

The last answer above uses log properties to combine the two terms. 235
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Sample

Find 
x x

x
dx

2 9 5
17 8
2
- -

-# using partial fractions.

( )( )

( ) ( )

( ) ( )

( )

,

ln ln

x x
x

x x
x

x
A

x
B

x A x B x

x A B

B

B

x A B

A

x x
x

dx
x x

dx

x
dx

x
dx

x
dx

x
dx

x x C

so

2 9 5
17 8

2 1 5
17 8

2 1 5

17 8 5 2 1

5 77 0 11

77 11

7

2
1

2
33

2
11

0

3

2 9 5
17 8

2 1
3

5
7

3
2 1

1
7

5
1

3
2
1

2 1
2

7
5

1

2
3

2 1 7 5

2

2

&

&

$

- -
-

=
+ -

-
=

+
+

-

- = - + +

= = +

=

=

=- - = - +

=

- -
-

=
+

+
-

=
+

+
-

=
+

+
-

= + + - +

##

##

# #

c

c

m

m

Improper Integrals (BC Only)
In the definition of the definite integral

( )f x dx
a

b

#

it was assumed that the integrand f(x) was continuous on a closed (finite) interval [a, b]. Some
definite integrals that do not meet these conditions can still be evaluated by a limit process.
These are known as improper integrals. Integrals are improper in several ways. First, the upper
or lower bound of integration (or both) may not be a finite constant, but given as or3 3- .
Secondly, the integrand may have an infinite discontinuity at either the upper or lower bound of
integration, or have an infinite discontinuity between the bounds of integration. Examples of
the two types are given below.
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Examples of Improper Integrals

inite its

inite

( )

( ) ( )
ln

inf lim

inf

dx
x

dx e dx

x
dx x dx

x
dxdiscontinuities

2
4

1

2
1

1
1

x x

1

2

3

3

3 3

0

2

0

3

1

2

-

- -

3

3 3

3

-

-

-

-

# # #

###

Applications of improper integrals include finding area and volume. The idea behind the first
type of improper integrals can perhaps best be illustrated by considering the following area
problem.

Sample

Consider the area bounded by the curves below and shaded in the corresponding graph.
Find an expression in terms of b to represent the area of the region. What happens to this
area as the right-hand boundary is moved further right? That is, what happens to the area
expression as b "3?

, , ( > ),y
x

x x x b baxis
1

1 12= = =-

The area is given by

,,

A
x

dx

x dx

x

b

A
b

b

A
b

So as

1

1

1
1
1

1
1

1
1

1

b

b

b

b

2

1

2

1

1

lim

"3

=

=

= -

=- - -

=- +

= - +

=

" 3

-

#

#

c

c

m

m

E

So, as the right hand boundary takes on larger and larger values, the area under the curve gets
closer and closer to 1.

This leads to a general method for evaluating improper integrals with infinite bounds of 
integration.

2 31 b
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Improper Integrals with Infinite Bounds of Integration
In general, converting to the limit expression requires replacing the infinite bound with a vari-
able (usually a or b), and taking the limit as that variable increases or decreases without bound. 

1. ( ) ( )f x dx f x dx
b a

b

a

lim=
" 3

3

##

2. ( ) ( )f x dx f x dx
a a

bb

lim=
" 33 --

##

If both bounds are infinite, the integral is split into two pieces by choosing a value c (frequently
taken as 0 or 1) and then applying both of the limits above

3. ( ) ( ) ( )

( ) ( )

f x dx f x dx f x dx

f x dx f x dx

c

c

a a

c

b c

b

lim lim

= +

= +
" "

3

3 3

3

3 3

- -

-

# ##

# #

Note: Not all improper integrals exist, because the limits above do not always exist. If the
limit exists, then the improper integral is said to converge. If the limit does not exist, the
improper integral diverges.

Sample

Evaluate the integral, if it converges.

xe dx
x

2

3

-#

From the definition above,

xe dx xe dx
x

b

x

b

2 2

lim=
"

3

3

- -# #

The integration for this problem requires the use of parts. It may be easier to perform the inte-
gration by parts as a separate problem and then insert the resulting antiderivative into the limit
form of the improper integral.
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[ ]

( ) ( )

,

xe dx xe e dx u x dv e dx

xe e C du dx v e

xe dx xe dx

xe e

be e e e

so

2

x x x x

x x x

x

b

x

b

b

x x b

b

b b

2 2

2

2 2

lim

lim

lim

=- - - = =

=- - + = =-

=

= - -

= - - - - -

"

"

"

3

3

3

3

- - -

- - -

- -

- -

- - - -

# # ##

# #

8 B

e
b

e e

e
b

e e

1 3

1 3

b

b b

b

b

b

b

2

2

lim

lim lim

= - - +

=
-

- +

"

" "

3

3 3

; E

Using L’Hôspital’s rule on this first limit,

e e e

e

e

1 1 3

0 0
3

3

b

b

b

b 2

2

2

lim lim=
-

- +

= - +

=

" "3 3

Sample

Find ,
e

e
dx

1
x

x

2
+

3

3

-

# if it converges.

e
e

dx
e

e
dx

e
e

dx
1 1 1

x

x

x

x

x

x

2 2

0

2

0
+

=
+

+
+

3

3

3

3

- -

# # #

tan tan

tan tan tan tan

tan tan

e
e

dx
e

e
dx

e e

e e e e

e e

1 1

4 4

4
0

2 4

2

a

x

x

b

x

x
b

a

a

x

a
b

x b

a

a

b

b

a

a

b

b

2 2

0

0

1 0 1

0

1 0 1 1 1 0

1 1

lim lim

lim lim

lim lim

lim lim

=
+

+
+

= +

= - + -

= - + -

= - + -

=

r r

r r r

r

" "

" "

" "

" "

3 3

3 3

3 3

3 3

-

-

- -

-

- - - -

-

- -

##

c cm m

8 8

8 8

; ;

B B

B B

E E
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Sample

The unbounded region that is below y = 1/x, above the x axis and to the right of x = 1 is
revolved around the x axis. Find the volume of the solid generated, if possible.

The region is shown in the figure to the right.

Using discs, an integral to represent the solid is given by

x dx
1

2

1

r
3

# c m

From the first example, we know that the definite integral has a value of 1, so the volume of the
solid must be ( )1 =r r.

The second type of improper integral is sometimes more difficult to recognize, because there is
no tell-tale 3 anywhere in the problem. This type of improper integral has an infinite disconti-
nuity at one or both of the bounds of integration, or at some point between the two bounds. It is
still necessary to convert the integral to a limit expression to evaluate it.

Improper Integrals with Infinite Discontinuities
In general, to convert to the limit expression, replace the discontinuity with another variable,
usually s or t, and take the one-sided limit as s or t approaches the constant where the disconti-
nuity occurs.

1. infinite discontinuity at the right boundary where x = b

( ) ( )f x dx f x dx
t b a

t

a

b

lim=
"

-

##

2. infinite discontinuity at the left boundary where x = a

( ) ( )f x dx f x dx
s a s

b

a

b

lim=
"

+

##
ba

ba

1

G
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3. infinite discontinuity between the boundaries where x = c, a < c < b

( ) ( ) ( )

( ) ( )

f x dx f x dx f x dx

f x dx f x dx

a

b

a

c

c

b

t c a

t

s c s

b

lim lim

= +

= +
" "

- +

# # #

# #

Note: As before, not all improper integrals exist, because the limits above do not always
exist. If the limit exists, then the improper integral is said to converge. If the limit does not
exist, the improper integral diverges.

Sample

Find 
x

dx
1

3
0

1

# , if it converges.

The infinite discontinuity here is at the left boundary, a = 0.

x
dx

x
dx

x dx

x

s

1 1

2
3

2
3

2
3

2
3

0

2
3

s s

s

s s

s

3
0

1

0
3

1

0

3

0

1

0

3

1

0

3

1

2

2

lim

lim

lim

lim

=

=

=

= -

= -

=

"

"

"

"

-

-

-

-

-

# #

#

;

;

E

E

Sample

Find 
( )x

dx
1

1
3

0

2

2

-
# , if it converges.

Here, the infinite discontinuity is at x = 1, between the bounds of integration. Split the original
integral into two pieces, from x = 0 to x = 1, and from x = 1 to x = 2, and then write limits for
each of the two integrals.

c ba
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( ) ( ) ( )

( ) ( )

( ) ( )

x
dx

x
dx

x
dx

x
dx

x
dx

x dx x dx

x x

t s

1

1

1

1

1

1

1

1

1

1

1 1

3 1 3 1

3 1 3 1 3 1 3 1

0 3 1 3 3 0

6

t

t

s s

t

t

s s

t

t

s
s

t s

3
0

2

3
0

1

3
1

2

1
3

0 1
3

2

1

3

0 1

3

2

1

3

0
1

3
2

1

3 3

1

3 3

2 2 2

2 2

2 2

1 1

1 1 1 1

lim lim

lim lim

lim lim

lim lim

-
=

-
+

-

=
-

+
-

= - + -

= - + -

= - - - + - -

= - - + -

=

" "

" "

" "

" "

- -

- +

- +

- +

- +

# # #

# #

# #^ ^

^ ^

^ ^ ^ ^

h h

h h

h h h h

9 9

9 9

C C

C C

Occasionally, an improper integral may arise that is a combination of the two types given above.

Sample

Find 
( )x x

dx
1

1

0
+

3

# , if it converges.

Obviously, the upper bound of integration is infinite. But, the lower bound of integration, x = 0,
is an infinite discontinuity for the integrand. So, split the given integral into two parts, from 
x = 0 to x = 1, and from x = 1 to x 3= . Also, for problems such as this, it may be useful to per-
form the rather complicated integration as a general antiderivative in a separate problem, and
then insert the answer into the two limit expressions.

( ) ( ) ( )

( ) ( )

**

( )

tan tan

tan tan tan tan

x x
dx

x x
dx

x x
dx

x x
dx

x x
dx

x x

s b

see interpretation below

1

1

1

1

1

1

1

1

1

1

2 2

2 1 2 2 2 1

2
4

2 0 2
2

2
4

s b

b

s

s
s

b

b

s b

0 0

1

1

0 1

1

0

1
1

1

1

0

1 1 1 1

lim lim

lim lim

lim lim

+
=

+
+

+

=
+

+
+

= +

= - + -

= - + -

=

r r r

r

" "

" "

" "

3 3

3

3

3

- -

- - - -

+

+

+

# # #

##

c c cm m m

9 9

9 9

C C

C C

**
( ) ( )

tan

tan

x x
dx

u u
u du u x

u
du x u

u C dx u du

x C

where
1

1
1

1
2

2
1

1

2 2

2

2

2

2

1

1

+
=

+
=

=
+

=

= + =

= +

-

-

##

#
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1.
x

xdx

9
2

-
=#

A. ln x C
2
1

9
2-

- +

B. arcsin
x

C
3

+

C. x C9
2

- - +

D. x C
4
1

9
2-

- +

E. x C2 9
2

- +

2.
x

dx
1

3

-
=#

A. x C
2
3 3

2

+

B. x C
4
3 3

4-
+

C. x C
3
2 2

3-
+

D. x C
2
3 3

2-
+

E. x C
3
2 3

2-
+

3.
cos

sin
d

1 -
=

i
i i#

A. ( )arcsin cos C+i

B. cos C2 1 - +i

C. ln cos C1 - +i

D. cos C2 1- - +i

E. cos C
2
1

1 - +i

4.
( )x

dx
2

1
2

+
=#

A.
( )x

C
2
2

3
+
-

+

B.
x

C
2

1
+
-

+

C.
( )x

C
2 2

1
+

+

D.
( )x

C
2 2

1
+

-
+

E.
x

C
2

1
+

+

5. ( )t t dt5 3
2 8

+ =#

A. ( )t t C
3
2

5 3
2 9

+ +

B. ( )t C
6
1

5 3
2 9

+ +

C. ( )t C
9
1

5 3
2 9

+ +

D. ( )t C
54
1

5 3
2 9

+ +

E. ( )t C
3
4

5 3
2 7

+ +

6. sin xdx
3

=#

A. sin sin cosx x x C
2

- +

B. cos cosx x C
3
1 3

- +

C. cos cosx x C
3
1 3

- + +

D. cos cosx x C
3
1 3

- - +

E. sin x C
4
1 4

+
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7. sin xdx3
2

=#

A. sin cosx x C2 3 3 +

B. cos x C
2
1

2
1

6+ +

C. sinx x C
2
1

12
1

6- +

D. sinx x C
2
1

12
1

6+ +

E. cos x C
2
1

2
1

6- +

8. ( )cos sinx x dx
2 2

- =#

A. cos sinx x C
3
1

2
13 3

- +

B. sin x C
2
1

2 +

C. sin x C
2
1

2
-

+

D. cos x C2 +

E. sin x C2 2 +

9. cot xdx4 =#

A. ln sin x C
4
1

4 +

B. ln cos x C
4
1

4 +

C. ln sin x C
4
1

4
-

+

D. ln cos x C
4
1

4
-

+

E. ln tan x C
4
1

4 +

10. csc cotx xdx =#

A. cscx C+

B. cscx C- +

C. csc x
C

2

2

+

D. cot x
C

2

2

+

E. cot x
C

2

2
-

+

11. sin sinx xdx5 2 =#

A. ( )sin sinx x C
42
1

7 3 3 7+ +

B. ( )cos cosx x C
21

1
7 7 3 2

-
+ +

C. ( )cos cosx x C
42

1
7 3 3 7

-
- +

D. ( )cos cosx x C
42

1
3 7 7 2

-
+ +

E. ( )sin sinx x C
42
1

7 3 3 7- +

12. ( )cos x dx2 3+ =#

A. ( )sin x C
2
1

2 3+ +

B. ( )sin x C2 3+ +

C. ( )sin x C2 3- + +

D. ( )sin x C
2
1

2 3
-

+ +

E. ( )sin x C
5
1

2 3
-

+ +

13. ( ) ( )sec tanx x dx1 1- - =#

A. ( )cot x C1 - +

B. ( )cot x C1- - +

C. ( )tan x C1
2

- +

D. ( )sec x C1
2

- +

E. ( )sec x C1- - +
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14.
sin

cos
x

x
dx

4 2+
=#

A. sinx C4 2+ +

B.
( )sinx

C
2 4

1
+
-

+

C. ln sinx C4 2+ +

D. ln sinx C2 4 2+ +

E. sin cscx x C
4
1

2
1 2

- +

15.
x x

x x
dx

1
2

2

-
+ -

=#

A. lnx x x C2
2

+ - +

B. ln lnx x C1+ - +

C. ln x x C1
2

+ - +

D. lnx x x C
2

+ - +

E. ln lnx x x C1- - - +

16. x x dx2 1+ =#

A. ( )x x C
30
1

2 1 3 1+ - +

B. ( ) ( )x x C
15
2

2 1 3 1
3

+ - +

C. ( ) ( )x x C
15
1

2 1 3 1
3

+ - +

D. ( )x x C
60
1

3 1 2 1- + +

E. ( )x x C
30
1

2 1 3 12
3

+ + - +^ h

17.
x

x
dx

2 1-
=#

A. ( )x x C
3
1

2 1 2- - +

B. ( )x x C
3
1

2 1 1- - +

C. ( )x x C
6
1

2 1 2- - +

D. ( )x x C
3
1

2 1 1- + +

E. ( )x x C
3
1

2 1 1+ + +

18. dx3
x2

=#

A. ln
C

2
3

3
x2
+

B.
ln

C
2 3

1
3

x2
+

C. ( )ln C2 3 3
x2
+

D.
ln

C
3

2
3

x2
+

E.
ln

C
3

1
3

x2
+

19.
e

e e
dxx

x x3
-

=-

-

#

A. e x C
5
1 x5

+ +

B. e C
4
1

1
x4
- +

C. e x C
4
1 x4

- +

D. e x C
x4
- +

E. e x C
2
1 x2

- +

20.
e e
e e

dxx x

x x

+
-

=-

-

#

A. ln e x C1
x2
+ - +

B. ln e e C
x x
+ +

-

C. ln e e C
x x
- +

-

D. lnx e C1
x2

+ + +

E. lnx e C1
x2

- + +
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21.
( )lnx x

dx
6

3 =#

A.
( )lnx

C
2

3
4

-
+

B.
( )lnx

C
3

2

-
+

C. ( )ln lnx C6
2

+

D.
( )lnx

C
18

4

-
+

E. ( )lnx
C

2
3

4

+

22.
( )

y
y

dy
2

1
2

-
=#

A. ln
y

y y C
4 2

1
2

- + +

B. lny y y C2
2
- + +

C. lny y y C4
2
1

2
2
- + +

D.
( )

y

y
C

3

1
2

3
-

+

E.
y

C
2
1

2
1

2- +

23.
e

e
dx

4
x

x

2
-

=#

A. arcsin
e

C
2

x

+

B. arcsin
e

C
2
1

2

x

+

C. ln e C
2
1

4
x2-

- +

D. e C2 4
x2

- - +

E. e C4
x2

- - +

24.
x x

x
dx

2 5
2
+ +

=#

A. ln x x C
2
1

2 5
2
+ + +

B. arctan
x

C
2
1

2
1+

+c m

C.

ln arctanx x
x

C
2
1

2 5
2
1

2
12

+ + -
+

+c m

D.

( )ln arctanx x x C
2
1

2 5
2
1

1
2
+ + - + +

E.

ln arctanx x
x

C
2
1

2 5
2

12
+ + -

+
+c m

25.
x

dx
16 9

1
2

+
=#

A. arctan
x

C
4
3

+c m

B. ( )arctan x C
4
1

3 +

C. arctan
x

C
4
1

4
3

+c m

D. arctan
x

C
3
1

4
3

+c m

E. arctan
x

C
12
1

4
3

+c m

26.
e

e
dx

8
x

x

+
=#

A. arctan
e

C
4
2

4
2

x

+

B. ln e C
2
1

8
x

+ +

C. arctan
e

C
8
1

8

x

+

D. e
e

C
8

1
x

x- +

E. ln e C8
x2

+ +
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27. A smooth curve y = f(x) is such that
( )f x x

2
=l . The curve goes through the

point (–1,2). Find its equation.

A. y
x
3

7
3

= +

B. x y3 7 0
3
- + =

C. y x 3
3

= +

D. y x3 5 0
3

- - =

E. y
x
3

2
3

= +

28.
x x

x x
dx

4
14 8

3

2

-
- -# = 

A. ln lnx x C2 4
2

- - +

B. ln x x C
3
1

4
3
- +

C. ln ln lnx x x C2 3 2 4 2+ + - - +

D. ln ln lnx x x C3 2 4 2- + - - +

E. ln x x C4
3
- +

*29.
x x

x
dx

2 8
16

2
+ -
+

=#

A. ( )( )ln x x C2 4- + +

B.
( )

( )
ln

x

x
C

2

4
3

2

-

+
+

C.
( )

( )
ln

x

x
C

4

2
2

3

+

-
+

D. ( )( )ln x x C
3
2

2 4- + +

E.
( )

( )
ln

x

x
C

3
1

2

4
7

10

+

-
+

*30. x e dx
x

$ =#

A. e x e C
x x

$+ +

B. x e C
x2

$ +

C. x e e C
x x

$- + +

D. x e e C
x x

$ - +

E. x e e C
x x

$ + +

*31. cosx x dx
2

=#

A. sin
x

x C
3

3

$ +

B. sinx x C2- +

C. sin cos sinx x x x x C2 2
2
$ $+ - +

D. sin cos sinx x x x x C2 2
2
$ $- + +

E. sin cos sinx x x x x C2 2
2
$ $- + + +

*32.
x x

x x
dx

4
5 10 8

3

2

-
- -

=#

A. ( ) ( )ln x x x C2 2
2 4

+ - +

B.
( )

( )
ln

x

x x
C

2

2
4

2

+

-
+

C.
( )
( )

ln
x

x x
C

4 2
2 2

+
-

+

D.
( )

( )
ln

x
x x

C
2

2 4 2$
-

+
+

E.
( )
( )

ln
x

x x
C

2
2

2 4
$

-
+

+

*BC topic only
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*33. lnx dx

e

1

=#

A. e2 – e + 1

B. 2e – 1

C. e2 + 1

D. 1

E. 0

*34. When decomposing 
x x
x

4
5 12

2
-
- by the

method of partial fractions, one of the

fractions obtained is:

A.
x 4

2
-

B. x
3-

C.
x 4

2
-

-

D.
x 2

3
-

E.
x 4

5
-

*BC topic only
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Answers to Multiple-Choice Questions
1. C. Rewrite with a negative fractional exponent and set up the chain rule.

x

xdx
x xdx

x x dx

x
C

x C

9
9

2
1

9 2

2
1 9

9

2

2 2

2 2

2
1

2 2

2

1

1

1

-
= -

=
-

- -

=
- -

+

=- - +

-

-

# #

#

`

` ^

`

j

j h

j

2. D. Rewrite with a fractional exponent and use the power rule.

x
dx x dx

x
C

x C

1
1

1

2
3

3

3

3
2

3

3

1

2

2

-
=-

=- =

=
-

+

-# #

3. B. cos

sin
cos sin

cos

cos

d d

C

C

θ
θ θ θ θ θ

θ

θ

1
1

1

2 1

2

2
1

2

1

1

-
= -

=
-

+

= - +

-

# # ^ ^

^

h h

h

4. B.
( )

( )

( )

x
dx x dx

x
C

x
C

2
1

2

1
2

2
1

2

2

1

+
= +

=
-
+

+

=
+
-

+

-

-

##

5. D. ( ) ( ) ( )

( )

( )

t t dt t t dt

t
C

t C

5 3
6
1

5 3 6

6
1

9
5 3

54
1

5 3

2 8 2 8

2 9

2 9

+ = +

=
+

+

= + +

# #
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6. C. ( )( )

( )( )

( )

( ) ( )

sin sin sin

cos sin

sin cos sin

sin cos sin

cos
cos

x dx x x dx

x x dx

x x x dx

x dx x x dx

x
x

C

1

3

3 2

2

2

2

3

=

= -

= -

= + -

=- + +

# #

#

#

# #

7. C.

( )

( )( )

sin
cos

cos

cos

cos

sin

x dx
x

dx

x dx

dx x dx

dx x dx

x x C

3
2

1 6

2
1

1 6

2
1

1
2
1

6

2
1

1
2
1

6
1

6 6

2
1

12
1

6

2

:

=
-

= -

= -

= -

= - +

# #

#

# #

# #

8. B. ( )

( )

cos sin cos

cos

sin

x x dx xdx

x dx

x C

2

2
1

2 2

2
1

2

2 2
- =

=

= +

##

#

9. A. ( )cot cot

ln sin

x dx x dx

x C

4
4
1

4 4

4
1

4

=

= +

##

10. B. csc cot cscx xdx x C=- +#
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11. E. ( )

( ) ( )

( )

sin sin cos cos

cos cos

cos cos

sin sin

sin sin

x x dx x x dx

x dx x dx

x dx x dx

x x C

x x C

5 2
2
1

3 7

2
1

3
2
1

7

2
1

3
1

3 3
2
1

7
1

7 7

6
1

3
14
1

7

42
1

7 3 3 7

$ $

= -

= -

= -

= - +

= - +

# #

# #

# #

12. A. ( ) ( )( )

( )

cos cos

sin

x dx x dx

x C

2 3
2
1

2 3 2

2
1

2 3

+ = +

= + +

##

13. E. ( ) ( )sec tanx x dx1 1- -#

( ) ( ) ( )( )

( )

sec tan

sec

x x dx

x C

1 1 1 1

1

= - - - -

=- - +

#

14. C.
sin

cos
sin

cos

ln sin

ln sin

x
x

dx
x

x
dx

x C

x C

4 2 2
1

4 2
2

2
1

4 2

4 2

+
=

+

= + +

= + +

# #

15. D. Divide

1

x x-

x x x x

x

1

2 1

2 3

3

- + -

-

g

ln
x x

x x
dx

x x
x

dx x x x C
1

1
2 1

2

2

2

2

-
+ -

= +
-
-

= + - +# # c m
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16. C. u x u x2 1 2 1
2

&= + = +

( )x u dx u du
2
1

1
2

&= - =

x x dx u u u du

u u du

u u
C

u u C

u u C

x x C

x x C

x x C

So 2 1
2
1

1

2
1

2
1

5 3

2
1

15
1

3 5

30
1

3 5

30
1

2 1 3 2 1 5

30
1

2 1 6 2

15
1

2 1 3 1

2

4 2

5 3

5 3

3 2

2

2

2

3

3

3

:

+ = -

= -

= - +

= - +

= - +

= + + - +

= + - +

= + - +

# #

#

` ^ ^

`

d

`

`

^ ^

^ ^

^ ^

j h h

j

n

j

j

h h

h h

h h

8 B

17. D. u x u x2 1 2 1
2

&= - = -

( )x u dx u du
2
1

1
2

&= + =

x

x
dx u

u
u du

u du

u
u C

u u C

u u C

x x C

x x C

2 1

1

2
1

1

2
1

3

2
1

3
1

3

6
1

3

6
1

2 1 2 1 3

3
1

2 1 1

2
1 2

2

3

3

2

:

-
=

+

= +

= + +

= + +

= + +

= - - + +

= - + +

# #

#

#

`

`

d

`

`

^

^

j

j

n

j

j

h

h
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18. B. ( )

ln

dx dx

C

3
2
1

3 2

2
1

3
1

3

x x

x

2 2

2

=

= +

# #

or

( )
ln

ln

ln

ln

dx e dx

e dx

e C

C

3

2 3
1

2 3

2 3
1

2 3
1

3

( )

( )

( )

ln

ln

ln

x x

x

x

x

2 3 2

3 2

3 2

2

=

=

= +

= +

# #

#

19. C. ( )

( )

e
e e

dx e dx

e dx dx

e dx dx

e x C

1

1

4
1

4 1

4
1

x

x x
x

x

x

x

3
4

4

4

4

-
= -

= -

= -

= - +

-

-

# #

##

##

20. E.
( )

( )

( ) ( )

( )

ln

ln

ln

ln ln

ln

e e
e e

dx
e e
e e

dx

e e C

e
e

C

e
e

C

e e C

x e C

1

1

1

1

x x

x x

x x

x x

x x

x

x

x

x

x x

x

2

2

2

2

+
-

=
+

- -

=- + +

=-
+

+

=
+

+

= - + +

= - + +

-

-

-

-

-

##

d

d

n

n

Since >e 1 0
x2
+ for all real numbers, no absolute value bars are required.

21. B.
( )

( )

( )

( )

ln
ln

ln

ln

x x
dx x x dx

x
C

x
C

6
6

1

6
2

3

3

3

2

2

=

=
-

+

=
-

+

-

-

# # c m
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22. A. ( )
y

y
dy y

y y
dy

y y dy

2
1

2
1 2 1

2
1

2
1

2 2
-

=
- +

= - +

##

# c m

ln

ln

y
y y C

y y y C

2
1

2
2

4
1

2
1

2

2

= - + +

= - + +

f p

23. A.
( ) ( )

arcsin
e

e
dx

e

e
dx

e
C

4 2 2x

x

x

x x

2 2 2
-

=
-

= +##

24. C. As written, the numerator is not quite the derivative of the denominator. By adding and
subtracting 1 in the numerator, you can split the fraction into two parts, the first of which
has the numerator as the derivative of the denominator.

( )

ln arctan

x x
x

dx
x x
x

dx

x x
x

dx
x

dx

x x
x

C

2 5 2 5
1 1

2
1

2 5
2 2

1 4
1

2
1

2 5
2
1

2
1

2 2

2 2

2

+ +
=

+ +
+ -

=
+ +

+
-

+ +

= + + -
+

+

##

##

c m

25. E.
( ) ( )

( ) ( )

arctan

arctan

x
dx

x
dx

x
dx

x
C

x
C

16 9
1

4 3
1

3
1

4 3
3

3
1

4
1

4
3

12
1

4
3

2 2 2

2 2

$

+
=

+

=
+

= +

= +

# #

#

26. E. ln
e

e
dx e C

8
8x

x
x

+
= + +#

27. B. ( ) ( )f x dx x dx
x

C f x
x

C
3 3

2
3 3

&= = + = +## l

( )
( )

f C1 2
3
1

2
3

&- =
-

+ =

C 2
3
1

3
7

= + =

Thus ( )f x
x

y
x

3 3
7

3 3
7

3 3

&= + = +

y x3 7
3

= +

x y3 7 0
3
- + =
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28. C.
( )( )

( )( ) ( ) ( )

x x
x x

x x x
x x

x
A

x
B

x
C

x x A x x Bx x Cx x

4
14 8

2 2
14 8

2 2

14 8 2 2 2 2

3

2 2

2

-
- -

=
+ -
- -

= +
+

+
-

- - = + - + - + +

( )( ) ( ) ( )x A B C

A

A

0 8 2 2 0 0

8 4

2

&= - = - + +

- =-

=

( ) ( )( ) ( )x A B C

B

B

2 24 0 2 4 0

24 8

3

&=- = + - - +

=

=

( ) ( ) ( )( )x A B C

C

C

2 32 0 0 2 4

32 8

4

&= - = + +

- =

- =

So,

ln ln ln

x x
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dx x x x
dx

x dx
x

dx
x
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x x x C

4
14 8 2

2
3

2
4

2
1

3
2

1
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2
1

2 3 2 4 2

3

2

-
- -
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+

-
-
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+

-
-
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# #
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29. C.
( )( ) ( )( )

( ) ( )

: ( ) ( )

: ( ) ( )

x x
x

x x
x

x x
x

x
A

x
B

x A x B x

x A B

A

A
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B
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2
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+
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=
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+
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x
dx

x x C
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C
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30. D. ;x e dx x u dv e dx

u dv dx du v e

uv v du

x e e dx

Let and

then and

x x

x

x x

"$

$

= =

= = =

= =

= -

#

#

#

#

x e e C
x x

$= - +

31. C. cosx x dx
2#

Using a chart to simplify the process, differentiating down the left column and integrating
down the right column

Starting with x2, multiply diagonally down to the right and alternating signs, we get:

( ) ( )sin cos sin

sin cos sin

x x x x x C

x x x x x C

2 2

2 2

2

2

$- - + - +

= + - +

Thus cos sin cos sinx x dx x x x x x C2 2
2 2

= + - +#

32. E.
( ) ( )( )x x

x x
x x

x x
x x x

x x
4

5 10 8
4

5 10 8
2 2

5 10 8
3

2

2

2 2

-
- -

=
-

- -
=

+ -
- -

Then 
( )( )x x x
x x

x
A

x
B

x
C

2 2
5 10 8

2 2

2

+ -
- -

= +
+

+
-

cosx

sinx

– cosx

– sinx

d

i

f

f

e

r

e

n

t

i

a

t

e

i

n

t

e

g

r

a

t

e

u

2x

2

0

x 2

dv
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( )( ) ( ) ( )

: ( )

: ( )

: ( )

x x A x x Bx x Cx x
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x B
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33. D.

( ) ( )

( )

ln ln
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ln ln

x x dx u x dv dx

u dv du x dx v x

uv v du

x x x x dx
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34. A. ( ) ( )

( )

( )

( )

x x
x

x x
x

x x
x

x
A

x
B

x A x Bx

x A

A x

x B

B
x

Then

Let

so one fraction is

Let
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5 12

4
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4
5 12

4

5 12 4
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259

Applications of Antiderivatives and
Definite Integrals

Some of the most interesting calculus problems are those that require the use of the definite in-
tegral. These include finding the area and volume of irregular geometric figures, differential
equations, and exponential growth and decay. These types of problems regularly appear as free-
response problems on the AP exam.

The Fundamental Theorem of Calculus
The indefinite integral or antiderivative also has applications as a definite integral. The rela-
tionship between the indefinite and the definite integral is formalized in the following theorem.

Fundamental Theorem of Calculus
If f(x) is continuous on the interval [a, b], then

( ) ( ) ( )f x dx g b g a
a

b

= -#

where ( ) ( )g x f x=l that is, g is the antiderivative of f.

The proof of the fundamental theorem is not on the AP exam. The actual definition of the defi-
nite integral is required for the AP exam. It will be covered in the next section, along with the
most common graphical interpretation of a definite integral.

Sample

Find .x dx
2

1

3

#

Find the antiderivative and substitute the bounds of integration.

x dx
x
3

3
1

3 1
3
26

2

1

3 3

1

3

3 3

=

= - =

# =

8

G

B
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Notation
The expression ( )f x dx

a

b

# is read as “the definite integral of f(x) from a to b.” The function f(x)
is called the integrand, a is the lower bound of integration, and b is the upper bound of integra-
tion. After the antiderivative has been found, the bounds of integration are placed at the top and
bottom of a large set of brackets and then substituted.

Sample

Find .sec xe dx
/

tan x2

0

4r

#

sec xe dx e

e e

e e

e 1

/ /

/

tan tan

tan tan

x x2

0

4

0

4

4 0

1 0

=

= -

= -

= -

r r

r

# 8 B

Sample

Find  .x x dx7
2

2

3
3 3

+
-

# ` j

x x dx x x dx

x

7
3
1

7 3

3
1

4

7

2

2

3
3 3 3 3 2

2

3

3 4

2

3

+ = +

=
+

- -

-

# #` ` `

`

j j j

j

R

T

S
S
SS

V

X

W
W
WW

, ,

, .

x
3
1

4
1

7

12
1

27 7 8 7

12
1

1 336 336 1

111 361 25

3 4

2

3

4 4

$= +

= + - - +

= -

=

-

`

^ ^

j

h h

:

8

6

D

B

@

When using u-substitution with a definite integral, you must change the bounds of integration
to their respective u-values, as well as the integrand and differential. Changing the bounds
eliminates the necessity of changing the antiderivative back into terms of x. Leave everything in
terms of u and simply substitute the new u-bounds.

Sample

Find 
x

x
dx

5
2

1

3

--
# .
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u x x u

dx du

5 5&= - = +

=

.

ln

ln ln

ln ln

x
x

dx u
u

du

u du

u u

5
2 2 5

2 1
5

2 5

2 2 5 2 6 5 6

8 10 2 10 6

2 986
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2
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2

6

2

.

-
=

+

= +

= +

= - + - - +

= + -

-

- -

-

-

-

-

-

# #

#

^

c

^ ^

h

m

h h

8

8

B

B

Definition of the Definite Integral
The definite integral is defined as the limit of a sum.

Definition of the Definite Integral
The most common interpretation of the limit of a sum is an application for finding the area
bounded by one or more functions. While geometric formulas provide a method for finding the
areas of rectangles and squares, calculus is required to find an area such as the one shaded below.

Figure 6.1

The area of this region can be approximated by using inscribed or circumscribed rectangles.

Figure 6.2

y

x

3

2

4

1

21

y = x2

y

x

3

2

4

1

21
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Better approximations can be obtained by using more rectangles, each with a smaller base.

Figure 6.3

As the number of rectangles increases, the sum of the areas of the rectangles gets closer and
closer to the actual area under the curve, although it is still an approximation. Finding the exact
area would require an infinite number of rectangles. This corresponds to the calculus technique
of taking the limit. The exact area is the limit of the sum of the areas of any set of rectangles, as
the number of rectangles increases without bound:

Exact area = lim
#rects " 3

[sum of areas of rects]

More formally, if the base of the area is divided into n equal sub-intervals, and

n = number of subintervals and number of rectanles

ci = any point in the ith rectangle

f(ci) = height of the ith rectangle

∆xi = width of the ith rectangle

tanf c x iarea of the th rec glei i& =D^ h

then the exact area is given by

x dx=DlimA f c f x
n

i

i

n

i

a

b

1

=
" 3

=

#! ^ ^h h

Figure 6.4

To actually find the value of a definite integral by using the definition is generally a lengthy 

and tedious process, as shown below for the original shaded area that is equal to .x dx
2

0

2

#

n
2widthof each rectangle=

(ci,f(ci))

i th

rectangle

y

x

3

2

4

1

xncix0 x1x2x3

∆xi

•••

y

x

3

2

4

1

21
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using circumscribed rectangles

n
i2 rightendpoint of th rectangle.i& =

2

( )( )

lim

lim

lim

lim

lim

lim

A f n
i

n

n
i

n

n
i

n
i

n

n n n

n
n n n

2 2
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8
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8
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1 2 1

6
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6
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n
i

n

n
i
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n
i

n

n

n

1

1

3

2

1

3
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3

3

3 2

$

=

=

=

=

=
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=
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= = =

"

"

"

"

"

"

3

3

3

3

3

3

=

=

=

=

!

!

!

!

c c

c c

m m

m m

<

=

=

=

<

=

F

G

G

G

F

G

This result is easily verified with the fundamental theorem.

x dx
x
3 3

82

0

2 3

0

2

= =# = G

It is unlikely that you will be required to find the value of a definite integral by applying the de-
finition. Such a problem would have to appear in the free-response section, and there are many,
many better calculus problems to use for free-response questions. However, the definition
could appear on the exam in a multiple-choice problem similar to the examples below.

Sample

Use a Riemann sum and five inscribed rectangles to approximate x dx
3

1

3

# , and check
your approximation by using the fundamental theorem.

Sketch the graph of y = x3, and show the five rectangles.

Figure 6.5

(3, 27)

(1, 1)

y = x3

y

x

15

10

20

25

5

21 3
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The base of each rectangle is 2/5 units because the distance from 1 to 3 is 2 and this interval is
split into 5 subintervals. Because f(x) is an increasing function, use the left endpoint of each in-
terval to find the height of each of the inscribed rectangles.

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

.

A f f f f f
5
2

1
5
2

5
7

5
2

5
9

5
2

5
11

5
2

5
13

5
2

1
5
7

5
9

5
11

5
13

15 12

3 3 3 3

.

.

.

+ + + +

+ + + +; E

Thus the area is approximately 15.12 square units.

x dx
x
4 4

1
3 1 20

3

1

3 4

1

3

4 4
= = - =# = 8G B

Therefore, the exact area is 20 square units.

Caution: Do not use the definite integral when asked for an approximation with a Riemann sum.
As the example above shows, there may be a noticeable discrepancy between the two values.

