Netcool/OMNIbus
Version 7 Release 3

Probe and Gateway Guide

<||I

Netcool/OMNIbus
Version 7 Release 3

Probe and Gateway Guide

..ll

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 171]

This edition applies to version 7, release 3, modification 1 of IBM Tivoli Netcool/OMNIbus (product number
5724-544) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1994, 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication
Intended audience .

What this publication conta1ns
Publications

Accessibility . .

Tivoli technical training .

Support information .

Conventions used in this publrcatlon

Chapter 1. About probes
Types of probes
Device probes .
Log file probes.
Database probes .
API probes .
CORBA probes
Miscellaneous probes
Probe components
Executable file .
Properties file .
Rules file

Naming conventions for probe component ﬁles.

Probe architecture

How unique identifiers are Constructed for events .

Modes of operation of probes
Store-and-forward mode for probes
Raw capture mode for probes
Secure mode for probes .
Peer-to-peer failover mode for probes

Chapter 2. Probe rules file syntax .

. vi
. viii
. viii
. viii
. viii

O 00 NI O U R WWWWNN N =,

. 10
. 10
.13
.13
. 14

.17

Elements, fields, properties, and arrays in rules files 17

Assigning values to ObjectServer fields .
Assigning temporary elements in rules files
Assigning property values to fields
Assigning values to properties .

Using arrays . . .

Rules file development gurdellnes
Control statements in rules files

FOREACH statement .

IF statement . .

SWITCH statement .

BREAK statement .o
Embedding multiple rules files in a rules flle .
Rules file functions and operators .

Math and string operators

Bit manipulation operators

Comparison operators .

Logical operators

Existence function .

Elements and event functrons

String functions .

Math functions . .

Date and time functions . .

Host and process utility functions .

© Copyright IBM Corp. 1994, 2011

.17
. 18
.18
.19
.19
. 20
.21
.21
. 26
. 26
.27
. 27
. 28
.31
.31
.32
. 32
. 33
. 33
. 33
. 36
. 37
. 38

Lookup table operations . . . 39
Update on deduplication function . .41
Details function . .41
Message logging funct1ons . .42
Sending alerts to alternative Ob]ectServers and
tables . . 43
Search and replace funct1on . . 47
Service function . . 49
Monitoring probe loads . . 50
Reserved words in the probe rules language . 51
Testing rules files . 53
Debugging rules files . . 53
Rules file examples . . 54
Chapter 3. Probe rules file
customizations . 1 4
Detecting event floods and anomalous event rates 57
Configuring probes to detect event floods and
anomalous event rates. . 58
Flood configuration rules file . 59
Flood rules file . . . 62
Enabling self monitoring of probes . 64
Configuration setup for self monitoring of probes 65
Tivoli Netcool/OMNIbus configuration files for
the self monitoring of probes S . 66
Configuring probes for self monitoring . . 68
Chapter 4. Running probes . . 73
Running probes on UNIX. .73
Running probes on Windows .74
Running a probe as a console applrcatron .74
Running a probe as a service .75
Use of OMNIHOME and NCHOME env1ronment
variables for probes. .76
Chapter 5. Common probe properties
and command-line options . .77
Chapter 6. About gateways . 89
Types of gateways . .90
ObjectServer gateways. . .91
Unidirectional ObjectServer Gateway .91
Bidirectional ObjectServer Gateway .9
ObjectServer Gateway writers and failback (alert
replication between sites) . . .92
Database, helpdesk, and other gateways .93
Gateway components . . .93
Unidirectional gateways . . 93
Bidirectional gateways. . 94
Modes of operation of gateways . 9
Store-and-forward mode for gateways . 96
Secure mode for gateways . 96
Gateway configuration . 98
Gateway configuration file . 98
iii

Reader configuration .
Writer configuration
Route configuration .
Mapping configuration .
Filter configuration
Gateway debugging .
Gateway writers and fallback
Creating conversion tables .

Chapter 7. Running gateways

Running gateways on UNIX

Running gateways on Windows . .
Running a gateway as a console apphcatlon .
Running a gateway as a service .

Configuring gateways interactively .
Saving configurations interactively .
Dumping and loading gateway configurations
interactively . .

Use of OMNIHOME and NCHOME env1ronment

variables for gateways

Chapter 8. Gateway commands and
command-line options
Common gateway command-line options .
Reader commands .

START READER

STOP READER.

SHOW READERS .
Writer commands .

START WRITER

STOP WRITER .

SHOW WRITERS .

SHOW WRITER TYPES .

SHOW WRITER ATTRIBUTES.
Mapping commands .

CREATE MAPPING .

DROP MAPPING .

SHOW MAPPINGS .

SHOW MAPPING ATTRIBUTES
Filter commands

CREATE FILTER

LOAD FILTER .

DROP FILTER .
Route commands .

ADD ROUTE

REMOVE ROUTE .

SHOW ROUTES
Configuration commands

LOAD CONFIG

iV IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

. 99
.99
. 100

. 100

. 101

. 102

. 103

. 103

. 105

. 105

. 105
. 105
. 106
. 106
. 107

. 107

. 108

. 109
. 109
111
. 111
. 112
. 112
112
. 113
. 113
. 113
. 114
. 114
. 115
. 115
. 115
. 116
. 116
. 116
. 116
. 117
. 117
. 117
. 117
. 117
. 118
. 118
. 118

SAVE CONFIG .

DUMP CONFIG
General commands

SHUTDOWN

SET CONNECTIONS.

SHOW SYSTEM

SET DEBUG MODE .

TRANSFER .

Appendix A. Probe error messages
and troubleshooting techniques
Generic error messages .

Fatal-level messages .

Error-level messages .

Warning-level messages .

Information-level messages .

Debug-level messages . .o
ProbeWatch and TSMWatch messages .
Troubleshooting probes . .

Common problem causes

What to do if

Appendix B. Common gateway error
messages .

Appendix C. Regular expressions
NETCOOL regular expression library
TRE regular expression library
Metacharacters .
Minimal or non-greedy quantlﬁers
Bracket expressions .
Constructs for multicultural support
Backslash sequences .

Appendix D. ObjectServer tables and
data types.

alerts.status table .
alerts.details table .
alerts.journal table.
service.status table.
ObjectServer data types .

Notices .
Trademarks .

Index .

. 118
. 118
. 119
. 119
. 119
. 119
. 120
. 120

. 123
. 123
. 123
. 124
. 126
. 126
. 126
. 128
. 130
. 130
. 130

. 135

. 143
. 143
. 145
. 145
. 147
. 148
. 149
. 149

. 1583
. 153
. 166
. 167
. 167
. 168

.17
. 173

. 175

About this publication

Tivoli Netcool/OMNIbus is a service level management (SLM) system that delivers
real-time, centralized monitoring of complex networks and IT domains.

The IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide contains introductory and
reference information about probes, including probe rules file syntax, properties
and command-line options, error messages, and troubleshooting techniques. This
publication also contains introductory and reference information about gateways,
including gateway commands, command-line options, and error messages.

Intended audience

This publication is intended for both users and administrators who need to
configure and use probes and gateways.

Probes and gateways are part of Tivoli Netcool/OMNIbus, and it is assumed that
you understand how Tivoli Netcool/OMNIbus works.

What this publication contains

This publication contains the following sections:

* |Chapter 1, “About probes,” on page 1|

Provides information about probes, their architecture, components, and modes of
operation.

+ |Chapter 2, “Probe rules file syntax,” on page 17|

Describes the syntax of the rules file that defines how the probe must process
event data to create a meaningful Tivoli Netcool/OMNIbus alert.

* |Chapter 3, “Probe rules file customizations,” on page 57

Describes the customizations that can be applied to probe rules files to extend
the functionality of probes.

+ |Chapter 4, “Running probes,” on page 73|

Describes how to run probes.

* |Chapter 5, “Common probe properties and command-line options,” on page 77

Describes the properties and command-line options that are common to all
probes and TSMs.

+ [Chapter 6, “About gateways,” on page 89

Provides information about gateways, their modes of operation, and gateway
components.

Chapter 7, “Running gateways,” on page 105|

Describes how to run gateways.

Chapter 8, “Gateway commands and command-line options,” on page 109

Describes the gateway commands and command-line options that are common
to all gateways.

* |Appendix A, “Probe error messages and troubleshooting techniques,” on page]
I

Provides information on probe error messages and troubleshooting.

© Copyright IBM Corp. 1994, 2011 v

[Appendix B, “Common gateway error messages,” on page 135|

Provides information on gateway error messages.

[Appendix C, “Regular expressions,” on page 143

Provides reference information on regular expressions.

Appendix D, “ObjectServer tables and data types,” on page 153|

Provides reference information on relevant ObjectServer tables.

Publications

vi

This section lists publications in the Tivoli Netcool/OMNIbus library and related
documents. The section also describes how to access Tivoli publications online and
how to order Tivoli publications.

Your Tivoli Netcool/lOMNIbus library

The following documents are available in the Tivoli Netcool/OMNIbus library:

IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide, SC14-7604
Includes installation and upgrade procedures for Tivoli Netcool/OMNIbus, and
describes how to configure security and component communications. The
publication also includes examples of Tivoli Netcool/OMNIbus architectures and
describes how to implement them.

IBM Tivoli Netcool/OMNIbus Administration Guide, SC14-7605

Describes how to perform administrative tasks using the Tivoli
Netcool/OMNIbus Administrator GUI, command-line tools, and process control.
The publication also contains descriptions and examples of ObjectServer SQL
syntax and automations.

IBM Tivoli Netcool/OMNIbus Web GUI Administration and User’'s Guide, SC14-7606

Describes how to perform administrative and event visualization tasks using the
Tivoli Netcool/OMNIbus Web GUI
IBM Tivoli Netcool/OMNIbus User’s Guide, SC14-7607

Provides an overview of the desktop tools and describes the operator tasks
related to event management using these tools.

IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide, SC14-7608

Contains introductory and reference information about probes and gateways,
including probe rules file syntax and gateway commands.

IBM Tivoli Monitoring for Tivoli Netcool/OMNIbus Agent User’s Guide, SC14-7610
Describes how to install the health monitoring agent for Tivoli
Netcool/OMNIbus and contains reference information about the agent.

IBM Tivoli Netcool/OMNIbus Event Integration Facility Reference, SC14-7611
Describes how to develop event adapters that are tailored to your network

environment and the specific needs of your enterprise. This publication also
describes how to filter events at the source.

IBM Tivoli Netcool/OMNIbus Error Messages Guide, SC14-7612

Describes system messages in Tivoli Netcool/OMNIbus and how to respond to
those messages.

IBM Tivoli Netcool/OMNIbus Web GUI Administration API (WAAPI) User’s Guide,
SC22-5403-00

Shows how to administer the Tivoli Netcool/OMNIbus Web GUI using the XML
application programming interface named WAAPL

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Accessing terminology online

The Tivoli Software Glossary includes definitions for many of the technical terms
related to Tivoli software. The Tivoli Software Glossary is available at the following
Tivoli software library Web site:

lhttp:/ /publib.boulder.ibm.com /tividd / glossary / tivoliglossarymst.htm|

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

lhttp:/ /www.ibm.com /software/ globalization / terminologyl|

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at:

lhttp:/ /publib.boulder.ibm.com/infocenter/ tivihelp /v3rl/index.jsp

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File > Print window that allows Adobe Reader to print letter-sized pages on
your local paper.

Ordering publications

You can order many Tivoli publications online at the following Web site:

http:/ /www.elink.ibmlink.ibm.com /publications/servlet/pbi.wss|

You can also order by telephone by calling one of these numbers:
* In the United States: 800-879-2755
* In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to the following Web site:

[http:/ /www.elink.ibmlink.ibm.com /publications/servlet/pbi.wsg

2. Select your country from the list and click Go. The Welcome to the IBM
Publications Center page is displayed for your country.

3. On the left side of the page, click About this site to see an information page
that includes the telephone number of your local representative.

About this publication vii

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

Accessibility

Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

With this product, you can use assistive technologies to hear and navigate the
interface. You can also use the keyboard instead of the mouse to operate some
features of the graphical user interface.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site:

lhttp: / /www.ibm.com /software/tivoli/education|

Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at fhttp://www.ibm.com/software/|
lsupport/probsub.html| and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to [http: / /www.ibm.com /software /support/isal

Conventions used in this publication

This publication uses several conventions for special terms and actions and
operating system-dependent commands and paths.

Typeface conventions

This publication uses the following typeface conventions:

Bold

* Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

¢ Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip: and Operating system considerations:)

* Keywords and parameters in text
Italic

* Citations (examples: titles of publications, diskettes, and CDs)

* Words defined in text (example: a nonswitched line is called a
point-to-point line)

viii IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa

¢ Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

* New terms in text (except in a definition list): a view is a frame in a
workspace that contains data

* Variables and values you must provide: ... where myname represents....

Monospace
* Examples and code examples

¢ File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
* Message text and prompts addressed to the user
 Text that the user must type
* Values for arguments or command options

Operating system-dependent variables and paths

This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %uvariable% for
environment variables, and replace each forward slash (/) with a backslash (\) in
directory paths. For example, on UNIX systems, the NCHOME environment
variable specifies the path of the Netcool® home directory. On Windows systems,
the %NCHOME% environment variable specifies the path of the Netcool home
directory. The names of environment variables are not always the same in the
Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Operating system-specific directory names

Where Tivoli Netcool/OMNIbus files are identified as located within an arch

directory under NCHOME, arch is a variable that represents your operating system

directory, as shown in the following table.

Table 1. Directory names for the arch variable

Directory name represented by arch Operating system

aixb AIX® systems

hpux11 HP-UX PA-RISC-based systems
hpuxllhpia HP-UX Integrity-based systems
1inux2x86 Red Hat Linux and SUSE systems
Tinux2s390 Linux for System z°

solaris2 Solaris systems

win32 Windows systems

About this publication

ix

X IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 1. About probes

Probes connect to an event source, detect and acquire event data, and forward the
data to the ObjectServer as alerts. Probes use the logic specified in a rules file to
manipulate the event elements before converting them into fields of an alert in the
ObjectServer alerts.status table.

The following figure shows how probes fit into the Tivoli Netcool/OMNIbus
architecture.

]

—
Event List

— 6——— -0
. —1
ObjectServer Gateway Remedy
ﬁ NCOMS ARS

2]

Pfobe . H N [j

Raw Data Gateway RDBMS
snmp-trap ** g‘
n sequence | 4305 =——i

receive time U Probe

8290009 36 Target

version 10 com-

munity S public

enterprise

01.3.6

Figure 1. Event processing in Tivoli Netcool/OMNIbus

The flow of event data is as follows:
Event data is generated by the probe target.

H The probe tokenizes the event data, adds extra information to the event,
and assigns values to the fields in the ObjectServer alerts.status table. The
probe then forwards the processed data to the ObjectServer as an alert.

H The ObjectServer stores and manages alerts, which can be displayed in the
event list, and optionally forwarded to one or more gateways.