Sample

Use the definition to write a definite integral that is equivalent to

2

lim n
i

n4 1
3 3

n
i

n

1

- - +
" 3

=

! c cm m= G

The width of each subinterval is shown as 3/n, which means that the total width of the interval
must be 3 units. The value in the ith interval that is being plugged into the function is given
by –1 + 3i/n, so the far left endpoint must be –1. The bounds of integration must be –1 and
2(–1 + 3 = 2). The function that gives the height of each rectangle follows the pattern 
f(x) = 4 – x2.

lim n
i

n x dx4 1
3 3

4
n

i

n

1

2
2

1

2

- - + = -
" 3

= -
#! c c `m m j= G

Another method of approximating the definite integral is the Trapezoidal rule. It is very simi-
lar to the use of Riemann sums, except that instead of adding up the areas of rectangles, you
add up the area of trapezoids. Although it is possible to find areas of individual trapezoids and
then find the sum, the following generalized rule performs the same routine.

Theorem: Trapezoidal Rule
( ) ( ) ( ) ( ) ( ) ( )

( ) , , , .

f x
n

b a
f x f x f x f x f x

f x a b x a x bwhere is continuous on and

2
2 2 2

a

b

n n

n

0 1 2 1

0

g. -
+ + + + +

= =

-# 7

6

A

@
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The trapezoids that are being “circumscribed” above the curve appear as shown below. You can
see that the amount of area that is not included is quite small. The trapezoidal rule generally
gives very good approximations of a definite integral with a very few subintervals.

Figure 6.6

Trapezoidal rule problems that appear in Section 1B should, of course, be solved with a pro-
gram on a graphing calculator.

Sample

Use the trapezoidal rule and five subintervals to approximate .x dx
2

0

2

#

( )f x
n

b a
f x f x f x f x f x

x dx f f f f f f

2
2 2 2

2 5
2 0

0 2
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2
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5
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0 2
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2
25
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2
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b

n n0 1 2 1
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.
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.

-
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-
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^ ^ ^ ^ ^

^
^ c c c c ^

c c c c

h h h h h

h
h m m m m h

m m m m

8

<

<

B

F

F

Again, do not use the definite integral when asked for a trapezoidal rule approximation. In a
multiple-choice question requesting the trapezoidal rule, one of the wrong answers will proba-
bly be the exact value of the definite integral.

The area interpretation of the definite integral can occasionally be used to find values for defi-
nite integrals that, on the surface, appear unintegrable.

y

3

2

4

1

21
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Sample

Find .x dx16
2

4

4

-
-

#

Graphically, this problem translates into finding the area of a semicircle.

Figure 6.7

A r x dx
2
1

2
1

4 8 16 8
2 2 2

4

4

&= = = - =r r r r
-

#` j

Finding the antiderivative and evaluating the definite integral require the use of methods of in-
tegration that are not on the AP exam.

It should be noted that the area interpretation of the definite integral can be made only if f(x) is
nonnegative. If f(x) is negative at any point between the bounds of integration, the area inter-
pretation cannot be applied, although the definite integral may still exist.

Definite integrals can also be used to find the area between two curves, regardless of the type or
location of the functions.

Theorem: Area Between Curves
If f(x) and g(x) are continuous on the interval [a, b], and if f(x) ≥ g(x) in the interval, then the
area between the curves bounded by x = and x = b is given by

A f x g x dx
a

b

= -# ^ ^h h8 B

or, in general, A dxtop bottom
left

right

= -# 7 A

y = √16 − x2

y

x

6

4

2

-2-4-6 642
-2

-4

-6
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Figure 6.8

Similarly, if h y and k y^ ^h h are continuous between y = a and y = b and h(y) ≥ k(y), the area be-
tween the curves bounded by y = a and y = b is given by

A h y k y dy
a

b

= -# ^ ^h h8 B

or, in general, A dyright left
lower

upper

= -# 7 A

Figure 6.9

Sample

Find the area in the first quadrant bounded by y x y xand3= = .

First do a quick sketch, and find where the two curves intersect in order to determine which is
on top, as well as the bounds of integration.

Figure 6.10
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x
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1

-1-2-3 321
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-3

(1, 1)

y = x

y = 3√x

y

x

a:
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b:
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h(y): rightk(y): left

y

x
a:
left

b:
right

f(x): top

g(x): bottom
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A dx

x x

x x

top bottom

3
4 2

/
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right

3

0

1

4 3 2
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1

= -

-

-

A dx=

=

#

#
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T

S
S
SS

7

9

V

X

W
W
WW
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C

square units
4
3

1
2
1

0
4
1/4 3

$= - - =; 6E @

Sample
.x y y xFind the area bounded by and2

2
= - =

Again, sketch the two graphs. It may be necessary to find the points of intersection alge-
braically, rather than relying solely on the graph.

Figure 6.11

x y

y x
y y

y y

y y

y or y

A dy

A y y dy

y y
y

right left

2
2

2 0

2 1 0
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2 3
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upper

2
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2 3

1
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&
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=
- =

- - =

- + =

= =-
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= - -

= - +

-

-

#

#
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^ `

h h

h j

7

9

>

A

C

H

4

(2, 2)

(−1, −1)
x = y2− 2

y = x

y

x

3

2

1

-1-2-3 321
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2
3
8

4
2
1

3
1

2

2
9

= - + - + -

=

c cm m

This problem could have been done in terms of x, although it would have required two separate
definite integrals. This is because the top and bottom of the region are not consistently deter-
mined by the same curves. Between x = –2 and x = –1, the top and bottom curves are both de-
termined by the parabola, whereas between x = –1 and x = 2, the top curve is the parabola and
the bottom curve is the line. The choice of a y integration is the logical one, because the line is
always to the right of the parabola between y = –1 and y = 2.

Properties of the Definite Integral
It is now possible, using the area interpretation of the definite integral, to explain several prop-
erties of the definite integral and the definition of average value. The area interpretation is
simply a convenience here; these properties hold in all cases.

Four Properties of the Definite Integral
All of the following properties assume that f(x) and/or g(x) are integrable on the specified inter-
val or at the specified point.

1. f x dx f x dx f x dx
a

b

a

c

b

c

+ =# ##^ ^ ^h h h

A geometric “proof” in terms of area is shown in the following diagram. This property is
often used for integrating piece functions, such as absolute value.

Figure 6.12

2. f x g x f x dx g x dx
a

b

a

b

&# ## #^ ^ ^ ^h h h h

Again, a simple area argument is the most convincing.

f(x)

y

x
a

A1

A1 + A2 = total area

A2

b c
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Figure 6.13

3. f x dx 0
a

a

=# ^ h

A “rectangle” with no width would naturally have no area.

Figure 6.14

4. f x dx f x
a

b

b

a

=-# #^ ^h h

This property can be proved easily with the fundamental theorem.

f x dx g b g a f x g a g b

f x dx f x

and
a

b

b

a

a

b

b

a

&

= - = -

=-

# #

# #

^ ^ ^ ^ ^ ^

^ ^

h h h h h h

h h

Sample

Given that h(x) is integrable and continuous on , , h x dx1 3
1

3

# ^ h6 @ , ,a h x dx band2
3

2

= =# ^ h

find the value for .h x dx3 2
1

2

+# ^ h8 B

f(x)
y

x
a

g(x)

f(x)

y

x
a b

A1 A2≤

A2

A1

A2

A1
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By the additive property

h x dx h x dx h x dx

h x dx h x dx h x dx

h x dx h x dx

1

2

2

3

1

3

1

2

1

3

2

3

1

3

3

2

&

+ =

= -

= +

# # #

# # #

# #

^ ^ ^

^ ^ ^

^ ^

h h h

h h h

h h

h x dx a bThus 2
1

2

= +# ^ h

h x dx h x dx dx

a b x

a b

a b

3 2 3 2

3 2 2

6 3 2 2 1

6 3 2

1

2

1

2

1

2

1

2

+ = +

= + +

= + + -

= + +

# ##^ ^

^

^

h h

h

h

8

6

B

@

Sample

.x dxFind 1
2

3

-
-

#

The integrand can be written as a piece function.

<
x

x x

x x

for

for
1

1 1

1 1

$
- =

-

- +
* 4

The definite integral can then be split into two pieces.

x dx x dx x dx

x
x

x
x

1 1 1

2 2

2
1

1 2 2
2
9

3
2
1

1

6
2
1

2

3

2

1

1

3

2

2

1 2

1

3

- = - + + -

=
-

+ + -

=
-

+ - - - + - - -

=

- -

-

# # #^ ^

c ^ c c

h h

m h m m

= =

< <

G G

F F

An easy way to check this solution is to graph the function and find the area geometrically.
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Figure 6.15

A

A A

A

base height
2
1

2
1

3 3
2
9

2
1

2 2 2

2
9

2 6
2
1

T

1 2

=

= = = =

= + =

^ ^

^ ^ ^ ^

h h

h h h h

Property for Even and Odd Functions
Given that f(x) is integrable on [a, b],

1. f x f x dx f x dxeven 2
a

a a

0

& =
-

# #^ ^ ^h h h

2. f x f x dxodd 0
a

a

& =
-

#^ ^h h

Both properties are easily “proved” using area arguments.

Figure 6.16

Although neither of these properties is listed on the AP outline, both can be useful time savers.

(−x2 + 3) dx = 2 (−x2 + 3) dx

y

x

1

-1
-π-2π 2ππ

y = sin x

y

x

3

2

1

-1-2-3 321

y = −x2 + 3

−1.7 1.7

Even

Odd

1

−1

1

0

sin x dx = 0
π

−π

y

x

3

2

1

-1-2-3 321

A1 A2

272

Part II: Specific Topics

8683-1 Ch06.F  3/22/01  7:41 AM  Page 272



A variation on the definite integral can be created by replacing the upper bound of integration
with a variable. This operation yields the antiderivative as a function of the upper bound.

Sample

.t t dtFind 5 4
x

2

2

-# ` j

t t dt t t

x x

x x

5 4
2
5

3
4

2
5

3
4

2
5

4
3
4

8

2
5

3
4

3
2

x x
2

2

2 3

2

2 3

2 3

- = -

= - - -

= - +

# `

c ^ ^c

j

m h hm

; E

Variable bounds of integration provide another property of definite integrals.

Variable Bounds Property

dx
d

f t dt f x
a

x

=# ^ ^h h< F

The theorem above can be demonstrated easily by using the previous example.

,f t t t

dx
d

t t dt
dx
d

x x

x x f x

For 5 4

5 4
2
5

3
4

3
2

5 4

x

2

2

2

2 3

2

= -

- = - +

= - =

#

^

`

^

h

j

h

< ;F E

Sample

Find .
dx
d

t t dt4 1
x

3 2

3

+ -#< F

Regardless of the value of the constant lower bound, simply substitute the upper-bound vari-
able into the integrand. Finding the antiderivative is unnecessary.

dx
d

t t dt x x4 1 4 1
x

3 2

3

3 2
+ - = + -#< F

Variable bounds of integration also provide the definition of the natural log function.

Definition of Natural Log
>lnx t dt xfor

1
0

x

1

= # ^ h

With this definition, and the previous property, the derivative of the natural log can now 
be proved.
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ln
dx
d

x
dx
d

t dt

x

1

1

x

1

=

=

#8 <B F

And the derivative, of course, provides the antiderivative formula.

lnx dx x C
1

= +#

Average-Value Property

Definition of Average Value
If f(x) is continuous on [a, b], then the average value of f(x) on [a, b] is given by

b a
f x dx

1

a

b

- # ^ h

Sample

Find the average value of y = 2x3 – 3x on the interval [2, 5].

x x dx

x x

x x

Average value
5 2

1
2 3

3
1

2 2
3

3
1

2
1

3

6
1

5 3 5 2 3 2

112

3

2

5

4 2

2

5

4 2

2

5

4 2 4 2

$

$ $

=
-

-

= +

= +

= + - +

=

# `

` `

j

j j

=

8

9

G

B

C

Average-value problems are very easy if you have memorized the definition.

Volume
In a method similar to that of finding area, definite integrals can also be used to find the vol-
ume of solids. For the AP exam, two different types of solids are used: solids of revolution,
generated by revolving a figure around a vertical or horizontal line, and solids with known
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cross sections. For both types, it is important that you be able to visualize and/or sketch the
solid. Study the following figures. The first eight are solids of revolution, generated by revolv-
ing the area A (bounded by the x-axis, x = 2, and y = x2) around various lines. The last three fig-
ures show solids with known cross sections.

Figure 6.17

Vertical Axis of Revolution
1. Area A revolved around x = 2

Figure 6.18

"Hershey's Kiss"

y

x

1

2

3

4

21 43

y = x2

(2, 4)

area A

y

x
1

1

2

3

4

2
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2. Area A revolved around x = 0 (y-axis)

Figure 6.19

3. Area A revolved around x = –1

Figure 6.20

"Bowl with a Hole"

y

x

1

2

3

4

21-1-2-3-4

"Cup"

y

x

1

2

3

4

21-1-2
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4. Area A revolved around x = 3

Figure 6.21

Horizontal Axis of Revolution
5. Area A revolved around y = 0 (x-axis)

Figure 6.22

"Trumpet"

y

x

3

2

4

1

-2

-3

-1

-4

21

"Volcano"

y

x

1

2

3

4

21 43 65
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6. Area A revolved around y = –1

Figure 6.23

"Sideways Volcano"
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x

3

2

4

1

-2

-3

-1

-4

-5

-6

21
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7. Area A revolved around y = 5.5

Figure 6.24

y

x
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2

4

1

7

6

8

5

11
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9

21

"Sideways Bowl with a Hole"
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8. Area A revolved around y = 4

Figure 6.25

Known Cross-Sectional Area
9. Circular base with square cross sections

Figure 6.26

x

y

"Sideways Bowl"

y
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10. Circular base with isosceles triangle cross sections

Figure 6.27

11. Triangular base with semicircular cross sections

Figure 6.28

The volume of solids of revolution can be found by three different methods. The choice of
method depends on the generating curve and the axis of revolution. For some solids, only one
method may be possible, so knowing all three methods is essential.

Solids of Revolution

Disc Method
dx

dy
radius

or

a

b
2

r # ^ h *

Washer Method
dx

dy

outer

radius

inner

radius

or

a

b
2 2

-r #
J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O *

x

y

x

y
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Shell Method

dx

dy

average

height

average

radius

or
2

a

b

r #
J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O*

The three integrals above are done as dx or as dy in accordance with the following chart.

Horizontal Axis Vertical Axis
of Revolution of Revolution

Disc Method or Washer Method dx dy

Shell Method dy dx

To set up any of the integrands above, follow these steps.

1. Sketch the original area, such as the area A in Figure 6.17.

2. Sketch the solid of revolution. Be able to identify which parts of the figure are solid and
which are empty space. The sketch should show any “holes” that pierce the solid. If you
can visualize the solid, a very rough sketch may be sufficient.

3. Determine the proper method of integration, and sketch in a representative disc, washer, or
shell.

4. Determine whether the integral should be dx or dy by using the foregoing chart.

5. Identify the needed parts of the integrand; then sketch and label (radius = r or inner
radius = r, outer radius = R or height = h, radius = r). Express each of the needed parts in
terms of x or y. If necessary, substitute from the original equation so that all parts are in
terms of x or y only as determined in step 4.

6. Determine the bounds of integration by examining the extent of the original area along the
x- or y-axis to correspond with the choice in step 4.

7. Set up the integral, following the pattern above. Don’t forget the π or 2π.

8. Integrate and substitute.

Sample

Use the disc method to find the volume of the solid of revolution generated when area A
is revolved around the line x = 2 (“Hershey’s Kiss,” Figure 6.18).

Follow the eight steps listed above.

1. Sketch area A.

2. Sketch the solid.

3. Sketch a representative disc (two are shown in Figure 6.29).
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Figure 6.29

4. By discs with vertical axis of revolution ⇒ dy.

5. For discs, you need radius r. Label r = 2 – x. The integrand must be in terms of y.

y x x y r y2
2
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4
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Sample

Use the washer method to find the volume of the solid of revolution generated when area
A is revolved around the y-axis (“Cup,” Figure 6.19).

y

x

4
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3

21 43

r
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Follow the eight steps listed above.

1. Sketch area A.

2. Sketch the solid.

3. Sketch a representative washer.

Figure 6.30

4. By washers with vertical axis of revolution dy& .

5. For washers, you need inner radius r and outer radius R.

R r x2 and= =

The integrand must be in terms of y.

y x x y r y
2
& &= = =

6. Along the y-axis, area A extends from .y yto0 4
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Sample

Use the shell method to find the volume of the solid of revolution generated when area A
is revolved around the line x = 3 (“volcano”).

Follow the eight steps listed above.

1. Sketch area A.

2. Sketch the solid.

3. Sketch a representative shell.

Figure 6.31

4. By shells with vertical axis of revolution .dx&

5. For shells, you need height h and radius r.

h y r xand 3= = -

The integrand must be in terms of x.

y x h x
2 2
&= =

6. Along the x-axis, area A extends from .x xto0 2
0

2

&= = #

y

x
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4
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2 3 4 5 61
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h
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7. dx x x dx
average

height

average

radius
2 2 3

a

b
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8. x x dx
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Many students have trouble choosing the correct method for finding the volume of a specific
solid of revolution. To begin with, try mentally “slicing” the solid through the middle perpen-
dicular to the axis of revolution. If a hole of some type pierces the solid either partially or com-
pletely, try washers or shells. Discs work only with solids that are completely solid. Other than
this suggestion, there are no hard and fast rules. Sometimes, the best approach is simply to pick
a method, try to set up the integral, and see what happens. For some solids, it may be possible
to set up the integral more than one way. If a problem on the AP exam seems particularly diffi-
cult, you may want to try a different method before actually integrating; you may have over-
looked an easier method. Occasionally, on free-response problems, you may be asked simply to
set up the integral but not actually work out the antiderivative. Be sure to follow the directions.

Sample

Find the volume of the solid generated when the region bounded by y x y x xand 4
2 2

= = -
is revolved around:

(a) the x-axis

(b) the line x = 3

a) 1. Sketch the two parabolas.

Figure 6.32

(2, 4)y = 4x − x2

y = x2
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2. Sketch the solid.

3. Washer method: Sketch in a representative washer.

Figure 6.33

4. By washer with horizontal axis of revolution .dx&

5. For washers, you need the inner radius r and the outer radius R.

Inner radius r depends on the parabola that opens up; that is, .y x r x
2 2
&= =

Outer radius R depends on the parabola that opens down; that is, .y x x R x x4 4
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(b)1. See part (a) for parabolas.

2. Sketch the solid.

3. Shell method: sketch a representative shell.

Figure 6.34

4. By shells with vertical axis of revolution .dx&

5. For shells, you need the average radius r and the average height h.
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& - -

r

r

#

#

J

L

K
K

J

L

K
K

^ `

N

P

O
O

N

P

O
O

h j8.

x x x dx

x
x x

units

2 12 7

2 6
3

7
4

2 24
3
56

4

3
56

2 3

0

2

2
3 4

0

2

3

= - +

= - +

= - +

=

r

r

r

r

# ` j

=

;

G

E

Part (b) could also have been done with the washer method.

y

x

3

2

4

1

2 3 4 5 61

r

h
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Solids with Known Cross Sections
If the area of a cross section is known, then the volume of a solid is given by

V
dx

dy

areaof cross

section

or

a

b

= #
J

L

K
K

N

P

O
O*

The integral is set up with respect to dx or dy on the basis of which axis the known cross sec-
tions are perpendicular to.

:
x dx

y dy
Rule If the cross section is perpendicular to

axis

axis

&

&

-

-

*

To find the volume of a solid with a known cross section:

1. Sketch the base of the solid in the regular xy-coordinate plane.

2. Sketch or envision the solid. Usually, the x-axis is drawn coming “out of the paper” to-
ward you to give the three-dimensional effect.

3. Determine whether the integral should be in terms of x or y by referring to the rule above.

4. Determine the bounds of integration by finding the extent of the base along the x- or 
y-axis to correspond to step 3.

5. Use geometry and the given equation(s) to find an expression for the area of the cross 
section.

6. Set up the integral according to the pattern above.

7. Integrate and substitute.

Sample

Find the volume of the solid whose base is the circle x y 9
2 2
+ = and whose cross sections

perpendicular to the x-axis are squares.
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1. Sketch the base in the xy-plane.

Figure 6.35

2. Sketch the solid.

Figure 6.36

3. Cross sections .x dxto axis&= -

4. Base extends from x xto3 3
3

3

&= =
-

- # or, by applying symmetry, use .2
0

3

#

5. Square cross sections .A side
2

& = ^ h

One side of one representative square is shown as PQ in Figure 6.35.

PQ y x2 2 9
2

= = -

x

y

Q P

base of solid

base of
representative

square
P

Q

3

3

-3

-3

y

x
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6. dx

x dx x dx2 9 2 2 9

areaof cross

section

or

a

b

2
2

2
2

0

3

3

3

& - -
-

#

##

J

L

K
K

N

P

O
O

9 9C C

7. x dx

x
x

units

2 4 9

8 9
3

8 27 9 0

144

2

0

3

3

0

3

3

= -

= -

= - -

=

# `

^

j

h

=

8

G

B

Sample

Find the volume of the solid of revolution whose base is bounded by the lines
, ,f x x g x x and x1 1 0= - = - =^ ^h h and whose cross sections are semicircles

perpendicular to the x-axis.

1. Sketch the base in the xy-plane.

Figure 6.37

2. Sketch the solid.

Figure 6.38

x

y

Q P

base of solid

diameter of
representative

semicircle

P

Q

y = 1 − x

y = x − 1

y

x

-1

1
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3. Cross sections .x axis dxto &= -

4. Base extends from x x0 1to= = along the x-axis.

5. Semicircular cross sections A r
2
1 2

& = r

The diameter of one representative semicircle is labeled as PQ in Figure 6.37.

PQ x x x d x1 1 2 2 2 2&= - - - = - = -^ ^h h

So r x
x

2
2 2

1=
-

= -

6. dx

x dx x x dx
2

1
2

1 2

areaof cross

sectiona

b

2 2

0

1

0

1

& - = - +
r r

#

##

J

L

K
K

^ `

N

P

O
O

h j7.

x x
x

units

2 3

2
1 1

3
1

6

2
3

0

1

3

= - +

= - +

=

r

r

r

=

;

G

E

Differential Equations
Antiderivatives are used to solve certain types of equations known as differential equations.
The only type of differential equation that will be on the AP exam is a separable differential
equation, which is named for the method of solving it, separating the variables. These types of
differential equations can be forced into the form

f x dx g y dy=^ ^h h

after which both sides are integrated. If a boundary condition is given, it is then substituted to
find the value of the constant of integration. If not, the solution is left with “+ C” and is known
as the general solution.

Sample

Find the solution of ,y
y
x

2 1
4

3

=
+

l given that .x ywhen1 2= =

First separate the variables into the form .f x dx g y dy=^ ^h h

y
y
x

dx
dy

y
x

y dy x dx
2 1
4

2 1
4

2 1 4
3 3

3
& &=

+
=

+
+ =l ^ `h j
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Then find the antiderivative of both sides.

y dy x dx2 1 4
3

+ =# #^ `h j

y y C x C
2

1
4

2& + + = +

By combining C1 and C2 into a single constant C, we get

y y x C
2 4
+ - =

Finally, substitute to find C.
, C

C

1 2 2 2 1

5

2 4
&

&

+ - =

=

^ h

Therefore, y2 + y – x4 = 5 is the solution to the equation.

Sample

Find the general solution of  .
dx
dy

x xy5 2 3
2

- =` j

Rewrite the equation in the form .f x dx g y dy=^ ^h h

dx
dy

x xy dy x xy dx

y dy
x

x
dx

5 2 3 5 3 3

1
5 3

3

2 2

2

&

&

- = - =

=
-

` ` ^j j h

Now find the antiderivative of both sides.

ln ln

ln ln

y dy
x

x
dx

y dy
x
x

dx

y C x C

y x C

1
5 3

3

1
2
1

5 3
6

2
1

5 3

5 3
/

2

2

1
2

2

2 1 2

3

=
-

=
-

-
-

+ =
-

- +

= - +
-

# #

# #

` j

If this form does not appear as one of the multiple-choice answers, you may need to solve the
equation for y. Change from logarithmic form to exponential form .ln a b e a

b
&= =` j

( )

e y

e e y

x C y

x

C
y

5 3

5 3

( )

( )

/

ln

ln

x C

x C

5 3

5 3

2 1 2

2

/

/

2 1 2
3

2 1 2
3

=

=

- =

-
=

- +

-

-

-

-
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Problems that involve exponential growth and decay often begin as separable differential equa-
tions. The differential equation may be given in the form

dt
dy

ky y kyor= =l

or the problem may contain the phrase “rate of change of y is proportional to y.” In either case,
you should follow the same general plan as outlined above: Separate the variables and find the
antiderivative.

Sample

The rate of change of a population of rabbits is proportional to the number of rabbits pre-
sent at any given time. If 10 rabbits are present initially, and 195 rabbits are present in
6 months, how many rabbits will there be in 2 years?

Let y = number of rabbits at any time t. The phrase “rate of change . . . is proportional to the
number . . . present” implies that

dt
dy

ky=

Separate the variables. y dy kdt
1

=

And integrate.

ln

y dy kdt

y kt C

e y

e e y

e C y

y Ce

1

kt C

kt C

kt

kt

1

1

1

=

= +

=

=

=

=

+

# #

Use the two boundary conditions given to find C and k. From “10 rabbits are present initially,”
you know that

t y

y Ce Ce

0 10

10
kt 0

&

&

= =

= =

Thus C

y e

10

10
kt

=

=So
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From “195 rabbits are present in 6 months,” you know that

.

.

.
.

ln

ln

t y

y e e

e

k

k

6 195

10 195 10

19 5

19 5 6

6

19 5
0 4951

kt k

k

6

6

&

&

.

= =

= =

=

=

=

^

^

h

h

Thus the equation to describe the growth is y e10
. t0 4951

= . To answer the question, simply plug in
the given value for t and solve for y.

“2 years” ?

, ,

t y

y e y e

s

months

rabbit

24

10 10

1 446 974

. .t0 4951 0 4951 24

&

&

.

= =

= =

^

] ]

h

g g

This rather extreme number assumes unlimited food, water, and space and ideal conditions,
which, of course, won’t be achieved, thank goodness.

Time-saving hint: If exponential growth or decay appears in a multiple-choice problem, you
can immediately translate the phrase “rate of change of y is proportional to the amount of y pre-
sent” into y Ce

kt
= without bothering to do the antiderivatives. Then solve for y. If exponential

growth or decay appears in a free-response problem, however, be sure to include the work
shown above by which you translate .y ky y Ceinto

kt
= =l

Numerical Solutions to Differential Equations:
Euler’s Method
There are a variety of methods that can be used to approximate the coordinates of points on the 

graph of the solution to a differential equation of the form ( , )
dx
dy

f x y= . This differential equation,

( , )
dx
dy

f x y= , gives us a formula to compute the slope of the line tangent to the graph at any point 

on the graph of the solution. Given a point ( , )x y0 0 on the graph of the solution, and given a spe-
cific x-coordinate of a point on the graph of the solution, we wish to find the y-coordinate of this
point.

One way to find the desired y-coordinate is to use a tangent line approximation as we move
from the given point ( , )x y0 0 to the desired point (x, ??).

295

Applications of Antiderivatives and Definite Integrals

Cliffs AP Calculus AB & BC 3rd Edition • 8683 1 Ch06 5 • jill • 3/20/01 • p 295

8683-1 Ch06.F  3/22/01  7:43 AM  Page 295



Sample

Let y = g(x) be the solution to the differential equation 
dx
dy

x2= with the initial condition
of g(1) = 1. Find g(1.5) using five equal increments, starting with x = 1 and ending with 
x = 1.5.

Our change in x, . .
.x

5
1 5 1

5
0 5

0 1=
-

= =D

Since 
dx
dy

x2= ,
dx
dy

at (1, 1) = 2(1) = 2 = slope of the line tangent to the graph of g(x) at (1, 1). 

Therefore the point-slope form of equation at the tangent line at this point is:

( )y x

y x

y x

1 2 1

1 2 2

2 1

- = -

- = -

= -

With increments of 0.1, the next point has an x-coordinate of . .x1 1 0 1 1 1+ = + =D .

Using our previous equation, y = 2x – 1, we find the corresponding y-coordinate when x – 1.1:

. ( . )

.

.

y x

x y

y

2 1

1 1 2 1 1 1

2 2 1

1 2

when "

= -

= = -

= -

=

So our second point is (1.1, 1.2).

Since 
dx
dy

x2= ,
dx
dy

at (1.1, 1.2) = 2(1.1) = 2.2 = slope of the line tangent to graph of g(x) at 

(1.1, 1.2). The point-slope form of the equation of the tangent line at this point is:

. . ( . )

. . .

. .

y x

y x

y x

1 2 2 2 1 1

1 2 2 2 2 42

2 2 1 22

- = -

- = -

= -

Our next point will have x-coordinate of . . . .x1 1 1 1 0 1 1 2+ = + =D

. . ( . ) .

. .

.

x y

y

y

when 1 2 2 2 1 2 1 22

2 64 1 22

1 42

"= = -

= -

=

So the next point will be (1.2, 1.42). We would continue this process until we arrived at the
point with x-coordinate 1.5, also finding its corresponding y-coordinate.

As you can see, this is a very tedious process. A quicker way to find the desired y-coordinate is
to use Euler’s Method.
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Euler’s Method uses differentials (∆x, dy, etc.) to approximate the y-coordinate of the point 

having the desired x-coordinate. Again, we are given ( , )
dx
dy

f x y= and a point ( , )x y0 0 on the
graph of the solution to the differential equation.

Sample

First, for small value at ∆x and dy:

( ) ( ( )
dx
dy

x y
dx

xwe reduce∆ ∆ ∆1
1. .

so that

dy y∆.

As in the previous example with 
dx
dy

x2= , ∆x = 0.1, x = 1 when y = 1, we want to find y when
x = 1.5. We complete the following chart:

Therefore, .y 2 2. when x = 1.5; so ( . ) .g 1 5 2 2.

Just to check the accuracy of this approximation, we solve the given differential equation  

dx
dy

x2= as follows:

( )

dx
dy

x

dy xdx

dy xdx

y x C

g C

C

2

2

2

1 1 1 1

0

we"separated"the variables

since

2

2

=

=

=

= +

= = +

=

##

   x∆dy
dx �yx

1

1.1

1.2

1.3

1.4

1.5

1 2(1)[0.1] = 0.2 1+0.1=1.1

1.1+0.1=1.2

1.2+0.1=1.3

1.3+0.1=1.4

1.4+0.1=1.5

2(1.1)[0.1] = .22

2(1.2)[0.1] = .24

2(1.3)[0.1] = .26

2(1.4)[0.1] = .28

1.2

1.42

1.66

1.92

2.2

(   x) ∆   x + ∆yy +∆ y

1+0.2=1.2

1.2+.22=1.42

1.42+.24=1.66

1.66+.26=1.92

1.92+.28=2.2
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Therefore, y x
2

= ; in other words, ( )g x x
2

= .

When . ( . )

.

( . ) .

x y

y

gso

1 5 1 5

2 25

1 5 2 25

2
"= =

=

=

Euler’s Method gave us ( . ) .g 1 5 2 2. .

Sample

Let y = h(x) be the solution to the differential equation 
dx
dy

x y= + with the initial 

condition that h(1) = 2. What is the approximation for h(2) using Euler’s Method,
starting at 1 with a step size of 0.5.

With 
dx
dy

x y= + , original point (1, 2) and ∆x = 0.5, we seek y when x = 2.

So, when x = 2, y 6. . Therefore, ( ) .h 2 6 0. .

Sample

Let y = f(x) be the solution to the differential equation 
dx
dy

y= with the initial condition
that f(0) = 1. Starting at x = 0, use 3 steps to approximate f(0.6), using Euler’s Method.

With 
dx
dy

y= , original point (0, 1) and . .
.x∆

3
0 6 0

3
0 6

0 2=
-

= = , we complete the chart below.

   x∆dy
dx �yx

0

0.2

0.4

0.6

1 (1)(0.2) = 0.2 0+0.2=0.2

0.2+0.2=0.4

0.4+0.2=0.6

(1.2)(0.2) = .24

(1.44)(0.2) = .288

1.2

1.44

1.728

(   x) ∆   x + ∆yy +∆ y

1+0.2=1.2

1.2+.24=1.44

1.44+.288=1.728

∆dy
dx �yx

1

1.5

2.0

2 (1+2)(0.5) = 1.5 1+0.5=1.5

1.5+0.5=2.0(1.5+3.5)(0.5) = 2.53.5

6.0

(   x)    x∆   x + ∆yy +∆ y

2+1.5=3.5

3.5+2.5=6.0
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So the desired point has coordinates (0.6, 1.728); therefore ( . ) .f 0 6 1 728. .

Next, just to check the accuracy of Euler’s Method, we solve the differential equation

( )

.

.

ln

dx
dy

y

y
dy

dx

y
dy

dx

y x C

y e

y k e

y k e

f k e

k

y e

x y e

y

with

so

with

0 1 1

1

0 6

1 822

.

x C

x

x

x

0

0 6

"

"

$

$

$

.

=

=

=

= +

=

=

=

= =

=

=

= =

+

##

Euler’s Method as a Recursive Formula
The process used to complete the charts in the previous examples can be summarized in terms
of the recursive formulas:

( ( , ))x x x y y x f x yand∆ ∆n n n n n n1 1= + = ++ +

We start with ( , )x y0 0 , moving on to the points ( , )x y1 1 , ( , )x y2 2 , etc., until we arrive at the point
having the desired x-coordinate. In the case of the previous example:

( , ) , . , ( , ) ( , )
dx
dy

f x y y x x yand∆ 0 2 0 10 0= = = =

Then

.

.

x x x∆
0 0 2

0 2

1 0= +

= +

=

and ( ( , ))

( )

( . )( )

.

.

y y x f x y

y x y

∆
∆

1 0 2 1

1 0 2

1 2

1 0 0 0

0 0

= +

= +

= +

= +

=
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So ( , ) ( . , . )x y 0 2 1 21 1 =

Then

. .

.

x x x∆
0 2 0 2

0 4

2 1= +

= +

=

and ( )

. ( . )( . )

. .

.

y y x y∆
1 2 0 2 1 2

1 2 24

1 44

2 1 1= +

= +

= +

=

So ( , ) ( . , . )x y 0 4 1 442 2 =

Then

. .

.

x x x∆
0 4 0 2

0 6

3 2= +

= +

=

and ( )

. ( . )( . )

. .

.

y y x y∆
1 44 0 2 1 44

1 44 288

1 728

3 2 2= +

= +

= +

=

So ( , ) ( . , . ) ( . ) .x y fand thus0 6 1 728 0 6 1 7283 3 .=

The “chart” form is a quick alternative to the recursive process shown above.

Differential Equations and Slope Fields
Given a differential equation of the form ,

dx
dy

f x y= ^ hwith solution g(x, y), we can find the
slope of the line tangent to the graph of g at any point (x, y). Since g(x, y) is the antiderivative
of f(x, y), g actually represents a family of curves, each differing from the others by just a con-

stant. For example, if 
dx
dy

x2= , then we have:

: dy xdx

dy xdx

y x C

We have

and

so that

2

2

2

=

=

= +

##
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The family of solutions to 
x

dy
x

2
2= consists of curves such as:

, ...,

y x

y x

y x

y x

y x etc etc

2

1

1

2

2

2

2

2

2

= -

= -

=

= +

= +

To construct a slope field, at each point in the xy-plane, we draw a short segment whose slope
is that of the line tangent to the graph of g at each point (x, y). We can view the general nature
of the graph of the solution of the given differential equation, even though we may not be able
to actually determine the solution’s equation.

Sample

On the grid below, plot the slope field for the differential equation 
dx
dy xy

2
= .

For each point with x or y coordinate equal 0,
dx
dy

0= . So the segment drawn at each of these 

points should be horizontal. At other points (x, y), we compute the slope of the tangent segment 

using the formula 
dx
dy xy

2
= ; we then draw, at that point, a short segment having that slope. The 

result is a slope field for the given differential equation.

Point (1, 1) (1, 2) (1, 3) (1,4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4)

Slope
2
1 1

2
3 2 1 2 3 4

2
3 3

2
9 6 2 4 6 8

See below for calculator-produced slope field for 
dx
dy xy

2
= .

y

x

3

2

4

1

2 31 4

3

2

4

1

2 31 4
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If we use a program for the graphing calculator, we can quickly produce the graphs of many
slope fields.

Sample

Which of the following could be a specific solution for the differential equation whose
slope field is shown below?

A. y = ln x

B. y = sinx

C. y = ex

D. y = x2

E. y = cosx

dy/dx = y(3–y)dy/dx = x(2–x)

dy/dx = 3x–2ydy/dx = x +y

dy/dx = (xy)/2dy/dx = ydy/dx = 2x
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The correct answer is C, y = ex. Since ( )
dx
d

e e
x x

= , we would expect the slope of the line tangent

to graph of ex to increase without bound as x increases. The other choices — A, B, D, E — are
shown below.

y = x2 could be a specific solution for the differential equation
whose slope field is shown at the right.

y = ln x could be a specific solution for the differential 
equation whose slope field is shown at the right.

y = cos x could be a specific solution for the differential
equation whose slope field is shown at the right.

y = sin x could be a specific solution for the differential 
equation whose slope field is shown at the right.
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Sample

Shown below is a slope field for which of the following differential equations?

A.
dx
dy

x
2

=

B.
dx
dy

y
3

=

C.
dx
dy

x=

D.
dx
dy

x y2= +

E.
dx
dy

xy=

The correct answer is A. Notice that for 
dx
dy

x
2

= , all slopes at all non-zero coordinates should 

be positive. Slope fields for the other differential equations — B, C, D, and E — are shown 
below.

At the right is the slope field for the differential equation
dy/dx = y3

At the right is the slope field for the differential equation
dy/dx = x

Note that when the x-coordinate is negative, the slope of the
tangent at that point is negative. Similarly, when the x-coordi-
nate is positive, the slope of the tangent is also positive.

At the right is the slope field for the differential equation
dy/dx = 2x + y

At the right is the slope field for the differential equation
dy/dx = xy

Note that when x and y have the same sign (–, –) or (+, +),
slope of the tangent is positive. And when x and y have differ-
ent signs (–, +) or (+, –), slope of the tangent is negative.
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PVA with Antiderivatives
By using the antiderivative, you can now do position/velocity/acceleration problems in reverse —
that is, starting with the acceleration or velocity function, and integrating to find position. The to-
tal relationship between the three functions is shown in the following expanded theorem.