Note: The information in this publication is generic to all probes. For
probe-specific information, see the individual probe publications in the IBM Tivoli
Network Management Information Center:

1. Go to |http:/ /publib.boulder.ibm.com/infocenter/ tivihelp /v8rl /index.jsp}
2. Expand the IBM Tivoli Netcool/OMNIbus node in the navigation pane on the left.
3. Expand the Tivoli Netcool/OMNIbus probes and TSMs node.

4. Look for the relevant publication.

Related concepts

[“Types of probes” on page 2|

© Copyright IBM Corp. 1994, 2011 1

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

Types of probes

2

Each probe is uniquely designed to acquire event data from a specific source.
However, probes can be categorized based on how they acquire events.

The types of probes are:
* Device

* Log file

* Database

* API

« CORBA

* Miscellaneous

The probe type is determined by the method in which the probe detects events.
For example, the Probe for Agile ATM Switch Management detects events
produced by a device (an ATM switch), but it acquires events from a log file, not
directly from the switch. Therefore, this probe is classed as a log file probe and not
a device probe. Likewise, the Probe for Oracle obtains event data from a database
table, and is therefore classed as a database probe.

Device probes

A device probe acquires events by connecting to a remote device, such as an ATM
switch.

Device probes often run on a separate machine to the one they are probing, and
connect to the target machine through a network link, modem, or physical cable.
Some device probes can use more than one method to connect to the target
machine.

After connecting to the target machine, the probe detects events and forwards
them to the ObjectServer. Some device probes are passive, and wait to detect an
event before forwarding it to the ObjectServer; for example, the Probe for Marconi
ServiceOn EMOS. Other device probes are more active, and issue commands to the
target device in order to acquire events; for example, the TSM for Ericsson AXE10.

Log file probes

A log file probe acquires events by reading a log file that is created by the target
system.

For example, the Probe for Heroix RoboMon Element Manager reads the Heroix
RoboMon Element Manager event file.

Most log file probes run on the machine where the log file resides; this is not
necessarily the same machine as the target system. The target system appends
events to the log file. Periodically, the probe opens the log file, acquires and
processes the events stored in it, and forwards the relevant events to the
ObjectServer as alerts. You can configure how often the probe checks the log file
for new events, and how events are processed.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Database probes

A database probe acquires events from a single database table; the source table.
Depending on the configuration, any change (insert, update, or delete) to a row of
the source table can produce an event.

For example, the Probe for Oracle acquires data from transactions logged in an
Oracle database table.

When a database probe starts, it creates a temporary logging table and adds a
trigger to the source table. When a change is made to the source table, the trigger
forwards the event to the logging table. Periodically, the events stored in the
logging table are forwarded to the ObjectServer as alerts, and the contents of the
logging table are discarded. You can configure how often the probe checks the
logging table for new events.

Attention: Existing triggers on the source table might be overwritten when the
probe is installed.

Database probes treat each row of the source table as a single entity. Even if only
one field of a row in the source table changes, all of the fields of that row are
forwarded to the logging table, and from there to the ObjectServer. If a row in the
source table is deleted, the probe forwards the contents of the row before it was
deleted. If a row in the source table is inserted or updated, the probe forwards the
contents of the row after the insert or update action.

API probes

An API probe acquires events through the application programming interface (API)
of another application.

For example, the Probe for Sun Management Center uses the Sun Management
Center Java API to connect remotely to the Sun Management Center.

API probes use specially-designed libraries to acquire events from another

application or management system. These libraries contain functions that connect
to the target system and manage the retrieval of events. The API probes call these
functions, which connect to the target system and return any events to the probe.
The probe processes these events and forwards them to the ObjectServer as alerts.

CORBA probes

Common Object Request Broker Architecture (CORBA) allows distributed systems
to be defined independently of a specific programming language. CORBA probes

use CORBA interfaces to connect to the data source, which is usually an Element

Management System (EMS).

Equipment vendors publish the details of their specific CORBA interface as
Interface Definition Language (IDL) files. These IDL files are used to create the
CORBA client and server applications. A specific probe is required for each specific
CORBA interface. CORBA probes use the Borland VisiBroker Object Request Broker
(ORB) to communicate with other vendor ORBs. You must obtain this ORB from
IBM Software Support. Most CORBA probes are written using Java, and require
specific Java components to be installed to run the probe, as described in the
individual publications for these probes. Probes written in Java use the following
additional processes:

Chapter 1. About probes 3

* The probe-nco-p-nonnative probe, which enables probes written in Java to
communicate with the standard probe C library (libOpl)

* Java runtime libraries

For example, the Probe for Marconi MV38/PSB manages the alarm lifecycle by
collecting events from the Marconi ServiceOn Optical Network Management
System. To do this, the probe connects to the Practical Service and Business (PSB)
CORBA interface using the CORBA Naming Service running on the PSB host.

Miscellaneous probes

All of the miscellaneous probes have characteristics that differentiate them from
the other types of probes, and from each other. Each of these probes carries out a
specialized task that requires it to work in a unique way.

For example, the Email Probe connects to the mail server, retrieves e-mails,
processes them, deletes them, and then disconnects. This is useful on a workstation
that does not have sufficient resources to permit an SMTP server and associated
local mail delivery system to be kept resident and continuously running.

Another example of a probe in the miscellaneous category is the Ping Probe. It is
used for general purpose applications on UNIX operating systems and does not
require any special hardware. You can use the Ping Probe to monitor any device
that supports the ICMP protocol, such as switches, routers, PCs, and UNIX hosts.

Probe components

4

A probe has the following primary components: an executable file, a properties file,
and a rules file.

Some probes have additional components. When additional components are
provided, they are described in the individual probe publications.

Executable file

The executable file is the core of a probe. This file connects to the event source,
acquires and processes events, and forwards the events to the ObjectServer as
alerts.

Probe executable files are stored in the directory $OMNIHOME/probes/arch, where
arch represents the operating system. For example, the executable file for the Ping
Probe that runs on HP-UX 11.00 is:

$OMNIHOME/probes/hpux11l/nco_p_ping

To start a probe on UNIX with the appropriate configuration information, run the
wrapper script in the directory $OMNIHOME/probes. For example, to start the Ping
Probe, enter:

$OMNIHOME/probes/nco_p ping

When the probe starts, it obtains information on how to configure its environment

from its properties and rules files. The probe uses this configuration information to
customize the data that it forwards to the ObjectServer.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related concepts

[“Properties file”|

[‘Rules file” on page 6|

Properties file
Probe properties define the environment in which the probe runs.

For example, the Server property specifies the ObjectServer to which the probe
forwards alerts. Probe properties are stored in a properties file in the directory
$OMNIHOME/probes/arch, where arch represents the operating system directory.
Properties files are identified by the .props file extension.

For example, the properties file for the Ping Probe that runs on HP-UX 11.00 is:
$OMNIHOME/probes/hpux11/ping.props

Properties files are formed of name-value pairs separated by a colon. For example:
Server : "NCOMS"

In this name-value pair, Server is the name of the property and NCOMS is the value
to which the property is set. String values must be enclosed in quotation marks;
other values do not require quotation marks.

Related concepts

[“Executable file” on page 4|

[Chapter 4, “Running probes,” on page 73

Probe property types
Probe properties can be divided into two categories: common properties and
probe-specific properties.

Common properties are relevant to all probes. For example, the Server property is
a common property, because every probe needs to know which ObjectServer to
send alerts to.

Probe-specific properties vary by probe. Some probes do not have any specific
properties, but most have additional properties that relate to the environment in
which they run. For example, the Ping Probe has a Pingfile property that specifies
the name of a file containing a list of the machines to be pinged.

Probe-specific properties are described in the individual probe publications.
Related reference

IChapter 5, “Common probe properties and command-line options,” on page 77

Chapter 1. About probes 5

6

Probe property versus probe command-line option usage
Each probe property has a corresponding command-line option.

For example, the Server property is set in the properties file as follows:
Server : "NCOMS"

You can also set this property on the command line by using the -server
command-line option as follows:

$OMNIHOME/probes/nco_p_probename -server NCOMS

The command-line option overrides the property when both are set. For example,
if the property sets the server to NCOMS and the command-line option sets the
server to STWO, the value STWO is used for the ObjectServer name.

Related reference

(Chapter 5, “Common probe properties and command-line options,” on page 77

Rules file

The rules file defines how the probe should process event data to create a
meaningful alert. For each alert, the rules file also creates an identifier that
uniquely identifies the problem source.

When the probe acquires raw data from the event source, it breaks it down into
tokens. Each token represents a piece of event data. The probe then parses these
tokens into elements. Elements are identified within the rules file by the $ symbol.
For example, $Node is an element containing the node name of the event source.

The probe processes the elements according to the rules in the rules file to assign
values to the fields which are available in the ObjectServer. When they have been
processed, the field values contain the event details in the form used by the
ObjectServer. At this stage, the @Identifier field is also assigned a unique value.
The probe then forwards the field values to the ObjectServer as a Tivoli
Netcool/OMNIbus alert. Field values are identified in the rules file by the @
symbol. For example, @Node can be a field value containing the node name of the
event source.

Duplicate alerts (those with the same identifier) are correlated so that they are
displayed in the event list only once.

Local rules files are stored in the directory $OMNIHOME/probes/arch, and are
identified by the .rules file extension. For example, the rules file for the Ping
Probe that runs on HP-UX 11.00 is:

$OMNIHOME/probes/hpux11/ping.rules

You can use a Web address to specify a rules file located on a remote server that is
accessible using HTTP. This allows all rules files to be sourced for each probe from
a central point. You can use a suitable configuration management tool, such as
CVS, at the central point to enable version management of all rules files.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related concepts

[“Executable file” on page 4

[“Probe architecture” on page 8|

[Chapter 4, “Running probes,” on page 73

Related reference

IChapter 2, “Probe rules file syntax,” on page 17

Re-reading the rules file
Whenever you update the rules file, the probe must be forced to re-read the rules
file in order for the changes to take effect.

To force the probe to re-read the rules file, issue the following command on the
probe process ID (PID):

ki1l -HUP pid
where pid is the PID.
See the ps and ki1l man pages for more information.

This method is preferable to restarting the probe, because the probe will not lose
events. If the updated rules file contains syntax errors or references fields that do
not exist, when the probe is sent a HUP signal, it sends an error message to the log
file and continues to use the previous version of the rules file.

Tip: For CORBA probes, issue the command ki1l -HUP on the nco_p_nonnative
process.

Related tasks
[‘Debugeing rules files” on page 53|

[“Defining lookup tables in the rules file” on page 39|

Naming conventions for probe component files

Each probe has an abbreviated name that is used to identify the probe executable
file and other associated files.

The naming conventions used for probe file names are shown in the following

table:

Table 2. Naming conventions for probe file names

Probe file type File name and location

Executable file $OMNIHOME/probes/arch/nco_p_probename
Properties file $OMNIHOME/probes/arch/probename . prop
Rules file $OMNIHOME/probes/arch/probename .rules

In these paths:

* arch represents the operating system directory on which the probe is installed;
for example, solaris2 when running on a Solaris system.

* probename represents the abbreviated probe name.

For example, the abbreviated name for SunNet Manager is snmlog and the Probe
for SunNet Manager executable file is named:

Chapter 1. About probes 7

$OMNIHOME/probes/arch/nco_p_snmlog
The properties file is named:
$OMNIHOME/probes/arch/snmlog.prop
The rules file is named:

$OMNIHOME/probes/arch/snmlog.rules

Probe architecture

8

The function of a probe is to acquire information from an event source and
forward it to the ObjectServer. Probes use tokens and elements, and apply rules, to
transform event source data into a format that the ObjectServer can recognize.

The following figure shows how probes use rules to process the event data that is

acquired from the event source.

T7770.0.0.0 10 NodeNumber $NodeNumber
0122 0.0.0.0 IPAddress $IPAddress

82 8097 562 Cause $Cause
9000937 8290 Summary $Summary
00936000 5 @48 5 Time 3 $Time — >
Pope23 g Date $Date
snmp-trap” Probe Summary $Summary
sequence | Sequence $Sequence
4305 receive Version $Version

time U Text $Text

82 9000936 Flag $Flag

@]Identifier
@NodeNumber
@IPAddress
@Cause
@Summary
@Time
@Date
@Summary
@Sequence
@Version
@Text
@Flag

in

ObjectServer Event List

NCOMS
Gateway
Figure 2. Event mapping using rules
The processing stages are as follows:
The raw event data that a probe acquires cannot be sent directly to the

ObjectServer. The probe breaks the event data into tokens. Each token

represents a piece of event data.

2] The probe then parses these tokens into elements and processes the
elements according to the rules in the rules file. Elements are identified in
the rules file by the $ symbol. For example, $Node is an element

containing the node name of the event source.

Elements are used to assign values to ObjectServer fields, which are
indicated by the @ symbol. The field values contain the event details in a
form that the ObjectServer can understand. Fields make up the alerts that

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

are forwarded to the ObjectServer, where they are stored and managed in
the alerts.status table, and displayed in the event list.

The Identifier field is also generated by the rules file.
Related concepts

[“How unique identifiers are constructed for events”|

[“Rules file” on page 6|

How unique identifiers are constructed for events

The Identifier field (@Identifier) uniquely identifies a problem source. Like other
ObjectServer fields, the Identifier field is constructed from the tokens that the
probe acquires from the event stream according to the rules in the rules file.

The Identifier field allows the ObjectServer to correlate alerts so that duplicate
alerts are displayed in the event list only once. Instead of inserting a new alert, the
alert is reinserted; that is, the existing alert is updated. These updates are
configurable. For example, the Tally field (@Tally) is typically incremented to keep
track of the number of times that the event occurs.

It is essential that the identifier identifies repeated events appropriately. The
following identifier is not specific enough, because any events with the same
manager and node are treated as duplicates:

@Identifier=@Manager+@Node

If the identifier is too specific, the ObjectServer cannot correlate and deduplicate
repeated events. For example, an identifier that contains a time value prevents
correct deduplication.

The following identifier correctly identifies repeated events in a typical
environment:

@Identifier=@Node+" "+@AlertKey+" "+@ATertGroup+" "+@Typet+" "+@Agent+" "+@Manager
Event deduplication with probes

Deduplication is managed by the ObjectServer, but can be configured in the probe
rules file. This enables you to set deduplication rules on a per-event basis. You can
specify which fields of an alert are to be updated if the alert is deduplicated using
the update function.

Related concepts

[“Probe architecture” on page 8|

Related reference

Chapter 2, “Probe rules file syntax,” on page 17

“Update on deduplication function” on page 41|

Chapter 1. About probes 9

Modes of operation of probes

10

You can configure probes to operate in a variety of modes, including
store-and-forward mode, raw capture mode, secure mode, and peer-to-peer failover
mode.

Store-and-forward mode for probes

Probes can continue to run if the target ObjectServer is down. During this period,
the probe switches to store mode. The probe reverts to forward mode when the
ObjectServer is functional again.