Theorem for PVA
s t

v t

a t

s t v t dt a t dt dt

s t v t a t dt

s t v t a t

position function

velocity function

acceleration function

=

=

=

= =

= =

= =

# ##

#l

m l

^

^

^

^ ^ ^

^ ^ ^

^ ^ ^

h

h

h

h h h

h h h

h h h

; E

Sample

A particle moves along a horizontal path such that its velocity at any time t(t > 0) is
given by v(t) = t/4 – 1/t meters per second. At t = 1, the particle is 3 units to the left of the
origin.

(a) Find any time(s) when the particle changes direction.

(b) Find the total distance the particle travels from t to t1 5= = . Round to the nearest
hundredth of a unit. 

(c) Find the acceleration for any time(s) when the particle is at rest.

Justify all answers.

The problem provides the velocity. Because part (b) requires the position function, and part (c)
the acceleration function, it may be expedient simply to find these functions immediately.

ln

s t v t dt s t
t

t dt

s t
t

t C

4
1

8

2

&= = -

= - +

##^ ^ ^ c

^

h h h m

h

“at t = 1 . . . 3 units to the left”

ln

s

s C

C

1 3

1
8
1

1 3

3
8
1

8
25

&

&

=-

= - + =-

= =
-

-

^

^

h

h
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Therefore

>

ln

ln

s t
t

t

s t t t for t

a t v t a t
dt
d t

t

a t
t t

t

8 8
25

8
1

8 25 0

4
1

4
1 1

4
4

2

2

2 2

2

&

= - -

= - -

= = -

= + =
+

l

^

^ `

^ ^ ^ c

^

h

h j

h h h m

h

(a) “changes direction” v t& ^ h changes sign

, >

v t
t

t t
t

v t t tbut

4
1

4
4

0 2 2 0

2

&

= - =
-

= =-

^

^

h

h

t 0 < t < 2 t = 2 t > 2
v(t) neg 0 pos

Thus the particle changes direction at t = 2.

(b) “total distance . . . from t = 1 to t = 5” s s s s1 2 2 5& - + -^ ^ ^ ^h h h h due to change of di-
rection at t = 2

ln

ln

ln

t t t t
8
1

8 25

1 3

2
8
21

2

5 5

2
= - -

-
-

-

s

-

^ `h j

. .

.

.

ln ln ln

ln ln ln

s s s s

meters

1 2 2 5

3
8
21

2
8
21

2 5

2
8
3

5 2
8
21

0 31814718 1 708709268

2 026856448

2 03.

- + -

= - -
-

- +
-

- - -

= - + - -

= +

=

^ ^ ^ ^

c c ^

h h h h

m m h

(c) “acceleration when at rest” t v t 0find whena& =^ ^h h

from part (a): v(t) = 0 when t = 2

/a t
t

t
a m s

4
4

2
16

4 4
2
1

2

2
2

&=
+

=
+

=^ ^h h
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Sample

The acceleration of a particle moving along a horizontal line is given by
/a t t e ft s2

t2 2
= +^ h for any time t (t > 0). At time t = 1, the particle is at the origin and its

velocity is 6 ft/s. Find the position of the particle as a function of t.

v t a t dt v t t e dt

t dt e dt

v t t e C

v v e C

C e

2

2
2
1

2

2
1

1 6 1 1
2
1

6

5
2
1

t

t

t

2

2

2 2

2 2

2

&

&

= = +

= +

= + +

= = + + =

= -

# #

# #

^ ^ ^ `

^

^

^ ^

h h h j

h

h

h h

Thus v t t e e
2
1

5
2
1t2 2 2

= + + -^ h

s t v t dt s t t e e dt

t dt e dt e dt

t dt e dt e dt

s t
t

e e t C

s s e e C

e C

C e

2
1

5
2
1

2
1

5
2
1

2
1

2
1

2 5
2
1

3 4
1

5
2
1

1 0 1
3
1

4
1

5
2
1

0

3
16

4
1

0

4
1

3
16

t

t

t

t

2 2 2

2 2 2

2 2 2

3
2 2

2 2

2

2

&

&

$

= = + + -

= + + -

= + + -

= + + - +

= = + + - + =

- + =

= -

# #

# # #

# # #

^ ^ ^ c

c

^ c

^ c

^ ^

h h h m

m

h m

h m

h h

Thus s t
t

e e t e
3 4

1
5

2
1

4
1

3
16t

3
2 2 2

= + - + -^ ch m
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Exponential Decay and Newton’s Law of Cooling
Another similar type of differential equation also results in exponential growth or decay. Here,
the differential equation is of the form

dt
dy

k y A= -^ h

The problem may also contain the phrase “rate of change of y is directly proportional to the dif-
ference between y and a given constant A.” A famous example of this type of problem is
Newton’s Law of Cooling, which states that the rate at which a body changes temperature is di-
rectly proportional to the difference between its temperature and the temperature of the sur-
rounding medium.

Sample

A cup of tea at a temperature of 200° is left to cool in a room at 72°. If the tea cools to
110° in 3 minutes, what will the temperature of the tea be after 5 minutes?

The differential equation is given by

dt
dy

k y 72= -^ h

separating the variables gives

y
dy kdt

72
1

-
=

now integrate

ln

y
dy kdt

y kt C

e y

e e y

Ce y

Ce y

72
1

72

72

72

72

72

kt C

kt C

kt

kt

1

1

1

$

-
=

- = +

= -

= -

= -

+ =

+

# #

Use the boundary conditions to find C and k. The initial temperature was 200°, so

%

, ,

t y

Ce

C

C

y e

0 200

200 72

128

128

128 72

thus
kt

&= =

= +

=

=

= +
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The temperature is given as 100° after 3 minutes, so

.

ln

ln

t y

e

e

e

k

k

3 100

100 128 72

28 128

128
28

3
128
28

3
1

128
28

0 5066

k

k

k

3

3

3

&

.

= =

= +

=

=

=

=

-

c

c

m

m

Thus, the equation to describe the growth is 

y = 128e-0.5066t + 72

To answer the question, plug in t = 5 and solve for y.

y = 128e-0.5066t + 72

.82 1654.

So the temperature of the tea is approximately 83° after 5 minutes.

The graph is shown below.

Bounded Growth
A third type of exponential growth is bounded growth. The general differential equation is

dt
dy

k A y= -^ h

Problems of this type would include the phrase “rate of change of y is proportional to the dif-
ference between a given constant A and y.” Note the difference in the order of A and y between
bounded growth the Newton’s Law of Cooling example above. The type of graph that results
here is sometimes called a learning curve.

Y1=128e (-0.5066X)+72

X=4.893617 Y=82.728716

^
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Sample

A student has 2 hours to study for a history exam and needs to memorize a set of 40 facts.
The rate at which a person can memorize a set of facts is proportional to the number of
facts remaining to be memorized. If the student initially knows nothing, and can
memorize 10 facts in the first 15 minutes, how many facts will the student memorize in
the 2 hours she has to study?

The differential equation is

dt
dy

k y40= -^ h

Separating the variable gives

y
dy kdt

40
1
-

=

now integrate

ln

ln

y
dy kdt

y kt C

y kt C

y e

y e e

y Ce

y Ce

40
1

40

40

40

40

40

40

kt C

kt C

kt

kt

1

1

1

1

-
=

- - = +

- =- -

- =

- =

- =

= -

- -

- -

-

-

# #

^

^

h

h

Use the boundary conditions to find C and k. Initially, the student knew 0 facts, so

%

t y

Ce

C

C

y e

0 0

0 40

0 40

40

40 40

thus,
kt

&= =

= -

= -

=

= -
-
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The student memorizes 10 facts in 15 minutes, so

.

.

.

ln

ln

t y

e

e

e

e

k

k

k

0 25 10

10 40 40

30 40

40
30

4
3

4
3

0 25

4
4
3

1 1507

.

.

.

.

k

k

k

k

0 25

0 25

0 25

0 25

&

.

= =

= -

- =-

-
-

=

=

=-

- =

-

-

-

-

-

]

]

]

c

c

g

g

g

m

m

Thus, the equation to describe the growth is

y e40 40
. t1 1507

= -
-

To answer the question, plug in t = 2 and solve for y.

.

y e40 40

35 9954

.1 1507 2

.

= -
- ] g

So, she can memorize 36 facts in the 2 hours she has to study.

The graph of this model is shown below, demonstrating the typical bounded growth shape.
Notice the graph is asymptotic to y = 40.

Logistic Growth (BC Only)
A special type of differential equation results in curves that show logistic growth. Just as with
exponential or bounded growth, the key to solving these problems is to separate the variables
and integrate (using partial fractions).

The general differential equation is given by

dt
dy

ky A y= -^ h

Y1=40-40e (-1.1507X)^

X=2.0212766 Y=36.092114
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This equation may be given on the exam, or the problem may contain the phrase “rate of
change of y is jointly proportional to y and the difference between a number A and y.” Some
typical examples and the resulting differential equations are given below.

Spread of a Rumor
In a school of 3,500 students, the rate at which a rumor spreads is jointly proportional to the
number of people who have heard the rumor and the number of people who have NOT heard
the rumor.

let y = the number of people who have heard the rumor at any time t

dt
dy

ky y3500= -^ h

Spread of a Disease
In a community of 50,000, the rate of growth of a measles epidemic is jointly proportional to
the number of people who have contracted the measles and the number of people who have not
contracted the measles.

let y = the number of people who have the measles at any time t

,
dt
dy

ky y50000= -^ h

Population Growth
A population of rabbits in a certain area increases at a rate that is jointly proportional to the
number of rabbits present, and the difference between 1000 and the number of rabbits present.

let y = the number of rabbits present at any time t

dt
dy

ky y1000= -^ h

Sample

For the rumor problem above, suppose 20 students hear the rumor initially, and that 200
have heard it after 2 hours. How many students will have heard the rumor after 5 hours?

From above, the differential equation is

dt
dy

ky y3500= -^ h

Separating the variables gives

y y
dy kdt

3500
1

-
=

^ h
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Now integrate, using partial fractions

( )

: :

y y
dy kdt

y y y
A

y
B

A y By

y y

A B

A B

If If

3500
1

3500
1

3500

1 3500

0 3500

1 3500 1 3500

3500
1

3500
1

-
=

-
= +

-

= - +

= =

= =

= =

##
^

^

^ ^

h

h

h h

R

T

S
S
S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
W
W
WW

ln ln

ln ln

ln

y y
dy kdt

y y kt C

y y kt C

y
y

kt C

3500
1

3500
3500

1

3500
1

3500

3500 3500 3500

3500
3500

1

1

2

+
-

=

- - = +

- + - =- -

-
= +

##

^

^

d

h

h

n

8 B

e y
y

e e y
y

Ce y

Ce y

Ce

y

y
Ce

Thus

3500

3500

3500
1

1
3500

1
1

3500

1
3500

kt C

kt C

kt

kt

kt

kt

3500

3500

3500

3500

3500

3500

2

2

=
-

=
-

= -

+ =

+
=

=
+

- +

-

-

-

-

-

Initially, 20 students heard the rumor, so

%

t y

Ce

C

C

0 20

20
1

3500

1
20

3500

1 175

&= =

=
+

+ =

+ =

So C = 174
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After 2 hours, 200 students had heard the rumor, so

.

.

.

.
. ...

.

ln

t y

e

e

e

e

k

k

2 200

200
174 1

3500

174 1
200
3500

17 5

174 16 5

174
16 5

7000
174
16 5

2 3557

3500 1 1778

k

k

k

k

3500 2

7000

7000

7000

&

.

.

= =

=
+

+ = =

=

=

- = -

- -

-

-

-

-

]

c

g

m

Thus, the equation describing the growth is now

y
e174 1
3500

. t1 1778=
+

-

To answer the question, plug in t = 5 and solve for y.

,

y
e174 1

3500

2 361 students

.1 1778 5

.

=
+

- ] g

The graph below shows the typical shape of a logistic growth curve.

Work (BC Only)
Scientists use the concept of work to determine how much energy is required to perform a task
such as emptying a tank or compressing a spring. The amount of work done is found by multi-
plying the force by the displacement:

WORK = (force)(displacement)

= FD

X=5 Y=2361.776

Y1=3500/(174e (-1.1778X)^
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This simple definition applies only when the force is constant. When the force is NOT con-
stant, calculus can be used to find the work done by using FD as the integrand in a definite in-
tegral. For motion along a straight line, the displacement D is represented by ∆x. The bounds of
the integral indicate the beginning and ending locations for the motion.

Work Along a Straight Line

( )

( )

limW F x x

W F x dx

∆
i

n

a

b

∆ 0
1

=

=

"
=

#

!

Note on Units:

In the U.S system of measurement, work is typically expressed in foot-pounds (ft-lb) or foot-tons.
In the CSG system, the work is expressed in dyne-centimeters (ergs) or newton-meters (joule).

Typical examples of work along a straight line that appear on the AP exam frequently include:

1. moving a particle along a straight line

2. compressing or stretching a spring (Hooke’s law)

3. lifting a chain

Sample: Moving a Particle Along a Line

A particle moves along the x axis so that the force required to move it when it is x feet
from the origin is given by

F(x) = 5 + 3x2 lbs

Find the amount of work done in moving the particle from x = 3 to x = 7.

The force is given by F(x) and the distance is represented by ∆x, which becomes ∆x in the 
integral.

So, to find the work done:

-

( )

( )

[ ]

( ) ( )

limW x x

W x dx

x x

ft lbs

∆5 3

5 3

5

25 125 15 27

180

i

n

∆ 0

2

1

2

3

7

3

3

5

= +

= +

= +

= + - +

=

"
=

#

!

x
3210 76 9854

a=3 b=7
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Sample: Lifting a Chain

A bucket weighing 10 pounds is filled with water weighing 15 pounds. The bucket is at
the bottom of a 30 foot well, hanging from a chain that weighs 0.2 pounds per foot. How
much work is done in lifting the bucket to the top of the well?

Here, the force function will be given by the total weight being lifted at any time. Taking the
origin at the bottom of the well, the distance the bucket has traveled at any time is given by y
feet.

The force (total weight) is given by the weight of the bucket plus the weight of the water plus
the weight of the chain. The total weight of the entire chain is (30)(0.2) = 6 lbs, but as the
bucket is lifted the weight of the chain will decrease. Thus, the force (total weight) at any time
is given by

F(y) = 10 + 15 + (6 – 0.2y)

= 31 – 0.2y

So, to find the work done, multiply this force by the distance, ∆y, which becomes dy in 
the integral.

-

( . )

( . )

.

( )

.

limW y y

y dy

y y

ft lbs

∆31 0 2

31 0 2

31 0 1

930 90 0

840

i

n

∆ 0
1

0

30

2

0

30

= -

= -

= -

= - -

=

"
=

#

!

8 B

Sample

Suppose in the example above, the bucket is leaking so that all the water has leaked out
just as the bucket gets to the top of the well. How much work is done in lifting the leaky
bucket to the top of the well?

y

y

x

30'
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The force function is similar to the one above, but the weight of water that has leaked out at
any time needs to be subtracted. If the water has all leaked out just as the bucket gets to the top,
it has lost 15 lbs in 30 feet, for a rate of 0.5 lbs/ft.

F(y) = 10 + (15 – 0.5y) + (6 – 0.2y)

= 31 – 0.7y

So, to find the work done, multiply this force by the distance, ∆y, which becomes dy in 
the integral.

-

( . )

( . )

.

.

limW y y

y dy

y y

ft lbs

∆31 0 7

31 0 7

31 0 35

930 315

615

i

n

∆ 0
1

0

30

2

0

30

= -

= -

= -

= -

=

"
=

#

!

8 B

which is a lot of work just to get no water!

Sample: Springs and Hooke’s Law

Suppose it takes 240 pounds of force to compress a spring 2 inches from its natural length
of 12 inches. How much work is done in compressing it an additional 2 inches?

Hooke’s Law states that the amount of force needed to stretch or compress a spring x units
from its natural length is proportional to x:

F(x) = kx

where k is a constant that depends on the type of spring.

For this spring,

( )

( )

F x kx

k

k

240 2

120&

=

=

=

so, for this spring in general, F(x) = 120x

To find the work done, multiply this by ∆x, which becomes dx in the integral.
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The initial compression was 2 inches from its natural length (x = 0 to x = 2). An additional 2
inches would occur from x = 2 to x = 4. Thus, the work would be given by

-

( )

( )

.

limW F x x

xdx

x

in lbs

∆

120

60

60 16 4

720

i

n

∆ 0
1

2

4

2

2

4

=

=

=

= -

=

"
=

#

!

8 B

A more complicated form of work involves moving liquids in or out of tanks. Work is still
found by multiplying force by displacement, however the force and distance expressions are
somewhat different than in straight line motion. The force is calculated by multiplying the
weight density of the liquid by the volume of a representative cross section of the tank, where
the volume expression includes the ∆y expression. So, the distance expression must appear in
the integrand separate from the ∆y entirely. The bounds of integration indicate the lowest and
highest points of the liquid. (Note: weight density of water is 9810 N/m3 or 62.5 lbs/ft3.)

Liquid Work
( )( )

( )

limW weightdensity volume of crosssection)(distance

weightdensity)(volumeof crosssection)(distance

i

n

a

b

∆ 0
1

=

=

"
=

#

!

Sample

A tank in the shape of a right circular cone is 4 feet tall and 2 feet in diameter at the top,
and is half full of water. How much work is done in pumping the water to the top of the
tank?

The tank is shown above, with the origin taken at the bottom of the tank.

y

x

4'

2'

(x,y)y

P(1,4)4

d =4 – y

∆

O

r
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The weight density is 62.5 lbs/ft3.

A representative cross section of the tank is a cylinder, shown in the sketch, and so has a 
volume of

V r h
2

=r

where h = ∆y.

The radius of the cross section is shown here as x, but needs to be expressed in terms of y to
correspond to the ∆y = dy for the height. The equation of the line that is the right side of the 

cone (line OP in the diagram) will give a relationship between x and y. It has a slope of 4, and a
y-intercept of 0, so its equation is y = 4x. Thus, the radius can be expressed as

r x y
4
1

= =

So the volume expression is now

2

( )V y y

y y

∆

∆
4
1

16
2

=

=

r

r

c m

The distance that the representative cross section must travel to get to the top of the tank is
given by

d = 4 – y

The tank is half full of water, so the water starts where y = 0 and ends where y = 2.

The complete work formula now yields

-

( )

( . )( )( )

. ( )

. ( )

lim

lim

W

y y y

y y dy

ft lbs

∆62 5
16

4

62 5
16

4

81 81

weightdensity)(volume)(distance

usinga calculator

i

n

i

n

∆

∆

0
1

0
1

2

2

0

2

$

.

=

= -

= -

r

r

"

"

=

=

#

!

!

Variations on this type of problems occur by changing the height of the liquid, the location to
which it is pumped, or type of liquid (and thus the weight density).
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Sample

In the example above, suppose the cone is completely full of oil weighing 50 lbs/ft3, and
the oil is to be pumped to a spot 2 feet above the top of the cone. How much work is
done?

-

( )

( )( )( )

( )

.

lim

lim

W

y y y

y y dy

ft lbs

∆50
16

6

16
50

6

628 32

weightdensity)(volumeof crosssection)(distance
i

n

i

n

∆

∆

0
1

0
1

2

2

0

4

.

=

= -

= -

r

r

"

"

=

=

#

!

!

Sample

A trough is 15 feet long and its cross section is in the shape of an isosceles triangle 2 feet
wide across the top and 3 feet tall. The trough is full of oil weighing 45 lbs/ft3. How much
work is done in pumping the oil to the top of the tank?

A sketch of the tank is shown below, with the origin is taken at the bottom of the tank.

The weight density is given as 45 lbs/ft3.

A representative cross section of the tank is a rectangular solid, shown in the sketch, so it has a
volume given by

V = l w h

The height is given by h = ∆y and the length is a constant, l = 15 feet.

The width of the cross section is shown here as 2x, but needs to be expressed in terms of y to
correspond to the ∆y = dy for the height. Using the similar triangles, ∆OAB and ∆OCD, the
proportion below gives a relationship between x and y.

y
x

x y

x y

3
1

3
1

2
3
2

&

&

= =

=

y

x

3' y∆

y

O

x x

1'

15'

C

A B

D

(x,y)
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So, the volume expression is now

( )( )( )V y y

y y

∆
∆
15

3
2

10

=

=

The distance that the representative cross section must travel to get to the top of the tank is
given by

d = 3 – y

The tank is full of water, so the water begins at y = 0 and ends at y = 3

The complete work formula now yields

-

( )( )( )

( )( )( )

( )

lim

lim

W

y y y

y y dy

ft lbs

∆45 10 3

450 3

2025

weightdensity volume of crosssection distance
i

n

i

n

∆

∆

0
1

0
1

0

3

=

= -

-

=

"

"

=

=

#

!

!

Length of an Arc (BC Only)
The length along a curve is known as arc length, and can be found using a definite integral. The
formula can be derived by: (1) subdividing the curve into n small approximately linear pieces,
(2) using the distance formula to find the length of the line segments, (3) using this distance ex-
pression as the argument in a Riemann sum, and (4) finding the limit as the number of pieces
increases without bound. This can be done with respect to either x or y, depending on the 
original curve.

Arc length problems on the BC exam frequently require the use of a calculator to evaluate the
definite integral.

Length of an Arc
The arc length, L, along a smooth* curve y = f(x) from x1 to x2 is given by

L
dx
dy

dx f x dx1 1
x

x

x

x2
2

1

2

1

2

= + = +# # ld ^n h8 B

Similarly, the arc length, L, along a smooth* curve x = g(y) from y1 to y2 is given by

L
dy
dx

dy g y dy1 1
y

y

y

y2
2

1

2

1

2

= + = +# # lc ^m h8 B

*Note: A curve f(x) is smooth if f '(x) is continuous. In practice, this means that there are no
sharp turns, known as “cusps” on the graph.
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Sample

Find the arc length along f(x) = 5e2x from x = 0 to x = 1.

A graph is shown at right.

Find the derivative and use
the formula.

.

f x e

e

L e dx

e dx

5 2

10

1 10

1 100

31 9669

x

x

x

x

1 2

2

2 2

0

1

4

0

1

.

=

=

= +

= +

#

#

^ ^

`

h h

j

Sample

Find the length of the arc in the previous example using the second method with respect
to y.

Solve for x in terms of y, then differentiate and use the formula. The bounds of integration must
also be in terms of y.

ln

ln

y e
y

e

x
y

x
y

dy
dx

y

y

5

5

2
5

2
1

5

2
1

5

5
1

2
1

x

x

2

2

=

=

=

=

=

=

.

x y e

x y e

L
y

dy

y
dy

0 5 5

1 5

1
2
1

1
4
1

31 9669

e

e

0

2

2

5

5

2

5

5

2

2

&

&

.

= = =

= =

= +

= +

#

#

c m
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Arc Length for Parametric Curves (BC Only)
On page 321, the method for finding the arc length, L, along a Cartesian curve from x1 to x2 was
to evaluate the definite integral below:

L
dx
dy

dx1
x

x 2

1

2

= +# d n

This integration is obviously performed all in terms of x. For arc length in parametric form, the
integration needs to be performed in terms of the parameter t. This is easily accomplished by
rewriting the derivative dy/dx in its parametric form, dy/dt / dx/dt, and performing some simple
algebra.

/
/

/

/ /

/

/ /

L
dx dt
dy dt

dx

dx dt

dx dt dy dt
dx

dt
dt

dx dt

dx dt dy dt

dt
dx

dt

L
dt
dx

dt
dy

dt

1
x

x

x

x

t

t

t

t

2

2

2 2

2

2 2

2 2

1

2

1

2

1

2

1

2

= +

=
+

=
+

= +

#

#

#

#

d

^

^ ^
c

^

^ ^
c

c d

n

h

h h
m

h

h h
m

m n

Arc Length in Parametric
For a smooth parametric curve given by x = f(t) and y = g(t), the arc length, L, from t1 to t2 is
given by

L
dt
dx

dt
dy

dt f t g t dt
t

t

t

t 2 2
2 2

1

2

1

2

= + = +## l lc d ^ ^m n h h8 8B B

Parametric arc length problems on the BC exam often require the use of a calculator to evaluate
the definite integral.

Sample

A particle moves along a parametric curve as defined below from t = 0 to t = 3. Find the
distance the particle travels.

x = 5 – t2 and y = t2 + 3t

The path is indicated below on a graphing calculator screen.

323

Applications of Antiderivatives and Definite Integrals

Cliffs AP Calculus AB & BC 3rd Edition • 8683 1 Ch06 5 • jill • 3/20/01 • p 323

8683-1 Ch06.F  3/22/01  7:46 AM  Page 323



Find the derivatives of the x and y equations, and plug them into the definite integral formula.

dt
dx

t
dt
dy

t

L t t dt

t t t dt

t t dt

2 2 3

2 2 3

4 4 12 9

8 12 9

153

2 2

0

3

2 2

0

3

2

0

3

.

=- = +

= - + +

= + + +

= + +

#

#

#

^ ^h h

Area and Arc Length for Polar Curves (BC Only)
Recall that to find the area of a region under a curve, the interval was subdivided into n pieces,
and rectangles were inscribed under the curve. A Riemann sum was then set up, using the area
of the ith rectangle in the argument. Taking the limit of this Riemann sum (as the width of each
rectangle approached 0) resulted in a definite integral.

In a similar fashion, the polar region below has been subdivided into n sectors, each with an an-
gle of ∆θ. To find the area, set up a Riemann sum, using the formula for the area of a sector of 

a circle from geometry A r
2
1 2

= i; E. Then, take the limit of the sum (as the angle of each sector 

approaches 0) to get a definite integral.

Area in Polar

limA f i

f d

∆
2
1

2
1

i

n

i
∆ 0

1

2

2

=

=

i i

i i

"
=

a

b

#

! ^

^

h

h

8

8

B

B
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Sample

Find the area enclosed by one petal of the rose curve cosr 4 3= i^ h.

Begin by graphing the curve. At 0=i , the corresponding radius is r = 4.

r

4 0

0
6

4
3

0
2

4
3

2

-

i

r

r

r

r

In the chart above, notice that the first time the radius is 0 is when /6=i r . This follows logi-
cally from trig properties. The cosine function is first 0 when /2=i r .

For the function here, the argument of the cosine function is 3i So, r will equal 0 when 3
2

=i r

which means /6=i r . This is useful in determining the bounds of integration. Since half of the
first petal is swept out from /to0 6= =i i r , the area of the entire first petal can be found by
using these as bounds and multiplying by 2.

.

cos

cos

A d

d

2
2
1

4 3

16 3

4 189

0

6

2

0

6

.

=

=

i i

i i

r

r

#

#

^ h

R

T

S
S
S
S

V

X

W
W
W
W

Sample

Find the area of the inner loop of the limacon sinr 2 4= - i.

Graph the curve.
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The curve goes through the pole any time that r = 0, the first time when /6=i r , and the next
time when /5 6=i r . These r values can be found by solving sin2 4 0- =i .

sin

sin

k kor

2 4 0

2
1

6
2

6
5

2

- =

=

= + = +

i

i

i r r i r r

So, the area inside the INNER loop can be found by the integral below.

.

sinA d2 4

2 1741

2
1 2

6

6
5

.

= - i i
r

r

# ^ h

Sample

Find the area of the region that is INSIDE cosr 1= + i and OUTSIDE cosr 3= i.

Begin by graphing both curves.

The area INSIDE the limacon and OUTSIDE the circle is shaded in the figure above.

θ

1

R=2 =0
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To determine the bounds of integration, find the intersection of the two curves.

,

cos cos

cos

cos

k k

1 3

1 2

2
1

3
2

3
5

2

+ =

=

=

= + +

i i

i

i r r r r

A closer view of quadrants 1 and 2, along with the line /3=i r is shown below. The shaded re-
gion would be half of the area desired.

From the sketch above, it is clear that the next intersection point of the two curves will be at the
pole, where r = 0.

1

,

cos cos

cos cos

k k k

1 0 3 0

0

2
2

2
2

3
2

for the limacon for the circle

+ = =

=- =

= + = + +

i i

i i

i r r i r r r r

Thus, the integrals below would give the areas shaded below in each case.

cos d
2
1

1
2

3

+ i i
r

r

# ^ h

π
3θ =

θr =1+cos

θr =3cos
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cos d
2
1

3
2

3

2
i i

r

r

# ^ h

So, the area requested, INSIDE the limacon and OUTSIDE the circle, would be given by the
DIFFERENCE between the two integrals above, multiplied by 2 for the third and fourth 
quadrants.

.cos cosA d d2
2
1

1
2
1

3 0 7854
2 2

3

2

3

.= + -i i i
r

r

r

r

## ^ ^h h

R

T

S
SS

V

X

W
WW

The formula for arclength in polar coordinates is easily derived from the one in parametric
form. Using the symmetry of polar curves can occasionally make the problem simpler. Polar
arc length problems on the BC exam frequently require the use of a calculator to evaluate the
definite integral.

Arc Length in Polar

L
d
dr

r d
2

2
= +

i
i

a

b

# c m

Sample

Find the length of the cardiod cosr 2 2= - i.

Sketching the curve may be helpful in determining the bounds, or in applying symmetry. Here,
the bounds of integration can be taken from to0= =i i r and the integral multiplied by 2.

(4,π)
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Find /dr di and apply the formula.

cos

sin

cos sin

cos cos sin

cos

r

d
dr

L d

d

d

2 2

2

2 2 2

2 4 8 4 4

2 8 8

16

2 2

0

2 2

0

0

= -

=

= - +

= - + +

= -

=

i

i
i

i i i

i i i i

i i

r

r

r

#

#

#

^ ^h h< F

Integration of Vector-Valued Functions (BC Only)
To find the integral of a vector-valued function, simply find the integrals of the real-numbered
functions that make up the x and y components. That is, if R(t) = f(t)i + g(t)j is a vector-valued
function, then:

( )R t dt f t dt g t dt C C is a vectorji= + +# # #^ ^ ^h h h; ;E E

Sample

If sinR t t ti6 2= +^ a ^h k h j and if V(0) = 2i + 3j, find V(t) where V t R t dt= #^ ^h h .

, :

sin

sin

cos

cos

cos

R t t t

V t R t dt t dt t dt

t
t c

V t t t c

V o

V o c

o c

o c

c

So

Since we have

So

i j

i

i j j

j

i j

i j

i j

i j

i j

j

i

i

6 2

6 2

2
3

6
2
1

2

4
2
1

2

2 3

4 0
2
1

0

2
1

2 3
2
1

2
2
7

2
1

2
1

2
3

2
3

$

= +

= = +

= + -

=

= +

= -

= - +

+ = - +

+ =

+

- +

+

## #

^ b ^

^ ^ b ^

c

^ c

^

^ ^ c

h l h

h h l h

m

h m

h

h h m

R

T

S
S
SS

< ;

:

V

X

W
W
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F E

D
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1. x dx1
2

3

- =
-

#

A. 2
5

B. 2
7

C. 2
9

D. 2
11

E. 2
13

2. Use a Riemann sum and four inscribed 

rectangles to approximate .x dx1
2

0

4

+#

A. 18

B. 21

C. 24

D. 25

E. 26

3. What is the average value of y t t3
3 2

= -
over the interval –1 ≤ t ≤ 2?

A. 4
11

B. 2
7

C. 8

D. 4
33

E. 16

4. The area bounded by the curve
x y y3

2
= - and the line x = –y is

represented by

A. y y dy2
2

0

4

-# ` j

B. y y dy4
2

0

4

-# ` j

C. y y dy y dy3
2

0

3

0

4

- +# #` j

D. y y dy4
2

0

4

-# ` j

E. y y dy2
2

0

4 2

-# ` j

5.
x
x

dx
1
1

2

1

2

+
-

=#

A. 2
1

B. 1

C. ln 3

D. 2
5

E. 2

6. If ,F x t t dt F xthen3
x

2

1

= + =# l^ ^h h

A. x x3 83
2 2 2

3

+ -` j< F

B. x x3
2
+

C. x x3 2
2
+ -

D.
x x

x
2
1

3

2 3
2
+

+

E. none of these
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1

2 2
2
7

2
3

= - + +^ h : ;D E

Or combining terms we have:

cosV t t ti j2 4
2
1

2
2
7

2
3

= + - -^ h : ;D E
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7. A bacteria culture is growing at a rate
proportional to the number of bacteria
present at any time t. Initially, there are
2000 bacteria present, and this
population doubles in 3 hours. Which of
the following equations describes this
growth?

A. y e2000
/ln t2 3

= ]] g g

B. y e2000
/ln t2 3

= ] g

C. y e2000
/ln t3 1 2

= ] g

D. y e2000
ln t2 3

= ] g

E. none of these

8. x
dxtan

2

/

0

1 2

.#

A. –0.063

B. 0.041

C. 0.063

D. 0.138

E. 0.261

*9. Moving in the xy-plane at time t > 0, the

velocity vector of a particle is ( , )t t3
12 .

Find its general position vector (in
terms of t) for the particle if its position
vector at t = 2 is (9, ln 2 + ln e)

A. (t3 + 1, ln t + 1)

B. (9, 1 + ln 4)

C. ( , )t
t

6
1

2-

D. (t3 + e, ln t + e)

E. (t3, ln t)

* BC only

*10. The length of the arc described by the

equation y x
3

= from x = 0 to x
3
4

= is

A.
27
8

B.
27
12

C.
27
56

D.
27
64

E.
27
72

*11. The length of the arc described by the 

parametric equations ( )x t t
2
1 4

= and 

( )y t t
2
3 2

= where t0 3# # is given by

A. t t dt2 3
3

0

3

+#

B. t t dt4 9
6 2

0

3

+#

C. t t
dt

4 4
9

8 4

0

3

+#

D. t dt4 1
6

0

3

+#

E. t dt1 9
2

0

3

+#

*12. Find the length of the arc of
lny x x

4
1

2
12

= - from x = 1 to x = e.

A. ( )e
4
1

1
2
-

B. ( )e
4
1

3
2
-

C. ( )e
4
1

1
2
+

D. ( )e
4
1

3
2
+

E. (e – 1)
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*13. The area of the region enclosed by the
graph of the curve r = 2cosθ is
[calculator problem]

A. .333

B. 1.570

C. 3.141

D. 6.282

E. 12.566

*14. The area of the region enclosed by one
petal of the graph of r = 2cos(3θ) is
[calculator problem]

A. .523

B. 1.047

C. 1.570

D. 3.141

E. 6.293

*15. The length of the entire curve 
r = 1 – sinθ is [calculator problem]

A.
2
1

B. 1

C. 2

D. 4

E. 8

*16. The length of the entire curve of r = 3
(1 + cosθ) from θ = 0 to θ

2
=
r is

[calculator problem]

A. 1.570

B. 3.141

C. 6.282

D. 8.485

E. 16.970

*17. Let y = p(x) be the solution to the 

differential equation 
dx
dy

x y3 2= - with 

initial condition p(0) = 1. What is the
approximation for p(2), using Euler’s
Method, starting at 0 with step size 1?

A. 0

B. 1

C. 2

D. 3

E. 4

*18. Let y = f(x) be the solution to the 

differential equation 
dx
dy

x y2= + with 

initial condition f(1) = 2. Using Euler’s
Method, what is the approximation for
f(2.5), starting at 1 with step size of 0.5?

A. 2

B. 4

C. 13.25

D. 17.50

E. 21.75

*19. Determine whether the integral 

x

dx

1
1

3

-
# converges or diverges. If it 

converges, find the value to which it
converges.

A. diverges

B. converges to 0

C. converges to 1

D. converges to e

E. converges to 2 2

* BC only
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Answers to Multiple-Choice Questions
1. E. Because the integrand is never negative, the definite integral can be interpreted as the

area bounded by the curve. Sketching the region shows two triangles, so the quickest
method is to use geometry.

A 3 3 2 22
1

2
1

2
13= + =^ ^ ^ ^h h h h

2. A. Sketch the area represented by the definite integral, and show the four inscribed rec-
tangles. The base of each rectangle is one unit wide. The height of each rectangle is deter-
mined by the left-hand endpoint of the base, because the question asks for inscribed
rectangles.

x dx f f f f1 1 0 1 1 1 2 1 3

1 1 2 5 10

18

2

0

4

.+ + + +

= + + +

=

# ^ ^ ^ ^ ^ ^ ^ ^h h h h h h h h

6 @

y

x

12

8

16

4

42 31

y = x
2
 + 1

y

x

3

2

1

-1-2-3 321

333

Applications of Antiderivatives and Definite Integrals

Cliffs AP Calculus AB & BC 3rd Edition • 8683 1 Ch06 5 • jill • 3/20/01 • p 333

*20. Determine whether the integral 

e
e

dx
1

x

x
0

+
3-

# converges or diverges. If it 

converges, find the value to which it
converges.

A. converges to 0

B. converges to 1

C. converges to ln 2

D. converges to e

E. diverges

*21. The integral 
e

e
1

x

x

+
3

3

-

# dx

A. diverges

B. converges to 0

C. converges to 
2
1

D. converges to ln 2

E. converges to e

* BC only
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3. A.
b a

f t dt

t t dt

t t

t t

average value
1

2 1
1

3

3
1

4
3

3

3
1

12
1

9 4

36
1

144 32 9 4

36
1

99
4
11

a

b

3 2

1

2

4 3

1

2

4 3

1

2

$

=
-

=
- -

-

= -

= -

= - - - -

= =

-

-

-

#

#

^

^
`

^

^

h

h
j

h

h

=

8

6 8

G

B

@ B% /

4. B. Sketch the region as shown.

For the bounds of integration, solve the system:

x y y

x y

y y y

y y

y yor

3

3

4 0

0 4

2

2

2

= -

=-

- =-

- =

- =

*

So, using dyright left
bottom

top

-# ^ h

y y y dy y y dy3 4
2

0

4
2

0

4

& - - - = -# #` ^ `j h j9 C

5. A.
x
x

dx
x

x x
dx

x dx

x
x

1
1

1

1 1

1

2

2

1

2

1

2

1

2

2

1

2

+
-

=
+

+ -

= -

= -

# #

#

^ ^

^

h h

h

= G

2 2
2
1

1

2
1

= - - -

=

^ ch m

(4, 4)

(0, 0)

y

x

6

4

2

-2-4-6 642
-2

-4

-6
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6. B. Do not try to find the antiderivative. Simply substitute x in for the dummy variable t in
the integrand.

7. A. The phrase “rate of change proportional to amount present” translates into

dt
dy

ky=

Solving this differential equation yields

y Ce
kt

=

“2000 present initially” y when t2000 0+ = =

Ce C2000 2000
0
&= =

Thus y e2000
kt

=

“doubles in 3 hours”

ln

ln

y when t

e

e

k

k

4000 3

4000 2000

2

2 3

3
2

k

k

3

3

+ = =

=

=

=

=

Thus y e2000
/ln t2 3

= ]] g g

If this form had not been present, an alternative form might have been

y e2000 2000 2
/ /ln t t2 3 3

= =` `j j

8. C. Find the value of the definite integral with your calculator.

9. A. velocity vector is ( , )t t3
12

integrating, position vector is ( , )lnt C t C
3

1 2+ +

At t = 2, position vector is ( , ) ( , )ln ln lnC C e2 2 9 2
3

1 2+ + = +

This means C

C

Cso

2 9

8 9

1

3
1

1

1

+ =

+ =

=

and ln ln ln

ln

C e

C e

Cso

2 2

1

2

2

2

+ = +

=

=

Therefore, the general position vector is ( , )lnt 1 2 1
3
+ +
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10. C. y x

y x

dx
dy

x

L
dx
dy

dx

x dx

x dx

x

x

2
3

1

1
4
9

9
4

1
4
9

4
9

9
4

2
3

1
4
9

27
8

1
4
9

27
8

4 1

27
8

8 1

27
56

3

2
3

2
1

2

0

3
4

0

3
4

0

3
4 2

1

2
3

0

3
4

3

0

3
4

3

$

=

=

=

= +

= +

= +

=
+

= +

= -

= -

=

#

#

#

d

c

c

c

^

n

m

m

m

h

R

T

S
S
S
S
SS

=

9

V

X

W
W
W
W
WW

G

C

11. B. ( ) ( )x t t y t t

dt
dx

t
dt
dy

t

2
1

2
3

2 3

4 2

3

= =

= =

L
dt
dx

dt
dy

dt

t t dt

t t dt

Then

2 3

4 9

2 2

0

3

3 2 2

0

3

6 2

0

3

= +

= +

= +

#

#

#

c d

` ^

m n

j h
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12. C. lny x x

dx
dy

x x

dx
dy

x
x

dx
dy x

x

dx
dy x

x

x
x

x
x

4
1

2
1

2
1

2
1 1

2
1

2
1

4 2
1

4
1

1 1
4 2

1
4
1

4 2
1

4
1

2 2
1

2

2 2

2

2 2

2

2

2

2

$

= -

= -

= -

= - +

+ = + - +

= + +

= +

d

d

c

n

n

m

Then

( )

ln

ln ln

L
dx
dy

dx

x
x

dx

x
x

dx

x
x

e
e

e

e
e

1

2 2
1

2 2
1

4 2
1

4 2
1

4
1

2
1

1

4 2
1

4
1

4 4
1

4
1

1

e

e

e

e

2

1

2

1

1

2

1
2

2

2
2

= +

= +

= +

= +

= + - +

= + -

= + = +

#

#

#

d

c

c

d c

n

m

m

n m

= G

13. C. ( )cosr f2= =i i

As seen in the chart below, the curve will be traced twice as θ ranges from 0 to 2π; so we
will integrate from just 0 to π.

[ ( )]

( )

. ( )

cos

cos

A f d

d

d

A exactly

2
1

2
1

2

2
1

4

3 141

2

0

2

0

2

0

=

=

=

=

i i

i i

i i

r

r

r

r

#

#

#

Graph of r = 2cosθ
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Or if we write polar equation in rectangular form:

( )

( )

cos

cos

cos

r

r r r

r r

x y x

x x y

x x y

x y

2

2

2

2

2 0

2 1 0 1

1 1

2

2 2

2 2

2 2

2 2

$ $

=

=

=

+ =

- + =

- + + = +

- + =

i

i

i

This is the equation of a circle with center (1, 0) and radius = 1. Then the area at this 
circle is

A

A

1

1

2

2

=

=

=

r

r

r

^

^

h

h

14. A. ( )cosr 2 3= i

From the chart below, we note that r = 0 the first time when 
6

=i r. We can solve as 
follows:

( )

( )

cos

cos

so

0 2 3

0 3

2
3

6

=

=

=

=

i

i
r i
r i

Graph of r = 2cos(3θ)

To find the area of one petal, we integrate from 0 to 
6
r to get area at top half of petal —

then just double this area.

π
6

π
π
4

π
3

π
2

4π
3

3π
4

5π
6

r 2 1 0

0

–1 –2√3 √2 –√2 –√3

θ
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6

π
4

π
3

π
2

r

2

2

0

0

0

–2

θ
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( )

( ( ))

( )

.

cos

cos

A f d

d

d

2
2
1

2 3

4 3

3
523

2

0

6

2

0

6

2

0

6

$

.

=

=

=

=

i i

i i

i i

r

r

r

r

#

#

#

R

T

S
S
S
S

7

V

X

W
W
W
W

A

15. E. ( )

( )

[ ( )] [ ( )]

( ) ( )

sin

cos

cos sin

cos sin sin

sin

r f

d
dr

f

L f f d

d
dr

r d

d

d

d

1

1

1 2

2 2

8

2 2

0

2

2
2

0

2

2 2

0

2

2 2

0

2

0

2

= - =

=- =

= +

= +

= - + -

= + - +

= -

=

i i

i
i i

i i i

i
i

i i i

i i i i

i i

r

r

r

r

r

#

#

#

#

#

l

l

c m

16. D.

.

cos

cos

sin

sin cos

sin cos cos

sin

r

d
dr

L
d
dr

r d

d

d

d

3 1

3 3

3

3 3 3

9 9 18 9

18 18

6 2 8 485

2
2

0

2

2 2

0

2

2 2

0

2

0

2

.

= +

= +

=-

= +

= - + +

= + + +

= +

=

i

i

i
i

i
i

i i i

i i i i

i i

r

r

r

r

#

#

#

#

^

c

^ ^

h

m

h h
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17. E. With 
dx
dy

x y3 2= - and ∆x = 1, the chart is completed:

So when x = 2, y 4. ; therefore ( )p 2 4. .

18. C. With 
dx
dy

x y2= + and ∆x = 0.5, the chart is completed:

So when x = 2.5, .y 13 25. ; therefore ( . ) .f 2 5 13 25. .

19. E. The integral 
x

dx

1
1

3

-
# is improper since the function ( )f x

x1

1
=

-
is discontinuous at 

x = 1, one of the limits of integration

lim

lim

lim

lim

lim

x

dx

x

dx

x dx

x

x

C

1 1

1

2
1

1

2 1

2 2 2 1

2 2 0

2 2

/

/

C
C

C

C

C

C C

C

1

3

1

3

1

1 2

1

3

1

1 2
3

1

3

1

-
=

-

= -

=
-

= -

= - -

= -

=

"

"

"

"

"

-

+

+

+

+

+

# #

# ^

^

h

h

R

T

S
S
SS

9

9

V

X

W
W
WW

C

C

So the integral converges to 2 2.

   x∆dy
dx �yx

1

1.5

2.0

2.5

2 (2 • 1+2)(0.5) = 2.0 1+0.5 = 1.5

1.5+0.5 = 2.0

2.0+0.5 = 2.5

[2(1.5)+4](0.5) = 3.5

[2(2)+7.5](0.5) = 5.75

4

7.5

13.25

(   x) ∆   x + ∆yy +∆ y

2+2 = 4

4+3.5 = 7.5

7.5+5.75 = 13.25

∆dy
dx �yx

0

1

2

1 (3 • 0 – 2 • 1)(1) = –2 0+1 = 1

1+1 = 2(3 •1 – 2 • –1) = 5–1

4

(   x)    x∆   x + ∆yy +∆ y

1+ –2 = –1

–1+5 = 4
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20. C. The improper integral 
e

e
dx

1
x

x
0

+
3-

# must be evaluated as a limit statement:

( )

( ) ( )

( )

( )

lim

lim ln

lim ln ln

ln ln

ln ln

ln ln

ln

ln

e
e

dx
e

e
dx

e

e e

e

1 1

1

1 1

2 1

2 0 1

2 1

2 0

2

x

x

C
x

x

C

C

x

C

C

C

00

0

0

+
=

+

= +

= + - +

= - +

= - +

= -

= -

=

"

"

"

3
3

3

3

3

-
-

-

-

-

##

8

8

B

B

So the integral converges to ln 2.

21. A. The integral 
e

e
dx

1
x

x

+
3

3

-

# is improper, having two infinite limits of integration. 

Choosing 0 as a convenient number within the interval ( , )3 3- , two improper integrals
are formed. 

( ) ( )

( ) ( )

( )

( )

lim lim

lim ln lim ln

lim ln ln lim ln ln

ln ln ln ln

ln

e
e

dx
e

e
dx

e
e

dx

e
e

dx
e

e
dx

e e

e e

e

e

1 1 1

1 1

1 1

2 1 1 2

2 1 1 2

1

x

x

x

x

x

x

C
x

x

C
d

x

x
d

C

x

C d

x d

C

C

d

d

0

0

0

0

0

0

3

+
=

+
+

+

=
+

+
+

= + + +

= - + + + -

= - + + -

= -

=

" "

" "

" "

3

3

3

3

3 3

3 3

3 3

3

3

- -

-

-

-

# # #

# #

8 8

8 8

B B

B B

So the integral diverges.

Sample Free-Response Question: Applications of
Antiderivatives and Definite Integrals

1. A water tank in the shape of a hemisphere has a radius of 4 feet. The water level is 1 foot
below the top of the tank. How much work is done in pumping the water to a point 2 feet
above the top of the tank?
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Answer to Free-Response Question

The tank is shown above, with the origin taken at the bottom of the tank.

The weight density of water is 62.5 lbs/ft3.

A representative cross section is a cylinder, shown in the sketch, and so has a volume of

V r h
2

=r

where h = ∆y.

The radius of the cross section is shown here as x, but needs to be expressed in terms of y to
correspond to the ∆y = dy for the height. The point P(x, y) is on the circle centered as (0, 4)
with a radius of 4, so it has equation

( ) ( )x y0 4 16
2 2

- + - =

which gives a relationship between x and y

( )

( )

x y

y y

y y

16 4

16 8 16

8

2 2

2

2

= - -

= - - +

= -

So, the volume expression is now

( )V y y y∆8
2

= -r

The distance the representative cross section must travel to get to a point 2 feet above the top of
the tank is

d = 6 – y

The water level is 1 foot below the top of the tank, so the water begins as y = 0 and ends at 
y = 3.

The complete work formula is now

-

( )

. [ ( ) ]( )

. ( )( ) , .

lim

lim

W

y y y y

y y y dy ft lbs

∆62 5 8 6

62 5 8 6 21 647 54

weightdensity)(volumeof crosssection)(distance
i

n

i

n

∆

∆

0
1

0

2

1

0

3

2 .

=

= - -

= - -

r

r

"

"

=

=

#

!

!

∆y

y

x

6

4

P(x,y)
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343

Sequences, Infinite Series, and
Polynomial Approximations (BC Only)

Infinite series ( an

n 1

3

=

! ) are used in calculus to approximate values of functions such as

,( ) ( ) , ( )sin lnf x e f x x f x xand
x

= = = at a particular value of x by creating power series

( ( ) )a x cn
n

n 1

-
3

=

! representations of these functions. The intervals in which these power series are

close approximations to their respective functions can then be found by using some of the tests

that will be used to determine the convergence or divergence of infinite series.

Sequences
A sequence an" , is a function whose domain is the set of positive integers.

■ The functional values , , ,... ,a a a an1 2 3 are called the terms of the sequence; the number an

is called the nth term of the sequence.

■ A sequence an" , has the limit L if for each > 0! , there exists a number N > 0 such that
<a Ln !- whenever n > N; in this case we write a L

n

nlim =
" 3

. (**see note below**)

a) If the sequence an" , has a limit, we say that the sequence is convergent and an con-
verges to that limit.

b) If the sequence an" , does not approach a specific limit, we say that the sequence is
divergent and that the sequence diverges.

** This definition of the limit of a sequence an" , is similar to that of the limit of a function
( )f x as x approaches 3. In the statement “ ( )f x L

x

lim =
" 3

”, f is defined for all real numbers
greater than some number N, while the statement “ a L

n

nlim =
" 3

” is restricted to just 
positive integers n > N.

■ A key theorem in calculus regarding limits at infinity states:

i) If an" , is a sequence and f is a function such that ( )f n an= for all positive integers n,
AND

ii) if ( )f x is defined for all real numbers x 1$ , AND

iii) if ( )f x
x

lim
" 3

exists, then a
n

nlim
" 3

exists and ( )a f x
n

n

x

lim lim=
" "3 3

.

This theorem allows us to evaluate limits of sequences at infinity by using the results for 
evaluating limits of functions at infinity. In particular, L’Hôpital’s Rule may be applied in these
situations.
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Sample

Find the limit of the sequence
e

n3
n5' 1.

Let ( )f x
e

x3
x5=

then ( )f x
e

x
e

3
5
3

0
x x

x

x

x5 5lim lim lim= = =
" " "3 3 3

c cm m

(form 3
3, so L’Hôpital’s Rule can be applied)

therefore the sequence converges to 0.

Sample

Show that the sequence 
n

n1 2
3

3
+

( 2 converges.

Let ( )f x
x

x1 2
3

3

=
+

( 2

then ( )f x
x

x
x

x

x

x x1 2 1 2
1

1

1

1 2

1
2

2
x x x x

3

3

3

3

3

3 3

lim lim lim lim$=
+

=
+

=
+

= =
" " " "3 3 3 3

J

L

K
K
KK

J

L

K
K
KK

d

N

P

O
O
OO

N

P

O
O
OO

n

therefore the limit of the sequence is 2 and the sequence converges.

OR

( )f x
x

x
x
x

x
x1 2

3
6

6
12

6
12

2
x x x x x

3

3

2

2

lim lim lim lim lim=
+

= = = =
" " " " "3 3 3 3 3

d d c cn n m m

(form 3
3 so L’Hôpital’s Rule can be repeatedly applied)

Using Current Technology
A graphing calculator can be used to plot a sequence function in order to view its possible con-
vergence or divergence. The calculator should be in parametric and dot mode. For the sequence
above:

1. Let x t= and let y
t

t1 2
3

3

=
+

2. Set the window as shown at the right
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The coordinate of each point is represented by (x, y). In the case of our sequence function, the
x-coordinate represents n, the term number, and the y-coordinate represents that term of the se-
quence. It appears that the nth term of the given sequence appears to approach 2. The 7th term
of the sequence above is approximately equal to 2.0029155.

Sample

If the first four terms of a sequence an" , are , , ,1
7
9

11
27

15
81 find:

a) a formula for the nth term of the sequence

b) whether the sequence converges or diverges

a) rewriting the series , , , ...1
7
9

11
27

15
81

as , , , ,...
3
3

7
3

11
3

15
3

1 2 3 4

or as
( )

,
( )

,
( )

,
( )

,...,
n4 1 1

3
4 2 1

3
4 3 1

3
4 4 1

3
4 1

3
n1 2 3 4

- - - - -

therefore, the nth term is a
n4 1
3

n

n

=
-

b) Let ( )f x
x4 1
3

x

=
-

( )
( )ln

f x
x4 1
3

4
3 3

x x

x

x

x

lim lim lim 3=
-

= =
" " "3 3 3

d n = G

(form 3
3, so can apply L’Hôpital’s Rule)

Since ( )f x
x

lim 3=
" 3

, we can conclude that a
n

nlim 3=
" 3

; so given sequence diverges.

Series
If an" , is a sequence, then ...S a a a an n1 2 3= + + + + is called the nth partial sum, S n" ,

is a sequence of partial sums. For example,

, , , ... .S a S a a S a a a S a a a an n1 1 2 1 2 3 1 2 3 1 2 3= = + = + + = + + + +

T=7
X=7 Y=2.0029155
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For the infinite series which we denote by ... ...a a a a an

n

n

1

1 2 3= + + + + +
3

=

!

■ If S
n

nlim
" 3

exists and is equal to the number L, then the series an

n 1

3

=

! converges and L is the

sum of the series.

■ If S
n

nlim
" 3

is nonexistent, then the series an

n 1

3

=

! diverges and has no sum.

Given a specific infinite series, our task is to determine:

1. Does it converge or diverge?

2. If it does converge, what is the series’ sum?

To this point we have used the definition of convergence to determine whether a given series
converges or diverges, i.e., if it has a sum, it converges; otherwise it diverges. But the task of
finding that sum is often quite difficult, if not impossible. So we turn our attention instead to
the task of just determining whether or not a given series converges. We now discuss several
tests that can be used specifically for this purpose.

Tests of Convergence or Divergence
of an Infinite Series
Listed below is a summary of the most frequently used tests to determine the convergence or
divergence of a given infinite series. Following each test are examples of how each test may be
used.

1. nth Term Test

For the infinite series an

n 1

3

=

!
i) if a 0

n

nlim !
" 3

, then the series diverges

ii) BEWARE!! If a 0
n

nlim =
" 3

, the series does not necessarily converge. The series may

converge or diverge. (See #2 part C below.)

iii) if the series does converge, then a 0
n

nlim =
" 3

.

Sample

Determine the convergence or divergence of 2
n

n 1

3

=

! .

2
n

n
lim 3=
" 3

Since a 0
n

nlim !
" 3

, series diverges.
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Sample

Determine the convergence or divergence of 
!

!
n

n
3 4

2

n 1
-

3

=

! .

!
!

n
n

3 4
2

3
2

n

lim -
=

" 3

Since a 0
n

nlim !
" 3

, series diverges.

2. Specific Series Type

A) The geometric series ( )a r a 0
n

n

1

1

$ !
3

-

=

!

i) converges if <r 1 and has sum
r

a
1 -

ii) diverges if r 1$

Sample

Determine the convergence or divergence of 
3
5

n

n 1

3

=

! .

3
5

5
3
1

5
3 3

1
3
5

3
1

n n n

n

nnnn
1

1

1111

$ $
$

= = =
3333

-

-

====

!!!! c m . This is a geometric series with a rand
3
5

3
1

= = .

Since <r 1, series converges.

Note: Its sum is 
r

a
1 1

3
1

3
5

2
5

-
=

-
=

Sample

Determine the convergence or divergence of 
2 5
6

n

n

n 1
$

3

=

! .

2 5
6

2
1

5
6

n

n

n

n

n1 1
$

=
3 3

= =

! ! c m . This is a geometric series with a rand
2
1

5
6

= = . Since >r 1, series diverges.

Sample

Determine the convergence or divergence of 3 2
n n

n

1

1

$
3

- -

=

! .

3 2
3

2
3
1

3
2

3
1

3
2n n

n

n

n

n
n

n

n

n

n

1

1

1

1
1

1

1

1

1

$ = = =
3 3 3 3

- -

=

-

=
-

-

=

-

=

! ! ! !d cn m

This is a geometric series with a rand
3
1

3
2

= = . Since <r 1, series converges. Its sum is 

r
a

1 1
3
2

3
1

1
-

=
-

= .
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B)The p-series
n
1

p

n 1

3

=

!
i) converges if p > 1

ii) diverges if p 1#

Sample

Determine the convergence or divergence of ... ...
n

1
4
1

9
1

16
1 1

2+ + + + + +

... ...
n n

1
4
1

9
1

16
1 1 1

n
2 2

1

+ + + + + + =
3

=

!

This is a p-series with p 2= . Since p > 1, series converges.

Sample

Determine the convergence or divergence of 
n

1

n
351

3

=

! .

n n
1 1

/
n n

351
3 5

1

=
3 3

= =

! !

This is a p-series with p
5
3

= . Since p < 1, series diverges.

C)The harmonic series n
1

n 1

3

=

! diverges (notice that this is just a p-series with p 1= )

Sample

Determine the convergence or divergence of n
5

n 1

3

=

! .

n n
5

5
1

n n1 1

$=
3 3

= =

! !

This series n
1

n 1

3

=

! is a divergent p-series ( )p 1# , so n5
1

n 1

$
3

=

! also diverges.

D)The alternating series ) a1) a1 --( (or
n

n

n

n
n

n

1

1 1

3 3
-

= =

! ! converges if:

i) < a a0 n n1#+ , i.e., the series is non-increasing

AND

ii) a 0
n

nlim =
" 3

(note that this condition by itself is not sufficient to determine

convergence — see “BEWARE” in the nth term test above)
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Sample

Determine the convergence or divergence of )1(
n3

n

n

1

1

-3 +

=

! .

( )
( )

n n3
1

1
3
1

n

n

n

n

1

1

1

1

$
-

= -
3 3+

=

+

=

! ! with a
n3
1

n = we must verify 2 conditions

) <

( )
< ??

< ( )

<

<

a a

n n n

n n

n n

True

True

1

3 1
1

3
1

3
1

3 3 1

3 3 3

0 3

n n

n

n

n

1 lim

lim+

+

+

"

"

3

3

+

0=

) a 02 =

Therefore, series converges by alternating series test.

Sample

Determine the convergence or divergence of 
)3(
n

n
n

1
1 -

3

-
=

! .

)1 $
( )

(
n

n
n

3 3
1

3
n

n

n
n

n
nn

1
1

1
1

1
11

$
-

= - = -
3 33

-
=

-
-

-
==

! !!c m

with a n
3

n n 1= -

1) < ?

<

<

<

<

<

<

<

<

.

a a

n n

n n

n n

n
n n

n
n

n n

n

n

n n integer

Is

True for Remember is a positive

3

1
3

3
1

3
3

3 1 3

1
3
3

1
3

1 3

1 2

2
1

1

n n

n n

n n

n n

n

1

1 1 1

1

1

1

$

+

+

+

+

+

+

+

+ - -

-

-

-

]

` ^ ^

^

g

j h h

h
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pital s Rule^

) ?

( )ln

a

n

Does

form so use L Ho

2 0

3

3 3
1

0

n

n

n

n

n

n

1

1

lim

lim

lim

3
3

=

=

=

"

"

"

3

3

3

-

-

l l

Therefore given series converges by the alternating series test.

Sample

Determine the convergence or divergence of ) n1 3$
( )

(
.

ln n4

n

n 1

-3

=

!

( )
( )

( )
( )ln lnn

n
n

n
4

1 3
1

4
3

n

n

n

n1 1

$
$

-
= -

3 3

= =

! ! with  
( )ln

a
n

n
4

3
n =

1. Is <a an n1+ ? This is difficult to determine, so let’s instead try:

2.
( )ln n
n

n n

n
4

3

4
4
3

1
3

3
n n n n

lim lim lim lim 3= = = =
" " " "3 3 3 3

form 3
3 so use L’Hôpital’s Rule

Since a 0
n

nlim !
" 3

, series diverges by the nth term test.

Sample

Determine the convergence or divergence of )1 .(
n
n

3 4
2 3n

n

1

2
1

-
-
+

3
+

=

! c m

1) To determine if <a an n1+ , we let ( )f n an= and try to show that ( )f n is a decreasing func-
tion by using the derivative of ( )f n .

( )

( )
( )

( ) ( )

( )

( )

( )

( )

f n
n
n

f n
n

n n n

n
n n n

n
n n

n

n n

3 4
2 3

3 4

2 3 4 6 2 3

3 4
6 8 12 12

3 4
6 12 8

3 4

6 12 8

2

2 2

2

2 2

2 2

2 2

2

2 2

2

=
-
+

=
-

- - +

-
- - -

=
-

- - -

-

- + +

=

=

l

Since ( ) <f n 0l , ( )f n is decreasing; thus <a an n1+ .
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2) Show that a 0
n

nlim =
" 3

pital s Rule^
n
n

n

form so use L Ho
3 4
2 3

6
2

0

n

n

2lim

lim

3
3

-
+

=

=

"

"

3

3

l l

Therefore given series converges by the alternating series test.

Sample

Another way to show that <a an n1+ is to show that < >a a a aor0 0n n n n1 1- -+ + .

For example, using the series 
n

n
2 1

5

n 1
-

+
3

=

! With a
n

n
2 1

5
n =

-
+ , show that 

( )
( )

( )( )
( )( ) ( )( )

( )

n
n

n
n

n
n

n
n

n n
n n n n

n

n n n n

n
n n

2 1
5

2 1 1
1 5

2 1
5

2 1
6

2 1 2 1
2 1 5 6 2 1

4 1

2 11 5 11 6

4 1
15 11

2

2 2

2

2

-
+

-
+ -

+ +
=

-
+

-
+

+

=
- +

+ + - + -

=
-

+ + - + -

=
-

+ +

Since the numerator is positive, this fraction is greater than zero if

>n4 1 0

4
1

2
1

2

2

2

-

>n

>n4 1

>n

Since n is a positive integer, this is true. Therefore >a a 0n n 1- + so >a an n 1+ or <a an n1+ .

3. Ratio Test

For the series an

n 1

3

=

! , find a
a

L
n

n

n 1
lim =
" 3

+ :

i) if L < 1, then the series converges absolutely (*see below)

ii) if L > 1 (or L is infinite), then the series diverges

iii) if L 1= , the test is inconclusive — must try another test

[try this test if an contains factors such as !n xor
n]

(The Ratio Test is used frequently on the AP Exam. It is particularly useful when we later
discuss the interval of convergence of a power series.) 351
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(*Note: A series for which an

n 1

3

=

! converges is called an absolutely convergent series. In

addition, if the series is absolutely convergent, then it is also just convergent. However, if

a series an

n 1

3

=

! is convergent, but the series an

n 1

3

=

! is divergent, then the series an

n 1

3

=

! is

called conditionally convergent. An example of this is the series )1(
n

n

n

1

1

-3 +

=

! , which is

convergent by the alternating series test but the series )1(
n n

1
n

n n

1

1 1

-
=

3 3+

= =

! ! is a

divergent harmonic series. So the series )1(
n

n

n

1

1

-3 +

=

! is a conditionally convergent series.)

Sample

Determine the convergence or divergence of 
!n

5
n

n 1

3

=

! .

With 
!

a
n
5

n

n

=

( )!
!

a
a

n
n

n
L

1
5

5 1
5

0
n

n

n

n

n

n

n

1
1

lim lim lim$=
+

=
+

= =
" " "3 3 3

+
+

Since L < 1, given series diverges by the ratio test.

Sample

Determine the convergence or divergence of 
n
3

n

n
3

1

3

=

! .

With a
n
3

n

n

3=

( ) ( )n
n

n
n

L
1

3
3

3
1

3 1 3
n

n

n

n

3

1 3

3

3

lim lim$ $ $
+

=
+

= = =
" "3 3

+

Since L > 1, given series diverges by the ratio test.

Sample

Determine the convergence or divergence of 
n
1

n
4

1

3

=

! .

With a
n
1

n 4= we try the Ratio Test:

( ) ( )a
a

n
n

n
n

L
1

1
1 1

1
n

n

n

n n

1
4

4

4

4

lim lim lim$=
+

=
+

= =
" " "3 3 3

+

With L 1= , Ratio Test is inconclusive. Note, however, that 
n
1

n
4

1

3

=

! is just a p-series with >p 4 1= ,
so given series converges absolutely.
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4. Root Test

For the series an

n 1

3

=

! find a L
n

nnlim =
" 3

:

i) if L < 1 then the series converges absolutely

ii) if L > 1 (or L is infinite), then the series diverges

iii) if L 1= , the test is inconclusive and another test may be used

The Root Test is used infrequently on the AP Exam.

Sample

Determine the convergence or divergence of 
n
e

n

n

n

3

1

3

=

! .

With a
n
e

n n

n3

=

a
n
e

n
e

n
e

n

nn

n

n

n

n

n

n

n

n

n

n

n n3 3 3
1

lim lim lim lim= = =
" " " "3 3 3 3

d n

Drop absolute value since all terms positive.

n
e

L0
n

3

lim= = =
" 3

d n

Since L < 1, given series converges absolutely.

Sample

Determine the convergence or divergence of 
( )lnn

1
n

n 2

3

=

! .

( ) ( ) ( )ln ln ln
a

n n n
1 1 1

n

nn

n

nn

n

nn

n

n

n
1

lim lim lim lim= = =
" " " "3 3 3 3

c m

lnn
L

1
0

n

lim= = =
" 3

Since L < 1, given series converges absolutely.

Sample

Determine the convergence or divergence of 
( )
( )

n
n
2 1

1
n

n

n 1
+
+3

=

! .

( )
( )

( )
( )

n
n

n
n

n
n

L
2 1

1
2 1

1
2 1

1
2

n

n

n

n

n

n

n

n

n

lim lim lim+
+

=
+
+

=
+
+

= =
" " "3 3 3

c m

Since L > 1, given series diverges by the Root Test.
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5. Integral Test

For the series an

n 1

3

=

! , where ( ) ( )a f n f nandn = is positive, continuous, and decreasing for
x 1$ :

i) if the improper integral ( )f x dx
1

3

# exists, then the series an

n 1

3

=

! converges;

ii) if the improper integral ( )f x dx
1

3=

3

# , then the series an

n 1

3

=

! diverges.

Sample

Determine the convergence or divergence of 
n3 1
1

n 1
+

3

=

! .

Let ( )f x
x3 1
1

=
+

. Note that f(x) is positive, continuous, and decreasing for x 1$ .

ln
x

dx
x

dx
x

dx x
3 1

1
3 1

1
3
1

3 1
3

3
1

3 1
c

c

c

c

c

c

1 1 1
1

lim lim lim+
=

+
=

+
= +

" " "

3

3 3 3

# # # 8 B

ln ln lnx c
3
1

3 1
3
1

3 1 4
c

c

c
1

lim lim 3= + = + - =
" "3 3

8 8B B

Therefore, given series diverges by the integral test.

Sample

Determine the convergence or divergence of 
( )n n

n
5

2 5

n
2 3

1 +
+

3

=

! .

Let ( )
( )

f x
x x

x
5

2 5
2 3=
+
+ We note that ( )f x is positive, continuous, and decreasing for x 1$ .

( )
( ) ( )

( )

( ) ( )

x x
x

dx x x x dx
x x

x x c c

5
2 5

5 2 5
2
5

2
1

5
1

2
1

5
1

6
1

2
1

0
6
1

12
1

c c

cc

c

c

c

2 3

1

2 3
2 2

11

2 2

1

2 2

lim lim

lim lim

$
+
+

= + + =
-
+

+ +
-

= -

" "

" "

3

3 3

3 3

-
-

=- =-

=

# # =

= =

;

G

G G

E

Since the improper integral exists, given series converges by the integral test.
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Sample

Determine the convergence or divergence of n e
n

n 1

$
3

-

=

! .

Let ( )f x x e
e
xx

x$= =
- ; ( )f x is positive, continuous, and decreasing for x 1$ . If asked to prove

that f (x) is decreasing, we proceed as follows:

( )f x x e
x

$=
-

) x1 $( ) ( ) ( )(

( )

f x e e

e x

e
x

1

1

1

x x

x x

x

x

= + -

= -

-

- -

- -

-

e xe= -

=

l

If > , ( ) <x f x1 0l , so ( )f x is decreasing.

Next, we evaluate x e dx
x

1

$

3

-#

)e dx1

( )

( ) (

( )

x e dx

x e dx

udv dy dx v e

vdu

x e

xe e c

e x c

e
x

e
x

e
c

e

e

e

1

1

1

1

1 2

0
2

2

c

x

c

x x

x

x x

x x

x

x

c

x

c

c

c

1

1

lim

lim

lim

$

$

=

= = = -

= - - -

=- - +

=- + +

-
+

=
-
+

=
-
+

+

= +

=

"

"

"

3

3

3

-

- -

-

- -

- -

-

u x dv e dxlet and= =

g integration by partssinU

uv

c

= -

= +

#

#

#

#

#

;

;

E

E

Since integral exists, given series converges by the integral test.
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Sample

Determine the convergence or divergence of n
1

n 1

3

=

! .

This is just a divergent harmonic series, or a divergent p-series with p 1# .

Let’s try the Integral Test just to see what happens. Let ( )f x x
1

= . We note that for x 1$ , ( )f x is
positive, continuous, and decreasing.

Then ln ln lnx dx x dx x c
1 1

1
c

c

c

c

c1 1
1

lim lim lim 3= = = - =
" " "

3

3 3 3

# # 8 8B B

Since the improper integral doesn’t exist, given series diverges.

6. Comparison Test

Let a bandn

n

n

n1 1

3 3

= =

! ! be a series or positive terms:

i) if bn

n 1

3

=

! is a known convergent series and a bn n# for all positive n, then the series

an

n 1

3

=

! is convergent.

ii) if bn

n 1

3

=

! is a known divergent series and a bn n$ for all positive n, then the series an

n 1

3

=

!
is divergent.

Sample

Determine the convergence or divergence of 
3 2

5
n

n 1
+

3

=

! .

Remember, we must compare this series to either a known convergent or a known divergent 
series.

Let a
3 2

5
n

n

n

n1 1

=
+

3 3

= =

! ! ; consider the series b
2
5

n

n

n

n1 1

=
3 3

= =

! !

1. <a b
3 2

5
2
5

n n n n=
+

=

2. b
2
5

5
2
1

n

n

n

n

nn1 11

$= =
3 33

= ==

! !! c m this is a convergent geometric series with <r
2
1

1= . Since

<a bn n and bn

n 1

3

=

! converges, an

n 1

3

=

! converges.
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Sample

Determine the convergence or divergence of 
n1

1

n 1 +

3

=

! .

Consider the series 
n n

1 1

n n1 1
2
1=

3 3

= =

! ! , which is a divergent p-series with p < 1. Since 

< ,a
n n

b band
1

1 1
n n n

n 1

=
+

=
3

=

! diverges, we know nothing about an

n 1

3

=

! .

So, let’s try again:

Consider the series n
1

n 1

3

=

! , which is the divergent harmonic series. Then, >a
n n b

1

1 1
n n=

+
= ; 

since bn

n 1

3

=

! diverges, an

n 1

3

=

! diverges.

Sample

Determine the convergence or divergence of 
5 7
3

n

n 1
+

3

=

! .

Consider the series 
5
3

n

n 1

3

=

!c m , which is a convergent geometric series >r
5
3

1= . Then

<a
n

b
5 7

3
5
3

n n n

n

n=
+

= . Since bn

n 1

3

=

! is convergent,
n 1

3

=

! is convergent.

Sample

Determine the convergence or divergence of e
n

n 1

3
3

-

=

! .

First, e
e

1n

n
n

n1 1

3

3=
3 3

-

= =

! ! . Compare this to the series 
e e
1 1

n

n

n

n1 1

=
3 3

= =

! !c m , which is a convergent 

geometric series with <r e
1

1= . We see that <a
e e

b
1 1

n n n n3= = ; therefore an

n 1

3

=

! converges by the

comparison test.

7. Limit Comparison Test

Let a bandn

n

n

n1 1

3 3

= =

! ! be series of positive terms.

Find 
b
a

L
n

n

n
lim =
" 3

:

i) if L > 0, then the series a bandn

n

n

n1 1

3 3

= =

! ! either both converge or both diverge.

ii) if L 0= and if bn

n 1

3

=

! converges, then an

n 1

3

=

! converges.

iii) if L 3= and if bn

n 1

3

=

! converges, then an

n 1

3

=

! converges.
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Sample

Determine the convergence or divergence of 
n n4 5 3

1

n
2

1 - +

3

=

! .

Choose the series 
n
1

n
2

1

3

=

! , which is a convergent p-series ( > )p 2 1= with

a
n n

b
n

and
4 5 3

1 1
n n2 2=

- +
= , >

b
a

n n
n

n n
n

4 5 3
1

1 4 5 3 4
1

0
n

n

n

n n

2

2

2

2

lim lim lim$=
- +

=
- +

=
" " "3 3 3

c d dm n n

So given series converges by the limit comparison test.

Sample

Determine the convergence or divergence of 
n n

n
2 4 1

3

n
5 2

2

1 + +
+

3

=

! .

Choose the series 
n
1

n
3

1

3

=

! , which is a convergent p-series ( > )p 3 1= . With

a
n n

n
b

n
and

2 4 1
3 1

n n5 2

2

3=
+ +

+
= , >

b
a

n n
n n

n n
n n

2 4 1
3

1 2 4 1
3

2
1

0
n

n

n

n n

5 2

2 3

5 2

5 3

lim lim lim$=
+ +

+
=

+ +
+

=
" " "3 3 3

c d dm n n

Since >
b
a

0
n

n

n
lim
" 3

c m and bn

n 1

3

=

! converges, an

n 1

3

=

! converges.

Note: When choosing the second series to compare with the given series, find the ratio of the
highest power of the variable in the numerator to the highest power of the variable in the 
denominator.

For the series 
n

n
n

n
n2 2 2
1

n
5

2

1
5

2

3" "=
3

=

! use series 
n
1

n
3

1

3

=

! .

For the series 
n

n

n

n

n
n

n1

3 3 3 3
/

/

n
3

1
3 3 2

1 2

" "

+
= =

3

=

! use series n
1

n 1

3

=

! .

For the series 
n n

n

n

n
n
n

n3 7

5 5 5 5
/ /

n
5 2

2

1
5

2

5 2

2

1 2" "

+ -
= =

3

=

! use series 
n
1

/
n

1 2
1

3

=

! .

For the series 
n n n n n n n3 3

7

3

7
3

7
3
7

n
2 2 2

1

" "
$+

= =
3

=

! use the series
n
1

n
2

1

3

=

! .

Sample

Determine the convergence or divergence of 
n
n

5 1n
4

3

1 +

3

=

! .

n
n

n5 5
1

4

3

= so use the series n
1

n 1

3

=

! , which is the divergent harmonic series; with a
n
n

5 1
n 4

3

=
+

and

b n
1

n = we have >
b
a

n
n n

n
n

5 1 1 5 1 5
1

0
n

n

n

n n

4

3

4

4

lim lim lim$=
+

=
+

=
" " "3 3 3

c d dm n n . Therefore, given series 

diverges by the limit comparison test.
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Note: If >
b
a

0
n

n

n
lim
" 3

c m , then the series a bandn

n

n

n1 1

3 3

= =

! ! either converge or diverge together. If

b
a

0
n

n

n
lim =
" 3

c m and one series converges, then the other series converges. But, if 
b
a

0
n

n

n
lim =
" 3

c m and

one series diverges, we know nothing about the other series.