Automatic store and forward

By default, the store-and-forward mode is active only after a connection to the
ObjectServer has been established, used, and then lost. If the ObjectServer is not
running when the probe starts, the store-and-forward mode is not triggered, and
the probe terminates.

However, if you set the probe to run in automatic store-and-forward mode, it goes
straight into store mode if the ObjectServer is not running, as long as the probe has
been connected to the ObjectServer at least once before. Enable automatic
store-and-forward mode by using the -autosaf command-line option or the
AutoSAF property.

Note: If the probe is trying to connect to a virtual pair of ObjectServers and both
of the ObjectServers are down, the probe checks the AutoSAF property setting. If
automatic store-and-forward is enabled, the probe begins to store events in the
store-and-forward file; otherwise, the probe terminates.

Legacy store and forward

When the probe detects that the ObjectServer is not present (usually because it
cannot forward an alert to the ObjectServer), the probe switches to store mode. In
this mode, the probe writes all of the messages that it would normally send to the
ObjectServer to a store-and-forward file. This file name is constructed using the
value that is specified for the SAFFileName property. A .servername extension is
automatically appended to the SAFFileName value, where servername is the name of
the ObjectServer to which the probe is attempting to send alerts. If the probe is
configured to send alerts to multiple ObjectServers, individual store-and-forward
files are therefore created for each ObjectServer.

If corrupted records are identified in a store-and-forward file, these records are
ignored and the probe will forward only the valid records to the ObjectServer. You
can indicate whether to automatically save a file that contains corrupted records
for future diagnosis by using the KeepLastBrokenSAF property. If you set this
property to 1, the file containing corrupted records is renamed
SAFFileName.servername.broken (and will overwrite any previous .broken file).

You can also use the StoreSAFRejects property to indicate whether the probe
should continuously save the individual corrupted store-and-forward records for
analysis. If StoreSAFRejects is set to 1, the corrupted records (only) are
continuously saved to a SAFFileName.servername.rejected file.

Note: The SAFFileName.servername.rejected file has an unlimited size, and must
be manually deleted when no longer needed.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Legacy store and forward can be configured by using the following properties.
StoreAndForward must be set to 1 for legacy store and forward; the other properties
display default values that can be changed.

StoreAndForward:1

SAFFileName: ' $OMNIHOME/var/SAF'

MaxSAFFileSize:1024

SAFFilePoolSize:3

Circular store and forward

You can run the probe in circular store-and-forward mode to minimize event loss
during failover and failback. In this mode, the probe stores all the alerts that it
generates while it is connected to the ObjectServer. These alerts are stored in
rolling store-and-forward files that roll over after a time interval set by the
Ro11SAFInterval property. The Ro11SAFInterval property should be set to a value
that is equal to, or greater than, the granularity of the ObjectServer.

The circular store-and-forward files are named SAFFileName.servername and
SAFFileName.servername_1.

When the probe gets disconnected from the ObjectServer, the probe stores the
timestamp of the last successful event and the ObjectServer name in a file that is
named in the format SAFFilename.DisconnectionTime. This file is stored in the
same directory as the store-and-forward files. If a backup ObjectServer is available
for failover, the probe reconnects to the backup ObjectServer and replays events
from the store-and-forward file that was earlier sent to the primary ObjectServer
during the time period measured as one Ro11SAFInterval before the disconnection
time. As a result, the probe will resend events that it might have sent to the
primary ObjectServer, but which might not have been replicated in the backup
ObjectServer before the primary ObjectServer went down.

If the probe is unable to connect to an ObjectServer, the probe automatically
switches its handling of rolling store-and-forward files to the legacy
store-and-forward behavior. The probe starts storing all events in a pool of
store-and-forward files, where the size of the pool is defined by the
SAFFilePoolSize property, and the maximum file size is defined by the
MaxSAFFileSize property. During this time, the Ro11SAFInterval property is not
used to roll over the store-and-forward files; instead, each file rolls over when it
reaches the size specified by MaxSAFFileSize.

Circular-store-and-forward can be configured by using the following properties.
StoreAndForward must be set to 2 for circular store and forward; the other
properties display default values that can be changed.

StoreAndForward:2

SAFFileName: ' $OMNIHOME/var/SAF'

MaxSAFFileSize:1024

SAFFilePoolSize:3

Ro11SAFInterval:90

Important: If you want the probe to operate in circular store-and-forward mode,
the Server property must be set to the name of the primary ObjectServer, and the
ServerBackup property must be set to the name of the backup ObjectServer, if a
backup is present. Do not use the definitions of virtual ObjectServer pairs for these
properties.

For information about the use of the ProbeSubSecondld field in the deduplication
trigger within the ObjectServer when the probe is running in circular

Chapter 1. About probes 11

store-and-forward mode, see |https://www-304.ibm.com /support /|

[docview.wss?uid=swg21469238}

Summary of store-and-forward behavior

The following table summarizes how the ObjectServer status, and the combination
of AutoSAF and StoreAndForward properties affect the behavior of probes.

Table 3. Store-and-forward summary

ObjectServer
status before
probe startup

AutoSAF
property

StoreAndForward
property

Expected result

ObjectServer
down

0

0

The probe does not start.

ObjectServer
down

The probe does not start.

ObjectServer
down

The probe starts writing events into
the store-and-forward file. When the
ObjectServer comes up, the probe
forwards the store-and-forward file
events and then stops writing events
to the store-and-forward file. If the
ObjectServer gets disconnected later,
events will not be stored.

ObjectServer
down

The probe starts writing events into
the store-and-forward file. When the
ObjectServer comes up, the probe
forwards the store-and-forward file
events. If the ObjectServer gets
disconnected later, the probe will
store events in store-and-forward
files; these events will be forwarded
on reconnection.

ObjectServer up

No effect of
property

The probe forwards events in the
store-and-forward files to the
connected ObjectServer, and stores
new events in the store-and-forward
files only when disconnected from
the ObjectServer.

ObjectServer up

No effect of
property

The probe does not forward any
events in the existing
store-and-forward files, and does not
store events in new
store-and-forward files.

ObjectServer up

No effect of
property

The probe forwards events in the
store-and-forward files to the
connected ObjectServer, and stores
new events in the rolling
store-and-forward files when
connected. The probe stores all
events in a pool of files when
disconnected.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

https://www-304.ibm.com/support/docview.wss?uid=swg21469238
https://www-304.ibm.com/support/docview.wss?uid=swg21469238

Related reference

[‘Multithreaded processing of alert data” on page 46|

(Chapter 5, “Common probe properties and command-line options,” on page 77|

Raw capture mode for probes

You can use the raw capture mode to save the complete stream of event data
acquired by a probe into a file, without any processing by the rules file. This can
be useful for auditing, recording, or debugging the operation of a probe.

The captured data is in a format that can be replayed by the Standard Input Probe.
See the publication for the Standard Input Probe for further information. You can
access this publication as follows from the IBM Tivoli Network Management
Information Center (http://publib.boulder.ibm.com/infocenter/tivihelp /v8r1/|

fndex)
1. Expand the IBM Tivoli Netcool/OMNIbus node in the navigation pane on the left.
2. Expand the Tivoli Netcool/OMNIbus probes and TSMs node.

3. Go to the Universal node.

To enable the raw capture mode, use the -raw command-line option or the
RawCapture property. You can also set the RawCapture property in the rules file, so
that you can send the raw event data to a file only when certain conditions are
met.

Replay the raw captured data, using the Standard Input probe. A possible syntax is
as follows:

cat <raw_capture filename> | $OMNIHOME/probes/nco p_stdin —server <server>

For example:
cat opt/Omnibus/var/mttrapd.cap | /opt/Omnibus/probes/nco p stdin -server NCOMS

The RawCaptureFile, RawCaptureFileAppend, and MaxRawFileSize properties also
control the operation of the raw capture mode.

Related reference

[‘Changing the value of the RawCapture property in the rules file” on page 19

(Chapter 5, “Common probe properties and command-line options,” on page 77

Secure mode for probes

You can run the ObjectServer in secure mode. When you start the ObjectServer
using the -secure command-line option, the ObjectServer authenticates probe,
gateway, and proxy server connections by requiring a user name and password.

When a connection request is sent, the ObjectServer issues an authentication
message. The probe, gateway, or proxy server must respond with the correct user
name and password combination.

If the ObjectServer is not running in secure mode, probe, gateway, and proxy
server connection requests are not authenticated.

Before running a probe that connects to a secure ObjectServer or proxy server,
ensure that the AuthUserName and AuthPassword properties are set in the probe
properties file, with values for the user name and password. If the user name and
password combination is incorrect, the ObjectServer issues an error message and
rejects the connection.

Chapter 1. About probes 13

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

14

When in FIPS 140-2 mode, the password can either be specified in plain text, or
can be encrypted with the nco_aes_crypt utility. If you are encrypting passwords
by using nco_aes_crypt in FIPS 140-2 mode, you must specify AES_FIPS as the
encryption algorithm.

When in non-FIPS 140-2 mode, the password can be encrypted with the
nco_g_crypt or nco_aes_crypt utilities. If you are encrypting passwords by using
nco_aes_crypt in non-FIPS 140-2 mode, you can specify either AES_FIPS or AES as
the encryption algorithm. Use AES only if you need to maintain compatibility with
passwords that were encrypted using the tools provided in versions earlier than
Tivoli Netcool/OMNIbus V7.2.1.

For further information about using the nco_aes_crypt utility, see the IBM Tivoli
Netcool/OMNIbus Installation and Deployment Guide.

Related reference

(Chapter 5, “Common probe properties and command-line options,” on page 77

Peer-to-peer failover mode for probes

Two instances of a probe can run simultaneously in a peer-to-peer failover
relationship. One instance is designated as the master; the other instance acts as a
slave and is on hot standby. If the master instance fails, the slave instance is
activated.

Note: Peer-to-peer failover is not supported for all probes. Probes that list the
Mode, PeerHost, and PeerPort properties when you run the command
$OMNIHOME/probes/nco_p_probename -dumpprops support peer-to-peer failover.

To set up a peer-to-peer failover relationship, perform the following actions:

* For the master instance, set the Mode property to master and the PeerHost
property to the network element name of the slave.

* For the slave instance, set the Mode property to slave and the PeerHost property
to the network element name of the master.

 For both instances, set the PeerPort property to the port through which the
master and slave communicate.

The master instance sends a heartbeat poll to the slave instance at the time interval
specified by the BeatInterval property. The slave instance caches all the alert data
it receives and discards all alert data in its cache each time it receives a heartbeat
from the master instance. If the slave instance receives no heartbeat in the time
period defined by the sum of the values of the BeatInterval and BeatThreshold
properties (BeatInterval + BeatThreshold), the slave instance assumes that the
master is no longer active, and forwards all alerts in its cache to the ObjectServer.
The slave instance continues to forward all alerts until it receives another heartbeat
from the original master instance. The timeout period while waiting for heartbeats
is 1 second. So there can be a maximum delay of (BeatInterval + BeatThreshold +
1) seconds before the slave instance forwards its cached alerts. All alerts in the
cache are sent.

The BeatInterval setting that is defined for the master instance takes precedence;
the slave instance ignores its local BeatInterval setting.

To disable the peer-to-peer failover relationship, run a single instance of the probe
with the Mode property set to standard. This is the default setting.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

The failover mode of probes running in a peer-to-peer failover relationship is set in
the properties files.

You can also switch the mode of a probe between master and slave in the rules
file. There is a delay of up to one second before the mode change takes effect. This
can result in duplicate events if two probe instances are switching from standard
mode to master or slave; however, no data is lost.

When the two probe instances running in store-and-forward mode are connected
to a failover pair of ObjectServers, the master instance sends alerts to the primary
ObjectServer. If the primary ObjectServer fails, the master instance of the probe
fails over and starts sending alerts in its store-and-forward file to the backup
ObjectServer. If the master instance of the probe fails, the slave instance takes over.
If the slave instance fails to connect to the ObjectServer, the slave then creates a
store-and-forward file for storing alert data. When the master instance is
reactivated, any store-and-forward files in the master instance are deleted to
prevent old alerts from being resent.

Example: Setting the peer-to-peer failover mode in the properties
files

Example properties file values for the master are as follows:

PeerPort: 9999
PeerHost: "slavehost"
Mode: "master"

Example properties file values for the slave are as follows:

PeerPort: 9999
PeerHost: "masterhost"
Mode: "slave"

Example: Setting the peer-to-peer failover mode in the rules file

To switch a probe instance to become the master, use the rules file syntax:
%Mode = "master"

Chapter 1. About probes 15

16 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 2. Probe rules file syntax

The rules file defines how the probe should process event data to create a
meaningful Tivoli® Netcool/OMNIbus alert. The rules file also creates an identifier
for each alert to uniquely identify the problem source, so that repeated events can
be deduplicated.

Related concepts

“How unique identifiers are constructed for events” on page 9

“Rules file” on page 6|

Elements, fields, properties, and arrays in rules files

A probe takes an event stream and parses it into elements. Event elements are
processed by the probe based on the logic in the rules file. Elements are assigned
to fields and forwarded to the ObjectServer, where they are inserted as alerts into
the alerts.status table.

The Identifier field, used by the ObjectServer for deduplication, is also created
based on the logic in the rules file.

Elements are indicated by the § symbol in the rules file. For example, $Node is an
element containing the node name of the event source. You can assign elements to
ObjectServer fields, indicated by the @ symbol in the rules file.

Note: The normal format for referring to elements works only if the name of the
element contains only letters, digits, and underscores. If a probe dynamically
generates element names, it is possible to generate elements that contain other
characters. You can refer to elements such as these by putting the element name
inside parentheses; for example, $(strange=name).

Related concepts

[‘How unique identifiers are constructed for events” on page 9

Assigning values to ObjectServer fields

You can assign values to ObjectServer fields by direct assignment, concatenation, or
by adding text.

Examples are as follows:

* Direct assignment example: @Node = $Node

» Concatenation example: @Summary = $Summary + $Group

* Adding text example: @Summary = $Node + "has problem" + $Summary

You can express numeric values in decimal or hexadecimal form. The following
statements, which set the Class field to 100, are equivalent:

* @Class=100
* @Class=0x64

In addition to assigning elements to fields, you can use processing statements,
operators, and functions to manipulate these values in rules files before assigning
them.

© Copyright IBM Corp. 1994, 2011 17

18

Tip: Elements are stored as strings, so you must use the int function to convert
elements into integers before performing numeric operations.

Related reference

[‘Math functions” on page 36|

Assigning temporary elements in rules files

You can create a temporary element in a rules file by assigning it to an expression.

For example:
$tempelement = "message"

An element, $tempelement, is created and assigned the string value message.

If you refer to an element that has not been initialized in this way, the element is
set to the null string ("").

The following example creates the element $b and sets it to setnow:
$b="setnow"

The following example then sets the element $a to setnow:
$a=$b

In the following example, temporary elements are used to extract information from
a Summary element, which has the string value: The Port is down on Port 1 Board
2.

$templ = extract ($Summary, "Port ([0-9]+)")

$temp2 = extract ($Summary, "Board ([0-9]+)")
@AlertKey = $templ + "." + $temp2

The extract function is used to assign values to temporary elements templ and
temp2. Then these elements are concatenated (using the + concatenate operator)
with a . separating them, and assigned to the AlertKey field. After these
statements are run, the AlertKey field has the value 1.2.

Related reference

[‘String functions” on page 33|

[‘Math and string operators” on page 31

Assigning property values to fields

You can assign the value of a probe property, as defined in the properties file or on
the command line, to a field value. A property is represented by a % symbol in the
rules file.

For example, you can add the following statement to your rules file:
@Summary = "Server = " + %Server

In this example, when the rules file is processed, the probe searches for a property
named Server. If the property is found, its value is concatenated to the text string
and assigned to the Summary field. If the property is not found, a null string ("")

is assigned.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Assigning values to properties

You can assign values to a property in the rules file. If the property does not exist,
it is created.

For example, you can create a property called Counter to keep track of the number
of events that have been processed as follows:
if (match(%Counter,""))

{%Counter = 1}
else {%Counter = int(%Counter) + 1}

These properties retain their values across events and when the rules file is re-read.

Changing the value of the RawCapture property in the rules file
Most probes read properties once at startup, so changing probe properties after
startup does not usually affect probe behavior. However, you can set the
RawCapture property in the rules file, so that you can send the raw event data to a
file only when certain conditions are met.

The setting for the raw capture mode takes effect for the current event.

For example:

Start rules processing
%RawCapture=0

if (condition) {
Send the current event to the raw capture file
%RawCapture=1

}

You can enable raw capture mode globally by setting the -raw command-line
option or the RawCapture property in the probe properties file.

Related concepts

[‘/Raw capture mode for probes” on page 13|

Related reference

[‘Control statements in rules files” on page 21|

Using arrays

You must define arrays at the start of a rules file, before any processing statements.

Tip: You must also define tables, and target ObjectServers, before any processing
statements.

To define an array, use the following syntax:
array node_arr

Arrays are one dimensional. Each time an assignment is made for a key value that
already exists, the previous value is overwritten. For example:

node_arr["myhost"] = "a"
node_arr["yourhost"] = "b"
node_arr["myhost"] = "c"

After the preceding statements are run, there are two items in the node_arr array.
The item with the key myhost is set to ¢, and the item with the key yourhost is set
to b. You can make assignments using probe elements, for example:

node_arr[$Node] = "d"

Chapter 2. Probe rules file syntax 19

Note: Array values are persistent until a probe is restarted. If you force the probe
to re-read the rules file by issuing a ki1l -HUP pid command on the probe process
ID, the array values are maintained.

Related reference

[“Lookup table operations” on page 39|

[“Sending alerts to alternative ObjectServers and tables” on page 43

Rules file development guidelines

20

Use the following guidelines to develop rules files with a consistent format and
structure:

Rules files must be of production quality and not require any additional
modification.

Rules files must not result in any additional modifications to the ObjectServer.
That is, there must be no additional event fields other than those provided by
Tivoli Netcool/OMNIbus.

The basic structure of the rules files must be both easily maintainable and easily
extendible, therefore enabling the addition of event handling for new devices
without affecting existing rules.

The basic textual-conventions used for the rules files must be consistent and
therefore ensure that all newly created rules files share a common format.

The rules files must be clearly documented to allow each event to be recognized
without the need for any additional documentation.

The events formatted by the rules files must be deduplicated properly by the
Tivoli Netcool/OMNIbus ObjectServer. The Identifier field (@ldentifier) must be
set correctly to enable the granularity of deduplication to be directly controlled.

The events formatted by the rules files must be compatible, whenever possible,
with the ObjectServer's GenericClear Automation.

Always make a backup copy of a rules file before modifying it. Save the file as a
.rules.date file. For example, snmp.rules.070131. You need this file in case you
have to perform a rollback.

Any changes to the rules file must be commented out with a number sign (#) at
the beginning of the line.

Use the details ($*) function only when debugging rules files or writing rules
files. After using details ($*) for long periods of time, the ObjectServer tables
become very large and the performance of the ObjectServer suffers.

The SWITCH and CASE constructs are processed more efficiently, and must
therefore be used in preference to the IF and ELSE statements.

Use lookup tables wherever possible. When multiple values are linked to a
single key, use a multi-column lookup table. Lookup tables must be defined
within an external file based table, specified with a .1ookup file extension. This
enables clear identification of the lookup tables. Additionally, the lookup tables
must be the first elements of the rules files that are read by the probe. That is, in
the basic rules file, locate the lookup file include statement at the top.

Matching pairs of problem and resolution events must have identical
@AlertGroup and @ATertKey values, and appropriate @Type and @Severity values.

A Resolution event must have a severity alert of 1 (indeterminate) and a type of
2 (resolution). Do not set the severity of resolution events to 0 (Clear). This
would prevent events being processed by the ObjectServer's GenericClear
Automation.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related tasks
[‘Testing rules files” on page 53

Control statements in rules files

The IF, SWITCH, FOREACH, and BREAK statements provide control flow for
processing rules files.

FOREACH statement

Use the FOREACH statement to write statements in the probe rules file language
that iterate through lists of event elements or table entries.

Syntax

The syntax of the FOREACH statement is as follows:
foreach (iterator in list)

{

statements

}

In this syntax, iterator represents the item to be identified by the statement. iterator
can consist of any combination of printable ASCII characters, and must start with a
letter. For example: letter {letter|digit}.

list represents the elements to be processed in the rules file. list can be a
comma-delimited list of elements or an array. You can use $* to instruct the loop to
process all elements. The statement processes the elements in the [ist in a
non-determinstic order.

statements represents valid probe rules file statements or functions that are to be
applied to the elements in list.

You can nest FOREACH statements inside each other. The FOREACH statement
supports IF and SWITCH statements in the body of a loop.

In a statement the iterator represents the current loop item. Referencing its value
depends on the type of list that is being processed.

When looping through a list of elements, note the following information:
* You must prefix the iterator with $ to reference the current element.

* If used on its own, the iterator represents the name of the current element.

When looping through an array, note the following information:
* You must substitute the iterator for the key in referencing an array item.

* On its own, the iferator represents a string that is the key to the current array
item.

Supported probe rules file functions

All probe rules file functions are supported in a FOREACH statement.

Chapter 2. Probe rules file syntax 21

22

Restrictions

You cannot use the FOREACH statement to iterate through properties, fields, or
columns. You also cannot use the statement to iterate through a combination of
arrays and elements in the same loop.

If you use the details() function in a FOREACH loop, only the result of the
last-executed details() function are stored in the ObjectServer. Additionally,
because the FOREACH statement processes the elements in the rules file in a
non-determinstic order, it cannot be predicted which element is stored.

Examples of the looping function
Use these examples of the FOREACH looping statement to help you deploy the
function in your Tivoli Netcool/OMNIbus environment.

Example 1: Looping through all elements

The following example shows how to use the $* wildcard to process all elements
in a loop:

foreach (e in $*)

log(INFO, "The value of §" + e + " =" + $e)
1

This statement would return messages for all elements. Each message is similar to
the following example:

Information: I-UNK-000-000: The value of $DateString = 12/04/10 16:39:50.
Example 2: Looping through a comma delimited list

The following example shows how to convert the $Node, $Agent, and $Group
tokens to lower case:

foreach (e in $Node, $Agent, $Group)

$e = lower($e)

}
Example 3: Loop through entries in an array

In the following example, an array called “names” is defined at the top of the rules
file. During an iteration of the loop the key contains the key to the current entry in
“names”. The result of this loop is that each entry in “names” is prefixed with XX.

array names
foreach (key in names)

Tog(INFO, "Before: The value of names[" + key + "] = " + names[key])
names [key] = "XX" + names[key]

}
Example 4: Using IF with BREAK

The following example loops through all the elements until an element is found
that has a value prefixed with http://. The URL field is set with this value and the
execution breaks out of the loop.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

foreach (e in $*)
{
if (nmatch($e, "http://"))
{
@GURL = $e
break
}
}

For more information, see ['BREAK statement” on page 27|

Example 5: Using IF inside a FOREACH loop on SNMP OID fields

The following example proposes a solution for handling differences between

SNMP V1 and V2:

1. In the first loop, x always contains the name of the current element. If the name
begins with OID, the value of the element is added to the working array

“oids.”

2. The key for an entry is prefixed with “OID” followed by a number which is

one less than the number used in the name of the original element.

3. The original element is removed.

The result is that the OID elements are now all moved to the left by one element,

that is $0ID1 = $0ID2, $0ID2 = $0ID3, and so on.

Note: This example does not provide a complete solution for handling SNMP V2

and V1 traps.

Declare an empty array
array oids

Loop through all elements.
foreach (x in $*)
{
Find elements whose names start with '0OID'
if(nmatch(x, "0ID"))
{
Extract the OID number from the element name
Save the element value in the 'oids' array.
oids["0ID1"] = $0ID2
oids["0ID2"] = $0ID3 etc.
$n=extract(x, "0ID([0-9]+)")
if(int($n) > 1)
{
$n=int($n)-1
0ids["0ID"+$n]=$x
}
Delete original OID element
remove($x)
}
1

Create new 'OID' elements
foreach (x in oids)
{

$x=0ids[x]

clear (oids)

Chapter 2. Probe rules file syntax

23

24

Example 6: Using IF inside a FOREACH loop to handle EIF elements

The following example shows how to use the FOREACH statement to remove
single quotation marks (') surrounding any elements in EIF messages:

foreach (e in §*)

{

if(regmatch($e, "~'.x'$"))
{

$e = extract($e, "~'(.x)'$")

Tog(DEBUG, "Colons removed from Token " + $e)
}
}

Example 7: Nested loops

The following example shows how to translate elements that contain encoded
Octet strings (dot-separated integers) and translate the strings to ASCII text:

array octets
table Ascii2Txt =
{

{IIGII’IIII}’
{Ilgll,ll II},
{II32II’II II}’
{II33II’II!II}’

'{I.Ilé5ll’ll}ll}’
{"].26","NH}
}

foreach (e in §*)

{

$n = split($e, octets, ".")
$e = nn

foreach (n in octets)

$e = $e + lookup(octets[n], Ascii2Txt)

clear(octets)

}

Example 8: Using the FOREACH statement to parse name-value
elements

In the following example, the contents of $input represent a set of name-value
pairs separated by semi-colons (;). The example creates new elements from the
name-value pairs.

array pairs

array values
$input="foo=blah;wibble=wobble"
$num = split($input, pairs, ";")
foreach (t in pairs)

{

$n = extract(pairs[t], "(.*)=")
$v = extract(pairs[t], ".*=(.*)")
values[$n] = $v

}

remove($n)

remove($v)

foreach (t in values)

$t = values[t]
1

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Example 9: Using the FOREACH statement to load name-value pairs
into the @ExtendedAtir field

To create name-values pairs of all current elements and load them into the
@ExtendedAttr field, use the following statement:

@ExtendedAttr = nvp_add($*)

For only a subset of elements, use a statement as shown in the following example:
foreach (e in $interface, $network, $ipaddr, $netmask, $gateway)

{
@ExtendedAttr = nvp_add(@ExtendedAttr, e, $e)

}

In this example, the statement makes use of the fact that e represents the name of
the element, and $e represents the value of the element. This example would
populate the @ExtendedAttr field with data similar to the following sample:

interface="eth0";network="178.268.2.0";ipaddr="178.268.2.64";
netmask="233.233.233.0";gateway="178.268.2.1"

Example 10: Using the FOREACH statement to selectively remove
name-value pairs from the @ExtendedAttr field

Similarly to [“Example 9: Using the FOREACH statement to load name-value pairs)|
finto the @ExtendedAttr field,”| the FOREACH statement can be used to remove
selected name-value pairs from the @ExtendedAttr field, as shown in the following
example:

@ExtendedAttr = nvp_add($*)

foreach (e in $network, $netmask)

{
@ExtendedAttr = nvp_remove(@ExtendedAttr, e)

}

Example 11: Using the SWITCH and BREAK statements in a FOREACH
loop

The following example shows how to use a BREAK statement in a SWITCH
statement to terminate the processing of a FOREACH loop:

foreach (x in $x)

switch($x):
{
case "1":
statements
case "2":
statements
case "3":
statements
default:
Tog (ERROR, "Unexpected element $" + x + " = " + $x)
break
}
1

For more information, see ['SWITCH statement” on page 26|and ["BREAK]
statement” on page 27|

Related reference

[“Rules file examples” on page 54|

Chapter 2. Probe rules file syntax 25

26

IF statement

A condition is a combination of expressions and operations that resolve to either
TRUE or FALSE. The IF statement allows conditional running of a set of one or more
assignment statements by running only the rules for the condition that is TRUE.

The IF statement has the following syntax:

if (condition) {

rules

} [else if (condition) {
rules

1

[else (condition) {
rules

bl

You can combine conditions into increasingly complex conditions using the logical
AND operator (&&), which is true only if all of its inputs are true, and OR operator
(1), which is true if any of its inputs are true. For example:

if match ($Enterprise, "Acme") &% match ($trap-type, "Link-Up")

{ @Summary = "Acme Link Up on " + @Node }

Related reference

[“Logical operators” on page 32|

[“String functions” on page 33

SWITCH statement

A SWITCH statement transfers control to a set of one or more rules assignment
statements depending on the value of an expression.

The SWITCH statement has the following syntax:

switch (expression) {

case "stringliteral":
rules

case "stringliteral":
rules

default:
[rules]

}

The expression can be any valid expression. For example:
switch($node)

The stringliteral can be any string value. For example:
case "jupiter":

You can have more than one stringliteral separated by the pipe (|) symbol. For
example:

case "jupiter" | "mars" | "venus":
This case runs if the expression matches any of the specified strings.
The SWITCH statement tests for exact matches only. Wherever possible, use this

statement instead of an IF statement because SWITCH statements are processed
more efficiently and therefore run more quickly.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Any rules in the DEFAULT case are run if no other case is matched. Each SWITCH
statement must contain a default case, even if there are no rules associated with it.
There is no fall through from one case to another.

The behaviour of a BREAK statement in a SWITCH statement case is identical to
the behaviour of a BREAK statement inside an IF statement. If the SWITCH
statement is inside the body of a loop statement then the process will exit the loop.
If the SWITCH statement is not part of a loop body then the rules processing of
the event is terminated at that point and the event is sent on to the ObjectServer.

BREAK statement

Use the BREAK statement in conjunction with the FOREACH statement to break
out of the processing of a loop before the loop is completely processed.

The behavior of the BREAK statement is as follows:

¢ If the BREAK statement is contained in a FOREACH statement, when the
BREAK statement is processed, processing of the FOREACH loop is terminated
immediately. Processing continues with the next statement after the FOREACH
statement. If the statement contains nested FOREACH statements, only the
innermost loop containing the BREAK statement is exited.

e If the BREAK statement is outside of a FOREACH statement, the BREAK
statement terminates the processing of the rules for the current event. No more
rules are processed after the BREAK but the event is still sent to the
ObjectServer (unlike the discard function).