Other Useful Information Regarding Infinite Series
If c, A, and B are real numbers such that a A b Bandn

n

n

n1 1

= =
3 3

= =

! ! and S aN n

n

N

1

=
=

! , then:

i) c a c a c An

n

n

n1 1

$ $ $= =
3 3

= =

! ! , which implies that a constant times a convergent series yields an-

other convergent series.

ii) ( )a b a b A Bn n

n

n

n

n

n1 1 1

! ! != =
3 3 3

= = =

! ! ! , which implies that the sum or difference of 2 conver-

gent series yields another convergent series.

iii) a a a A Sn

n N

n

n

n

n

N

N

1 1 1

= - = -
3 3

= + = =

! ! ! . This implies that if the first N terms of a series are

dropped, the convergence or divergence of the series will not be affected.

iv) if the series an

n 1

3

=

! is convergent and the series bn

n 1

3

=

! is divergent, then the series ( )a bn

n

n

1

+
3

=

!
is divergent.

Summary of Tests for Convergence or
Divergence of Infinite Series

Test Series Necessary Conditions Conclusion

nth term an

n 1

3

=

! a 0
n

nlim !
" 3

diverges

Geometric Series
an

n 1

3

=

!
1$

<r

r

1 converges

diverges

p-Series
p1

n

n 1

3

=

! >p 1

p 1#

converges

diverges

Harmonic Series n1
n 1

3

=

! diverges

Alternating Series ) a1(
n

n

n

1

1

-
3

-

=

! < a a aand0 0n n

n

n1 lim# =
" 3

+ converges
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Test Series Necessary Conditions Conclusion

Ratio an

n 1

3

=

! <a
a

1
n

n

n 1
lim
" 3

+ converges

>a
a

1
n

n

n 1
lim
" 3

+ diverges

a
a

1
n

n

n 1
lim =
" 3

+ inconclusive

Root an

n 1

3

=

! <a 1
n

nnlim
" 3

converges

>a 1
n

nnlim
" 3

diverges

a 1
n

nnlim =
" 3

inconclusive

Integral an

n 1

3

=

!
( )

( )

( )

.,

., .:

a f n f

f x dx

f x dx

and is cont

pos and inc

exists

does not exist

n

1

1

=

3

3

#

#

a

a

converges

diverges

n

n

n

n

1

1

3

3

=

=

!

!

Comparison an

n 1

3

=

! <

>

.

.

a b b

a b b

and conv

and div

0

0

n n n

n

n n n

n

1

1

#

$

3

3

=

=

!

!

a

a

converges

diverges

n

n

n

n

1

1

3

3

=

=

!

!

Limit Comparison an

n 1

3

=

!

> .L and div0=

> .
b
a

L b

b
a

b

and conv0
n

n

n
n

n

n
n

n
n

n

1

1

lim

lim

=
"

"

3

3

3

3

=

=

!

!

a

a

convergesn

n

n

n

1

1

3

3

=

=

diverges

!

!

Alternating Series Error Bound
If the sum of a convergent alternating series is approximated by using the sum of the first N terms
of the series, an error is introduced. A theorem in calculus states that the absolute value of this er-
ror is less than the value of the N + 1st term. In other words, if the sum of the series is S and we
approximate the series’ sum by S N (sum of the first N terms), then the error R N is given by:

S S R aN N N 1#- = +
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Sample

Approximate the sum of the following series by its first 5 terms

) ...1 1=- + - + - + - +-(
n
1

4
1

9
1

16
1

25
1

36
1

49
1n

n
2

1

3

=

! c m

The sum of the first 5 terms is: .1
4
1

9
1

16
1

25
1

838611.- + - + - -

The given series is convergent by the Alternating Series Test since

( )
a

n n
a aand

1
1 1

0n n

n

n1 2 2 lim#=
+

= =
" 3

+

The error bound is given by: .S S R a
36
1

0277785 5 6# .- = =

So the actual sum lies between .S 0277785 - and .S 0277785 + ; therefore the sum, S, of the 
series lies in the interval

. . . .

. .

S

S

838611 027778 838611 027778

866389 810833

# #

# #

- - - +

- -

Sample

Find the sum of the infinite series )1
!

(
.

n
accurate to decimal places3

n

n

1

1

-3 +

=

!

!
( )

! ! ! ! !
...

n
1

1
1

2
1

3
1

4
1

5
1

6
1

n

n

1

1

-
= - + - + - +

3 +

=

!

Accuracy to 4 decimal places means we want <.error 0005. In other words, we want to find
which term of the series will be less than .0005. We want:

!
<.

.
< !

< !

n

n

n

1
0005

0005
1

2000

By trial and error, this is true when n 7= ( !7 5040= , but !6 is only 720). So we will approxi-
mate the sum of the series by using the first 6 terms:

! ! ! ! !
. .S accurate1

2
1

3
1

4
1

5
1

6
1

631944 6326 .= - + - + - = to 3 decimal places.

(Note: The given series is convergent since 
( )! ! !

a
n n

a a
n

and
1

1 1 1
0n n

n

n

n

1 lim lim#=
+

= = =
" "3 3

+ ).
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Radius and Interval of Convergence
of Power Series

The infinite series discussed so far, an

n 1

3

=

! have involved sums of constant terms where ( )a f nn =

for some function f. We now investigate infinite series whose terms are constant multiples of 

x – c, with c being a specific number.

A power series centered at c is a series of the form

( ) ( ) ( ) ( ) ( ) ... ( ) ...

( ) ( ) ( ) ... ( ) ...

a x c a x c a x c a x c a x c a x c

a a x c a x c a x c a x c

n

n

n
n

n

n
n

1

0
0

1
1

2
2

3
3

0 1 2
2

3
3

$ $ $ $ $ $

$ $ $ $

- = - + - + - + - + + - +

= + - + - + - + + - +

3

=

!

For each value of the variable x, the power series represents a series of numbers whose conver-
gence or divergence can be determined using the tests previously discussed.

■ For any power series ( )a x cn

n

n

1

$ -
3

=

! , exactly one of the following conditions is true:

i) the series is only convergent when x c=

ii) the series is absolutely convergent for all x

OR

iii) there exists some positive number R for which the series converges absolutely for x
such that <x c R- and diverges for all x such that >x c R- .

■ The number R is called the radius of convergence of the power series:

i) if the series is only convergent at x c= , then the radius of convergence is R 0=

ii) if the series is convergent for all x, the radius of convergence is infinity.

■ The set of all number x for which the series is convergent is called the interval of conver-
gence of the power series. As we shall soon see, a power series may converge at both end-
points, at just one endpoint, or at both endpoints of the interval of convergence. The
interval of convergence may be in one of the following forms:

[ , ] ( , ) ( , ] [ , )c R c R c R c R c R c R c R c Ror or or- + - + - + - +

Sample

Find the radius of convergence for the power series x
n

n 0

3

=

! .

With a xn
n

= , using the Ratio Test, we have:

a
a

x
x

x x
n

n

n

n

n

n

1
n 1

lim lim lim= = =
" " "3 3 3

+
+
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If the limit above is less than 1, then the series converges absolutely. We solve <x 1 to get
< <x1 1- .

Next, check for convergence at the endpoints:

1. When x 1= , series is ( ) ...1 1 1 1
n

n 0

= + + +
3

=

! which diverges

2. When 1x =- , series is )1 1 1( ...1 1
n

n 0

- = +- + +- +
3

=

! which diverges

After excluding both endpoints, the interval of convergence is (–1, 1); radius of convergence is 1.

Sample

Find the interval of convergence for the series n
x

n

n 0

3

=

! .

With a n
x

n

n

= , using Ratio Test again:

a
a

n
x

x
n

n
n

x x x
1 1

1
n

n

n

n

n

n

n

1
1

lim lim lim$ $ $=
+

=
+

= =
" " "3 3 3

+
+

When this limit is less than 1, series converges: < <x1 1<x 1 & - . Check for convergence at
endpoints:

1. When x 1= , series is ( )
n n
1 1

n

nn 00

=
33

==

!! , which is the divergent harmonic series.

2. When 1x =- , series is )1(
n

n

n 0

-3

=

! , which converges by alternating series test.

So we exclude x 1= , but include 1x =- . Therefore interval of convergence is
., )1 11 < [x or1#- -

Sample

Find the interval of convergence for the series 
!n

x
n

n 0

3

=

! .

Using Ratio Test,

( )!
!

a
a

n
x

x
n

n
x

1 1
0

n
n

n

n

n

n

n

1
1

lim lim lim$=
+

=
+

=
" " "3 3 3

+
+

Since this limit is < 1 for any value of x, this series converges for every real number x, interval
of convergence is ( , )3 3- .
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Sample

Find the interval of convergence for the series ( )n x
2

1
n

n

n 0

-3

=

! .

( )( )
( )

( )( )
a

a n x
n x n

n x

n
n x

n
n x x

2

1 1
1

2
2

1 1

1
2

1 1
2

1
1

2
1

n
n

n

n

n

n

n

n

n

n n

1
1

1

lim lim lim

lim lim

$

$ $ $

=
+ -

-
=

+ -

=
+ -

=
+ -

=
-

" " "

" "

3 3 3

3 3

+
+

+

Series converges when:

<

<

< <

< <

x

x

x

x

2
1

1

1 2

2 1 2

1 3

-

-

- -

-

Check endpoints of interval:

1. when x 1=- , series is )1
)2(

(
n

n
2

n

n

n

n

n0 0

$
-

= -
3 3

= =

! ! , which diverges; so exclude 1x =- .

2. when x 3= , series is ( )n
n

2
2

n

n

n n0 0

=
3 3

= =

! ! , which also diverges; so exclude x 3=

Interval of convergence is therefore , )1 31 < < (x or3- - .

Sample

Find the interval of convergence for the series !n x
n

n 0

3

=

! .

!
( )!

( )a
a

n x
n x

n x
x

x

if

if

1
1

0 0

0n
n

n

n

n

n

n

1
1

lim lim lim
3 !

=
+

= + =
=

" " "3 3 3

+
+

*

This series converges only when x 0= .
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1. The sequence 
n

n
5 2

3
2

2

-
( 2 converges to

what number?

A.
5
3

B.
2
3

C.
5
3

-

D.
2
3

-

E. 0

2. The sum of the infinite geometric series

5
2

20
6

80
18

320
54 f+ + + + is

A.
15
8

B.
3
2

C.
4
3

D.
4
5

E.
5
8

3. Which of the following sequences
converges?

I.
n

n
1 2-' 1

II.
n

n n1
2

^ h
* 4

III. n
2 1

n

2

-
( 2

A. I only

B. II only

C. I and II only

D. II and III only

E. I, II, and III

4. What are the values of x for which the

series 
!n

x
3 1

n

n

3 1

0 +

3 +

=

!
^ h

converges?

A. converges for all x

B. <x 3

C. only at x = 0

D. <x 1

E. series diverges for all x

5. Which of the following series
converge?

I. n
3

n 1

3

=

!

II. n
n

4
1

n 1
+
+

3

=

!

III.
)5(
2

n

n 1
-
-

3

=

!

A. I only

B. I and II only

C. I and III only

D. II only

E. III only

6. The radius of convergence for the series
( )x

4
3
n

n

n

2

1

-3

=

! is

A.
2
1

B.
4
3

C. 1

D. 2

E. 3
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7. The sequence ( )

n

n n1 2
2( 2 converges to

what number?

A. e

B. 2

C. 1

D.
2
1

E. 0

8. The interval of convergence of the

series ( )x
3

2
n

n

n 0

+3

=

! is

A. < <x1 1-

B. < <x3 1-

C. <x5 1#-

D. < x5 1#-

E. < <x5 1-

9. Which of the following series have the
same radius of convergence?

I.
n

x
2

n

n
2

0 +

3

=

!

II.
( )!n

x
3 1

n

n

3 1

0
+

3 +

=

!

III. ) ( )x1 2-(
n

n n

n

1

0

-3 +

=

!

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. none have the same radius of
convergences

10. Which of the following sequences
diverge?

I.
n n
n n

3 7
2 5

2

3

-
+

( 2

II.
e

n nn1
n

$
' 1

III.
( )n
e

n1

n

2) 3

A. I only

B. II only

C. I and II only

D. I and III only

E. I, II, and III

For extra practice, determine whether each
series converges or diverges.

11.
n
n

3
5 2

n

n 1
$
-

3

=

!

12.
n

n
3 1

2

n
2

1 +

3

=

!

13.
n3 1
5

n

n
2

1 +

3

=

!

14.
( )n nn1

1

n
2

1

3

=

!

15. ( )sin n
3

n

n 1

3

=

!

16.
!n

n 3
n

n 1

$
3

=

!
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Answers to Multiple-Choice Questions

1. D.

-

( )

( ) " / "

n
n

f x
x

x

f x
x

x

x
x

Let

form so we can apply L Hopital s Rule

5 2
3

5 2
3

5 2
3

4
6

4
6

2
3

x x

x

x

2

2

2

2

2

2

lim lim

lim

lim

3 3

-
=

-

=
-

-

-

=
-

-

-
" "

"

"

3 3

3

3

=

=

l lt

( 2

2. E. ...
5
2

20
6

80
18

420
54

+ + + + is a geometric series with a
5
2

1= and r
4
3

= ; its sum is 

r
a

1 1 4
3

5
2

4
1
5
2

5
81

-
=

-
= = .

3. E.

I.
n

n
1 2-' 1 with ( )f x

x
x

1 2
=

-

( )f x
x

x
form

1 2

2
1

2
1

x x

x

lim lim

lim

=
-

-

-

" "

"

3 3

3

converges

=

=

-/ "" form so we can apply

L Hopital s Rule

3 3- -

l lt

II. ( )

n

nn1
2( 2 with ( )f x

x
xn1

2=

( ) ,lim lim

lim

lim

f x
x

x

x

Inx
form so L Hopital s Rule can be applied

converges

2

2
1

0

x x

x

x

x

2

1

2

3
3

=

=

=

=

" "

"

"

3 3

3

3

l lt
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III. n
2 1

n

2

-
( 2 with ( )f x

x
2 1

x

2

=
-

( )

( )

( )

f x
x

x
n

form use L Hopital s Rule

n

converges

2 1

2 1
2

2 1 2
2

0

x x

x

x

x

x

x

2

2

2

lim lim

lim

lim

"

3
3

3
3

=
-

=

=

=

" "

"

"

3 3

3

3

form use L Hopital s Rule" l l

l l

t

t

All three sequences converge.

4. A.
( )!n

x
3 1

n

n

3 1

0
+

3 +

=

!

( ( ) )!
( )!

( )!
( )!

( )( )( )

a
a

n
x

x

n

n
x

x

n

n n n
x

3 1 1
3 1

3 4
3 1

3 4 3 3 3 2

( )

n
n

n

n

n

n

n

n

n

n

1
3 1 1

3 1

3 4

3 1

3

lim lim

lim

lim

$

$

=
+ +

+

=
+

+

+ + +

" "

"

"

3 3

3

3

+
+ +

+

+

+

0

=

=

Since <a
a

0 1
n

n

n 1
lim =
" 3

+ , series converges for all x.

5. E.

I. n

n

divergent harmonic series

3

3
1

n

n

1

1

$=

3

3

=

=

!

!

II.
n
n

a

n
n

so diverges by nth term test

4
1

4
1

1 0

n

n

n

n

1

lim

lim

!

+
+

=
+
+

=

"

"

3

3

3

=

!
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III.
( )

( )( )

( < )r rconvergent geometric series with

5
2

5 5
2

5
2

5
1

5
1

1

n

n

n
n

n

n

1

1
1

1

1

$

-
-

=
- -

-

= -

=

3

3

3

=

-
=

=

-

!

!

! c m

6. D. ( )x
4

3
n

n

n

2

1

-3

=

!

( )

( )

( )

( )

( ) ( )

a
a x

x

x

x

x x

4

3

3
4

4

3

3
4

4
3

4
3

( )

n
n

n

n

n

n

n

n

n

n

n

n

n

n

1
1

2 1

2

1

2 2

2

2 2

lim lim

lim

lim

$

$

=
-

-

-

-

- -

" "

"

"

3 3

3

3

+
+

+

+

+

=

= =

The given series converges if ( )
<

x
4
3

1
2

-

( ) <

< <

< <

x

x

x

3 4

2 3 2

1 5

2
-

- -

So the radius of convergence is 2.

7. E. ( )

n

n n1 2
2( 2 with ( )

( )
f x

x

n x1 2
2=

-( )
( )

f x
x

n x

x
x

x

form use L Hopital s Rule
1 2

2
2
2

2
1

x x

x

x

2

2

lim lim

lim

lim

3
3

= -
" "

"

"

3 3

3

3

0

=

=

=

ll t
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8. E. ( )x
3

2
n

n

n 0

+3

=

!

( )
( )a

a x
x

x

x

3

2
2

3

3
2

3
2

n
n

n

n

n

n

n

n

n

1
1

1

lim lim

lim

$=
+

+

+

+

" "

"

3 3

3

+
+

+

=

=

Series converges when <
x

3
2

1
+

<

<

< <

< <

x

x

x

x

3
2

1

2 3

3 2 3

5 1

+

+

- +

-

Check endpoints for convergence:

i. when )
)

3
1

)5 2+( (
(x 5

3 3
n

n

n

n

n

n

n

n0 0 0

&=-
-

=
-

= -
3 3 3

= = =

! ! ! diverges

so exclude x = –5

ii. when ( )
( )x 1

3
1 2

3
3

1n

n

n

n

n
n

nn0 00

&=
+

= =
3 33

= ==

! !! diverges

so exclude x = 1

Therefore interval of convergence is –5 < x < 1.

9. B.

I.
n

x
2

n

n
2

0 +

3

=

!

( )

( )

a
a

n
x

x
n

n n

x n

x
n n

n

x

x

1 2
2

2 3

2

2 3
2

1

n
n

n

n

n

n

n

n

1
2

1 2

2

2

2

2

lim lim

lim

lim

$

$

$

$

=
+ +

+

+ +

+

=
+ +

+

=

" "

"

"

3 3

3

3

+
+

=

=

Series converges if <x 1

< <x1 1- radius at convergence is 1
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II.
( )!n

x
3 1

n

n

3 1

0
+

3 +

=

!

( )!

( )!

( )!
( )!

( )( )( )

a
a x

x

n

n
x

x

n

n n n
x

3 1

3 1

3 4
3 1

3 4 3 3 3 2

( )

( )

n
n

n

n

n

n

n

n

n

n

n

1
1

3 1 1

3 1

3 4

3 4

3

lim lim

lim

lim

$

$

=
+

+

+
+

=
+ + +

" "

"

"

3 3

3

3

+
+

+ +

+

+

+

<0 1

=

=

So series converges everywhere; infinite radius of convergence.

III. ( ) ( )
n

x1 2
n

n

1

1

- -3 +

=

!

( )
( )

( )

a
a

n
x

x
n

x
n

n

x

x

1
2

2

2
1

2 1

2

n
n

n

n

n

n

n

1
1

lim lim

lim

$

$

$

=
+

-
-

-
+

= -

-

" "

"

3 3

3

+
+

=

=

Series converges if <x 2 1-

< <x1 2 1- -

< <x1 3 radius of convergence is 1

Therefore, I and III have the same radius of convergence.

10. D.

I.

( )

n n
n n

f x
x x

x x

x x
x x

x
x

x

with

3 4
2 5 7

3 4
2 5 7

3 4
2 5 7

6 4
6 5

6
12

x x

x

x

2

3 2

2

3

2

3

2

lim lim

lim

lim

3

-
+ -

=
-

- -

-
- -

-
-

=

=

" "

"

"

3 3

3

3

( )f x =

**=

diverges

( 2
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II.

( )

( )

ln

ln

ln

e
n n

f x
e

x x

e
x x

e
x

e
x

x e

n

with

1

1

1

1

n

x

x x

x

x

x

x

x

x

x

lim lim

lim

lim

lim

$

$

$

$

=

+

=

=

" "

"

"

"

3 3

3

3

3

( )f x =

**=

converges0=

' 1

III.
( )

( )
( )

( )

n
e

f x
x

e

x
e

x
x

e

x

e

x e

n

with
n

n

1

1

1

2

1

n

x

x x

x

x

x

x

x

x

x

2

2

2

2

lim lim

lim

lim

lim $ 3

=

=

= =

" "

"

"

"

3 3

3

3

3

( )f x =

**=

diverges

) 3

**Note use of L’Hôpital’s Rule in all three limits above.

Therefore, I and III diverge.

11. converges

n
n

3
5 2

n

n 1
$
-

3

=

! simplify 
n

n5
3
5

n n3 = use series
n3
1

1
3
1

n

n

n1 1

$=
3 3

= =

! ! c m , which is a convergent

geometric series <r 1.

With a
n
n

3
5 2

n n
$

=
- and b

3
1

n n= , find 
b
a

n
n

n
n

3
5 2

1
3 5 2

5
n

n

n

n

n

n

n

lim lim lim:
$=

-
=

-
=

" " "3 3 3

= ;G E . Since

>
b
a

5 0
n

n

n
lim =
" 3

and bn

n 1

3

=

! is convergent, the series an

n 1

3

=

! is convergent by the limit

comparison test.
372

Part II: Specific Topics

CliffsAP Calculus AB & BC 2nd Edition • 8683 1 Ch07 5 • Jill • 03/20/01 • p 372

8683-1 Ch07.F  3/22/01  7:54 AM  Page 372



12. diverges

n
n

3 1
2

n
2

1 +

3

=

! simplify 
n
n

n3
2

3
2

2 = use series n
1

n 1

3

=

! , which is a divergent harmonic series

With a
n

n
b nand

3 1
2 1

n n2=
+

= find >
b
a

n
n n

n
n

3 1
2

1 3 1
2

3
2

0
n

n

n

n n

2 2

2

lim lim lim$=
+

=
+

=
" " "3 3 3

; =E G . Since

bn

n 1

3

=

! is divergent, the series an

n 1

3

=

! diverges by the limit comparison test.

13. diverges

n3 1
5

n

n
2

1 +

3

=

!

( )
a

n n
n n

3 1
5

6
5 5

6
5 1 51

n

n

n

n

n

n

n

n

2

2

lim lim lim lim
$ $

3=
+

= = =
" " " "3 3 3 3

d d en n o

form3
3 form — use L’Hôpital’s Rule

Since a 0
n

nlim !
" 3

, series diverges by the nth term test.

14. converges

( )n nn1
1

n
2

1

3

=

!

Letting ( )
( )

f x
x xn1

1
2= ; note that f(x) is continuous, positive, and increasing for x 2$

Then ( )
( )

f x dx
x x

dx
n1
1

2
22

=
33

##

( )

( )

( )

x x
dx

x x dx

x

x

n

n

n

n

n n

n

1

1
1

1
1

1
1

1
1

1
1

1
1

1
c

c

c

c

c

c

c

c

c

c

2
2

2

2

1

2

2

2

2

lim

lim

lim

lim

lim

$

=

=

=
-

=
-

=
-

+

=

"

"

"

"

"

3

3

3

3

3

-

-

#

#

=

;

;

G

E

E

So series converges by the integral test.
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15. converges

( )sin n
3

n

n 1

3

=

!

Since ( )sin n1 1# #-

( )sin
a

n
b

3 3
1

3
1

n n n

n

n#= = =c m

Since the series bn

n 1

3

=

! is a convergent geometric series ( < )r 1 and a bn n# , the series an

n 1

3

=

!
converges by the comparison test.

16. converges

n
n 3

!

n

n 1

:
3

=

!
( )

( ) !

!
!

a
a

n

n
n

n

n n n
n

n

1

1 3
3

3
3

3

!

n
n

n

n

n

n

n

n

n

1
1

1

lim lim

lim

lim

$
:

$

:
:

=
+

+

" "

"

"

3 3

3

3

+
+

+

<0 1

=

= =

Since <a
a

1
n

n

n 1
lim
" 3

+ , series converges.

Sample Free-Response Question:
Sequences and Series

1. For the infinite series 
n

n
1n

4

1 +

3

=

! :

a) show that it converges by using the integral test

b) show that it converges by using the comparison test
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Answer to Free-Response Question

1. a)
n

n
1n

4

1 +

3

=

! Let ( )f x
x

x
1

4=
+

f(x) is continuous, positive, and decreasing for x 1$ ; so the integral test can be applied.

( )

( )

( )

( )

( ) ( )

arctan

arctan arctan

f x dx

x
x

dx

x
x

dx

x
x

dx

x

c

1

1

2
1

1
2

2
1

2
1

1

2
1

2 4

2
1

4

8

c

c

c

c

c

c

c

c

c

1

4
1

2 2
1

2 2
1

2

1

2

lim

lim

lim

lim

lim

=
+

=
+

=
+

=

= -

= -

=

=

r r

r

r

"

"

"

"

"

3

3

3

3

3

3

#

#

#

#

c

c

m

m

=

8

8

G

B

B

So series converges by the integral test.

b)
n

n
1n

4

1 +

3

=

! Simplify 
n
n

n
1

4 3=

Compare given series to 
n
1

n
3

1

3

=

! , which is convergent p-series (p = 3 > 1). Then we need

to show that a
n

n
n

b
1

1
n n4 3#=

+
=

( )

n
n

n

n n n

1
1

1

n n

4 3

3 4

4 4

#

+

+

#

a bso #

n n 1# +

Since a bn n# and the series bn

n 1

3

=

! converges, the series an

n 1

3

=

! converges by the comparison test.
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Polynomial Approximations of Functions 
(Taylor and Maclaurin Polynomials)
If a function f has derivatives through order n, the nth degree Taylor polynomial for f at c is
given by:

( ) ( ) ( ) ( )
!

( ) ( )
!

( ) ( )
...

!
( ) ( )

P x f c f c x c
f c x c f c x c

n
f c x c

2 3

( )

n

2 3 4 4

$
$ $ $

= + - +
-

+
-

+ +
-

l
m n

If the c 0= , then the nth degree polynomial

( ) ( ) ( )
!

( )
!

( )
...

!
( )

P x f f x
f x f x

n
f x

0 0
2
0

3
0 0

( )

n

n n2 3

$
$ $ $

= + + + + +l
m n

is called the nth degree Maclaurin polynomial for f.

Sample

Find the nth degree Maclaurin polynomial for ( )f x e
x

= .

( )f x e=

( )

( ) ( ) ( )
!

( )
!

( )
...

!
( )

! ! !

! ! !

f x e

P x f f x
f x f x

n
f x

x x
n
x

x x
n
x

0 0
2
0

3
0 0

2
1

3
1 1

2 3

( ) ( )

( )

x

x

n x n

n

n n

n

n

n

0

0

0

2 3

2 3

2 3

$
$ $ $

$ $ $

=

= + + + + +

( ) ...P x x1= + + + + +

( )f x e=

( )f e0 1= =

h

...x1 1 $= + + + + +

( )f e0 1= =

( )f e0 1= =

l l

l
m n

Sample

Find the first 4 Maclaurin polynomials for ( )f x e
x

= .

From previous example:

( )

( )

( )
!

( )
! !

P x

P x x

P x x
x

x
x

P x x
x x

x
x x

1

1

1
2

1
2

1
2 3

1
2 6

0

1

2

2 2

3

2 3 2 3

=

= +

= + + = + +

= + + + = + + +

376

Part II: Specific Topics

CliffsAP Calculus AB & BC 2nd Edition • 8683 1 Ch07 5 • Jill • 03/20/01 • p 376

8683-1 Ch07.F  3/22/01  7:54 AM  Page 376



From the examples above, a power series for ( )f x e
x

= could be written as

!
( )

!
( )

!n
f x

n
x

n
x0 1

( )n n n

n

n

nn 0 00

$ $
= =

3 33

= ==

! !!

The series 
!n

x
n

n 0

3

=

! has as an interval of convergence ( , )3 3- .

To show this 
( )!

!
a

a
n
x

x
n

n
x

1 1
0

n
n

n

n

n

n

n

1
1

lim lim lim$=
+

=
+

=
" " "3 3 3

+
+

Since this limit <1, series converges by the Ratio Test. Thus the Maclaurin series e x converges
to e x for all values of x.

Shown below are graphs of ( )f x e
x

= and the first, second, and third degree Maclaurin polyno-
mials for e x:

Notice that as n increases (from n nto1 3= = ) the graph of the nth degree Maclaurin polyno-

mial ( )P xn becomes a closer approximation for the graph of ( )f x e
x

= . For 

( )f x e
x

= and ( )P x x
x x

1
2 63

2 3

= + + + note that (. ) .f e9 2 4596
.9.= and

(. ) (. )
(. ) (. )

.P 9 1 9
2
9

6
9

2 42653

2 3

.= + + + . If we were to use ( )P xn for a larger value of n, the

value for (. )f 9 and (. )P 9n would be even closer together.

f (x) = e2

P1(x) = 1+x

f (x) = ex

P2(x) = 1+x+ x 2

2

f (x) = ex

P3(x) = 1+x+ x 2

2
x 3

6
+
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Sample

Find the nth degree Maclaurin polynomial for sinx.

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

sin sin

cos cos

sin sin

cos cos

sin sin

cos cos

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

0 0 0

0 0 1

0 0 0

0 0

0 0 0

0 0 1

( ) ( )

( ) ( )

4 4

5 5

"

"

"

"

"

"

= = =

= = =

=- =- =

=- =- =-

= = =

= = =

l l

m m

n n

) x1

( ) ( )
( )

!
( )

!
( )

!
( )

!
( )

...

! ! ! !

! ! ! ! ( )!
(

P x f
f x f x f x f x f x

x x x x

x x x x
n

Then 0
1
0

2
0

3
0

4
0

5
0

2
0

3
1

4
0

5
1

3 5 7 9 2 1

( ) ( )

n

n

n n

2 3 4 4 5 5

2 3 4 5

3 5 7 9 2 1

$ $ $ $ $

$ $ $ $

= + + + + + +

+
-

+

( ) ...

...

P x x

x

0 1 $= + + - + + +

= - + - + + +

l m n

So a power series for f ( x ) = sin x could be

) x1
( )!

(
sinx

n2 1

n n

n

2 1

0

=
+

-3 +

=

!

Determining the interval of convergence for this series:

) x1

) x1( ( ) )!
(

(

( )!

( )!
( )!

( )( )

a
a

n
n

n
x

x

n

n n
x

2 1 1
2 1

2 3
2 1

2 3 2 2

( )

n
n

n

n

n n

n n

n

n

n

n

1
1 2 1 1

2 1

2 3

2 1

2

lim lim

lim

lim

$

$

=
+ +

-

-

+

+
+

+ +

" "

"

"

3 3

3

3

+
+ + +

+

+

+

0

=

= =

Since <a
a

1
n

n

n 1
lim
" 3

+ , series converges everywhere by Ratio Test. So interval at convergence is

( , )3 3- .

Differentiation and Integration of Power Series

If f is a function defined by a power series, i.e.,

( ) ( ) ( ) ( ) ( ) ...f x a x c a a x c a x c a x cn
n

n

0 1 2
2

0

3
3

= - = + - + - + - +
3

=

!

and has radius of convergence >R 0 on the interval ( , )c R c R- + , then:
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1. f is continuous, differentiable, and integrable

2. the derivative of f is ( ) ( ) ( ) ... ( )f x a a x c a x c n a x c2 3 n

n

n
1 2 3

2

1

1
= + - + - + = -

3

=

-!l

3. the integral of f is

( ) ( )
( ) ( )

...
( )

f x dx a x c a
x c

a
x c

C n c
a x c

C
2 3

n
n

n

0 1

2

2

3

1

1

0

1= - +
-

+
-

+ + = +
-

+
3 +

=

# !

4. R is the radius of convergence for the series that results from differentiating or integrating
the original power series. As in all power series, checking convergence at the endpoints of
( , )c R c R- + may result in an interval of convergence that differs from that of the original
power series.

Sample

Find a Maclaurin series for cosx.

Using the Maclaurin series for sinx, we can differentiate to find the Maclaurin series for cosx.

) x1
! ! !

...
( )!

(
sinx x

x x x
n3 5 7 2 1

n n

n

3 5 7 2 1

0

= - + - + =
+

-3 +

=

!

) ( )

)

n x

x

1 2 1

1

$ +
! ! !

...
( )!

(

! ! !
...

( )!
(

cosx
x x x

n

x x x
n

1 3
3

5
5

7
7 2 1

1
2 4 6 2

n n

n

n n

n

3 5 6 2

0

2 4 6 2

0

$ $ $= - + - + =
+

-

= - + - + =
-

3

3

=

=

!

!

The interval of convergence will also be ( , )3 3-

Sample

Find the nth degree Taylor polynomial centered at 1 for the function ( )f x x
1

= .

1

6

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

f x x f

f x
x

f

f x
x

f

f x
x

f

f x
x

f

1
1 1

1
1

2
1 2

6
1

24
1 24

( ) ( )

2

3

4

4

5

4

"

"

"

"

"

= =

=
-

=-

= =

=
-

=-

= =

l l

m m

n n
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Then the nth degree Taylor polynomial is:

( ) ( )
( )( )

!
( )( )

!
( )( )

!
( )( )

...
!

( )( )

( )
( ) ( ) ( )

...
!

( ) !( )

( ) ( ) ( ) ( ) ( ) ... ( ) ( )

P x f
f x f x f x

f x
n

f x

x
x x x

n
n x

P x x x x x x

1
1

1 1
2

1 1
3

1 1

4
1 1 1 1

1 1
2

2 1
6

6 1
24

24 1 1 1

1 1 1 1 1 1 1

( ) ( )

n

n n

n n

n
n n

2 3

4 4

2 3 4

2 3 4

= +
-

+
-

+
-

+
-

+ +
-

- +
-

+
- -

+
-

+ +
- -

= - - + - - - + - + + - -

1= +-

l m n

Sample

Find the interval of convergence for the power series for ( )f x x
1

= derived in previous
example.

) ( )x1 1-( ) (x P x
1

n
n n

n 0

= = -
3

=

!

With ) ( )x1 1--(an
n n

=

) ( )x1 1-
) ( )x1 1-

(
(

a
a

x 1
n

n

n

n

n n

n n

n

1
1 1

lim lim lim=
-

-
= -

" " "3 3 3

+
+ +

If this limit < 1, the series will converge. Therefore,
<

< <

< <

x

x

x

1 1

1 1 1

0 2

-

- -

Check for convergence at the endpoints:

1. if x 0= , series is )1 )1( ( ( )1 1
n n n

nn n00 0

- - = =
33 3

== =

!! !

this series diverges; so exclude x 0= .

2. if x 2= series is )1)1( ( ) (1
n n n

nn 00

- = -
33

==

!! this series 

diverges; so exclude x 2= . therefore the interval 
at convergence is (0, 2).

Sample

Write the first, second, third, and fourth degree 

Taylor polynomials for ( )f x x
1

= centered at 1.

f (x) = 1
x

P2(x) = 1 – (x –1)+(x –1)2

f (x) = 1
x

P1(x) = 1 – (x –1)
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From the results of the work in previous examples,

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

P x x

P x x x

P x x x x

P x x x x x

and

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1

2
2

3
2 3

4
2 3 4

= - -

= - - + -

= - - + - + -

= - - + - + - + -

The graphs at ( ) ( )f x x P xand
1

1= through ( )P x4

are shown at the right and on the previous page.

Note that as n increases from 1 to 4, the graph 
of ( )P xn becomes a better and better 
approximation to the graph of ( )f x x

1
= within 

the interval at convergence, < <x0 2.

Sample

Find the power series for ( ) lnf x x= .

Since )(lnx dx x C xfor
1

1$= +# we can integrate the power series for x
1 to obtain the power

series for lnx. The Taylor series for x
1 centered at 1 was found to be:

) ( )x1 1-( ) ( ) ( ) ( ) ... (x x x x x
1

1 1 1 1 1
n n2 3 4

= - - + - - - + - + + -

Integrating term by term, we obtain the series:

( )
( ) ( ) ( ) ( )

...
( ) ( )

...lnx x
x x x x

n
x

1
2
1

3
1

4
1

5
1

1
1 1

n n2 3 4 5 1

= - -
-

+
-

+
-

+
-

+ +
+

- -
+

+

f (x) = 1
x

P4(x) = 1 – (x –1)+(x –1)2 – (x –1)3 +(x –1)4

f (x) = 1
x

P3(x) = 1 – (x –1)+(x –1)2 – (x –1)3
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Note that since we want powers of (x – 1), the first term should be x – 1, since its derivative

would be 1, the first term in the power series for x
1 . Also, we can write the “last” term as

) ( )x1 1-(
n

n n1
-

-

since it would be the term before the last one integrated. Therefore, a power

series for lnx is: ) ( )x1 1-(
lnx n

n n

n

1

1

=
-3 -

=

! .

Sample

Find the power series for ( )f x
x1

1
=

+
.

Using the power series for x
1 , we replace each x with x1 + to obtain the desired series:

) ( ) ...x1 1- +

) (( ) ) ...

) ...

x

x

1 1 1

1

+ - +

+

( ) ( ) ( ) ( ) ... (

(( ) ) (( ) ) (( ) ) (( ) ) ...

(

... (

x x x x x

x
x x x x

x x x x

1
1 1 1 1 1

1
1

1 1 1 1 1 1 1 1 1

1

n n

n n

n n

2 3 4

2 3 4

2 3 4

= - - + - - - + - + + -

+
= - + - + + - - + - + + - +

+ -

= - + - + + + -

Sample

Find the power series for ( )
( )

f x
x1

1
2=

+
.

Since ( )x1 1 + =( )
( )dx

d
x dx

d
x

x1
1

1
1

11 2 2

2+
= + =-

+
-- -

c `m j , we can differentiate the power series

for 
x1

1
+

to obtain a power series for 
( )x1

1
2

+
.

) ...x1 +... (
x

x x x x
1

1
1

n n2 3 4

+
= - + - + + + -

differentiating all terms yields:

) ...nx1 +
( )

... (
x

x x x
1

1
1 2 3 4

n n

2

2 3 1

+
-

=- + - + + + -
-

multiplying both sides of equation by –1, we get

) ...nx1 +
( )

...(
x

x x x
1

1
1 2 3 4

n n

2

2 3 1 1

+
= - + - + -

+ -

Therefore: ) nx1-
( )

(
x1

1 n n

n
2

1 1

1+
=

3
+ +

=

!
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Sample

Find the power series for ( ) ( )cosf x x
2

= .

Using the power series for cosx, we replace each x with x 2.

)

) ( )

)

x

x

x

1

1

1

! ! ! !
...

( )!
(

...

( )
!

( )
!

( )
!

( )
!

( )
...

( )!
(

...

! ! ! !
...

( )!
(

...

cos

cos

x
x x x x

n

x
x x x x

n

x x x x
n

1
2 4 6 8 2

1
2 4 6 8 2

1
2 4 6 8 2

n n

n

n n

n

n n

n

2 4 6 8 2

0

2
2 2 2 4 2 6 2 8 2 2

0

4 8 12 16 4

0

= - + - + + +
-

+

= - + - + + +
-

+

= - + - + + +
-

+

3

3

3

=

=

=

!

!

!

Therefore, ) x1
( )

( )!
(

cos x
n2

n n

n

2
4

0

=
-3

=

!

Sample

Find the power series for ( )
sin

f x x
x

= .

) x1
! ! ! !

...
( )!

(
...sinx x

x x x x
n3 5 7 9 2 1

n n

n

3 5 7 9 2 1

0

= - + - + + +
+

-
+

3 +

=

!

multiplying each term of the above equation by x
1 , we obtain:

) x1

) x1

( ) (
! ! ! !

...
( )!

(
...)

! ! ! !
...

( )!
(

...

sin

sin

x x x x
x x x x

n

x
x x x x x

n

1 1
3 5 7 9 2 1

1
3 5 6 9 2 1

n n

n

n n

n

3 5 7 9 2 1

0

2 4 6 8 2

0

= - + - + + +
+

-
+

= - + - + + +
+

-
+

3

3

+

=

=

!

!

Therefore, a power series for sinx
x is: ) x1

( )!
(sin

x
x

n2 1

n n

n

2

0

=
+

-3

=

!

Sample

For the power series defined by ( )
( )

f x n
x 2

n

n 1

=
-3

=

! , find the interval of convergence for

a) ( )f x

b) ( )f xl

c) ( )f x dx#
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a) ( )
( )

f x n
x 2

n

n 1

=
-3

=

!

( )
( )

( )a
a

n
x

x
n

x
n

n
x x

1
2

2
2

1
2 1 2

n
n

n

n

n

n

n

1
1

lim lim lim$ $ $=
+

-
-

= -
+

= - = -
" " "3 3 3

+
+

Series converges when < < < < <x x x2 1 1 1 1 3& &- -

At endpoints:

i) x 1= series ( )
n
1

n

n 1

-3

=

! converges by alternating series test, so include x 1= .

ii) x 3= series ( )
n n
1 1

n

n n1 1

=
3 3

= =

! ! divergent harmonic series, so exclude x 3= . Therefore,

interval of convergence is [1, 3) for ( )f x .

b) ( )
( )

f x n
n x 2

n

n

1

1

=
-3 -

=

!l

( )
( )( )

( )
( )a

a
n

n x

n x
n

x
n

n
x x

1
1 2

2
2

1
2 1 2

n
n

n

n

n

n

n

1
1lim lim lim$ $ $=

+
+ -

-
= -

+
= - = -

" " "3 3 3

+
-

Series converges when < < <x x2 1 1 3&-

Check endpoints:

i) x 1= series is )1
)1(

(n
n

n

n

n

n

1

1

1

1

-
= -

3 3-

=

-

=

! ! diverges so exclude x 1= .

ii) x 3= series is ( )
( )n

n 1
1

n
n

nn

1
1

11

=
33 -

-

==

!! diverges so exclude x 1= .

Therefore, interval of convergence is (1, 3) for ( )f xl .

c) ( )
( )

( )
f x dx

n n
x

1
2

n

n

1

1

=
+

-3 +

=

# !

( )( )
( )

( )

( )
( )a

a
n n

x

x

n n
x

n
n

x x
1 2

2

2

1
2

2
2 1 2

n
n

n

n

n

n

n

1
2

1lim lim lim$ $ $=
+ +

-

-

+
= -

+
= - = -

" " "3 3 3

+
+

+

Series converges when < < <x x2 1 1 3&-

Check for convergence at endpoints:

i) x 1= series is )1
( )

(
n n 1

n

n

1

1
+

-3 +

=

! converges by alternating series test so include x 1= .

ii) x 3= series is 
( )
( )

n n n n1
1 1

n

nn

1

2
11

+
=

+

33 +

==

!! converges when compared to convergent 

p-series 
n
1

n
2

1

3

=

! so include x 3= .

Therefore interval of convergence is [1, 3] for ( )f x dx# .
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Lagrange Form of the Remainder
of a Taylor Polynomial
If an nth degree Taylor polynomial, ( )P xn , is used to approximate a functional value ( )f x , there
is some error resulting from the approximation. If we call this error the remainder ( )R xn , then
it follows that ( ) ( ) ( )f x P x R xn n= + ; in other words, the actual functional value ( )f x is equal to
the sum of the approximate value ( )P xn and the remainder ( )R xn . Since ( ) ( ) ( )f x P x R xn n= + ,
then ( ) ( ) ( )R x f x P xn n= - . The absolute value of the remainder ( )R xn is called the error result-
ing from the approximation, i.e., ( )R xerror n= . Because ( )R xn is the difference between
( ) ( )f x P xand n , it follows that ( )P xn will approach ( )f x as n approaches infinity only when ( )R xn

approaches 0 as n approaches infinity. Taylor’s Theorem stated below gives us a method of de-
termining the error resulting from our approximation.

Taylor’s Theorem
Let f be a function that is differentiable through order n + 1 on the closed interval [a, b] con-
taining the number c. Then for each x in the interval [a, b], there exists a number z between x
and c such that:

( ) ( ) ( ) ( )
!

( ) ( )
!

( ) ( )
...

!
( ) ( )

( )f x f c f c x c
f c x c f c x c

n
f c x c

R x
2 3

( )n n

n

2 3

$
$ $ $

= + - +
-

+
-

+ +
-

+l
m n

,

where ( )
( )!
( ) ( )

R x
n

f z x c
1

( )

n

n n1 1
$

=
+

-
+ +

.

The number ( )R xn is called the Lagrange form of the remainder.

Sample

a) Use the fifth degree Maclaurin polynomial to approximate ( . )sin 0 4 .

b) Determine the accuracy of the approximation.

a) For ) ...1 +
! ! !

... (
( )!

sinx x
x x x

n
x

3 5 7 2 1
n

n3 5 7
1

2 1

= - + - + + -
-

-
-

The fifth degree Maclaurin polynomial is

( )
! !

P x x
x x

x
x x

3 5 6 1205

3 5 3 5

= - + = - +

Therefore ( . ) ( . ) ( . )
!

( . )
!

( . )
.f P0 4 0 4 0 4

3
0 4

5
0 4

3787525

3 5

. = - + =
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b) Using the Legrange form of the remainder, ( . )
!

( )( . )
R

f z
0 4

6
0 4

( )

5

6 6

= where z is between 0

and 0.4. Since sinx( )f x
( )6

=- for ( ) sinf x x= and since ( ) <sin z 1- , we have:

( . )
!

( ( ))( . )
<. <.

sin
R

z
0 4

6
0 4

000006 000015

6

=
- . Thus when ( . )P 0 45 is used to approxi-

mate ( . )sin 0 4 , the value obtained is accurate to five decimal places, so we should adjust

our approximation in part a) and write it as .37875.

Sample

a) Determine the degree of the Maclaurin polynomial that should be used to approximate 
e3 to four decimal places.

b) Use this Maclaurin polynomial to estimate e3 to four decimal places.

With ( )f x e
x

= , the nth degree Maclaurin polynomial is given by ( )
! !

...
!

P x x
x x

n
x

1
2 3n

n2 3

= + + + + + .

The Lagrange form of the remainder with x e e
3
1 /3 1 3

= =a k is:
( )!

( )
R

n

f z

3
1

1

3
1( )

n

n
n

1
1

=
+

+
+

c

c

m

m

where

< <z0
3
1.

Since ( )f x e
( )n x

= for all derivatives of ( )f x e
x

= , we have
n 1+

n 1+

<
( )!

<
( )!

R
n

e

R
n

e

3
1

1 3
1

3
1

1 3

/

/

n

n

1 3

1 3

+

+

c c

c

m m

m

but since < , <e e27 3
/1 3 and we have:

<
( )!

R
n3

1
1 3
3

n n 1
+

+c m

<
( )!

R
n3

1
1 3
3

n n
+

c m
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We are seeking e3 with four decimal accuracy, so we need R
3
1

n c m to be less than 0.00005.

Thus < .R
3
1

00005n c m when 
( )!

< .
n 1 3

1
00005n

+

By trial and error, this is true when n 5= . Since 
( )!

.
5 1 3

1
174960

1
0000065 .

+
=

Because .000006 is less than .00005, we use P
3
1

5 c m as an approximate value of e3 accurate to 4
decimal places.

b) Then ( )
! ! ! !

P x x
x x x

x
x

1
2 3 45

2 3 4 5

= + + + + + and

! ! ! !
.P

3
1

1
3
1

2
3
1

3
3
1

4
3
1

5

3
1

3645
5087

1 395615

2 3 4 5

.= + + + + + =c c

c c c c

m m

m m m m

So, .e 1 39563 . accurate to 4 decimal places.

Power Series for Some Common Functions
Function Power Interval of 

Series Convergence

x1 )1( ( ) ( ) ( ) ( ) ( ) ...x x x x x1 1 1 1 1 1
n n

n 0

2 3 4
= - - = - - + - - - + - +
3

=

! (0, 2)

x1
1
+^ h

)1( ...x x x x x x1
n n

n 0

2 3 4 5
= - = - + - + -
3

=

! (–1, 1)

lnx
)1( ( )

( )
( ) ( ) ( )

...
n

x
x

x x x
1
1

1
2
1

3
1

4
1

n n

n

1

0

2 3 4

=
+

- -
= - -

-
+

-
-

-
+

3 +

=

! (0, 2]

e
x

! ! ! ! !
...

n
x

x
x x x x

1
2 3 4 5

n

n

2

0

3 4 5

= = + + + + + +
3

=

! ( , )3 3-

sinx
) x1

( )!
(

! ! ! !
...

n
x

x x x x
2 1 3 5 7 9

n n

n

2 1

0

3 5 7 9

=
+

-
= - + - + +

3 +

=

! ( , )3 3-

cosx
) x1

( )!
(

! ! ! !
...

n
x x x x

2
1

2 4 6 8

n n

n

2 2

0

4 6 8

=
-

= - + - + +
3

=

! ( , )3 3-

arctanx
) x1(

...
n

x
x x x x

2 1 3 5 7 9

n n

n

2 1

0

3 5 7 9

=
+

-
= - + - + +

3 +

=

! [–1, 1]
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1. The nth-degree Taylor polynomial for
( )f x e

x
= , centered at 1 is

A. ...
!

e ex
ex ex

n
ex

2 6

n2 3

+ + + + +

B.

) ex1

...

!
(

e ex
ex ex

n

2 6
n n

2 3

1

- - - +

+
-

+

C.
( ) ...e e x

e e

n
e

1
2 3

( ) ( )

( )

x x

x

1 1

1 n

2 3

+ - + - +

+

- -

-

D.
( ) ...

!

e e x
e e

n
e

1
2 6

( ) ( )

( )

x x

x

1 1

1 n

2 3

+ - + + +

+

- -

-

E.
( )

( ) ( )
...

!
( )

x
x x

n
x

1 1
2
1

6
1

1
n

2 3

+ - +
-

+
-

+

+
-

2. Use the fourth-degree Maclaurin
polynomial for cosx to approximate
cos(0.1)

A. .997

B. .995

C. .993

D. .257

E. .0001

3. A power series for sin(x2) could be

A.
! ! ! !

...
x x x x

1
2 4 6 8

4 8 12 16

- + - + +

B. ...x
x x x x
3 5 7 9

2
6 10 14 18

- + - + +

C.
! ! ! !

...x
x x x x
3 5 7 9

2
6 10 14 18

- + - + +

D.
! ! ! !

...x
x x x x
3 5 7 9

2
6 10 14 18

+ + + + +

E.
! ! !

...x
x x x

1
2 3 4

2
4 6 8

+ + + + +

4. A power series for ( )f x x
1

= is

) ( ) ( ) .x x1 1 1- = -)1

( ) ( ) ( ) ...

( (

x x x x
1

1 1 1 1

n n n

n

n

2 3

0

= - - + - - - +

+ - -
3

=

!
Find a power series for 

x1
1
+

.

A. ) ( )x1 1-(
n n

n

1 1

0

-
3

+ +

=

!

B. ) ( )x1(
n n

n

1

0

-
3

+

=

!

C. ) x1(
n n

n

1

0

-
3

+

=

!

D. ) ( )x1 1-(
n n

n

1

0

-
3

+

=

!

E. ) x1(
n n

n 0

-
3

=

!

5. A power series or ( )f x
x1

1
2=

+
is

A. ...x x x x1
2 4 6 8

- + - + +

B. ...x x x x1
2 4 6 8

+ + + + +

C.
! ! !

...x
x x x

1
2 3 4

2
4 6 8

+ + + + +

D.
! ! ! !

...
x x x x

1
2 4 6 8

4 8 12 16

- + + +

E. ( ) ( ) ( )

( ) ...

x x x

x

1 1 1 1

1

2 2 2 2 3

2 4

- - + - - -

+ - +
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6. The third-degree Taylor polynomial
about 1 of e x2

is

A. ( ) ( )

( )

e e x e x

e x

2 1 3 1

3
10 1

2

3

+ - + -

+
-

B. ( )
( ) ( )

e e x
e x e x

1
2

1
6

1
2 3

+ - +
-

+
-

C. ( )
( ) ( )

e x
e x e x

1
3

1
3

1
2 3

- -
-

+
-

D. ( ) ( )

( )

e x e x

e x

1 1 2 1

3 1

2

3

+ - + -

+ -

E. ( )
( ) ( )

e e x
e x e x

1
2

1
3

1
2 3

+ - +
-

+
-

7. The graph at the function represented

by the Maclaurin series

! !
...

!
...x

x x
n
x

1
2 3

n2 3

+ + + + + + intersects

the graph of y = x2 – 1 at the point with

x-coordinate [calculator problem]

A. –4.74

B. –3.183

C. –1.293

D. –1.148

E. –.703

8. When the fourth-degree Maclaurin
polynomial for ex is used to
approximate e, the value is

A. 2
2
1

6
1

12
1

+ - +

B. 2
2
1

3
1

4
1

+ + +

C. 2
2
1

6
1

12
1

+ + +

D. 2
2
1

6
1

12
1

- + -

E. 2
2
1

3
1

4
1

- + -

9. Find the third-degree Taylor polynomial
for f(x) = ln (5 – x), centered at 4.

A. ( )
( ) ( )

x
x x

4
2
4

3
4

2 3

- -
-

+
-

B. ( )
( ) ( )

x
x x

4
2
4

3
4

2 3

- +
-

+
-

C. ( )
( ) ( )

x
x x

4
2
4

3
4

2 3

- - +
-

-
-

D. ( ) ( ) ( )x x x4 4 4
2 3

- - - - - -

E. ( )
( ) ( )

x
x x

4
2
4

3
4

2 3

- - -
-

-
-

10. The Maclaurin series for cosx is

! ! ! !
...

x x x x
1

2 4 6 8

2 4 6 8

- + - + + If g is a

function such that ( ) ( )cosg x x dx
2

= # ,

then the coefficient of the x9 in the

Maclaurin series for g(x) is

A.
!9 8

1
$

-

B.
!9 4

1
$

-

C. 0

D.
!9 4

1
$

E.
!9 8

1
$
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Answers to Multiple-Choice Questions

1. D.

( )f e1 =

( )

( )

( )

f x e

f x e

f x e
( ) ( )

x

x

x

n x n x

=

=

=

( )f e1 =

( )f e1 =

( ) ( )f x e f e1

h h

= =

l l

m m

Then Pn(x) ( ) ( )( )
!

( )( )
!

( )( )
...

!
( )( )

f f x
f x f x

n
f x

1 1 1
2

1 1
3

1 1 1 1
n n2 3

= + - +
-

+
-

+ +
-

l
m n

centered at 1

( )
!

( )
!

( )
...

!
( )

( )
( ) ( )

...
!

( )

e e x
e x e x

n
e x

e e x
e x e x

n
e x

1
2

1
3

1 1

1
2

1
6

1 1

n

n

2 3

2 3

= + - -
-

+
-

+ +
-

= + - -
-

+
-

+ +
-

2. B. ( )

( )

( )

cos

cos

cos

f x x

f x x

f x x
( ) ( )4 4

=

=-

=

1

( )

( )

sin

sin

f x x

f x x

=

=

( )f 0 =-

( )f 0 1=

( )f 0 0=

( )

( )

f

f

0 0

0 0

=

=l l

m m

n n

Then ( )P x4 ( ) ( )
!

( )
!

( )
!

( )
f f x

f x f x f x
0 0

2
0

3
0

4
0

( )2 3 4 4

= + + + +l
m n

centered at 0

)

**

x
x x x

x x
see note below

1 0
2

1
6

0
24

1

1
2 24

2 3 4

2 4

$
$ $ $

= + + + +

= - +

(-

so ( )P x
x x

1
2 244

2 4

= - +

Then ( . )
( . ) ( . )

.P 0 1 1
2

0 1
24
0 1

9954

2 4

.= - +

**We could have memorized the Maclaurin power series for

! ! ! !
...cosx

x x x x
1

2 4 6 8

2 4 6 8

= - + - + + and used the first three terms.
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3. C. Using 
! ! ! !

...sinx x
x x x x
3 5 7 9

3 5 7 9

= - + - + + and replacing each x with x2, we obtain the
series:

( )
!

( )
!

( )
!

( )
!

( )
...

! ! ! !

sin x x
x x x x

x x x x

3 5 7 9

3 5 7 9

2 2
2 3 2 5 2 7 2 9

2
6 10 14 18

= - + - + +

...x= - + - + +

4. E. ) )1 1( ) ( ) ( ) ... ( ( ) ( ( )x x x x x x
1

1 1 1 1 1 1
n n n n

n

2 3

0

= - - + - - - + + - - = - -
3

=

!

substituting x + 1 for each x, we obtain:

) )1 1

(( ) ) (( ) ) (( ) ) ...

( (( ) ) ( (( ) )

x
x x x

x x

1
1

1 1 1 1 1 1 1

1 1 1 1
n n n n

n

2 3

0

+
= - + - + + - - + - +

+ - + - = - + -
3

=

!
so that

) ) ( )x1 1... ( ( ) (
x

x x x x x
1

1
1

n n n n

n

2 3

0
+

= - + + - + + - = -
3

=

!

5. A. Since ( )arctan
dx
d

x
x1

1
2=

+
, we can use the power series for arc tan x, differentiate

each term, and obtain a power series for 
x1

1
2

+

...

( ) ...

arctan

arctan

x x
x x x x

dx
d

x
x x x x

x

3 5 7 9

1
3

3
5

5
7

7
9

9
1

1

3 5 7 9

2 4 6 8

2

= - + - + +

= - + - + + =
+

Therefore ...
x

x x x x
1

1
12

2 4 6 8

+
= - + - + +

Or  . . . Using the power series for 
x1

1
+

and replacing each x with x2:

...

...

x
x x x x

x
x x x x

1
1

1

1
1

1

2 3 4

2

2 4 5 8

+
= - + - + +

+
= - + - + +

6. A. ( ) ... ( )

( ) ... ( )

( ) ( )

... ( )

( ) ( )

f x e f e

f x e x f e e

f x e x x e

x e e f e e e

f x x e e x x e x

1

2 1 2 2

2 2 2

4 2 1 4 2 6

8 2 4 2 2

x

x

x x

x x

x x x

x x x

x x

2

2

3

3

2

2

2 2

2 2

2 2 2

2 2 2

2 2

: :

: :

:

: :

= =

= = =

= +

= + = + =

= + + +

... ( )

xe x e xe

xe x e f e e e

8 8 4

12 8 1 12 8 20

= + +

= + = + =

l l

m

m

n

n

391

Sequences, Infinite Series, and Polynomial Approximations (BC Only)

CliffsAP Calculus AB & BC 2nd Edition • 8683 1 Ch07 5 • Jill • 03/20/01 • p 391

8683-1 Ch07.F  3/22/01  7:58 AM  Page 391



Then ( )P x3 ( ) ( )( )
!

( )( )
!

( )( )
f f x

f x f x
1 1 1

2
1 1

3
1 1

2 3

= + - +
-

+
-

l
m n

centered at 1
( )

( ) ( )

( ) ( ) ( )
( )

e e x
e x e x

P x e e x e x
e x

2 1
2

6 1
6

20 1

2 1 3 1
3

10 1

2 3

3
2

3

= + - +
-

+
-

= + - + - +
-

7. D. The Maclaurin series 
! !

...
!

...x
x x

n
x

1
2 3

n2 3

+ + + + + + is a power series for ex. Using a

calculator, we solve the equation ex = x2 – 1 and obtain x = –1.148.

8. C. The fourth-degree Maclaurin polynomial for ex is:
! ! !

x
x x x

1
2 3 4

2 3 4

+ + + +

Then

! ! !
e 1 1

2
1

3
1

4
1

2
2
1

6
1

24
1

1
= + + + +

= + + +

9. E.

( )x1 5 1

1

-

1

1

11

1

( ) ( )... ( )

( ) ( ) ... ( )

( ) ( )

( )
... ( )

( ) ( )
( )

... ( )

f x n x f n

f x
x

x f

f x x

x
f

f x x
x

f

1 5 4 1 0

5
1 5 4

1
1

1 5

5
4

1

2 5
5

2
4

1
2

2

1

2

2

2

3

3

$

$

= - = =

=
-
-

=- - =
-

=-

= - -

=- =
-
-

=
-

=-

= - - =
-
-

=
-

=-

-

-

-

-

l l

m

m

n n

Then ( )P x3 ( ) ( )( )
!

( )( )
!

( )( )
f f x

f x f x
4 4 4

2
4 4

3
4 4

2 3

= + - +
-

+
-

l
m n

centered at 4
)( )x1 4- )( )x2 4-

( )
( (

( )
( ) ( )

x

x
x x

0 1 4
2 6

4
2
4

3
4

2 3

2 3

= - - +
-

+
-

=- - -
-

-
-

10. D. The Maclaurin series for cosx is:

! ! ! !
...cosx

x x x x
1

2 4 6 8

2 4 6 8

= - + - + +

Replacing each x with x2, we obtain the Maclaurin series for

( )
! ! ! !

...cos x
x x x x

1
2 4 6 8

2
4 8 12 16

= - + - + +

Then integrating the Maclaurin series for cos(x2), term by term, we get the Maclaurin
series for g(x):

( )
! ! ! !

...g x x
x x x x

5 2 9 4 13 6 17 8

5 9 13 17

$ $ $ $
= - + - + +

Therefore, the coefficient of x9 is 
!9 4

1
$
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Sample Free-Response Question: Polynomial
Approximation of Functions (Taylor and Maclaurin
Polynomials)

1. Suppose P(x) = –3 + 5(x – 2) – 7(x – 2)2 + 6(x – 2)3 is the third-degree Taylor polynomial
for the function g about 2. Assume that g is differentiable for all orders for all real
numbers.

a) Find g(2)

b) Find g"2

c) Write the fourth-degree Taylor polynomial for h, given that ( ) ( )h x g t dt
x

2

= # about 2

d) Write the second-degree Taylor polynomial for g' about 2

e) Use the result of part d to estimate g'(2.1)

Answer to Free-Response Question

a) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

g x x x x

g

g

g

3 5 2 7 2 5 2

2 3 5 2 2 7 2 2 6 2 2

2 3 0 0 0

2 3

2 3

2 3

=- + - - - + -

=- + - - - + -

=- + - +

=-

b) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

g x x x x

g x x x

g x x

g

g

3 5 2 7 2 6 2

5 14 2 18 2

14 36 2

2 14 36 0 0

2 14

2 3

2

=- + - - - + -

= - - + -

=- + -

=- + -

=-

l

m

m

m

c) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

h x g t dt

t t t dt

t
t t t

x
x x x

x
x x x

3 5 2 7 2 6 2

3 2
2

5 2
3

7 2
4

6 2

3 2
2

5 2
3

7 2
4

3 2
0

3 2
2

5 2
3

7 2
4

3 2

x

x

x

2

2 3

2

2 3 4

2

2 3 4

2 3 4

=

= - + - - - + -

= - - +
-

-
-

+
-

=- - +
-

-
-

+
-

-

- - +
-

-
-

+
-

#

# 8

=

B

G
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d) ( ) ( ) ( ) ( )

( ) ( ) ( )

g x x x x

g x x x

3 5 2 7 2 6 2

5 14 2 18 2

2 3

2

=- + - - - + -

= - - + -l

e) from part d, ( ) ( ) ( )

( . ) ( . ) ( . )

. .

g x x x

g

5 14 2 18 2

2 1 5 14 2 1 2 18 2 1 2

5 1 4 0 18

2

2

2

.

= - - + -

- - + -

= - +

( . ) ( . )

.

5 14 0 1 18 0 1

3 78

= - +

=

l

l
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Answer Sheet for Practice Test 1 — AB
(Remove This Sheet and Use It to Mark Your Answers)

Section IA
Multiple-Choice Questions

Section IB
Multiple-Choice Questions

5

1
2
3
4

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

6
7
8
9

10

13
14
15

11
12

16
17

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

5

1
2
3
4

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

6
7
8
9

10

13
14
15

11
12

16
17
18
19
20
21
22
23
24
25

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

26
27
28

A EDCB

A EDCB

A EDCB
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- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 
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- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
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R
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- 
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- 
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- 
- 

- 
- 

- 
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- 
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- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
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- 

- 
- 

- 
- 

- 
- 

- 
- 
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- 
- 
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Taking and Grading the Practice Exams
To use these practice exams most effectively, it is recommended that you simulate actual test-
ing conditions as nearly as possible. You will need a quiet area where you will not be disturbed
for about three and a half hours, severa1 number two pencils, and some scratch paper. (On the
actual exam, scratch paper is not allowed; the exam booklet has large amounts of blank space
for you to work in.) For these practice exams, try to keep your work on your scratch paper or-
ganized so that you can look back to learn from your mistake. In between sections on the exam,
take a fifteen-minute break. The exam is given at 8:00 A.M., so try taking at least one of the
two tests some Saturday morning two or three weeks prior to the actual exam.

When grading the free-response questions, follow the suggested grading rubrics. Note: The AP
readers will look at your work for consistency and follow through. If you miss an early part of
a problem, don’t assume that you have missed all the subsequent points. For example, suppose
part (a) of a question requires you to find the first derivative of a given function, and part (b) re-
quires the second derivative. If you answer part (a) incorrectly, you may still get all of the
points on part (b) if you differentiate your part (a) answer correctly. If you aren’t sure you did,
give a fellow student or your AP teacher your part (a) answer to differentiate for you.
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Practice Test 1 — AB

Section I: Multiple-Choice Questions

Section IA
Time: 55 Minutes

28 Questions

Directions: The 28 questions that follow in Section IA of the exam should be solved using the
space available for scratchwork. Select the best of the given choices and fill in the correspond-
ing oval on the answer sheet. Material written in the test booklet will not be graded or awarded
credit. Fifty-five minutes are allowed for Section IA. No calculator of any type may be used in
this section of the test.

Notes: (1) For this test, ln x denotes the natural logarithm of x (that is, logarithm of the base e).
(2) The domain of all functions is assumed to be the set of real numbers x for which f(x) is a real
number, unless a different domain is specified.

CliffsAP Calculus 3rd Edition • 8683 1 practice test 1 5 • Jill • 03/20/01 • p 399

1. ln x 3 0$+^ h if and only if

A. < <x3 2- -

B. >x 2-

C. x 2$ -

D. >x 4

E. x 4$

2. Which of the following is NOT
symmetric with respect to the y-axis?

I. y xcos2=

II. y x 2
2

= +^ h

III. y xln=

A. I only

B. II only

C. III only

D. I and II only

E. I and III only

GO ON TO THE NEXT PAGE
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3. sin 2 =i

A. sincos
2 2

-i i

B. sin2 i

C. sin
2i

D. sin cos2 i i

E. cos
2
1

1 2- i^ h

4. What is lim
b

b
4 3

5
b

2

-
+

" 3-

J

L

K
K

N

P

O
O?

A.
3
5-

B.
3
1-

C.
3
1

D. 1

E.
4
5

5. What is lim
x

x
2

3
x 2 -

+
" +

c m? 

A. 3+

B. 2

C. 0

D. 3-

E. none of these

6. What is lim
t

cos t
1

1 1

t 1 -

- -

"

^
f

h
p?

A. 0

B. 1

C. 2

D. 3

E. The limit does not exist.

7. What is lim
x

x
5
5

x 3 -"
+
c m?

A. 3+

B. 15

C.
2
15

D. 0

E. 3-

8. lim
sin x

x
2x 0

=
"

c m

A. –1

B. 0

C.
2
1

D. 1

E. 2

9. Find a value for b such that f(x) will be
continuous, given that

f x
x

b

x x
1

2

-
-

^ h

Z

[

\

]
]]

]
]]

for x ≠ 1

for x = 1

A. b = 0

B. b = 1

C. b = 2

D. f(x) is continuous for any value of b.

E. f(x) is not continuous for any value
of b.
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Use the following graph of f(x) for
problems 10–12.

10. f(x) is discontinuous for

A. x = 1, 3 only 

B. x = 1, 2, 4 only 

C. x = 2, 3, 4 only

D. x = 1, 2, 3, 4 only

E. x = 1, 2, 3, 4, 5

11. lim f x
x a"

^ h does not exist for which of the

following values of a?

A. a = 1, 3 only

B. a = 1, 2, 4 only

C. a = 2, 3, 4 only

D. a = 1, 2, 3, 4 only

E. a = 1, 2, 3, 4, 5

12. f(x) is NOT differentiable at

A. x = 1, 3 only

B. x = 1, 2, 4 only

C. x = 2, 3, 4 only

D. x = 1, 2, 3, 4 only

E. x = 1, 2, 3, 4, 5

13. If y
x dx

dy
then

4
3

2=
+

=

A.
x

x

4

6
2 2

+

-

` j

B.
x

x

4

3
2 2

+` j

C.
x

x

4

6
2 2

+` j

D.
x4

3
2 2

+

-

` j

E.
x2
3

14. Given that , .y x
dx
dy

find
x2

=

A. lnx x2 2
x2

+6 @

B. x x2
x2 1-

^ `h j

C. lnx x
x2

^ `h j

D. lnx2 2+

E. x2
x2 1-

15. A particle moves along a horizontal
path so its velocity at any time >t t 0^ h

is given by / .lnv t t t ft s=^ h Its
acceleration is given by

A. /a t t ft s
1 2

=^ h

B. /lna t t ft s1
2

= +^ h

C. /lna t t t ft s
2

= +^ h

D. /
ln

a t t
t

ft s
2

=^ h

E. /a t
t

ft s
2

2
2

=^ h

y

x

3

2

1

-1 321 54
-1
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16. If ,V r
dr
dV

what is
3
4

r

3

3

= r
=

?

A. 4r

B. 12r

C. 24r

D. 36r

E. 42r

17. The graph of y xe3
x2

= has a relative
extremum at

A. x = 0 only

B. x xand0
2
1

= =
-

C. x
2
1

=
- only

D. x = –2 only

E. The graph has no relative extrema.

18. Find the equation of the line that is
normal to the curve y x

tan3
2

= at the
point where x

2
=
r.

A. x y2 12 36+ = +r

B. x y2 6 18+ = +r

C. x y6 2 3 6- + = -r

D. x y2 6 18- + = +r

E. x y6 2 3 6- = -r

19. Find the area of the largest rectangle
that has two vertices on the x-axis and
two vertices on the curve y x9

2
= - .

A. 3

B. 4 3

C. 12 3

D. 16 3

E. 24 3

20. Sand is falling into a conical pile at the
rate of /m s10

3 such that the height of
the pile is always half the diameter of
the base of the pile. Find the rate at
which the height of the pile is changing
when the pile is 5 m high. (Volume of a
cone: V r h

3
1 2

= r )

A. /m s
25

1
r

B. /m s
5
2
r

C. /m s
5
4
r

D. /m s
5
8
r

E. /m s250r

21. The antiderivative of 
x
3

2 is

A. x C
3

+

B.
x

C
6
3

-
+

C. x C
3-

+

D.
x

C
1

3 +

E.
x

C
3
2

-
+

22. x
dxcos

20

=
r

#

A. –2

B. –1

C. –
2
1

D.
2
1

E. 2
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23. dx3
x2

=#

A. ln
C

2
3

3
x2
+

B.
ln

C
2 3

1
3

x2
+

C. ln C2 3 3
x2
+^ h

D.
ln

C
3

2
3

x2
+

E.
ln

C
3

1
3

x2
+

24.
x

x
dx

1

2/

2
0

1 2

-
=#

A. 1
2
3

-

B. ln
2
1

4
3

C. 3 2-

D.
6

1-
r

E. 2 3-

25.
x

dx
9 4

5
2

-
=#

A. ln x C
2
5

9 4
2-

- +

B. ln x C
8
5

9 4
2-

- +

C. x C
4
5

9 4
2-

- +

D. x C
2
5

9 4
2-

- +

E. arcsin
x

C
2
5

3
2

+

26. ln
x
x

dx
l

e3

=#

A. 1

B. 4

C.
2
9

D. e2 1
3
-

E. e 2
3
-

27. The area of the region bounded by the
curve y = e2x, the x-axis, the y-axis, and
the line x = 2 is

A. e
e square units

2

4

-

B. e
square units

1
1

4

-

C. e
square units

2 2
1

4

-

D. e e square units2
4
-

E. e square units2 2
4
-

28. The average value of y e
x3

= over the
interval from x = 0 to x = 4 is

A. e
12

1
12

-

B. e
4

1
12

-

C. e
12

12

D. e
4

12

E. e 1
12

-
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1. If ,f x x fthen is2= l^ ^h h

A. –2

B. –1

C. 1

D. 2

E. nonexistent

2. If ,y e ythen2
6

= =l

A. e
7

2
7

B. e12
5

C. e2
6

D. 2

E. 0

3. The absolute maximum of
sinf x x x2

1
= -

-
^ h on its domain is

approximately

A. 0.523

B. 0.571

C. 0.685

D. 0.866

E. 0.923

4. Which of the following is equivalent to

?
sin

d

d

/3
i
i

=i r

^ h

A. lim
sin

3

2
1

/3 -

-

i r
i

"i r

B. lim
sin

3

2
3

/3 -

-

i r
i

"i r

C. lim
sin

3

2
3

0 -

-

i r
i

"i

D. lim
sin sin

h
h

h 0

+ -i i
"

^ h

E. lim
cos cos

h
h

h 0

+ -i i
"

^ h

5. The function cosg x x e
2
3x

= -^ ^ `h h j has
two real zeros between 0 and 2. If (a, 0)
and (b, 0) represent these two zeros,
then a b+ is approximately

A. 2.17

B. 2.00

C. 1.55

D. 0.99

E. 0.45404

Part III: AP Calculus AB and BC Practice Tests

CliffsAP Calculus 3rd Edition • 8683 1 practice test 1 5 • Jill • 03/20/01 • p 404

Section IB
Time: 50 Minutes

17 Questions

Directions: The 17 questions that follow in Section IB of the exam should be solved using the
space available for scratchwork. Select the best of the given choices and fill in the correspond-
ing oval on the answer sheet. Material written in the test booklet will not be graded or awarded
credit. Fifty minutes are allowed for Section IB. A graphing calculator is required for this sec-
tion of the test.

Notes: (1) If the exact numerical value does not appear as one of the five choices, choose the
best approximation. (2) For this test, ln x denotes the natural logarithm function (that is, loga-
rithm to the base e). (3) The domain of all functions is assumed to be the set of real numbers x
for which f(x) is a real number, unless a different domain is specified.
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6. Find the number guaranteed by the
mean value theorem for the function
f x e

/ x1 2
=^

]
h

g on the interval [0, 2].

A. 1.083

B. 0.709

C. 0.614

D. –0.304

E. The mean value theorem cannot be
applied on [0, 2].

7. Let A be the region completely bounded
by lny x 2= + and y x2= . Correct to
three decimal places, the area of A is
approximately

A. 0.053

B. 0.162

C. 0.203

D. 1.216

E. 2.358

8. Which of the following is equivalent to 

?lim n
i

n1
2

1
2

n
i

n 2

1

+ +
" 3

=

! c cm m= G

A. x dx1
2

2

4

+# ` j

B. x dx
2

1

3

#

C. x dx1
2

1

2

+# ` j

D. x dx1
2

1

3

-# ` j

E. x dx1
2

1

3

+# ` j

9.
dz
d

e dx
x

z
4

0

2

=# a k< F

A. e C
x4 2

+

B.
x

e
C

8

x4 2

+

C. e 1
z4 2

-

D. e
z4 2

E.
z

e
C

8

z4 2

+

10. Approximate the slope of the line
tangent to the graph of lnf x x x4=^ h at
the point where x = 2.1.

A. 4.93

B. 5.07

C. 6.23

D. 6.97

E. 7.27

11. If 
dt
dy

y=r , which of the following 

could represent y?

A. e
1 t

r
B. πe

/x t

C. e
t
+rr

D. e
tr

E. e
tr r

12. If ,f x
x

x
f xthen

3

3

= =l^ ^h h

A. x x
3
8 23

B. x x
11
3 23

C. x x
3
8 2 23

D. x3
3

E. x x
3

10 23
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13. Let A be the area bounded by one arch
of the sine curve. Which of the
following represents the volume of the
solid generated when A is revolved
around the x-axis?