For additional information, see [“Examples of the looping function” on page 22|

Embedding multiple rules files in a rules file

You can include a number of secondary rules files in your main rules file by using
the include statement.

The format is as follows:
include "rulesfile"

Specify the path to the rules file as an absolute or relative path. Relative paths start
from the current rules file directory. You can use environment variables in the path,
as follows:

if(match(@Manager, "ProbeWatch"))

{ include "$OMNIHOME/probes/solaris2/probewatch.rules" }
else ...

If you want to include a remote probe rules file that is stored on an IPv6 Web
server, you must use brackets [] to delimit the IPv6 address in the Web address.
For example:

include "http://[fed0::7887:234:5edf:fe65:348]:8080/probewatch.rules"

Chapter 2. Probe rules file syntax 27

Rules file functions and operators

You can use operators and functions to manipulate elements in rules files before
assigning them to ObjectServer fields.

The following table lists the rules file operators.

Table 4. Rules file operators

Operators

Description

Further details

*///'/+

Perform math and string operations.

“Math and string|

operators” on page 31|

&, I, N, >>, <<

Perform bitwise operations.

“Bit manipulation|

operators” on page 31|

==, 1=, <>, <, >, <=, >=

Perform comparison operations.

“Comparisonl

operators” on page 32|

XOR (also 7)

NOT (also !), AND (also &&), OR (also | 1),

Perform logical (Boolean) operations.

“Logical operators” on|

page 32|

The following table lists the rules file functions.

Table 5. Rules file functions

Function name Description Further details
charcount Returns the number of characters in a string. “String functions” on|
page 33|
clear Removes the elements of an array. “String functions” on|
page 33|
datetotime Converts a string into a time data type. "Date and time]
functions” on page 37
details Adds information to the alerts.details table. “Details function” onl
page 41]
discard Deletes an entire event. “Elements and evenﬂ
functions” on page 33
exists Tests for the existence of an element. “Existence function’]
on page 3§|
expand Returns a string (which must be a literal string) “String functions” on|
with escape sequences expanded. page 33|
extract Returns the part of a string (which can be a field, “String functions” on|
element, or string expression) that matches the page 33|
parenthesized section of the regular expression.
genevent Enables you to: “Sending alerts to|
* Create and send an alert from a rules file to a alte?rnatlvel
target ObjectServer. Ol;]lectServers anf’a!|
tables” on page
* Send the same alert to more than one s
ObjectServer or table.
getdate Returns the current date as a date data type. “Date and timg]
functions” on page 37|
getenv Returns the value of an environment variable. “Host and process|
utility functions” onl
page 38|
geteventcount Returns the number of events in the event window. |[“Monitoring probe]

loads” on page 50|

28 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 5. Rules file functions (continued)

Function name

Description

Further details

gethostaddr Returns the IP address of the host by using a “Host and process|
naming service. utility functions” on|
page 38|
gethostname Returns the name of the host by using a naming “Host and process|
service. utility functions” on|
page 38|
getload Measures the load on the ObjectServer. “Monitoring probe]
loads” on page 50|
getpid Returns the process ID of a running probe. “Host and process|
utility functions” on|
page 38|
getplatform Returns the operating system platform the probe is |[“Host and process|
running on. utility functions” on|
page 38|
hostname Returns the name of the host on which the probe is |[“Host and process
running. utility functions” on|
page 38|
int Converts a numeric value into an integer. “Math functions” on|
page 36|
length Returns the number of bytes in a string. “String functions” on|
page 33|
log Enables you to log messages. “Message logeing]
functions” on page 42|
Tookup Uses a lookup table to map additional information |[“Lookup tablel
to an alert. operations” on page|
39
Tower Converts an expression to lowercase. “String functions” on|
page 33|
Ttrim Removes white space from the left of an “String functions” on|
expression. age 33
match Tests for an exact string match. “String functions” on|
[page 33|
nmatch Tests for a string match at the beginning of a “String functions” on|
specified string. age 33
nvp_add Enables probes to generate events that contain “String functions” on|
extended attributes, which are supplied as age 33
name-value pairs.
nvp_remove Used with extended attributes. “String functions” on|
[page 33|
Removes specified keys from a name-value pair
string, and returns the new name-value pair string.
printable Converts any non-printable characters in an “String functions” on|
expression to a space character. page 33|
real Converts a numeric value into a real number. “Math functions” onl
age 36
recover Recovers a discarded event. “Elements and event]
functions” on page 33|
regmatch Performs full regular expression matching of a “String functions” on|

value in a regular expression in a string.

age 3

d

Chapter 2. Probe rules file syntax

29

Table 5. Rules file functions (continued)

Function name

Description

Further details

regreplace

Uses regular expressions to perform search and
replace operations on strings.

“Search and replace]

function” on page 47|

remove

Removes an element from an event.

“Elements and event|

functions” on page 33

registertarget

Registers an ObjectServer so alerts can be sent to
multiple ObjectServers.

“Sending alerts to|

alternative

ObjectServers and|

tables” on page 43|

rtrim Removes white space from the right of an “String functions” on|
expression. page 33|

scanformat Converts an expression according to the available "“String functions” onl
formats, similar to the scanf family of routines in ||page 33|
C.

setlog Enables you to set the message log level. “Message logeing]

functions” on page 42|

settarget, setdefaulttarget

Sets the ObjectServer to which alerts are sent.

“Sending alerts to|

alternative

ObijectServers and|

tables” on page 43|

service

Sets the status of a service.

“Service function” on|

page 49|

split

Separates a string into elements of an array.

“String functions” on|

[page 33|

substr

Extracts a substring from an expression.

“String functions” on|

[page 33|

table

Defines a lookup table.

“Lookup tab1e|

operations” on page|

9

L&}

timetodate

Converts a time value into a string data type.

“Date and timel

functions” on page 37|

toBase (numeric ,numeric)

Converts a decimal numeric value into a different
base.

“Math functions” on|

page 36|

update Indicates which fields are updated when an alert is ||“Update o
deduplicated. deduplicatio

function” on page 41|

updateload Updates the load statistics for the ObjectServer. ““Monitoring probe]
loads” on page 50|

upper Converts an expression to uppercase. “String functions” on|
page 33|

30 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Math and string operators

Table 6. Math operators

You can use math operators to add, subtract, divide, and multiply numeric
operands in expressions. You can use string operators to manipulate character
strings.

The following table describes the math operators supported in rules files.

Operator | Description Example

* Operators used to multiply (*) or divide (/) two $eventid=int ($eventid)*2
operands.

+ Operators used to add (+) or subtract (-) two $eventid=int($eventid)+1
operands.

Table 7. String operator

The following table describes the string operator supported in rules files.

Operator | Description Example

+ Concatenates two or more strings. @field = $elementl + "message" + $element2

Bit manipulation operators

You can use bitwise operators to manipulate integer operands in expressions.

The following table describes the bitwise operators supported in rules files.

Table 8. Bitwise operators

Operator | Description Example

& | ~ Bitwise AND (&), OR (]), and XOR (*). The $resultl
results are determined bit-by-bit.

int ($numberl) & int($number2)

>> << Shifts bits right (>>) or left (<<). $result?

int($number3) >> 1

These operators manipulate the bits in integer expressions. For example, in the
statement:

$result2 = int($number3) >> 1

If number3 has the value 17, result?2 resolves to 8, as shown:

168421
> 10001
061000

Note: The bits do not wrap around. When they drop off one end, they are
replaced on the other end by a 0.

Bitwise operators only work with integer expressions. Elements are stored as
strings, so you must use the int math function to convert elements into integers

before performing these operations.

For more information about the bitwise operators supported in ObjectServer SQL,
see the IBM Tivoli Netcool/OMNIbus Administration Guide.

Chapter 2. Probe rules file syntax 31

Related reference

[‘Math functions” on page 36|

Comparison operators

You can use comparison operators to test numeric values for equality and
inequality.

The following table describes the comparison operators supported in rules files.

Table 9. Comparison operators

Operator | Description Example

== Tests for equality. int($eventid) == 5

1= Tests for inequality. int(§eventid) != 0

<>

< Tests for greater than (>), less than (<), greater int($eventid) <=30
than or equal to (>=), or less than or equal to (<=).

>

<=

>=

Logical operators

You can use logical operators on Boolean values to form expressions that resolve to
TRUE or FALSE.

The following table describes the logical operators supported in rules files.

Table 10. Logical operators

Operator | Description Example

NOT (also | A NOT expression negates the input value, and is |if NOT(Severity=0)
1) TRUE only if its input is FALSE.

AND (also | An AND expression is true only if all of its inputs | if match($Enterprise,"Acme") &&
&8) are TRUE.

match($trap-type, "Link-Up")

OR (also An OR expression is TRUE if any of its inputs are |if match($Enterprise,"Acme") [

1) TRUE.
match($Enterprise,"Bo")

XOR (also | An XOR expression is TRUE if either of its inputs, |if match($Enterprise,"Acme") XOR
") but not both, are TRUE.

match($Enterprise,"Bo")

32 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Existence function

You can use the exists function to test for the existence of an element.

Use the following syntax:

exists ($element)

The function returns TRUE if the element was created for this particular event;
otherwise it returns FALSE.

Elements and event functions

You can use functions to remove elements from an event, discard an entire event,
and recover a discarded event.

The following table describes these functions.

Table 11. Deleting elements or events

Function Description Example

discard Deletes an entire event. if match(@Node,"testnode") { discard }
Note: This must be in a conditional
statement; otherwise, all events are
discarded.

recover Recovers a discarded event. if match(@GNode,"testnode") { recover }

remove (element_name)

Removes the element from the event.

remove(test_element)

String functions

You can use string functions to manipulate string elements, typically field or
element names.

The following table describes the string functions supported in rules files.

Table 12. String functions

Function

Description

Example

charcount (expression)

Returns the number of characters
in a string.
Note: When using single byte

the number returned by the
Tength() function. When using

can differ from that returned by
the Tength() function.

characters, this will be the same as

multi-byte characters, this number

$NumChar = charcount ($Node)

clear

Removes the elements of an array.

clear(array_name)

Chapter 2. Probe rules file syntax

33

Table 12. String functions (continued)

Function

Description

Example

expand("string")

Returns the string (which must be
a literal string) with escape
sequences expanded. Possible
expansions are:

\" - double quote
\NNN - octal value of NNN
\\ - backslash

\a - alert (BEL)

\b - backspace

\e - escape (033 octal)
\f - form feed

\n - new line

\r - carriage return
\t - horizontal tab

\v - vertical tab

This function cannot be used as the
regular expression argument in the
regmatch or extract functions.

log(debug, expand("Rules file with
embedded \\\""))

sends the following to the log:

Sun Oct 21 19:56:15 2001 Debug: Rules
file with embedded \"

extract(string, "regexp")

Returns the part of the string
(which can be a field, element, or
string expression) that matches the
parenthesized section of the regular
expression.

extract ($expr,"ab([0-9]+)cd")

If $expr is "ab123cd" then the value returned
is 123.

length(expression)

Returns the number of bytes in a
string.

$NodeLength = Tength($Node)

Tower(expression)

Converts an expression to
lowercase.

$Node = Tower($Node)

Ttrim(expression)

Removes white space from the left
of an expression.

$TrimNode = Ttrim($Node)

match(expression, "string")

TRUE if the expression value
matches the string exactly.

if match($Node, "New")

nmatch(expression, "string")

TRUE if the expression starts with
the specified string.

if nmatch($Node, "New")

nvp_add(string_nvp, $name,
$value [, $name2, $value?,]*)

nvp_add($*)

Creates or updates a name-value
pair string of extended attributes.
Multiple name-value pairs can be
supplied for the string. Variables
and their values can be added to,
or replaced in, the name-value pair
string.

Creates a name-value pair string of
all variables and their values when
called as nvp_add($*).

if (int($PercentFull) > 95)
{
@Severity = 5

@ExtendedAttr = nvp_add(@ExtendedAttr,
"PercentFull", $PercentFull, "Disk",
$Disk)

}

If $PercentFull is 97 and $Disk is /dev/sfal,
@ExtendedAttr will be (assuming it was
initially empty):
PercentFul1="97";Disk="/dev/sfal"

34

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 12. String functions (continued)

Function

Description

Example

nvp_remove(string nvp,
string_keyl [, string key2, [
.. 11)

Used with extended attributes.
Removes specified keys from a
name-value pair string, and returns
the new name-value pair string.

Useful where the list of extended
attributes to include is longer than
the list of attributes to exclude. You
can use nvp_add($+) to include all
variables and their values, and
then use nvp_remove to remove
specific ones.

$interface = "etho"
$network = "178.268.2.0"
$ipaddr = "178.268.2.64"
$netmask = "233.233.233.0"
$gateway = "178.268.2.1"

OExtendedAttr =
OExtendedAttr =
nvp_remove (@ExtendedAttr, "network",
"netmask")

nvp_add($+)

This results in @ExtendedAttr being;:
interface="eth0";ipaddr="178.268.2.64";
gateway="178.268.2.1"

printable(expression)

Converts any non-printable
characters in the given expression
into a space character.

$Print = printable($Node)

regmatch(expression, "regexp")

Full regular expression matching.

if (regmatch($enterprise, "~Acme

Config:[0-9]"))

regreplace(expression,
"regexp", string [, count])

Uses a regular expression and a
substitution string to perform a
search and replace operation on an
input string expression.

$result = regreplace($input, "([%'])",
IIII)

rtrim(expression) Removes white space from the $TrimNode = rtrim($Node)
right of an expression.
scanformat (expression, Converts the expression according |$element = "Lou is up in 15 seconds"

"string")

to the following formats, similar to
the scanf family of routines in C.
Conversion specifications are:

%% - literal %; do not interpret

%d - matches an optionally signed
decimal integer

%u - same as %d; no check is made
for sign

%0 - matches an optionally signed
octal number

%x - matches an optionally signed
hexadecimal number

%1 - matches an optionally signed
integer

%e, %f, %g - matches an optionally
signed floating point number

%s - matches a string terminated by
white space or end of string

[$node, $state, $time] =
scanformat (§element, "%s is %s in %d
seconds")

This sets $node, $state, and $time to Lou,
up, and 15, respectively.

Chapter 2. Probe rules file syntax

35

Table 12. String functions (continued)

Function

Description

Example

num_returned fields =
split("string",
destination_array,
"field separator")

Separates the specified string into
elements of the destination array.

The field separator separates the
elements. The field separator itself
is not returned. If you specify
multiple characters in the field
separator, when any combination
of one or more of the characters is
found in the string, a separation
will occur.

Regular expressions are not
allowed in the string or field
separator.

$num_elements=split("bilbo:
frodo:gandalf",names,":")

creates an array with three entries:

names[1] = bilbo
names[2] = frodo
names[3] = gandalf

num_eTlements is set to 3.

You must define the names array at the start
of the rules file, before any processing
statements.

substr(expression,n, 1

en) Extracts a substring, starting at the
position specified in the second
parameter, for the number of
characters specified by the third

parameter.

$Substring = substr($Node,2,10)

extracts 10 characters from the second
position of the $Node element

upper(expression)

Converts an expression to
uppercase.

$Node = upper($Node)

Related concepts

|Appendix C, “Regular expressions,” on page 143|

Related reference

"Using arrays” on page 19

“Search and replace function” on page 47|

Math functions

You can use math functions to perform numeric operations on elements. Elements
are stored as strings, so you must use these functions to convert elements into
integers before performing numeric operations.

Table 13. Math functions

The following table describes the math functions supported in rules files.

Function

Description

Example

int (numeric)

Converts a numeric value into an
integer.

if int($PercentFull) > 80

real (numeric)

Converts a numeric value into a real

@DiskSpace= (real($diskspace)/

number. real ($total))=100
toBase(base,value) Converts a decimal numeric value into | toBase(2,16) returns 10000
a different base.
toBase(16,14) returns E
toBase(16,%$a) returns the value of the
element $a converted into base 16
36 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Example: Setting the severity of an alert based on available disk

space

In the following example, the severity of an alert that monitors disk space usage is
set based on the amount of available disk space.

if (int($PercentFull) > 80 && int(§PercentFull) <=85)

{

@Severity=2

1
else if (int($PercentFull)) > 85 && int($PercentFull) <=90)

{

@Severity=3

1
else if (int(§PercentFull > 90 && int($PercentFull) <=95)

{

@Severity=4

1
else if (int(§PercentFull) > 95)

{

@Severity=5

}

Example: Calculating the amount of disk space

The percentage of disk space is not always provided in the event stream. You can
calculate the percentage of disk space in the rules file as follows:

if (int($total) > 0)

{

@DiskSpace=(100*int ($diskspace))/int($total)

This can also be calculated using the real function:
if (int($total) > 0)

{
}

@DiskSpace=(real ($diskspace)/real ($total))*100

You can then set the severity of the alert, as shown in the preceding example.

Date and time functions

You can use date and time functions to obtain the current time, or to perform date
and time conversions.

Times are specified in Coordinated Universal Time (UTC), as the number of
elapsed seconds since 1 January 1970. The following table describes the date and
time functions supported in rules files.

Table 14. Date and time functions

Function

Description

Example

datetotime(string,
conversion_specification)

Converts a textual representation of a
timestamp into UNIX epoch time (that
is, the number of seconds since
00:00:00 1 Jan 1970 GMT).

The POSIX format with % is
deprecated.

$Date = datetotime("Tue Dec 19
18:33:11 GMT+00:00 2000", "EEE MMM
dd HH:mm:ss vv yyyy")

getdate

Takes no arguments and returns the
current date as a date.

$tempdate = getdate

Chapter 2. Probe rules file syntax 37

Table 14. Date and time functions (continued)

Function Description Example

timetodate (UTC, Converts a time value into a string. OStateChange = timetodate

conversion_specification) Note: For the format used in ($StateChange, "HH:mm:ss,
conversion_specification, see the MM/dd/yy")

The POSIX format with % is
deprecated.

Host and process utility functions

You can use utility functions to obtain information about the environment in which
the probe is running.

The following table describes the host and process functions supported in rules
files.

Table 15. Host and process utility functions

Function Description Example

getenv(string) Returns the value of a specified $My_OMNIHOME = getenv("OMNIHOME")
environment variable.

gethostaddr(string) Returns the IP address of the host @Summary = $Summary + " Node: " +
using a naming service (for example, |$Node + " Address: " +

DNS or /etc/hosts). The argument gethostaddr($Node)
can be a string containing a host name
or an IP address. If the host cannot be
looked up, the original value is
returned.

Note: DNS lookup (and other similar
services) can take an appreciable
amount of time which can severely
impact the performance of the probe.
You should consider instead using a
lookup table in the rules file, and only
use gethostaddr if the host is not in

the table.
gethostname(string) Returns the name of the host using a | @Summary = $Summary + " Node: " +
naming service (for example, DNS or |$Node + " Name: " +

/etc/hosts). The argument can be a gethostname ($Node)
string containing a host name or IP
address. If the host cannot be looked
up, the original value is returned.
Note: DNS lookup (and other similar
services) can take an appreciable
amount of time which can severely
impact the performance of the probe.
You should consider instead using a
lookup table in the rules file, and only
use gethostname if the host is not in
the table.

getpid() Returns the process ID of the running | $My_PID = getpid()
probe.

38 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 15. Host and process utility functions (continued)

Function Description Example
getplatform() Returns the operating system platform | Tog(INFO, "Netcool Platform = " +
the probe is running under. One of the | getplatform())
following values is returned:
1inux2x86, solaris2, hpuxll, aix5, or
win32.
hostname() Returns the name of the host on which | $My Hostname = hostname()

the probe is running.

Lookup table operations

Lookup tables provide a way to add extra information in an event. A lookup table
consists of a list of keys and values.

You define a lookup table using the table function, and access the table using the
lookup function.

The Tookup function evaluates the expression in the keys of the named table and
returns the associated value. If the key is not found, an empty string is returned.
The Tookup function has the following syntax:

Tookup (expression,tablename)
You can create a lookup table in the rules file or in a separate file.

Note: If a lookup table file has multiple columns, every row must have the same
number of columns. Any rows that do not have the correct number of columns are
discarded. In single column mode, only the first tab is significant; all later tabs are
read as part of the single value defined on that row.

Defining lookup tables in the rules file
You can create a lookup table directly in the rules file.

Lookup table definitions must be located at the start of a rules file, after all
registertarget statements, but before any processing statements. A lookup table
can have multiple columns. You can also define multiple lookup tables in a rules
file. For changes to the lookup table to take effect, the probe must be forced to
re-read the rules file.

To create a lookup table:
1. Open the rules file for the probe.

2. Following the registertarget statements, add the relevant table definition
entry for a lookup table with the name tablename:
a. To create the lookup table with a list of keys and values, use the following
format:
table tablename={{"key","value"},{"key","value"}...}
b. To create the lookup table with multiple columns, use the following format:

table tablename={{"keyl", "valuel", "value2", "value3"},
{Ilkeyzll, "VGZ.ZH, "VGZZH, "VGZ3"}}

c. To create the lookup table and specify a default option to handle an event
that does not match any of the key values in the table, use the following
format:

Chapter 2. Probe rules file syntax 39

40

table tablename=

{{"key1", "valuel", "value2", "value3"},
{Ilkey II, "VGZ.Z"’ Ilvalzll’ "VGZ3"}}

default = {"defvall", "defval2", "“defval3"}

Note: The default statement must follow the specific table definition.
Example

For example, to create a lookup table named dept, which matches a node name to
the department that the node is in, add the following line to the rules file:

table dept={{"nodel","Technical"},{"node2","Finance"}}

You can access this lookup table in the rules file as follows:
@ExtraChar=1ookup (@Node,dept)

This example uses the @Node field as the key. If the value of the @Node field
matches a key in the table, @ExtraChar is set to the corresponding value.

You can obtain values from a multiple value lookup table as follows:
[@Summary, @AlertKey, $error_code] = Tookup("keyl", "tablename")
Related tasks

[‘Re-reading the rules file” on page 7]

Defining lookup tables in a separate file
You can create the table in a separate file, as an alternative to creating the lookup
table directly in the rules file.

If you are specifying a single value, the file must be in the format:

key[TAB]value
key[TAB]value

For multiple values, the format is:

key1[TAB]valuel [TAB]value2[TAB]value3
key2[TAB]valI[TAB]val2[TAB]val3

You can specify a default option to handle an event that does not match any of the
key values in a table. The default statement must follow the specific table
definition. The following example is for a table in a separate file:

table dept="$OMNIHOME/probes/solaris2/Dept"
default = {"defvall", "defval2", "defval3"}

For example, to create a table in which the node name is matched to the
department that the node is in, use the following format:

nodel[TAB]"Technical"
node2[TAB] "Finance"

Specify the path to the lookup table file as an absolute or relative path. Relative
paths start from the current rules file directory. You can use environment variables
in the path. For example:

table dept="$OMNIHOME/probes/solaris2/Dept"

You can then use this lookup table in the rules file as follows:
@ExtraChar=1ookup (@Node,dept)

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

You can also control how the probe processes external lookup tables with the
LookupTableMode property. This property determines how errors are handled when
external lookup tables do not have the same number of values on each line.

Update on deduplication function

The ObjectServer manages the deduplication process, but you can also configure
this process in the probe rules file. Use the update function to specify which fields
of an alert are to be updated if the alert is deduplicated. This allows deduplication
rules to be set on a per-alert basis.

The update function can enable update on deduplication for fields that are not set
to be updated in the deduplication trigger. You cannot use the update function to
override the deduplication trigger to prevent fields from being updated.

The update function has the following syntax:
update(fieldname [, TRUE | FALSE])

If set to TRUE, update on deduplication is enabled. If set to FALSE, update on
deduplication is disabled. The default is FALSE.

For example, to ensure that the Severity field is updated on deduplication, add the
following entry to the rules file:

update(@Severity)

The following example shows how to disable update on deduplication in the rules
file for a previously-enabled field:

update(@Severity, FALSE)

If, in the deduplication trigger, the field is set to be updated, setting the update
function to FALSE has no effect.

Details function

Details are extra elements created by a probe to display alert information that is
not stored in a field of the alerts.status table. Alerts do not have detail information
unless this information is added.

Detail elements are stored in the ObjectServer details table called alerts.details. To
view details, double-click an alert and select Details.

You can add information to the details table by using the details function. The
detail information is added when an alert is inserted, but not if it is deduplicated.

The following example adds the elements $a and $b to the alerts.details table:
details($a,$b)

The following example adds all of the alert information to the alerts.details table:
details($*)

Attention: You must only use $* when you are debugging or writing rules files.

After using $* for long periods of time, the ObjectServer tables become very large
and the performance of the ObjectServer suffers.

Chapter 2. Probe rules file syntax 41

42

Example: Using the details function

In this example, the $Summary element is compared to the strings Incoming and
Backup. If there is no match, the @Summary field is set to the string Please see
details, and all of the information for the alert is added to the details table:

if (match($Summary, "Incoming"))

@Summary = "Received a call"

1
else if(match($Summary, "Backup"))

@Summary = "Attempting to back up"
}

else

{

@Summary = "Please see details"
details($+)

1

Message logging functions

You can use the log function to log messages during rules processing. You can also
set a log level using the setlog function, and only messages equal to, or above, that
level are logged.

There are five log levels: DEBUG, INFO, WARNING, ERROR, and FATAL, in order of
increasing severity. For example, if you set the log level to WARNING, only WARNING,
ERROR, and FATAL messages are logged, but if you set the logging to ERROR, then
only ERROR and FATAL messages are logged.

Log function
The Tog function sends a message to the log file.

The syntax is:
Tog([DEBUG | INFO | WARNING | ERROR | FATAL],"string")

Note: When a FATAL message is logged, the probe terminates.

Setlog function
The setlog function sets the minimum level at which messages are logged during
rules processing. By default, the level for logging is WARNING and above.

The syntax is:
setlog([DEBUG | INFO | WARNING | ERROR | FATAL 1)

Example: Message logging

The following lines show a sequence of logging functions that are in the rules file:
setlog (WARNING)

1og (DEBUG,"A debug message")

1og (WARNING,"A warning message")

set1og(ERROR)

1og (WARNING, "Another warning message")
1og(ERROR,"An error message")

This produces log output of:

A warning message
An error message

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

The DEBUG level message is not logged, because the logging setting is set higher
than DEBUG. The second WARNING level message is not logged, because the
preceding setlog function has set the log level higher than WARNING.

Sending alerts to alternative ObjectServers and tables

The registertarget, genevent, settarget, and setdefaulttarget functions enable you to
send alerts to one or more ObjectServers, and to define the distribution of alerts
across the ObjectServers.

Registering target ObjectServers and setting targets for alerts
You can use the registertarget function to register one or more ObjectServers, and
the corresponding tables, to which you might want to send alerts. You can use the
setdefaulttarget and settarget functions to change the default ObjectServer, or
specify an alternative, target ObjectServer.

Usually each alert is sent to only one alerts table, and optionally, a corresponding
details table in any of the registered target ObjectServers (except where the
genevent function is used).

The format for the registertarget function is as follows:

target = registertarget(server_name, backupserver_name,
database_table [, details_table])

In this statement:

e target is a meaningful label to help you identify the ObjectServer being
registered. For example, you can specify a label that denotes the type or
distribution of alerts to send to the ObjectServer; for example, NCOMSalerts,
FloodProtectionActiveAlert, HighAlerts, StatsInfoAlert. This label must be
unique across all registertarget statements in the rules file.

* server_name is the ObjectServer to which you want to send the alert and
backupserver_name is the backup ObjectServer in the failover pair, if configured.
Both the server_name and backupserver_name values must be enclosed in double
quotation marks. To omit the backup ObjectServer, specify backupserver_name as
an empty string "".

* database_table is a valid table in any database, into which the alert data should be
inserted. This value must be enclosed in double quotation marks.

* details_table is the details table to which additional detail information for the
alert should be inserted. This value must be enclosed in double quotation marks.

Note: If you want additional detail information to be inserted for the alert, you
must use the details function to specify this detail information in the rules file.

You must register all potential targets at the start of the rules file, before any
processing statements. If you want to declare any lookup tables within the rules
file, you must do so after all registertarget statements.

Note:

* The registertarget function requires the same user authorization for all the
referenced ObjectServers.

¢ The default target ObjectServer, which is defined by the first (or only)
registertarget statement will supersede any target ObjectServer that you specify
by running the probe with the -server command-line option. For example, if

Chapter 2. Probe rules file syntax 43

44

you have a single registertarget statement to register TEST1 as the default
ObjectServer to which alerts are sent, and then run the probe with -server set to
TEST?2, alerts will be sent to TEST1.

In the following example, multiple targets are registered:

DefaultAlerts = registertarget("TEST1", "", "alerts.status")
HighAlerts = registertarget("TEST2", "", "alerts.status")
ClearAlerts = registertarget("TEST3", "", "alerts.status")
London = registertarget("NCOMS", "NCOMSBACK", "alerts.london")

When you register more than one target, the one registered first is initially the
default target. In the preceding example, unless another command overrides the
settings, the alert destination following these registertarget commands is the
alerts.status table in the TEST1 ObjectServer.

You can use the setdefaulttarget function to change the default ObjectServer to
which alerts are sent when a target is not specified.