A. sinx x dx2
0

r
r

#

B. sin x dx
2

0

r
r

#

C. sinx x dx
0

r
r

#

D. sin x dx
2

0

2

r
r

#

E. arcsin y dy2
0

1

r #

14. lim
sin sin

h
h1 1

h 0

+ -

"

^ h
is approximately

A. 0

B. 0.54

C. 0.63

D. 0.89

E. none of these

15. The fundamental period of
sin cosy x x3 2= + is

A. π

B.
3

2r

C.
3

4r

D.
3

5r

E. 2π

16. Approximate the value of lnx dx
1

3

#
using 4 circumscribed rectangles.

A. 1.007

B. 1.296

C. 1.557

D. 2.015

E. 3.114

17. sin cosx x dx
2

=#

A. cos x C
3
2 3

- +

B. sin x C
2
1 2

- +

C. sin x C
2
1 2

+

D. cos x C
3
1 3

+

E. cos x C
3
1 3

- +
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1. Let area A be the region bounded by 
y = 2x – 1, y = –2x + 3, and the y-axis.

(a) Find an exact value for the area of
region A.

(b) Set up, but do NOT integrate, an
integral expression in terms of a
single variable for the volume of
the solid generated when A is
revolved around the x-axis.

(c) Set up an integral expression in
terms of a single variable for the
volume of the solid generated when
A is revolved around the y-axis.
Find an approximation for this
volume correct to the nearest
hundredth.

2. Let f be the function defined by

.f x e 8
x4 2 2

= -
-

^ h

(a) Approximate any zeros of f(x) to
the three decimal places.

(b) What is the range of f(x)? Give an
exact answer. Justify your answer.

(c) Find the equation of the line
normal to the graph of f(x) where
x = 1. Justify your answer.

3. A particle moves along a horizontal
line so that its velocity at any time 

< <t t
6 6

-
r r

c m is given by 

/tant t m s
3
1

3 2= +^ ^h h . At time t = 0,
the particle is 3 m to the left of the
origin.

(a) Approximate the acceleration of the
particle when the particle is at rest.

(b) Write an equation for the position,
s(t), of the particle.
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Section II: Free-Response Questions

Section IIA
Time: 45 Minutes

3 Questions

Directions: For the three problems that follow in Section IIA, show all your work. Your grade will
be determined on the correctness of your method, as well as the accuracy of your final answers.
Some questions in this section may require the use of a graphing calculator. If you choose to give
decimal approximations, your answer should be correct to three decimal places, unless a particular
question specifies otherwise. During Section IIB, you will be allowed to return to Section IIA to
continue your work on questions 1–3, but you will NOT be allowed the use of a calculator.

Notes: (1) For this test, ln x denotes the natural logarithm function (that is, logarithm to the
base e). (2) The domain of all functions is assumed to be the set of real numbers x for which
f(x) is a real number, unless a different domain is specified.

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS
SECTION ONLY. DO NOT WORK ON ANY OTHER SECTION IN THE TEST. STOP
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4. A box in the shape of a rectangular
prism has a square bottom and is open
on top. The material for the sides of the
box costs $18 per square foot. Find the
dimensions of the largest box (by
volume) that can be made for $360.
Justify your answer.

5. Let f be the function defined by 

.f x x
x

3 4
2

2
3

= - -^ h

(a) Find the exact x-coordinates of
any point where f(x) has a
tangent line that is parallel to
the line y = –9x – 8.

(b) Find all points of inflection of f(x).
Justify your answer.

6. The function f(x) is continuous on a
domain of [–4, 4] and is symmetric with
respect to the origin. The first and
second derivatives of f(x) have the
properties shown in the following chart.

x 0 < x < 1 x = 1 1 < x < 3 x = 3 3 < x <4

f'(x) positive D.N.E.* negative 0 negative

f"(x) positive D.N.E.* negative 0 negative

*D.N.E. means “does not exist”

(a) Find the x-coordinates of all
relative extrema on the domain
[–4, 4]. Classify them as relative
maximums or relative minimums.
Justify your answer.

(b) Find the x-coordinates of any
points of inflection on the domain
[–4, 4]. Justify your answer.

(c) Sketch a possible graph of f x^ h ,
given that f 0 0=^ h and f 4 2=-^ h .
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Section IIB
Time: 45 Minutes

3 Questions

Directions: For the three problems that follow in Section IIB, show all your work. Your grade
will be determined on the correctness of your method, as well as the accuracy of your final an-
swers. During Section IIB, you will be NOT be allowed the use of a calculator. During this sec-
tion, you will also be allowed to return to questions 1–3 in Section IIA to continue working on
those problems, but you will NOT have the use of a calculator.

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS
SECTION ONLY. DO NOT WORK ON ANY OTHER SECTION IN THE TEST. STOP

8683-1 PracticeTest1.F  3/22/01  7:59 AM  Page 408



409

Practice Test 1 — AB

Answer Key for Practice Test 1 — AB

Section I: Multiple-Choice Questions

Section IA

CliffsAP Calculus 2nd Edition • 8683 1 practice test 1 3 • Jill • 03/07/01 • p 409

1. C

2. B

3. D

4. C

5. A

6. A

7. C

8. C

9. B

10. D

11. A

12. E

13. A

14. A

15. B

16. D

17. C

18. B

19. C

20. B

21. C

22. E

23. B

24. E

25. E

26. C

27. C

28. A

Section IB

1. C

2. E

3. C

4. B

5. C

6. A

7. B

8. E

9. D

10. D

11. E

12. A

13. B

14. B

15. E

16. C

17. E

Unanswered problems are neither right nor wrong, and are not entered into the scoring formula.

Number right = __________

Number wrong = __________
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Section II: Free-Response Questions
Use the grading rubrics beginning on page 424 to score your free-response answers. Write your
scores in the blanks provided on the scoring worksheet.

Practice Test 1 Scoring Worksheet

Section IA and IB: Multiple-Choice
Of the 45 total questions, count only the number correct and the number wrong. Unanswered
problems are not entered in the formula.

____________ – (1/4 × ____________ ) = ____________
number correct number wrong Multiple-Choice 

Score

Section II: Free-Response
Each of the six questions has a possible score of 9 points. Total all six scores.

Question 1 _________________
Question 2 _________________
Question 3 _________________
Question 4 _________________
Question 5 _________________
Question 6 _________________

TOTAL _________________
Free-Response Score

Composite Score
1.20 × __________________ = ________________

Multiple-Choice Score Converted Section I 
Score (do not round)

1.00 × _________________ = _________________
Free-Response Score Converted Section II 

Score (do not round)

TOTAL = _________________
of converted scores round to the nearest 

whole number
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Probable AP Grade

Composite Score Range AP Grade

65–108 5

55–64 4

42–54 3

0–41 1 or 2

Please note that the scoring range above is an approximation only. Each year, the chief faculty
consultants are responsible for converting the final total raw scores to the 5-point AP scale.
Future grading scales may differ markedly from the one listed above.

Answers and Explanations for 
Practice Test 1 — AB

Section I: Multiple-Choice Questions

Section IA
1. C. Realize that ln(x + 3) is a shift of 3 to the left of ln (x) and so has a vertical asymptote

at x = –3 and a zero at (–2, 0). Thus ln (x + 3) ≥ 0 if x ≥ –2.

2. B. For symmetry with respect to the y-axis, f(–x) = f(x).

For I: cos cosf x x x f x

ysymmetric with respect to axis

2 2

&

- = - = =

-

^ ^ ^h h h

For II: f x x f x

ynot symmetric with respect to axis

2
2

&

!- = - +

-

^ ^ ^h h h

For III: ln lnf x x x f x

ysymmetric with respect to axis&

- = - = =

-

^ ^h h

3. D. sin sin cos2 2=i i i
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4. C. lim lim
b

b
b

b

b

b
4 3

5
4 3

5
1

1

b b

2 2

2

2

-
+

=
-

+
" "3 3- -

J

L

K
K

J

L

K
K

J

L

K
K
K
K

N

P

O
O

N

P

O
O

N

P

O
O
O
O

Because , < ,b b b bso0
2

" 3- =-

lim
b

b

b

4 3
1

1
2

b

2

=
-

-

+

" 3-

J

L

K
K
K
K^ c

N

P

O
O
O
Oh m

lim

b

b
4

3

1
5

3
1

b

2

=

-
-

+

+
=

" 3-

J

L

K
K
K
K c

N

P

O
O
O
Om

5. A.
lim lim

lim

x
x

x
x x

x
x x

2
3

2

3 2

2
2 3

0
3

x x

x

2 2

2

2

3

-
+ =

-

+ -

=
-

- +
=

+
=+

" "

"

+ +

+

c
^

f

d c

m
h
p

n m

6. A. The function 
cos

y
t
t

1

1 1
=

-

- -^ h
is a shift of 1 to the right of cos

t
t 1- . By the special trig

limit,

lim
cos

t
t 1

0
t 0

-
=

"

c m

lim
cos

t
t

1

1 1
0

t 1 -

- -
=

"

^
f

h
p

Alternatively, L’Hôpital’s rule may be applied:

lim
cos

lim
sin

t
t t

1

1 1

1

1
0

t t1 1-

- -
=

- -
=

" "

^
f

^h
p

h

7. C. The only point of discontinuity in the function is at x = 5, and the limit is being taken
as x approaches 3, so just substitute.

lim
x

x
5
5

5 3

5 3

2
15

x 3 -
=

-
=

" +
c

^
m

h

8. C. lim
sin

lim
sin

lim
sin

x
x

x
x

x
x

2 2
1

2
2

2
1

2
2

1

2
1

1
1

2
1

x x

x

0 0

0

$

$

$

=

=

= =

" "

"

J

L

K
K
K

c c

N

P

O
O
O

m m
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9. B. Simplify f(x) first.

f x
x

b

x x

1

1

-

-
^

^
h

h

Z

[

\

]
]]

]
]]

x

x

for

for

1

1

!=

=

For f(x) to be continuous at x = 1,

lim f x f b1 1
x 1

&= =
"

^ ^h h

10. D. Because this is a multiple-choice problem, discontinuities can be found by just tracing
the curve and looking for any points where you must pick up your pencil.

11. A. For a = 1, the one-sided limits are not equal, so the limit does not exist. For a = 3, the
limit is positive infinity, lim f x

x 3
3=+

"

^ h , which also means that the limit does not exist. For
a = 2, 4, and 5, the limits are 1, 1, and 1/2, respectively.

12. E. A function cannot be differentiable at any point of discontinuity, so f(x) is not differen-
tiable at x = 1, 2, 3, or 4. In addition, at x = 5 there is a sharp turn, which means that the
left-hand and right-hand derivatives are not equal, so f(x) is also not differentiable at x = 5.

13. A. y
x dx

dy

x

x x

x
x

4
3

4

4 0 3 2

4
6

2 2 2

2

2

&=
+

=
+

+ -

=
+

-

`

` ^ ^

j

j h h

14. A. Because both the base and the exponent contain variables, use log differentiation.

ln ln

ln ln

ln

ln

ln

y x

y x

y x x

y dx
dy

x x x

dx
dy

y x

dx
dy

x x

2

1
2

1
2

2 2

2 2

x

x

x

2

2

2

$

=

=

=

= +

= +

= +

`

^ ^

^ c ^ ^

j

h h

h m h h

6

6

@

@

15. B.

ln

ln

ln

a t v t

dt
d

t t

t t t

l t

1
1$ $

=

=

= +

= +

l^

^

h

h
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16. D. V r
dr
dV

r r

dr
dV

3
4

3
4

3 4

4 9 36
r

3 2 2

3

&= = =

= =

r r r

r r
=

^ h

17. C. y xe

y x e e

y e x

y y

x

x

Since

or does not exist

3

3 2 3

6 3

0

6 3 0

2
1

x

x x

x

2

2 2

2

=

= +

= +

=

+ =

=
-

l

l

l l

^ ` ` ^

^

h j j h

h

Because y' changes sign at / ,x y1 2=- has a relative extremum at /x 1 2=- .

18. B. tan sec

sec

sec

y
x

dx
dy x

x

dx
dy

3
2

3
2 2

1

2
3

2

2
3

4 2
3

2 3
/x

2

2

2

2 2

&= =

=

= = =
r

= r

c c

c a

m m

m k

Thus mt = 3.

Normal line is perpendicular to tangent line m
3
1

n& =
- .

tan tany
x

x yand3
2 2

3
4

3&= = = =
r r

so ,
2

3
r

c m is the point of tangency.

Apply the point/slope form.

y x y x

y x

x y

3
3
1

2
3 9

2

6 18 2

2 6 18

&- =
-

- - =- +

- =- +

+ = +

r r

r

r

c m

19. C. Sketch the parabola and rectangle as shown here.

(x, y)y = 9 − x
2

y

x

9

6

3

-1-2-3 321
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A

A x y

x x

A x x

dx
dA

x

dx
dA

dx
dA

x

x

x

base height

or does not exist

2

2 9

18 2

18 6

0

6 18

3

3

2

3

2

2

2

!

=

=

= -

= -

= -

=

=

=

=

^ ^

`

^ ^

h h

j

h h

< < < <

max

x x x x

dx
dA

A

pos neg

incr rel decr

0 3 3 3 3

0

=

Thus x 3= yields the maximum area of A 2 3 9 3 12 3= - =^ h .

20. B. Sketch the cone. Show h = height of pile, d = diameter, and r = radius. Find dh/dt
when h = 5, given dV/dt = 10.

V r h h d r r

h h

V h

and
3
1

2
1

2
1

2

3
1

3
1

2

2

3

= = = =

=

=

r

r

r

^

^

h

h

/

dt
dV

h
dt
dh

dt
dh

h dt
dV

dt
dh

m s

3
3

1

25
1

10
5
2

h

2

2

5

$

=

=

= =

r

r

r r
=

^ h

21. C.
x

dx x dx

x
C

x C

3
3

3
1

3

2

2

1

=

=
-

+

=
-

+

-

-

# #

r

d

h
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22. E. cos cos

sin

x
dx

x
dx

x

2
2

2 2
1

2
2

2 1 0

2

0 0

0

$=

=

= -

=

r r

r

# #

;

6

E

@

23. B.

ln

dx

C

3
2
1

3 2

2
1

3
1

3

x x

x

2 2

2
$

=

= +

# # ^ h

Or, if you forget the formula,

ln
ln

ln

ln

dx e dx

e dx

e C

C

3

2 3
1

2 3

2 3
1

2 3
1

3

ln

ln

ln

x x

x

x

x

2 3 2

3 2

3 2

2
$

=

=

= +

= +

# #

#

] ]

^ ^

] ]
^ ^

^ ^

] ]

^ ^

g g

h h

g g
h h

h h

g g

h h

8 B

24. E.
x

x
dx x x dx

x

1

2
1 1 2

1

2
1

1
2

4
3

1 3 2

/ //

/
/

2
0

1 2
2 1 2

0

1 2

2 1 2

0

1 2

-
= - - -

= -
-

=- - =- +

-

# #^ ` ^

^
`

h j h

h
j

R

T

S
S
SS

;

V

X

W
W
WW

E

25. E.

arcsin

x
dx

x
dx

x
dx

x
C

9 4

5
5

9 4

1

2
5

3 2

2

2
5

3
2

2 2

2 2

-
=

-

=
-

= +

# #

#
^ h

26. C.
ln

ln

ln

ln ln

x
x

dx x x dx

x

e

1

2

2
1

1

2
1

3 0

2
9

e e

e

1 1

2

1

3 2 2

2

3 3

3

=

=

= -

= -

=

# # c

^

` ^

m

h

j h

R

T

S
SS

:

8

V

X

W
WW

D

B
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27. C. Sketch the region as shown.

A e dx e dx

e

e e

e

e

2
1

2

2
1

2
1

2
1

2 2
1

x x

x

2

0

2
2

0

2

2

0

2

4 0

4

4

= =

=

= -

=
-

= -

# # ^

`

h

j

8 B

28. A.
b a

f x dx

e dx

e dx

e

e e

e

average value
1

4 0
1

4
1

3
1

3

12
1

12
1

12
1

a

b

x

x

x

3

0

4

3

0

4

3

0

4

12 0

12

$ $

=
-

=
-

=

=

= -

-
=

#

#

#

^

`

h

j

8 B

Section IB

1. C.
<

>

<

f x x
x x

x x

f x
x

x

for

for

for

for

0

0

1 0

1 0
&

$
= =

-

=
-

l

^

^

h

h

*

*

Thus f '(2) = 1.

2. E. The expression 2e6 is a constant. The derivative of any constant is 0.

(0, 1)

(2,e4)

y

x

3

2

4

1

-1-2-3 321
-1
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3. C. A calculator graph of the function is shown here, with the maximum value of
. .y xwhen0 685 0 866= = .

4. B. Definition of the derivative at a point:

limf c x c
f x f c

x c
= -

-

"

l^
^ ^

h
h h

For this problem, / .sinf x f cchanges to and 3= =i i r^ ^h h

/
lim

sin sin
lim

sin
f

3
3

3

3

2
3

/ /3 3
=

-
=

-

-r

i r
i r

i r
i

" "i r i r
lc m

5. C. A calculator graph of the function, displaying two different windows, is shown here.
The two roots are approximately x = 0.592 and x = 0.957, yielding a sum of 1.55.

6. A. Mean value theorem: f c
b a

f b f a
=

-

-
l^

^ ^
h

h h

f x e f x e f f eand
2
1

0 1 2
/ /x x1 2 1 2
&= = = =l^

]
^

]
^ ^h

g
h

g
h h

.

ln ln

ln

ln

f c
b a

f b f a
e

e

e e

e e

c e

c e

2
1

2 0
1

1

1

2
1

1

2 1 1 083

/

/

/

c

c

c

1 2

1 2

1 2

&

.

=
-

-
=

-
-

= -

= -

= -

= -

l^
^ ^ ]

]

]
` ^

^

^

h
h h g

g

g
j h

h

h

−5 ≤ x ≤ 5
−5 ≤ y ≤ 5

0 ≤ x ≤ 2
−    ≤ y ≤       1

2
1
2

x

Domain: −1 ≤ x ≤ 1
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7. B. A calculator sketch is shown here, displaying two different windows. To find the
bounds of integration, find where the two curves intersect by finding the roots of 
y = ln x + 2 – 2x. The roots are approximately x = 0.203 and x = 1. Use your calculator
to find lnx x dx2 2

.203

1

+ -# ^ h

8. E. lim n
i

n x dx1
2

1
2

1
n

i

n 2

1

2

1

3

+ + = +
" 3

=

#! c c `m m j= G

The Riemann sum inside the limit shows a function pattern of x2 + 1, so choices (B) and
(D) can be eliminated. The base of each rectangle is 2/n wide, which means the bounds of
integration must be 2 units apart, so choice (C) is eliminated. The endpoint of the first rec-
tangle (when i = 1) is given by 1 + 2/n, which means that the lower bound of integration
must be 1, so choice (A) can be eliminated. Thus only (E) fits all the requirements.

9. D. Do not try to integrate. Simply substitute z for the dummy variable x.

10. D. The slope of the tangent line is just the value of the derivative at that point.

−10 ≤ x ≤ 10
−10 ≤ y ≤ 10

−    ≤ x ≤      
0 ≤ y ≤    

1
2

3
2
5
2
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11. E. Separate the variables and find the antiderivative of each side.

ln

dt
dy

y fy ydt

y dy dt

y t C

y e

y Ce

1
1

t C

t

&= =

=

= +

=

=

r r

r

r
+r

r

# #

and choice (E) is of this form.

12. A. f x
x

x
x
x

x

f x x x x
3
8

3
8

/

/

/

3

3

1 3

3
8 3

5 3 23

= = =

= =l

^

^

h

h

13. B. Sketch the area and solid as shown.

By discs, horizontal axis dx& .

Along the x-axis, region A extends from to0
0

r
r

# .

sinV dx dx x dxradius sin x
a

b
2 2 2

00

&= =r r r
rr

### ^ ^h h

14. B. Apply the definition of the derivative, where f(x) = sin x.

.lim
sin sin

cos
h
h

f
1 1

1 1 0 54
h 0

.
+ -

= =
"

l
^

^
h

h

15. E. Find the least common multiple of the two piece of the function.

,

,
.. .

sin

cos

y x

y x

For period

For period
L C M

3
3

2

2
2&

= =

= =
=

r

r
r4

or graph the function on your calculator and observe the length of the period.

y

x

1

π

y = sin x
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16. C. Sketch y = ln x and show four circumscribed rectangles.

.

ln ln ln ln

ln ln ln ln

Area
2
1

2
3

2
1

2
2
1

2
5

2
1

3

2
1

2
3

2
2
5

3

1 557

.

.

+ + +

= + + +c m

17. E. sin cos cos sin

cos sin

cos

x xdx x xdx

x x dx

x
C

3

2 2

2

3

=

=- -

=
-

+

# #
#

^

^ ^

`

h

h h

j

Section II: Free-Response Questions

Section IIA
1. (a) Begin by sketching the area A.

y

x

2

1

3

(1,1)

1

y = –2x+3

y = 2X –1

area
A

y = In x

y

x

2

1

-1 1 2 3

-1

3
2

5
2
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ln

ln ln

ln

A x dx

x dx

x x

2 3 2 1

2 4 2

4
2

1
2

1 4
2

2
0 0

2
1

3
2

1

x

x

x

0

1

0

1

2

0

1

$

= - + - -

= - + -

= - + -

= - + - - + -

= -

#

#

^ `

`

c c

h j

j

m m

9

;

C

E

(b) Sketch the solid generated.

By washers horizontal axis dx& .

Area A extends from 0 to 1 along the x-axis .
0

1

& #

Washers: dx

x dx

outer radius inner radius

2 3 2 1
x

0

1
2

2 2

0

1

-

= - + - -

r

r

2

#

#

^ ^

^ `

h h

h j: D

y

x

2

1

3

–2

–3

–1

1
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(c) Sketch the solid generated. This problem can be done either by discs or by shells. Both
solutions are shown here; either would be sufficient for the AP exam.

By discs, vertical axis  dy& .

Area A extends from 0 to 3 along the y-axis, but two integrals are needed .
1

3

0

1

& + ##
r x r x1 1 2 2+ =

Solve both equations for x in terms of y because the integral is dy.

log

y y x

y x y

x y x
y

2 1 2 3

2 1 2 3

1
2

3

x

x

2

= - =- +

= + = -

= + =
-

^ h

Discs:

log

dy dy

y dy
y

dy

radius radius

1
2

3

2

0

1
2

1

3

2

2
2

1

3

0

1

+

+ +
-

r

r r

# #

##

^ ^

^` d

h h

hj n

By shells, vertical axis  dx& .

Area A extends from 0 to 1 along the x-axis .
0

1

& #

Shells: dx

x x dx

average

radius

average

height
2

2 2 3 2 1
x

0

1

0

1

- + - -

r

r

#

#

J

L

K
K

J

L

K
K

^ ^ `

N

P

O
O

N

P

O
O

h h j9 C

Use a calculator to approximate the volume to the nearest hundredth.

.

log y dy
y

dy

x x dx

1
2

3

2 2 3 2 1 3 33
x

2

2
2

1

3

0

1

0

1

.

+ +
-

= - + - -

r r

r

##

#

^` d

^ ^ `

hj n

h h j9 C

y

x

2

1

3

1–1
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or

Grading Rubric

(a)

:

:

:

points

integrand

bounds of integration

antiderivative and solution

3

1

1

1

Z

[

\

]
]

]]

(b) 
:

:
points

integrand

bound of integration
3

2

1
*

(c) 

:

:

:
points

integrand

bounds of integration

calculator approximation

to the nearest hundredth

3

1

1

1

Z

[

\

]
]]

]
]]

2. (a) zeros: let f(x) = 0.

e 8 0
x4 2 2

- =
-

A graphing calculator shows the zeros to be approximately .x 0 980!=

(b) f x e f x xe

f x f x

x

or does not exist

8 4

0

0

x x4 2 4 22 2

&= - =-

= =

=

- -l

l l

^ ^

^ ^

h h

h h

x x < 0 x = 0 x > 0

f '(x) pos 0 neg

f(x) incr rel max decr

f(0) = e4 – 8

To find the minimum value for y.

Y1=–2X2+4X–X*2^X
2πfnInt(Y1,X,0,1)

3.325766843

π(fnInt(Y1,X,0,1)
+fnInt(Y2,X,1,3))

3.325766843
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lim lime
e

8
1

8 8
x

x

x x

4 2

4 2

2

2- = - =-
" "3 3

-

-
9 =C G

Thus the range is < f x e8 8
4#- -^ h

(c) Normal at x = 1

f x xe f e4 1 4
x4 2 22

&=- =-
-l l^ ^h h

Thus the slope of the tangent is mt = –4e2

.m
e

f x e f e

slope of the normal is
4
1

8 1 8

n

x

2

4 2 22

&

&

=

= - = -
-

^ ^h h

Thus (1, e2 – 8) is the point of tangency.

Normal line: y e
e

x8
4
1

1
2

2- - = -` ^j h

. .

. .

y x

y x

0 611 034 1

034 645

+ = -

= -

^ h

Grading Rubric

(a) 2: 1 point for each zero

(b) 

:

:

:

:

f x

f x
points

differentiates

finds critical numbers for

justifies

conclusion

4

1

1

1

1

maximum

l

^

^

h

h

Z

[

\

]
]]

]
]]

(c) 

:

:

:

f
points

finding as slope of normal

finding point of

equation of line

4

1
1

1

1

1

tangency
l^ h

Z

[

\

]
]]

]
]

3. (a) “at rest” v t 0& =^ h

A graphing calculator shows that v(t) = 0 when .t 0 469. - seconds. To find the accelera-
tion at this time, find the derivative of v(t) when t = –0.469.

. . . /a v m s0 469 0 469 37 012
2.- = -l^ ^h h

Y1=(1/3)tan 3X+2

A

nDeriv(Y1,X,A)

–.4685492165

37.01210299
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(b) tan

tan

tan

ln cos

ln cos

s t v t dt s t t dt

t dt dt

t dt dt

s t t t C

s C

C

3
1

3 2

3
1

3 2

3
1

3
1

3 3 2

9
1

3 2

0
9
1

0 0 3

3

&

&

$

= = +

= +

= +

=
-

+ +

=
-

+ + =-

=-

# #

# #

# #

^ ^ ^ ^

^

^ ^

^ ^

^

h h h h

h

h h

h h

h

; E

Thus ln coss t t t
9
1

3 2 3=
-

+ -^ ^h h .

Grading Rubric

(a) 

:

:

:

: .

v t

v t

a t v t

a

points

indicates

finds zero for

indicates

evaluates

4

1 0

1

1

1 0 469

=

=

-

l

^

^

^ ^

^

h

h

h h

h

Z

[

\

]
]]

]
]]

(b) 

:

:

:

:

s t v t dt

C

s

C

points
indicates

finds

5

1

2

1 0 3

1

indicates

findsantiderivative,includingconstant

=

=-

#^ ^

^

h h

h

Z

[

\

]
]
]

]
]
]

Section IIB
4. Sketch the box.

Let x = length of sides of base

y = height of box

Maximum volume: V = x2y

x
x

y
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>:

C xy x

xy x

y
x

x
x

x

V x y V x
x

x

V x x xDomain

6 4 18 360

24 18 360

24
360 18

4
60 3

4
60 3

4
1

60 3 0

2

2

2 2

2 2
2

3

&

= + =

+ =

=
-

=
-

= =
-

= -

^ `

d

`

h j

n

j

dx
dV

x

dx
dV

dx
dV

x

x

x

or does not exist

4
1

60 9

0

9 60

9
60

3
20

3
2 15

2

2

2

= -

= =

=

= =

=

` j

Justify maximum:
dx
d V

x
4
1

182

2

= -^ h

<
dx
d V

x0
3

2 15
2

2

3

2 15
& =

x =

yields a maximum

x y
3

2 15

4
3

2 15

60 3
3

20

15&= =
-

=J

L

K
K

c

N

P

O
O

m

Thus the base of the box is /2 15 3 feet, and the height of the box is 15 feet.

Grading Rubric (9 points)

1: volume formula

1: cost equation

1: substitutes to write V as a function of a single variable

2: differentiates volume equation

1: finds critical number for differentiated equation

2: justifies maximum (first or second derivative test)

1: finds other dimension
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5. (a) tangent parallel to y x f x9 8 9&=- - =-l^ h

f x
x

x f x x x

x x

x x

x x

x

2
3 4

2
3

6

2
3

6 9

3 12 18 0

3 4 6 0

2

4 16 4 1 6

2
4 40

2 10

3
2 2

2

2

2

&

!

!
!

=
-

+ - =- +

- + =-

- - =

- - =

=
- -

= =

l^ ^

`

^ ^

h h

j

h h

Thus f(x) has tangent line parallel to y = –9x – 8 at x xand2 10 2 10= - = + .

(b) f x x x f x x
2
3

6 3 6
2

&=- + =- +l m^ ^h h

f "(x) = 0 or f "(x) does not exist

x = 2

x x < 2 x = 2 x > 2

f "(x) pos 0 neg

f(x) cc up POI cc down

Thus f(x) has a point of inflection at (2, 4).

Grading Rubric

(a) 

:

:

:

:

f x

s

points

derivative of

sets derivative equal to

solution of equation

correct to decimal place

4

1

1 9

1

1 3

^ h
Z

[

\

]
]]

]
]]

(b) 

:

:

:

:

:

f x

f x

f x

y

points

differentiates

finds zero of

uses some type of interval testing

on

conclusion

finds coordinates

5

1

1

1

1

1 -

l

m

m

^

^

^

h

h

h

Z

[

\

]
]
]
]]

]
]
]
]]
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6. You may want to begin with the graph of f(x) first, although the graph cannot be used for
the justification of the extrema in part (a). Try to fill in conclusions about f(x) on the basis
of the first derivative and the second derivative individually, and then translate to a graph.

(a) For the relative extrema:

x 0 < x < 1 x = 1 1 < x < 3 x = 3 3 < x < 4

f '(x) positive D.N.E.* negative 0 negative

f(x) increasing rel max decreasing decreasing
sharp turn

*D.N.E. means “does not exist.”

Thus the relative maximum is at x = 1 and, by symmetry, the relative minimum is at 
x = –1.

(b) For points of inflection:

x 0 < x < 1 x = 1 1 < x < 3 x = 3 3 < x < 4

f "(x) positive D.N.E.* positive 0 negative

f(x) concave up concave up POI concave down

Thus a point of inflection is at x = 3 and, by symmetry, also at x = –3 and x = 0.

(c) One possible graph is shown below.

Grading Rubric

(a) 

:

:

:

)

(

x

x

f x
points

indicating a relative at

indicating a relative at

justification change in sign of

relative extrema

4

1 1

1 1

2

maximum

minimum

&

=

=-

l^ h

Z

[

\

]
]]

]
]]

(b) 

: , ,

:

x x

xpoints

indicating a POI at

and

justification of POI

3

1 3 3

0

2

= =-

=

Z

[

\

]
]

]]

(c) 2 points: graph consistent with the above

y

x

3

2

1

–1–2–3–4 3 421
–1

–2

-3

rel max

rel min

POIPOI

POI
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Answer Sheet for Practice Test 2 — BC
(Remove This Sheet and Use It to Mark Your Answers)

Section IA
Multiple-Choice Questions

Section IB
Multiple-Choice Questions

5

1
2
3
4

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

6
7
8
9

10

13
14
15

11
12

16
17

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

5

1
2
3
4

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

6
7
8
9

10

13
14
15

11
12

16
17
18
19
20
21
22
23
24
25

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

A EDCB

26
27
28

A EDCB

A EDCB

A EDCB

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
C

U
T

 H
E

R
E

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 

8683-1 PracticeTest2.F  3/22/01  8:03 AM  Page 431



CliffsAP calculus 3rd Edition • 8683 1 Practice Test 2 5 • Jill • 03/21/01 • p 432

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C
U

T
 H

E
R

E
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

8683-1 PracticeTest2.F  3/22/01  8:03 AM  Page 432



433

1. If ,g t t
e

g ethen
ln t

= =^ ^h h

A. e
2

B. e

C. 1

D. e
1

E. 0

2. A particle moves along the curve 

xy = 12. If y = 3 and 
dt
dx

2= , what is

the value of ?
dt
dy

A.
2
3-

B.
3
2-

C.
3
2

D.
2
3

E. 6

3. What is lim
tan
3

0 i
i

"i
c m?

A. 3-

B. 0

C. l

D. 3

E. 3+

4. Evaluate lim lne x
x

x
$

" 3

- .

A. –l

B. e
1

C. l

D. 0

E. does not exist

Practice Test 2 — BC

Section I: Multiple-Choice Questions

Section IA
Time: 55 Minutes

28 Questions

Directions: The 28 questions that follow in Section IA of the exam should be solved using the
space available for scratchwork. Select the best of the given choices and fill in the correspond-
ing oval on the answer sheet. Material written in the test booklet will not be graded or awarded
credit. Fifty-five minutes are allowed for Section IA. No calculator of any type may be used in
this section of the test.

Notes: (1) For this test, ln x denotes the natural logarithm of x (that is, logarithm of the base e).
(2) The domain of all functions is assumed to be the set of real numbers x for which f(x) is a real
number, unless a different domain is specified.
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5. Given that < <f x

x x

x x

x x

for

for

for

3 4 0

0 2

3 4 2

2

#

$

=

-

-

^ h

Z

[

\

]
]

]]

Find lim f x
x 2" -

^ h.

A. –5

B. 2

C. 4

D. 6

E. The limit does not exist.

6. If x = t2 – 1 and y = t2, then 
dx

d y
2

2

=

A. 1

B.
t4

3

C.
t9
2
4

-

D. t
2

9
4

E.
t

t
3 1 2

4

-
` j

7.
sin

cos
dx
d

x
x

1+
=; E

A. sin x + 1

B. –csc2 x – sin x

C. –csc2 x + 1

D.
sin

sin
x

x
1+

-

E.
sinx1
1

+
-

8. If ,lny x ythen3= =l

A.
lnx x3 3

1

B.
lnx x2 3

1

C.
lnx x6 3

1

D.
ln x2 3

1

E.
lnx x2 3

3

9. sinx x dx =#

A. –x2 cosx + c

B. –x cosx + sinx + c

C. sinx + x cosx + c

D. x sinx – cosx + c

E. cosx + c

10. If y = arctan(3x), then 
dx
dy

x 1

=
=

A.
10
1

B.
4
1

C.
10
3

D.
3
1

E.
4
3

11. log
dy
d

y43 =7 A

A.
lny4 3
1

B. ln
y
3

C.
lny 3
4

D. y
1

E.
lny 3
1
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12. The graph of y e
x2

=
- has a point of

inflection at

A. x = 0

B. x 2!=

C. x 2!=

D. x
2

2!
=

E. The graph has no points of
inflection.

13. The radius of a circle is increasing at
the rate of 3 meters per second. Find the
rate, in square meters per second, at
which the area of the circle is changing
when the area is 16π m2.

A. 8π m2/s

B. 12π m2/s

C. 24π m2/s

D. 96π m2/s

E. 96π2 m2/s

14. A particle moves along a horizontal
path such that its position at any time
t t 0$^ h is given s t t t t4 4 5

3 2
= - + +^ h .

The particle is moving right for

A. >t 2 only

B. < <t0
3
2 only

C. < <t
3
2

2

D. < < >t tor0
3
2

2

E. >t
3
2

15. Find the equation of the line that is
tangent to the curve xy – x + y = 2 at the
point where x = 0.

A. y = –x

B. y x
2
1

2= +

C. y = x + 2

D. y = 2

E. y = –x + 2

16. xe dx3
x2

=#

A. 3xe2x e– e2x + C

B. 6xe2x – 4e2x + C

C. xe2x – 3e2x + C

D. xe e C
2
1

4
1x x2 2

- +

E. xe e C
2
3

4
3x x2 2

- +

17. cot d3 =z z#

A. ln cos C
3
1

3
-

+z

B. ln csc cot C
3
1

3 3
-

+ +z z

C. csc C3 3
2

- +z

D. ln sin C
3
1

3 +z

E. sec C3 3
2

+z

18.
x

x
dx

5

2

+
=#

A. lnx x C10 5- + +

B. x x C
3
4

5 10+ - +^ h

C. x x C
3
2

5 10+ - +^ h

D. x x C
3
4

5 20+ + +^ h

E. x x C2 5
2

+ +
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19. The integral 
x

dx

131

2

-
#

A. converges to 
2
3

B. converges to 0

C. diverges

D. converges to –1

E. converges to 
2
3-

20. Suppose that 
>

f x
x x

x x

for

for

2 1

3 1 1
2

#
=

-
^ h *

Then f x dx
0

2

=# ^ h

A. 7

B. 6

C. 5

D. 2

E. 1

21. Find the area of the region bounded by

the graphs at y x
x 2

3

=
+ , y = 0, x = 1,

and x = e.

A. e
e2
4

2
9

2

- -

B. e
e2

9
2

4
2

- -

C. e e2
4

9
389

+ -

D. e
3

5
3

- -

E. e
3

5
3
+

22. The rate of decay of radioactive
uranium is proportional to the amount
of uranium present at any time t. If
there are initially 54 grams of uranium
present, and there are 42 grams present
after 120 years, this situation can be
described by the equation

A. , lny e k54
120

1
9
7kt

= =

B. , lny e k54
9
7

120
kt

= =

C. , lny e k42
120

1
9
7kt

= =

D. , lny e k42
9
7

120
1kt

= =

E. , lny e k42 120
9
7kt

= =

23. The average value of tan x on the
interval from x = 0 to x = π/3 is

A. ln
2
1

B. ln
3

2r
C. ln 2

D.
2
3

E. 9
r

24. The region bounded by the graphs of
y = x2 – 5x + 6 and y = 0 is rotated about
the y-axis. The volume of the resulting
solid is

A. 10π

B. 52π

C. 5π/6

D. 5π/3

E. 19π/3
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25. Let A be the region bounded by y = ln x,
the x-axis, and the line x = e. Which
of the following represents the
volume of the solid generated when A
is revolved around the y-axis?

A. e e dy
y2 2

0

1

-r # ` j

B. e e dy
y2

0

1

-r # ` j

C. e dy
y2

0

1

r #

D. e e dy2
y

e
2 2

1

-r # ` j

E. e dy
2

0

1

r #

26. Which of the following series diverge?

I.
3

4
n

n
1

1

3

+
=

!