The settarget function enables you to specify the ObjectServer to which an alert
will be sent, without changing the default target. You can change both the default
ObjectServer and the ObjectServer to which specific alerts are sent, as shown in the
following example:

When an event of Major severity or higher comes in,
set the default ObjectServer to TEST2
if(int(@Severity) > 3)

{ setdefaulttarget(HighAlerts) }

Send all clear events to TEST3

if (int(@Severity) = 0)

{ settarget(ClearAlerts) }

Related reference

[‘Details function” on page 41|

[“Lookup table operations” on page 39|

[‘Sending alerts to multiple ObjectServers and tables”]

Sending alerts to multiple ObjectServers and tables
If you want to send the same alert to more than one registered ObjectServer or to
more than one table, you must use the genevent function.

Some usage scenarios for the genevent function are as follows:

* You want to configure the probe rules file to detect an event flood condition and
temporarily suppress alert data that is being sent to the ObjectServer. You can
use the genevent function to send the ObjectServer an informational alert at the
start of the event flood and when the event flood finishes.

* You require high priority processing alerts and low priority informational alerts
to be separated at source and handled differently. You can use the genevent
function to send the high priority alerts to a high priority ObjectServer, and to
an ObjectServer that correlates and archives all alerts. You can also send the low
priority alerts only to the ObjectServer that correlates and archives all alerts.

* You require statistical analysis of incoming alert data, but do not want to
increase the load on the ObjectServer receiving the events. You can use the
genevent function to send statistical information that is derived from the
incoming alert data to another ObjectServer for analysis at a later stage.

* You want to duplicate all alert data across two or more ObjectServers so that the
ObjectServers can perform different operations on the data. You additionally
want to eliminate the overhead of running a unidirectional gateway between the

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

ObjectServers. You can use the genevent function to send the alert data to all the
ObjectServers. Note, however, that this type of usage is not intended as a
replacement to the use of a gateway in a failover pair because the duplicated
alerts will not be correctly associated with each other.

The format for the genevent function is as follows:
genevent (target[, column_identifier, column_value, ...])

In this statement:

e target is the value that you specified for target in the relevant registertarget
statement.

* column_identifier and column_value represent name-value pairs, where
column_identifier is a valid ObjectServer field in the table where the alert is to be
inserted, and column_value is the data value that you want to insert. The
column_identifier value must be prefixed with the @ symbol to denote an
ObjectServer field; for example, @Summary. The column_value can be a static value,
or an expression that is resolved when the rules file is processed; for example
$Summary + $Group. If column_uvalue is a string value, it must be enclosed in
double quotation marks.

Tip: When specifying column_uvalue, use a data type that is appropriate for the
ObjectServer field. From Netcool/OMNIbus Administrator, you can use the
Databases, Tables and Columns pane (which is used to add or edit table
columns) to verify the data types assigned to fields. Alternatively, you can use
the ObjectServer SQL DESCRIBE command.

Note: When the rules file is processed, data type conversion is attempted on a
column value if there is a mismatch between the column identifier and the
specified data type. If the conversion is unsuccessful, a non-fatal error is logged
and the event is not generated.

If you want to send the current alert data to a target ObjectServer, and
automatically insert all available data into the relevant fields, omit the column
identifiers and values from the genevent statement as follows. You might find this
format useful if you want to send a duplicate of the current alert data to more than
one ObjectServer. With this format, note also that the alert data includes only those
fields that have been set up above the genevent statement in the rules file.

genevent (target)

Typically include the column identifiers and values in the genevent(target)
statement if you want to populate a specific subset of the fields in the target
ObjectServer. For example:

genevent (StatusAlerts, GNode, $Node, @Summary, "Condition X has occurred")

To view examples for the genevent function, see the sample secondary rules file
that is provided to support the detection of event floods and anomalous event
rates. This file, called flood.rules, is available in the $NCHOME/omnibus/extensions/
eventflood directory. (The flood.rules file must be used in conjunction with the
accompanying configuration rules file called flood.config.rules.)

Sending detail information and service status to targets
You can use genevent statements to send detail information and service status

under the following conditions:

Chapter 2. Probe rules file syntax 45

46

* If a registertarget statement specifies a details table to which detail information
should be sent, a genevent statement that sends alerts to the same target will
also send the detail information to the details table specified in the registertarget
statement. This condition is true only if the details statement precedes the
genevent statement.

 If you use the service function to define the status of a service, and the service
statement precedes the genevent statement, the genevent statement will send the
status information to its target ObjectServer.

* If more than one details or service statement precedes or follows a genevent
statement, only the information from the last details or service statement directly
above the genevent statement will be sent to the target. Information that is
generated by any of the other details or service statements is associated with the
main alert only, and is sent only to the relevant targets defined in the
registertarget statements.

In the following example, the genevent statement adds the elements $c and $d to
the alerts.details table in the TEST2 ObjectServer. For the host being monitored, a
marginal service status is also assigned to each alert, when viewed from the
Services window, which is available from the Conductor or event list.

DefaultAlerts = registertarget("TEST1", "", "alerts.status")
HighAlerts = registertarget("TEST2", "", "alerts.status" "alerts.details")

t'jé"caﬂs ($a,$b)

details ($c,$d)
;é;‘vice($host, bad)
éé%vice(ﬂ&host, marginal)
ééﬁevent(HighA]erts)
éé’;aﬂs ($y.$2)

service($host, good)
Related concepts

[‘Detecting event floods and anomalous event rates” on page 57|

Related reference

[‘Registering target ObjectServers and setting targets for alerts” on page 43|

[‘Details function” on page 41|

[‘Service function” on page 49|

Multithreaded processing of alert data

When a probe rules file is processed, multithreaded processing is used by default
to apply probe rules to the raw event data that is acquired from the event source,
and to send the generated alerts to the registered ObjectServers. Note that this
multithreaded processing is different from the multithreaded or single-threaded
event capture that is implemented in some classes of probes.

In multithreaded mode, a single thread is used for rules file processing, and
individual threads are used for communicating with each registered ObjectServer.
The rules file processing thread applies the rules to the incoming data, establishes
connections to the relevant ObjectServers, and sends the processed results to the
appropriate communication thread. The communication thread transforms the
processed data into SQL INSERT statements and sends them to the ObjectServer.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

If required, you can switch from multithreaded processing to single-threaded
processing by setting the SingleThreadedComms property to TRUE. In single-threaded
mode, a single rules file processing and communication thread is used.

With multithreaded processing, alerts are simultaneously sent to the different
ObjectServers. If required, you can use the single-threaded mode to enforce the
order in which alerts are sent to the ObjectServers; this order is defined by the
order in which the registertarget statements are listed in the rules file. You can also
use the single-threaded mode for debugging, because the order in which events are
processed and sent out can be more easily understood.

In multithreaded mode, if buffering is enabled by using the Buffering property, a
separate text buffer is maintained for each ObjectServer, to temporarily hold data
that cannot be immediately processed by the communication thread. If buffering is
disabled, the SQL INSERT statements are sent to the ObjectServers as soon as the
statements are constructed.

If store-and-forward mode is enabled by using the StoreAndForward property and
multithreaded processing is in operation, separate store-and-forward files are
created to hold the data that cannot be sent to each ObjectServer. The
store-and-forward files are stored in $OMNIHOME/var directory and are named using
the default format SAFFileName.servername, where SAFFileName represents the
SAFFileName property setting and .servername is appended to show the ObjectServer
name.

Note: When running in multithreaded mode, a probe initially starts in
single-threaded mode (by design) before switching to multithreaded mode. This
behavior is also observed when a probe re-reads its rules file, and is recorded in
the probe log file in debug mode.

Related concepts

[“Store-and-forward mode for probes” on page 10|

Related reference

[Chapter 5, “Common probe properties and command-line options,” on page 77

Search and replace function

Use the regreplace function to perform search and replace operations on strings
by using regular expressions.

The syntax is as follows:

regreplace(input, "regularexpression", "substitution" [,count])

Where:

* The input is a string expression. The regreplace function reads the input string
from left to right.

* The regularexpression is a string. It cannot be a string expression. You can use
parentheses () in the string to specify substrings that require specific matching.
You can use multiple sets of parentheses in a string.

* The substitution is a string expression that specifies how strings that match input
are to be written in the result. You can use metacharacters to reference matching
substrings (in parentheses), as well as an entire matching string or strings. For
example, \1 matches the first group in the regular expression, \2 the second, and
so on, while & or \0 match the entire string. Characters and strings that do not
match the regular expression are copied to the result string.

Chapter 2. Probe rules file syntax 47

48

* The count is an optional positive integer expression, and denotes the number of
substitutions to be made on matching strings. If you do not provide a value for
count, the substitutions continue until no more matching strings are found. If
count is a non-integer expression, it is interpreted as 0, and the input is not
changed. If count is a negative integer, a warning message is entered in the
probe log, and the input is not changed.

Example: Using search and replace to remove unwanted
characters from a string

This example shows how to use the regreplace function to replace underscores (_),
percent signs (%), and single quotes (') with a blank string:

$result = regreplace("%Node ='foobar27's" , "([%'1*)", "")

The result of this expression is as follows:
$result="Node=foobar27"

Example: Reordering groups of characters in a string

The following example shows how to match multiple substrings within a string
and, in the output, reorder the substrings. The order of substrings in the input
string is changed in the output string.

regreplace("aba argle aca", "(a.a) (.*) (a.a)", "\3 \2 \1")

The regular expression matches the substrings in the following order:
\1="aba"
\2="argle"
\3="aca"

The substitution string specifies that the matched strings be written in the reverse
order to which the input is read. Consequently, the result of this expression is as
follows:

$result = "aca argle aba"
Example: Using metacharacters to match an entire string

The following example shows how to use the metacharacter & which can also be
expressed as \0 to match the entire string represented by the regular expression:

regreplace("aaabbbaaa", "a(b+)a" " & ")

The & or \0 metacharacters match everything that maps to the regular expression,
not only the substring in parentheses. In this example, the regular expression
matches the following substring in the input: abbba. The nonmatching substrings
are copied to the output.

The result of this expression is as follows:
$result="aa_abbba_aa"

Related concepts

[Appendix C, “Regular expressions,” on page 143|

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Service function

Use the service function to define the status of a service before alerts are
forwarded to the ObjectServer. The status changes the color of the alert when it is
displayed in the event list and Service windows.

The syntax is:
service(service_identifier, service_status)

The service_identifier identifies the monitored service, for example, $host.

The following table lists the service status levels.

Table 16. Service function status levels

Service status level Definition

BAD The service level agreement is not being met.
MARGINAL There are some problems with the service.
GOOD There are no problems with the service.

No Level Defined The status of the service is unknown.

Example: Service function

If you want a Ping Probe to return a service status for each host it monitors, you
can use the service function in the rules file to assign a service status to each alert.
In the following example, a service status is assigned to each alert based on the
value of the status element.

switch ($status)
{

case "unreachable":

@Severity = "5"

@Summary = @Node + " is not reachable"
OType =1

service($host, bad) # Service Entry
case "alive":

@Severity = "3"

@Summary = @Node + " is now alive"

OType = 2

service($host, good) # Service Entry
case "noaddress":

@Severity = "2"

@Summary = @Node + " has no address"
service($host, marginal) # Service Entry
case "removed":

@Severity = "5"

@Summary = @Node + " has been removed"
service($host, marginal) # Service Entry
case "sTow":

@Severity = "2"

@Summary = @Node + " has not responded within
trip time"

service($host, marginal) # Service Entry
case "newhost":

@Severity = "1"

@Summary = @Node + " is a new host"
service($host, good) # Service Entry
case "responded":

@Severity = "0"

OSummary = @Node + " has responded"
service($host, good) # Service Entry

Chapter 2. Probe rules file syntax 49

50

default:

@Summary = "Ping Probe error details: " + $=*
@Severity = "3"

service($host, marginal) # Service Entry

}

Monitoring probe loads

To monitor load, it is necessary to obtain time measurements and calculate the
number of events processed over time. The updateload function takes a time
measurement each time it is called, and the getload function returns the load as
events per second.

Each time the updateload function runs, the current time stamp, recorded in
seconds and microseconds, is added to the beginning of a series of time stamps.
The remaining time stamps record the difference in time from the previous time
stamp. For example, to take a time measurement and update a property called
Toad with a new time stamp:

%load = updateload(%1oad)

Tip: Depending on the operating system, differing levels of granularity may be
reported in time stamps.

You can specify a maximum time window for which samples are kept, and a
maximum number of samples. By default, the time window is one second and the
maximum number of samples is 50. You can specify the number of seconds for
which load samples are kept and the maximum number of samples in the format:

time_window_in_seconds .max_number_of samples

For example, to set or reset these values for the Toad property:
%1oad = "2.40"

When the number of seconds in the time window is exceeded, any samples outside
of that time window are removed. When the number of samples reaches the limit,
the oldest measurement is removed.

The getload function calculates the current load, returned as events per second. For
example, to calculate the current load and assign it to a temporary element called
current_Toad:

$current_load = getload(%1oad)

The geteventcount function complements the getload function by returning the
total number of events in the event window.

Related reference

[“Rules file examples” on page 54|

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Reserved words in the probe rules language

In the probe rules language, certain words are reserved as keywords, and must not
be used as variable names or property names within probe rules files.

The following list shows the reserved words:
* and

* array

* bad

* break

* case

* char

* character
* charcount
* clear

* datetime
* datetotime
e debug

* decode
* default
e details

» discard
* double
* else

e error

* exists

* exit

* expand
* extract

» false
 fatal

» foreach
* genevent
* getdate
* good

o if

* in

* include
* info

* information
° int

* integer
* len

* length

* log

* lookup

Chapter 2. Probe rules file syntax 51

* lower

e ltrim

* marginal

* match

e nmatch

* no

* not

* nvp_add

* nvp_remove
* off

° on

e or

* printable

* real

* recover

* registertarget
e regmatch

* regreplace

* remove

e rtrim

* scanformat
* service

* setdefaultobjectserver
* setdefaulttarget
* setlog

* setobjectserver
* settarget

* split

* string

* substr

e switch

* table

* timetodate

e true

* update

* upper

* warn

* warning

* Xor

* yes

52 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Testing rules files

You can test the syntax of a rules file by using the Probe Rules Syntax Checker,
nco_p_syntax. This is more efficient than running the probe to test that the syntax
of the rules file is correct.

The Probe Rules Syntax Checker is installed with the Probe Support feature of
Tivoli Netcool/OMNIbus and is installed in the following directory:

UNX $NCHOME/omnibus/probes
« WM %NCHOME%\omnibus\probes\win32

To run the Probe Rules Syntax Checker, enter the following command:

nco p_syntax -rulesfile /rules file path/rules file.rules

When running this command, use the -rulesfile command-line option to specify
the full path and file name of the rules file.

Results

The Probe Rules Syntax Checker runs in debug mode by default. You can override
this setting with the -messagelevel command-line option; for example,
-messagelevel info.