II. n
1

n

n 2

-3

=

!^ h

III.
n 1

3

n
2

3 +

3

=

!

A. none

B. I only

C. II only

D. III only

E. All of them

27. Above is the slope field for which of the
following differential equations?

A. sin
dx
dy

x=

B.
dx
dy

x y
2

= +

C.
dx
dy

x2 3= +

D.
dx
dy

y3 2= -

E. cos
dx
dy

y=

28. A particle moves in the xy-plane so that

at any time t > 0, x t t
4
1

3
4

= - and
4

.y t
3
1

3 5= -^ h The acceleration vector

of the particle at t = 2 is

A. ,2
3
1

-c m

B. (5, 4)

C. (12, 36)

D. (12, 4)

E. ,
15
52

810
1-

c m

Y

X
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1. If a, b, and c are constants, what is
lim bz c z
z a

2 2
+

"

` j?

A. a2b + ac2

B. az2 + a2z

C. bz2 + ac2

D. a2b + c2z

E. bz2 + c2z

2. The slope of the line normal to the

curve sing x
x

x
2

3= +^ h at the point

where x
7

=
r is approximately

A. –0.287

B. 0.449

C. 1.276

D. 2.671

E. 3.487

3. Given lim f x 2
x 3

=
"

+
^ h , which of the

following MUST be true?

A. f(3) exists

B. f(x) is continuous at x = 3

C. f(3) = 2

D. lim f x 2
x 3

=
"

-
^ h

E. None of these must be true.

4. A point of inflection for the graph of
siny x x x x4 5

3 2
= + - + has x coordinate

A. –4.467

B. –3.273

C. –2.066

D. –1.059

E. –.519

5. If ,y x
dx
dy

then
x

x

2

3

.=
-

=

A. 2.358

B. 3.761

C. 4.296

D. 4.553

E. none of these
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6. A right circular cylindrical can having a
volume of in2

3r is to be constructed.
Find the radius of the can for which the
total surface area is a minimum.

,V r h A r rh2 2
2 2

= = +r r r` j

A. 1/4

B. 1/2

C. 1

D. 2

E. 4

7. If g x x
2
1

3= -^ h , then the value of the
derivative of g(x) at x = 3 is

A.
2
1-

B.
2
1

C. 0

D. 3

E. nonexistent

8.
x x

dx
2

2
- -

=#

A. ln
x
x

C
3
1

2
1

-
-
+

+

B. ln
x
x

C
2
1

3

+
-

+

C. lnx x
x

C
1

2
- - - +

D. ln
x
x

C
3
1

2
1

-
+
-

+

E. ln
x
x

C
1
2

3

+
-

+

9. For the function y x
100

= find 
dx

d y
100

100

.

A. 0

B. 100

C. (100!)x

D. 100!

E. 100x

10. sin x dx
5

1

2

.#

A. 0.732

B. 0.815

C. 0.867

D. 0.924

E. 1.173

11. Which of the following is equal to the
shaded area in the figure below?

A. lim n f n
i3 3

n
i

n

1
" 3

=

!c cm m

B. lim n f n
i4

1
4

n
i

n

1

- +
" 3

=

!c cm m

C. lim n f n
i3

1
3

n
i

n

1

- +
" 3

=

!c cm m

D. lim n f n
i4 4

n
i

n

1
" 3

=

!c cm m

E. none of these

12. What is lim
h

e e
h

x h x

0

-
"

+

?

A. 0

B. ln x

C. x

D. ex

E. 1

y

x

3

2

1

–1–2–3 321
–1

–2

f(x)
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13. The average value of the function 
f(x) = x sin x on the closed interval 
[1, π] is approximately

A. 1.326

B. 1.467

C. 2.840

D. 3.142

E. 4.076

14. For what values of x will the series 

n

x

1

n

n
2

1

1 +

3 +

=

!
^ h

converge?

A. (–1, 1]

B. [–1, 1)

C. (–1, 1)

D. [–1, 1]

E. ,3 3- +^ h

15. When the value of cos2 is approximated
by using the fourth-degree Taylor
polynomial about x = 0, the value of
cos2 is

A. 1
2
4

24
16

+ -

B. 1
2
4

24
16

+ +

C. 1
2
4

24
16

- -

D. 1
2
4

64
16

- - +

E. 1
2
4

24
16

- +

16. A curve is described by the parametric 

equations x t
4
1 4

= and y t
3
1 3

= . The 

length of this curve from t = 0 to t = 2 is
given by

A. t t
dt

16 9

8 6

0

2

+#

B. t t
dt

4 3

4 3

0

2

+#

C. t t
dt

400 144

10 8

0

2

+#

D. t t dt
3 2 2

0

2

-# ` j

E. t t dt
6 4

0

2

-# ` j

17. Above is the graph of f '(x). On what
interval (5) is the graph of f(x) concave
upwards?

A. < < < <x xand3 1 1 1- -

B. < < < <x xand2 1 1 4-

C. < <x1 3-

D. < < < <x xand1 1 3 5-

E. < <x3 1-

y

y = f '(x )

x
–1–2–3 3 5421
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1. Let R be the first quadrant region
enclosed by the graphs of

siny x y e xand 2
2

= = -` j.

(a) Find the area of R.

(b) Set up, but do not evaluate, an
integral which represents the length
of the boundry of the region R.

(c) The base of a solid is the region R.
Cross sections of the solid are
semicircles perpendicular to the
base and the x-axis, with their
diameters on region R. Set up, but
do evaluate, an integral which
represents the volume of this solid.

2. Two particles move in the xy-plane. For
time t 0$ , the position of particle P is
given by x = t – 3 and y = (t – 2)2 while
the position of particle Q is given by
x = 2t/3 – 5/3 and y = 2t/3 + 4/3.

(a) Find the velocity vector for each
particle at t = 2.

(b) Set up, but do not evaluate, an
integral expression that represents
the distance traveled by particle P
from t = 1 to t = 4.

(c) Find the exact time at which the
two particles are at the same
position at the same time.

(d) In the viewing window at the top of
the next page, sketch the paths of
particles P and Q, from t = 0 until
they collide. Indicate the direction
of each particle along its path.

–5 5

10

–10

VIEWING WINDOW  [-5,5] x [-10,10]
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3. Let sinf x x e10
x

= -m^ `h j cos x for the
interval [–2.5, 5].

(a) On what intervals is the graph of
f(x) concave down? Justify your
answer.

(b) Find the x-coordinates of all
relative extrema for the function
f xl^ h. Classify the extrema as
relative minima or relative maxima.
Justify your answer.

(c) To the nearest tenth, find the x-
coordinates of any points of
inflection of the graph of f xl^ h.
Justify your answer.

Part III: AP Calculus AB and BC Practice Tests
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Section IIB
Time: 45 Minutes

3 Questions

Directions: For the three problems that follow in Section IIB, show your work. Your grade
will be determined on the correctness of your method as well as the accuracy of your final an-
swers. During Section IIB, you will NOT be allowed the use of a calculator. During this section
you will also be allowed to return to questions 1–3 in Section IIA to continue working on those
problems, but you will NOT have the use of a calculator.

4. Let y f x= ^ h be a continuous function 

such that 
dx
dy

xy3= , ,x fand0 0 12$ =^ h .

(a) Find f x^ h.

(b) Find f x
1-
^ h.

5. Let f be a function that has derivatives
of all orders for all numbers. Assume

,f f1 3 1 2= =-l^ ^h h , f 1 7=m^ h , and
f 1 5=-n^ h

(a) Find the third-degree Taylor
polynomial for f about x = 3 and
use it to approximate f(3.2).

(b) Write the fourth-degree Taylor
polynomial for g, where
g x f x 3

2
= +^ `h j about 3.

(c) Write the third-degree Taylor
polynomial for h, where 

f x f t
x

3

= #^ ^h h dt about x = 3.

6. Let f be the function defined as 

< <f x

x x

ax b x

x x

for

for

for

6 12 2

2 1

2
2
5

1

3

#

$

+ -

+ -

+

^ h

Z

[

\

]
]]

]
]]

(a) Find values for a and b such that
f(x) is continuous. Use the
definition of continuity to justify
your answer.

(b) For the values you found in part
(a), is f(x) differentiable at x = –2?
at x = 1? Use the definition of the
derivative to justify your answer.

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS
SECTION ONLY. DO NOT WORK ON ANY OTHER SECTION IN THE TEST. STOP

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS
SECTION ONLY. DO NOT WORK ON ANY OTHER SECTION IN THE TEST. STOP
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Answer Key for Practice Test 2 — BC

Section I: Multiple-Choice Questions

Section IA

CliffsAP calculus 2nd Edition • 8683 1 Practice Test 2 4 • Jill • 03/15/01 • p 443

1. C

2. A

3. D

4. D

5. C

6. C

7. E

8. B

9. B

10. C

11. E

12. D

13. C

14. D

15. E

16. E

17. D

18. B

19. A

20. A

21. E

22. A

23. B

24. C

25. A

26. A

27. B

28. C

Section IB

1. A

2. A

3. E

4. C

5. C

6. C

7. E

8. A

9. D

10. B

11. B

12. D

13. A

14. D

15. E

16. E

17. D

Unanswered problems are neither right nor wrong, and are not entered into the scoring formula.

Number right = __________

Number wrong = __________

8683-1 PracticeTest2.F  3/22/01  8:04 AM  Page 443



Section II: Free-Response Questions
Use the grading rubrics beginning on page 460 to score your free-response answers. Write your
scores in the blanks provided on the scoring worksheet.

Practice Test 2 Scoring Worksheet

Section IA and IB: Multiple-Choice
Of the 45 total questions, count only the number correct and the number wrong. Unanswered
problems are not entered in the formula.

____________ – (1/4 × ____________ ) = ____________
number correct number wrong Multiple-Choice 

Score

Section II: Free-Response
Each of the six questions has a possible score of 9 points. Total all six scores.

Question 1 _________________
Question 2 _________________
Question 3 _________________
Question 4 _________________
Question 5 _________________
Question 6 _________________

TOTAL _________________
Free-Response Score

Composite Score
1.20 × __________________ = ________________

Multiple-Choice Score Converted Section I 
Score (do not round)

1.00 × _________________ = _________________
Free-Response Score Converted Section II 

Score (do not round)

TOTAL = _________________
of converted scores round to the nearest 

whole number
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Probable AP Grade

Composite Score Range AP Grade

65–108 5

55–64 4

42–54 3

0–41 1 or 2

Please note that the scoring range above is an approximation only. Each year, the chief faculty
consultants are responsible for converting the final total raw scores to the 5-point AP scale.
Future grading scales may differ markedly from the one listed above.

Answers and Explanations 
for Practice Test 2 — BC

Section I: Multiple-Choice Questions

Section IA
1. C. Simplify first.

g t t
e

t
t

1
ln t

= = =^ h

2. A. xy

dt
dx

x
dt
dy

dt
dy

dt
dy

dt
dy

12

0

2 3 4 0

4 6

2
3

$ $

$ $

$

=

+ =

+ =

=-

-
=

3. D. lim
tan

lim
sin

cos
3

3 1 3 1 3
0 0

= = =
i
i

i
i i

" "i i
c c ^ ^ ^ ^m m h h h h< F

or use L’Hôpital’s rule:

lim
tan

lim
sec

3 3
1
3

3
0 0

2= = =
i
i

i" "i i
c m
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4. D. lim ln

lim
ln

e x

e
x

of the form

x

x

x
x

$

3
3

=

"

"

3

3

-

using L’Hôpital’s rule:

lim
e
x
1

0

0

x
x

3

=

=

=

" 3

5. C. The one-sided limit is approaching 2 from the left, so use the “middle” part of the
piece function.

lim limf x x 4
x x2 2

2
= =

" " --
^ `h j

6. C. x t y t

dt
dx

t
dt
dy

t

dx
dy

dt
dy

dx
dt

t
t t

t

dx

d y
dx
dy

dt
dy

dx
dt

t t t
Then

1

3 2

2
3
1

3
2

3
2

3
2

3
1

9
2

3 2

2

2

1

2

2 1 1

2 2 4

$ $

$

= - =

= =

= = = =

= = =
-

= =
-

-

7. E. sin
cos

sin

sin sin cos cos

sin

sin sin cos

sin

sin cos sin

sin

sin

sin

dx
d

x
x

x

x x x x

x

x x x

x

x x x

x

x

x

1 1

1

1

1

1

1

1
1

2

2

2 2

2

2 2

2

+
=

+

+ - -

=
+

- - -

=
+

- + -

=
+

- -

=
+
-

^

^ ^ ^ ^

^

^

`

^

h

h h h h

h

h

j

h

; E

8. B. ln ln

ln

ln

y x x

dx
dy

x
x

x x

3 3

2
1

3
3
3

2 3

1

/

/

1 2

1 2

= =

=

=

-

^

^ c

h

h m

9. B. ,sin

sin

cos

cos cos

cos sin

x dx

udv u x dv x

uv vdu du dx v x

x x x dx

x x x C

integration by parts

let and

Then and

Using

= = =

= - = =-

= - - -

=- + +

#
#

#
#^ ^h h
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10. C. arctany x
dx
dy

x

dx
dy

3
1 3

3

1 3
3

10
3

x

2

1

2

&= =
+

=
+

=
=

^
^

h
h

11. E. log
ln lndy

d
y

y y
4

3
1

4
4

3
1

3 $= =7 A

12. D. To find a point of inflection, find the second derivative and do interval testing.

y e y e x

y e x e x

e x e

e x

2

2 2 2

2 4

2 4

x x

x x

x x

x

2

2

2 2

2 2

2 2

2

&= = -

= - + - -

=- +

= - +

- -

- -

- -

-

l

m

a ^

a ^ ^b

`

k h

k h h l

j

9 C

y y

x

x

x

or or does not exist0

4 2

2
1

2
2

2

2

!

=

=

=

=

m m

< < < >x x x x x x
2

2
2

2
2

2
2
2

2
2

2
2-

=
- -

=

y" pos 0 neg 0 pos

y concave POI concave POI concave
up down up

Thus there are points of inflection at x
2

2!
= .

13. C. Sketch the circle; r = radius and A = area.

Find dA/dt when A = 16π, given dr/dt = 3.

A = πr2

/

dt
dA

r
dt
dr

A r

dt
dA

m s

2 16 4

2 4 3 24
2

r 4

&= = =

= =

r r

r r
=

^ ^h h

r
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14. D. “moving right” >v t

v t s t v t t t

v t t t

v t t tor

0

3 8 4

3 2 2

0
2
3

2

2

&

&

&

= = - +

= - -

= = =

l

^

^ ^ ^

^ ^ ^

^

h

h h h

h h h

h

Thus > < < >v t t tfor or0 0
3
2

2^ h .

15. E. Use implicit differentiation.
xy x y

x
dx
dy

y
dx
dy

dx
dy

x y

dx
dy

x
y

2

1 1 0

1 1

1
1

- + =

+ - + =

+ = -

=
+
-

^ h<

6

F

@

xy x y 2- + = and x y0 2&= =

Thus (0, 2) is the point of tangency.

dx
dy

m
0 1
1 2

1 1
x

t

0

&=
+
-

= =
=

- - is slope of tangent

Use the point/slope form.

y x y x2 1 0 2&- = - - =- +^ ^h h

16. E. Use integration by parts: u dv uv v du

u x dv e

du dx dv e dx

dv e dx

v e

xe dx xe dx

x e e dx

xe e dx

xe e dx

xe e C

2
1

2

2
1

3 3

3
2
1

2
1

2
3

2
3

2
3

2
3

2
1

2

2
3

4
3

x

x

x

x

x x

x x

x x

x x

x x

2

2

2

2

2 2

2 2

2 2

2 2

2 2

$

= -

= =

= =

=

=

=

= -

= -

= -

= - +

##

# #

# #

##

#

#

#

^

c c

^

h

m m

h

< F

pos neg pos

0 22
3

v(t)
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17. D. cot cot

ln sin

d d

C

3
3
1

3 3

3
1

3

=

= +

z z z z

z

# # ^ h

18. B. Use u-substitution. Let u x

u x

x u

dx udu

5

5

5

2

2

2

= +

= +

= -

=

x

x
dx u

u
udu

u du

u
u C

u
u C

x x C

x x C

5

2
2

5
2

4 5

4
3

5

4
3

15

3
4

5 5 15

3
4

5 10

2

2

3

2

+
=

-

= -

= - +

= - +

= + + - +

= + - +

# #

# `

^

^

j

h

h

=

8

8

G

B

B

19. A. The integral 
x

dx

131

2

-
# has a discontinuity at its lower limit of integration, 1.

lim

lim

lim

x

dx
x dx

x

c

1
1

2
3

1

2
3

1
2
3

1

2
3

0

2
3

c c

c c

c

31

2

1

2

1

2

1

3
2

3
1

3
2

-
= -

= -

= - -

= -

=

"

"

"

-

+

+

+

# # ^

^

^ ^

h

h

h h

;

;

E

E

20. A. f x dx x dx x dx

x x x

2 3 1

1 0 8 2 1 1

1 6 7

0

2

0

1
2

1

2

2

0

1 3

1

2

= + -

= + -

= - + - - -

= + =

# # #^ `

^ ^

h j

h h

8 8

6 8

B B

@ B
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21. E.

ln

ln ln

x
x

dx

x x dx

x
x

e
e

e

e

e

area
2

2

3
2

3
2

3
1

2 1

3
2

3
1

0

3 3
5

3
5

e

e

e

3

1

2

1

3

1
3

3

3

3

=
+

= +

= +

= + - +

= + - -

= +

=
+

#

# c

^ ^c

m

h hm

= G

22. A. The phrase “rate of change proportional to amount present” translates into

dt
dy

ky=

Solving this differential equation yields

y = Cekt

(For this work, see the differential equations section on page 292.)

“54 grams present initially” y = 54 when t = 0

54 = Ce°& C = 54

Thus y = 54ekt

“42 grams after 120 years” ⇒ y = 42 when t = 120

ln

ln

e

e

k

k

42 54

9
7

9
7

120

120
1

9
7

k

k

120

120

=

=

=

=

Thus , lny e k54
120

1
9
7kt

= =

23. B. average value 

tan

ln cos

ln ln

ln

ln

ln

b a
f x dx

xdx

x

1

3
0

1

3

3
2
1

1

3
2
1

3
2

3
2

/

/

a

b

0

3

0

3

1

=
-

=
-

= -

=
-

-

=
-

=
-

=

r

r

r

r

r

r

-

r

r

#

#

^ h

8

;

B

E

e1

x 3+2y = x
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24. C. y x x

x x

x x

V Rht

V x y dx

x x x dx

x x x x dx

x x
x

5 6

0 2 3

2 3

2

2

2 5 6

2 5 6

2
4 3

5
3

2
4
81

45 27 4
3

40
12

6
5

shell

2

2

3

2

2

3

3 2

2

3

4 3
2

2

3

= - +

= - -

= =

=

= -

= - + -

= - + -

=
-

+ -

=
-

+ - - - + -

=

r

r

r

r

r

r

r

#

#

#

^ ^

^

`

`

c c

h h

h

j

j

m m

=

<

G

F

25. A. Sketch the area and solid as shown.

By washers, vertical axis dy& .

Area A extends from y = 0 to y = 1 along the .y axis
0

1

&- #

y

x

3

2

1

–1–2–3 321
–1

y

x

2

1

–1 321

–1

x = e

y = ln x

(e,1)

32–2–3

t = dx

R = x

h = –y
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Washers: dy
outer

radius

inner

radiusa

b
2 2

&-r #
J

L

K
K

J

L

K
K

N

P

O
O

N

P

O
O

R

T

S
S
S

V

X

W
W
W

V e e dy
y2 2

0

1

= -r # ` j

26. A.

I.

<

lim

lim

lim

u
u

3
4

3
4

4
3

3
1

3
1

1

n
n

n n

n

n
n

n

n

1
1

1

2

1

$=

= =

"

"

"

3

3

3

3

+
=

+

+

+

!

So series converges by the Ratio Test.

II. n

n

1

1
1

n

n

n

n

1

2

$

-

= -

3

3

=

=

!

!

^

^

h

h

with un = 1/n,

i) un > 0

ii) un + 1 < un

and

iii) limu 0
n

n =
" 3

So series converges by the Alternating Series Test.

III. n

n

1
3

3
1

1

n

n

2
3

2
3

+

=
+

3

3

=

=

!

!

Compare this series to the p-series. 
n
1

n
2

3

3

=

! , which is convergent (p > 1). Since <
n n1

1 1
2 2
+

,

given series also converges by the Comparison Test.

⇒ So none of the series diverge.

27. B. In general for slope fields:

i) if the columns of slopes are the same

then the differential equation depends on just x — as in A and C

etc
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ii) if the rows of slopes are the same

then the differential equation depends on just y — as in D and E

iii) otherwise, depends on x and y — as in Graph B

A → sin
dx
dy

x= B → x y
2
+ C →

dx
dy

x2 3= +

D →
dx
dy

y3 2= - E → cos
dx
dy

y=

28. C. x t t t y t t

x t t y t t

x t t t

x y t t

x t

y

y

4
1

3
3
1

3 5

3
3
4

3 5 3

3 4 3 5

2 3 2 12 3 5 3

2 12 36 3 5

2 36 6 5

2 36

4 4

3 3

2 3

2 2

2

2

$

$ $

= - = -

= - = -

= = -

= = -

= = -

= -

=

l l

m

m m

m

m

m

^ ^ ^

^ ^ ^

^ ^

^ ^ ^

^ ^

^ ^

^

h h h

h h h

h h

h h h

h h

h h

h

Since acceleration vector is (x"(2), y"(2)) desired vector is (12, 36).

etc
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Section IB
1. A. The limit is to be taken as z approaches a. Because a, b, and c are constants, the argu-

ment is just a polynomial function with z as the independent variable, so substitute a into
the function for z.

lim bz c z b a c a a b ac
z a

2 2 2 2 2 2
+ = + = +

"

` ^ ^j h h

2. A. The slope of a normal line is the negative reciprocal of the slope of the tangent line.
Find / /g1 7- rl^ hwith your calculator. Let /siny x x2 31= +^ h

or find g xl^ h

first: sin

cos

g x
x

x

g x
x

2
3

2
1

2
3

= +

= +l

^

^

h

h

and now find 
g

7

1-
rlc m

.

3. E. By finding one (or more) counterexamples, it is possible to eliminate each of choices
A through D in turn. The following graph shows such a counterexample. The stated condi-
tion, lim f x 2

x 3
=

"
+
^ h , is true, whereas choices A through D are not true.

4. C. The graph is shown on the next page. Note that choices A and D approximate zeros of
the function; B a relative maximum, and E a relative minimum. Choice C –2.066 best ap-
proximates where the graph changes its concavity — in this case from concave downward
to concave upward.

y

x

2

1

3

–1 321 54

–1
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5. C. Use a calculator to find the derivative at a point.

6. C. V r h

r h

r
h

A r rh

A r r r
r

r r

r r

A r r
r

r
r

r

r

r

2
2

2 2

2 2
2

2
4

2 4

4
4

0 4
4

0 4 4

0 4 1

1

2

2

2

2

2

2

2

2 1

2

2

3

3

=

=

=

= +

= +

= +

= +

= -

= -

= -

= -

=

r

r r

r r

r r

r r

r r

r r

r r

r r

r

-

l

^ c

^

`

h m

h

j

7. E. A quick sketch of the graph (with or without a calculator) shows a sharp turn at x = 3,
so the derivative at that point is nonexistent.

y

x

2

1

3

–1 321 54

–1
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8. A. Using integration by “partial fractions,” first separate the integrand into its component
parts.

x x x
A

x
B

1 2
1

1 2
&

+ -
=

+
+

-^ ^h h
Note: x2 – x – 2 = (x + 1)(x – 2) multiplying by 

(x + 1) (x – 2) gives:

1 = A(x – 2) + B(x + 1)

when x = – 1 1 = A( – 3) + B(0)

A
3
1

- =

when x = 2 1 = A(0) + B(3)

B
3
1

=

Then 

ln ln

ln ln

ln

x x
dx

x x
dx

x x C

x x C

x
x

C

1 2

1
3
1

2
3
1

3
1

1
3
1

2

3
1

1 2

3
1

2
1

+ -

=
+

-
+

-

=- + + - +

=- + - - +

=-
-
+

+

#

#
J

L

K
K
K

^ ^

_

N

P

O
O
O

h h

i

9. D. Find the first few derivatives and look for a pattern.

y x

dx
dy

x

dx

d y
x

dx

d y
x

dx
d y

x

dx

d y
x

100

100 99

100 99 98

4
100 99 98 97

100 99 98 97 3 2 1 100

100

99

2

2
98

3

3
97

4
96

100

100
0

$

$ $

$ $ $

$ $ $ $ $ $

h

g

=

=

=

=

=

= =

10. B. Find the value of the definite integral with your calculator.

Y1=(sin X)^5

fnInt(Y1,X,1,2) 
.814956842 
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11. B. The shaded area is equivalent to the definite integral.

f x dx
1

3

-
# ^ h

The base of the area is 4 units, and if this base were divided into n equal subintervals, each
subinterval would have a width of 4/n. Thus the right-hand endpoint of the ith rectangle is
given by –1 + 4/n.

Thus limf x dx n f n
i4

1
4

n
i

n

1

3

1

= - +
" 3- =

# !^ c ch m m

12. D. The question is in the form of the definition of the derivative, using h instead of
x f x ewhere

x
=D ^ h .

limf x
h

f x h f x

f x e f x e
h

x x
0

&

=
+ -

= =
"

l

l

^
^ ^

^ ^

h
h h

h h

13. A. By the definition of average value, use a calculator to find

sinx xdx
1

1

1-r

r

#

14. D. Using Ratio Test:
n

x

1

n

n
2

1

1 +

3 +

=

!
^ h

lim lim limu
u

n

x
x

n
x

n

n

2

1

2

1

n n

n

n

n

n
n

1
2

2

1

2

2

2

$ $=
+

+
=

+

+

" " "3 3 3

+
+

+
^

^

^

^

h

h

h

h

limx
n

n
x x

2

1
1

n
2

2

$ $=
+

+
= =

" 3 ^

^

h

h

This ratio will be less than 1 when < < <x x1 1 1& -

Testing the endpoints:

i) when x = –1: series becomes 
n 1

1
n

n
2

1

1 +

-3 +

=

!
^

^

h

h
since < u u0 n n1 #+ and lim

n " 3
un = 0,

alternating series test indicates series is convergent ⇒ include x = –1

ii) when x = 1: series becomes 
n 1

1

n
2

1 +

3

=

!
^ h

since <
n n1

1 1
2 2

+^ h
is a convergent p series,

comparison test indicates series is convergent ⇒ include x = 1 ∴ interval of conver-
gence is –1 ≤ x ≤ 1 or [–1,1]

fnInt(Xsin X,X,1,�) 

Ans/(�–1) 

2.840423975 

1.326313839 
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15. E.

! ! ! !

cos

sin

cos

sin

cos

f x x f

f x x f

f x x f

f x x f

f x x f

T f x f
f x f x f x f x

x x

x x

f

0 1

0 0

0 1

0 0

0 1

0
1

0

2

0

3

0

4

0

1 0
2

1
0

24
1

1
2 24

2 1
2
2

24
2

1
2
4

24
16

iv iv

iv

3

2 3 4

2 4

2 4

2 4

.

= =

=- =

=- =-

= =

= =

= + + + +

= + - + +

= - +

- + = - +

l l

m m

n n

l m n

^ ^

^ ^

^ ^

^ ^

^ ^

^ ^
^ ^ ^ ^

^

h h

h h

h h

h h

h h

h h
h h h h

h

16. E. For a curve described by parametric equations, arc length 
2

dt
dx

dt
dy

t

t 2

1

2

= +# c dm n

x t y t
4
1

3
14 3

= =

dt
dx

t
dt
dy

t
3 2

= =

so arc length 
2

t t dt
3 2 2

0

2

= +# ` `j j

t t dt
6 4

0

2

= +#

17. D. For a function f(x), its graph is concave upward if its slope is increasing on an interval.

For graph of some f(x), slope changes from negative (–), to zero (0), to positive (+) when
the graph is concave upward. On the given graph of f '(x), slope is increasing (in this case,
y-coordinate is changing from negative to zero to positive) on the intervals –1 < x <1 and 
3 < x < 5.
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Section II: Free-Response Questions

Section IIA
1. (a) (see graph below)

sinx e
x 22

=
-

Using calculator to find (x), x = 0.138394 or x = 1.40959

Let a = .0138394, let b = 1.30959

.sinx e dxarea 401
x

a

b
22

= - =
-# a k

(b) boundary length = L

L x dx e x dxcos1 1 2
a

b
x

a

b
2 2

2
2

= + + +
-# #^ abh k l

For y = f(x) from x = a to x = b, arc length is f x dx1
a

b 2

+# l^ h8 B

(c)

/sinr x e 2
x 22

= -
-

a k

area of cross section 
2

/ / sinr x e2 8
x2 22

= = -r r -
` ^ aj h k

so volume / sinx e dx8
x

a

b
2

22

= = -r -#^ ah k

y

x

2r
r

y

x
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Grading Rubric

(a) 3 points 2: correct integral

1: limits of integration

1: correct integral

1: answer

(b) 3 points 1: correct derivatives of sinx and e x 22 -

1: correct arc length integral

1: correct limits of integration and sum of integrals

(c) 3 points 1: correct radius

1: correct integral

1: correct constant (π/8)

2. (a) VP = (dx/dt, dy/dt) = (1, 2t – 4) at t = 2, VP = (1, 0)

VQ = (2/3, 2/3) at t = 2, VQ = (2/3, 2/3)

(b) dist 
2

/ /dx dt dy dt dx
2

1

4

= +# ^ ^h h

2
t dx1 2 4

2

1

4

= + -# ^ h

(c)

/ /

X X

t t

t t

t

3 2 3 5 3

3 9 2 5

4

P Q=

- = -

- = -

=

at t = 4 both P and Q are at points having x-coordinate of 1

/ /

, / /

Y t Y t

t Y t Y

Y Y

2 2 3 4 3

4 4 2 2 4 8 3 4 3

4 4

1
2

2

1 2

1 2

= - = +

= = - = = +

= =

^

^

h

h

at t = 4 particles P and Q both occupy the point (1, 4)

(d) see graph below

P

Q
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Grading Rubric

(a) 2 points 1: correct derivatives

1: correct vectors

(b) 2 points 1 correct integral

1: limits of integration

(c) 3 points 1: sets XP = XQ, or YP = YQ

1: correct solution for t

1: other coordinate shown to be equal

(d) 2 points 1: graph and direction for P

1: graph and direction for Q

3. (a) f(x) is concave down when f xm^ h is negative 

The graph of f xm^ h is shown below from the calculator with a window of X[–2.5, 5]
and Y[–10, 30].

The zeros of f xm^ h are x = 0.11 and x = 4.61, and from the graph, <f x 0m^ h when
–2.5 < x < 0.11 and 4.61 < x < 5, so these are the intervals where f(x) is concave
down.

(b) f xl^ hwill have relative extrema when its derivative, f xm^ h, changes sign. From the
graph in part (a), this occurs when x = 0.11 and x = 4.61. . ,x f xAt 0 11= l^ h has a rela-
tive minimum, since f xm^ h changes from negative to positive. At x = 4.61, f xl^ h has a
relative maximum, since f xm^ h changes from positive to negative.

(c) By definition, a function has points of inflection where concavity changes and the tan-
gent line exists. A function is concave up when its derivative is increasing; a function
is concave down when its derivative is decreasing. So, f xl^ h will have points of inflec-
tion where its derivative, f xm^ h, changes from increasing to decreasing or decreasing to
increasing, that is, where f xm^ h has relative extrema. From the graph in part (a), f xm^ h

has relative extrema when x = –1.6 and x = 3.8, thus these are the inflection points of
f xl^ h.

Grading Rubric

(a) 3 points 1: indicates need for f xm^ h negative

1: finds zeros of f xm^ h via calculator

1: correct intervals

f"(x ) WINDOW FORMAT
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(b) 4 points 2: correct x-coordinates 

2: justification: sign change in f xm^ h

(c) 2 points 1: correct x-coordinates 

1: justification: relative extrema of f xm^ h

4. (a) Solve the differential equation by separating the variables.

ln

dx
dy

xy

y dy xdx

y dy xdx

y x C

e y

e e y

C e y

f x y

C e C

f x e

when

Thus

3

1
3

1
3

2
3

0 12 0 12

12 12

12

/

/

/

/

x C

x C

x

2
1

3 2

3 2

2
3 2

2
3 2 0

2

/ x

2
1

2
1

2

3 2 2

&

&

=

=

=

= +

=

=

=

= = =

= =

=

+

# #

]

]

]

^

] ]

^
]

g

g

g

h

g g

h
g

(b) To find the inverse, interchange x and y.

ln

ln

e y

e x

e
x

y
x

y
x

12

12

12

2
3

12

3
2

12

/

/

/

x

y

y

3 2

3 2

3 2

2

2
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]
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But y must be greater than or equal to 0, so

lnf x
x

3
2

12
1

=
-
^ h

Grading Rubric

(a)

:

:

:

:

C

f x

points

separates the variables

integrates correctly

finds correct
6

1

2

2

1 expresses ^ h

Z

[

\

]
]]

]
]]

(b)

:

:

:

x y f x

y

f x

points

interchanges and on

solves for3

1

1

1 expresses 1-

^

^

h

h

Z

[

\

]
]

]]
462

Part III: AP Calculus AB and BC Practice Tests

CliffsAP calculus 3rd Edition • 8683 1 Practice Test 2 5 • Jill • 03/21/01 • p 462

8683-1 PracticeTest2.F  3/22/01  8:06 AM  Page 462



5. (a)
! ! !

/ /

. . / . / .
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P f x f
f x f x f x
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1
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1 3
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+
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+
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h h h
h h h h h h

h h h h h

h h h h h h

(b)

.

.

P g x P f x

x x
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3
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2 4
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= - +
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(c) /

/

/

/

P h x t t dt

t t t

x x x

x x x

3 3 2 3 7 2 3

3 3 7 6 3

3 3 7 6 3 3 3 0 0

3 3 3 7 6 3

x

x

2

3

2 3

3
2 3

2 3
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8

8

B

B

Grading Rubric

(a) 4 points 3: correct P3( f )(x) <–1> for each error

1: correct approximation for f (3.2)

(b) 2 points 2: correct P4(g)(x) <–1> for each error

(c) 3 points 1: correct set up 

1: correct antiderivatives

1: correct answer

6. (a) For f(x) to be continuous, y = ax3 + b must contain the points (–2, 0) and (1, 9/2).

a b

a b

0 8

2
9 &

=- +

= + 4
a band

will guarantee continuity

2
1

4= =

< <f x

x x

x x

x x

for

for

for

6 12 2

2
1

4 2 1

2
2
5

1

3

#

$

=

+ -

+ -

+

^ h

Z

[

\

]
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]
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Justification:

lim

lim

f x x a

f a

f x

f x f a

is continuous at if

exists

exists
x a

x a
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=
"

"
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h

h

h
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\

]
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]
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lim lim
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x f

f x x
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Thus f(x) is continuous at x = –2.
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Thus f(x) is continuous at x = 1.
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Justification:
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Thus f(x) is differentiable at x – 2.
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Justification:
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f x f c
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Thus f(x) is not differentiable at x = 1.

Grading Rubric

(a) 
:

:

a b
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finds values of and

justifies with the definition of continuity
3

1

2
*
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:

:

:

: ,

,

x

x
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differentiability at

justifies with definition of derivative

including one sided
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justifies with definition of derivative
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1 2
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467

Appendix:
Calculus Dictionary

English Calculus

domain of s x^ h s x 0$^ h

domain of 
s x

1
^ h

s x 0!^ h

domain of ln s x^ h8 B >s x 0^ h

zeros or x-intercepts f x or y0 0= =^ h

y-intercepts x 0=

symmetry with respect to y-axis or even function f x f x- =^ ^h h

symmetry with respect to the origin or odd function f x f x- =-^ ^h h

symmetry with respect to x-axis g y g y- =^ ^h h

vertical asymptote (x = a) lim f x
x a

!3=
"

^ h

horizontal asymptotes (y = a) lim f x a
x

=
" ! 3

^ h

continuity lim f x f a
x a

=
"

^ ^h h

definition of derivative limf x
x

f x x f x

x 0
=

+ -

D
D

"D
l^

^ ^
h

h h

limf c x c
f x f c

x c
= -

-

"

l^
^ ^

h
h h

instantaneous rate of change of y with respect to x
dx
dy

slope of a curve f(x) at x = c f cl^ h

slope of tangent to f(x) at x = c f cl^ h

slope of normal to f(x) at x = c
f c

1-
l^ h

critical numbers
f x

f x

or

does not exist

0=l

l

^

^

h

h

f(x) increasing >f x 0l^ h

f(x) decreasing <f x 0l^ h

f(x) concave up >f x or f x0 increasingm l^ ^h h

f(x) concave down <f x or f x0 decreasingm l^ ^h h

point of inflection change in concavity; tangent line exists
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English Calculus

P.V.A.

position function s t v t dt a t dt dt= =# ##^ ^ ^h h h; E

velocity function s t v t a t dt= = #l^ ^ ^h h h

acceleration function s t v t a t= =m l^ ^ ^h h h

particle moving right >v t 0^ h

particle moving left <v t 0^ h

particle at rest v t 0=^ h

particle changes direction v(t) changes sign

total distance t1 to t2 s t s t s t s tc c1 2- + -^ ^ ^ ^h h h h

where tc = time particle changes direction

Newton’s method x x
f x

f x
n n

n

n

1= -+ l^

^

h

h

rate of change of y proportional to amount of y present
dt
dy

ky y Ceor
kt

= =

definition of definite integral lim f c x
n

i

i

n

i

1

D
" 3

=

! ^ h

trapezoidal rule
[

]

n
b a

f x f x f x

f x f x

2
2 2

2 n n

0 1 2

1g

-
+ +

+ + +-

^ ^ ^

^ ^

h h h

h h

area between curves

dx

dy

top bottom

right left

left

right

lower

upper

-

-

#

#

^

^

h

h

average value of f(x) on [a, b]
b a

f x dx
1

a

b

- # ^ h
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