The probe connects to the ObjectServer, tests the rules file, displays any errors to
the screen, and then exits. If no errors are displayed, the syntax of the rules file is
correct. For details about the Probe Rules Syntax Checker, see the publication for
this probe. You can access this publication as follows from the IBM Tivoli Network
Management Information Center (http://publib.boulder.ibm.com/infocenter /|
ttivihelp /v8r1/index.jsp):

1. Expand the IBM Tivoli Netcool/OMNIbus node in the navigation pane on the left.
2. Expand the Tivoli Netcool/OMNIbus probes and TSMs node.

3. Go to the Universal node.

Debugging rules files

When making changes to the rules file, adding new rules, or creating lookup
tables, it is useful to test the probe by running it in debug mode. This shows
exactly how an event is being parsed by the probe and any possible problems with
the rules file.

To change the message level of a running probe to run in debug mode, issue the
command ki1l -USR2 pid on the probe process ID (PID). See the ps and kill man
pages for more information.

Each time you issue the command ki1l -USR2 pid, the message level is cycled.

Tip: For CORBA probes, issue the kill command on the nco_p_nonnative process
ID.

You also can set the probe to run in debug mode on the command line or in the
properties file. To enable debug mode on the command line, enter the command:

$OMNIHOME/probes/arch/probename -messagelevel DEBUG -messagelog STDOUT
Alternatively, you can add the following entries to the properties file:

Chapter 2. Probe rules file syntax 53

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

MessagelLevel: "DEBUG"
MessagelLog: "STDOUT"

If you omit the MessagelLog property or -messagelog command-line option, the
debug information is sent to the probe log file in the $OMNIHOME/Tog directory
rather than to the screen.

Tip: For changes to the rules file to take effect, the probe must be forced to re-read
the rules file.

Related tasks
[“Re-reading the rules file” on page 7|

Rules file examples

54

These examples show typical rules file segments.

‘Example: Enhancing the Summary field"|

‘Example: Populating multiple fields”]

[“Example: Nested IF statements’]|

[‘Example: Regular expression match” on page 55

[“Example: Regular expression extract” on page 55|

[‘Example: Numeric comparisons” on page 55

[“Example: Simple numeric expressions” on page 55|

[“Example: Strings and numerics in one expression” on page 55|

[“Example: Using load functions to monitor nodes” on page 55|

Example: Enhancing the Summary field

This example rule tests if the $trap-type element is Link-Up. If it is, the @Summary
field is populated with a string made up of Link up on, the name of the node from
the record being generated, Port, and the value of the $ifIndex element:

if(match($trap-type,"Link-Up"))
{

@Summary = "Link up on " + @Node + " Port " + $ifIndex

}
Example: Populating multiple fields

This example rule is similar to the previous rule except that the @ATertKey and
@Severity fields are also populated:

if(match($trap-type, "Link-Up"))
{

@Summary = "Link up on " + @Node + " Port " + $ifIndex
@AlertKey = $iflndex
@Severity = 4

}

Example: Nested IF statements

This example rule first tests if the trap has come from an Acme manager, and then
tests if it is a Link-Up. If both conditions are met, the @Summary field is populated
with the values of the @Node field and $ifIndex and $ifLocReason elements:

if(match($enterprise,"Acme"))

{
if(match($trap-type, "Link-Up"))

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

{

@Summary= "Acme Link Up on " + @Node + " Port " + $ifIndex +
" Reason: "+$ifLocReason

.
Example: Regular expression match

This example rule tests for a line starting with Acme Configuration: followed by a
single digit:

if (regmatch($enterprise,"~Acme Configuration:[0-9]"))

{

@Summary="Generic configuration change for " + @Node

}
Example: Regular expression extract

This example rule tests for a line starting with Acme Configuration: followed by a
single digit. If the condition is met, it extracts that single digit and places it in the
@Summary field:

if (regmatch($enterprise,"Acme Configuration:[0-9]"))

{

@Summary="Acme error "+extract($enterprise,"~Acme Configuration:
([0-9])")+" on" + @Node

Example: Numeric comparisons

This example rule tests the value of an element called $freespace as a numeric
value by converting it to an integer and performing a numeric comparison:

if (int($freespace) < 1024)

{

OSummary="Less than 1024K free on drive array"

}
Example: Simple numeric expressions

This example rule creates an element called $tmpval. The value of $tmpval is
derived from the $temperature element, which is converted to an integer and then
has 20 subtracted from it. The string element $tmpval contains the result of this
calculation:

$tmpval=int($temperature)-20
Example: Strings and numerics in one expression

This example rule creates an element called $Kilobytes. The value of $Kilobytes is
derived from the $DiskSize element, which is divided by 1024 before being
converted to a string type with the letter K appended:

$Kilobytes = string(int($DiskSize)/1024) + "K"
Example: Using load functions to monitor nodes

This example shows how to measure load for each node that is generating events.
If a node is producing more than five events per second, a warning is written to
the probe log file. If more than 80 events per second are generated for all nodes
being monitored by the probe, events are sent to an alternative ObjectServer and a
warning is written to the probe log file.

Chapter 2. Probe rules file syntax 55

declare the ObjectServers HIGHLOAD and LOWLOAD

declare the Toads array

LOWLOAD = registertarget("NCOMS_LOW", "", "alerts.status")
HIGHLOAD = registertarget("NCOMS_HIGH", "", "alerts.status")
array loads;

initialize array items with the number of seconds samples may span and
number of samples to maintain.

if (match("", Toads[@Node])){
loads[@Node] = "2.50"

if (match("" , %general_load)){
%general_load="2.50"

}
Toads[@Node] = updateload(loads[@Node])
%general_load=updateload(%general_load)
if (int(getload(Toads[@Node])) > 5){

Tog (WARN, $Node + " is creating more than 5 events per second")
}

if (int(getload(%general load)) > 80){
Tog (WARN, "Probe is creating more than 80 events per second - switching to HIGHLOAD")
settarget (HIGHLOAD)

}

Related reference

[‘Search and replace function” on page 47|

[“Examples of the looping function” on page 22|

56 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 3. Probe rules file customizations

You can extend the functionality of probes by using a number of resources that are
provided in the $NCHOME/omnibus/extensions directory of your Tivoli
Netcool/OMNIbus installation. Sample SQL and probe rules files can be used to
customize any probe for event flood detection or anomalous event rates, and for
self monitoring by using statistical data that is captured and processed by the
probe.

Detecting event floods and anomalous event rates

Event floods can cause ObjectServer outages, and can lead to extended periods
where there is no visibility of network events. An unusually low or high rate of
receipt of events can also be indicative of a problem or change in the source, which
needs to be addressed.

You can configure a probe to detect an event flood condition or anomalous event
rates, and to perform remedial actions. Some usage scenarios are as follows:

* When an event flood is detected, you want to discard all further alerts until the
event rate falls back below a predefined threshold, which indicates that the
event flood is over.

* When an event flood is detected, you want to divert all further alerts to an
alternative ObjectServer until the event rate falls below a predefined threshold,
which indicates that the event flood is over.

* When an event flood is detected, you want to send an informational alert to the
ObjectServer at the start of the event flood, and another informational alert
when the event flood finishes.

* When an event flood is detected, you want to forward only major and critical
alerts to the primary ObjectServer, and to discard all other alerts or divert them
to an alternative ObjectServer until the event flood is deemed to be over.

* When an anomalous rate of receipt of events is detected, you want to send the
ObjectServer an informational alert that describes the nature of the anomalous
event rate.

Two secondary rules files are provided that you can use to configure a probe to
detect when it is subject to an event flood or other anomalous event rates. These
rules files are provided in the $NCHOME/omnibus/extensions/eventflood directory.
Details of these files are as follows:

e flood.rules: This flood rules file contains the event rate calculations and logic to
detect event floods and anomalous event rates. This file calculates an average
rate of receipt of events for the probe, and then sets upper and lower event rate
thresholds as a configurable percentage of this average event rate. The current
event rate is compared to these event rate thresholds to determine whether the
probe is subject to an anomalous rate of receipt of events. The flood rules file
also uses predefined thresholds for a normal event rate and an event flood rate
to determine whether the probe is subject to an event flood. Optional remedial
actions are included to generate informational alerts, discard alerts, or divert
alerts.

The flood rules file also writes a stream of messages to the probe log file,
detailing its processing results. To accommodate these messages, you should
consider increasing the maximum size that is currently specified for the log file.

© Copyright IBM Corp. 1994, 2011 57

58

» flood.config.rules: This rules file defines configuration elements and their
values, which are used within the flood.rules file. These elements include
defined threshold multipliers and limits, the sampling time, the time windows
and maximum number of events allowed for computing average, flood, and
anomalous loads, and variables associated with remedial actions.

To configure the probe, you must embed updated copies of these two files within
the main probe rules file (a requirement for flood.config.rules), or one of your

secondary rules files. When the probe rules file is processed, remedial actions are
performed, as per your specifications.

Related reference

[“Flood rules file” on page 62|

[“Flood configuration rules file” on page 59|

Configuring probes to detect event floods and anomalous
event rates

You can configure probes to detect an event flood and anomalous event rates by
using the secondary rules files that are installed in the $NCHOME/omnibus/
extensions/eventflood directory.

To enable these features for a probe:
1. Go to the $NCHOME/omnibus/extensions/eventflood directory.

2. Copy the flood.config.rules and flood.rules files to a preferred local or
remote directory where the primary rules file for the probe or any secondary
rules files are stored. Remove the default read-only permissions from the
flood.config.rules and flood.rules files.

3. Edit the flood.config.rules and flood.rules files as appropriate for your
requirements. You can comment out any unrequired sections. For example, if
you do not want to discard alerts during an event flood, you can comment out
the conditional statement in the flood.rules file. In the sample flood.rules
file, event rates are calculated against all event sources that send data to the
probe.

4. Embed the updated rules files in your probe rules file (typically
$NCHOME/omnibus/probes/arch/probename.rules) by using include statements:

* Include the flood.config.rules file at the very beginning of your set of
rules, before any processing statements. This file contains an array
declaration and registertarget statements, which must be defined at the
start of a rules file.

* Include the flood.rules file (within the primary rules file or another
secondary rules file) in the section that defines your set of rules. If you want
to conditionally discard or divert alerts with particular severity levels during
the event flood, you must include the flood.rules file towards the end of
the set of rules, at a position where the severity of the alert has already been
determined.

5. After updating the probe rules file with the include statements, have the probe
re-read the rules file.

6. In the probe properties file (SNCHOME/omnibus/probes/arch/probename .props),
set the MaxLogFileSize property to a value that is large enough to
accommodate the extra log file messages that are generated when the
flood.rules file is processed.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related tasks

[‘Re-reading the rules file” on page 7]

Related reference

“Flood rules file” on page 62|

“Flood configuration rules file|

“Embedding multiple rules files in a rules file” on page 27|

Chapter 5, “Common probe properties and command-line options,” on page 77

Flood configuration rules file

Use the flood.config.rules file to set the configuration variables that are used to
detect an event flood or an anomalous event rate. This file must be used in
conjunction with the flood rules file flood.rules.

The entries in the flood.config.rules file, and the actions that you can take to
amend the values, are described in the following table. The entries are shown in
the order in which they are defined in the file, starting from the top.

Table 17. flood.config.rules file entries

Entry

Description

Action

Default0S =

registertarget ("NCOMS", "",

"alerts.status")

This statement registers the default NCOMS
ObjectServer as a target for alerts. In the flood
rules file, this is the target ObjectServer to which
an informational alert is sent when the current
event rate from probe sources is unusually high
or low, or when an event flood starts and ends.
The default table to which the alert is sent is
alerts.status.

Change the ObjectServer name
and alerts table name to
preferred valid names.

#FloodEvent0S =
registertarget ("NCOMS_BK",
"n "alerts.status")

This commented-out line registers an
NCOMS_BK ObjectServer. In the flood rules file,
this is an alternative target ObjectServer to
which alerts with particular severity levels can
be diverted during an event flood.

Uncomment this line if you
want to divert alerts to this
ObjectServer when an event
flood is detected. Change the
ObjectServer name and alerts
table name to preferred valid
names.

array event_rate_array

This array is defined to hold all the event rate
calculation variables. These variables are used
throughout the flood rules file.

N/A

Chapter 3. Probe rules file customizations 59

Table 17. flood.config.rules file entries (continued)

Entry

Description

Action

$average event rate time_
window

$average_event_rate max_
sample_size

These elements store values that are used to
calculate what is considered to be the average
(or normal) rate of receipt of events:

* The $average_event_rate_time_window
element defines the maximum time window
(in seconds) for which events are kept. This
value depicts a rolling time window, which is
updated by calling the updateload function.
The $average_event_rate_time_window
element also sets the training period, which is
the length of time the probe runs to
determine the average or normal event rate.

* The $average_event rate max_sample_size
element defines the maximum number of
events to keep during the average event rate
time window.

In the flood rules file, these elements are used to
capture the event count in the last n seconds
before the current time, and to calculate the
average event rate during this period.

Change the default values as
appropriate for your
requirements.

$flood_detection_time_window

$flood_detection _max_sample_
size

These elements store values that are used to
calculate the event flood detection rate, in order
to determine whether an event flood is
imminent:

* The $flood_detection_time_window element
defines the maximum time window (in
seconds) for which events are kept. This value
depicts a rolling time window, which is
updated by calling the updateload function.

* The $flood_detection_max_sample_size
element defines the maximum number of
events to keep during this period.

In the flood rules file, these elements are used to
capture the event count in the last n seconds
before the current time, and to calculate the
flood detection rate during this period.

Change the default values as
appropriate for your
requirements.

$flood_detection_startup_time

This element defines the number of seconds
over which the probe runs before event flood
detection can begin.

Set a value.

60

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 17. flood.config.rules file entries (continued)

Entry

Description

Action

$anomaly detection_time_
window

$anomaly detection_max_
sample_size

These elements store values that are used to
calculate the rate of receipt of events for
detecting an anomalous flow:

* The $anomaly detection_time_window element
defines the maximum time window (in
seconds) for which events are kept. This value
depicts a rolling time window, which is
updated by calling the updateload function.

* The $anomaly detection_max_sample_size
element defines the maximum number of
events to keep during this period.

In the flood rules file, these elements are used to
capture the event count in the last n seconds
before the current time, and to calculate the
event rate during this period.

Change the default values as
appropriate for your
requirements.

$flood_detection_event_rate_
flood_threshold

$flood detection event rate_
normal_threshold

These elements store values that are used to
specify event rate thresholds for detecting an
event flood or a normal event rate.

If the number of events received per second
exceeds the value specified for the
$flood_detection_event_rate_flood_threshold
element, event flood detection is triggered.

If the number of events received per second is
less than the value specified for the
$flood_detection_event_rate_normal_threshold
element, a normal event rate is assumed.

Change the default values as
appropriate for your
requirements.

Ensure that the value of
$flood_detection_event_rate_
normal_threshold is lower than
$flood_detection_event rate_
flood_threshold.

$1ower_event_rate_threshold_
multiplier

$upper_event_rate_threshold_
multiplier

The $1ower_event_rate_threshold_multiplier
element sets the multiplier value that is used to
calculate the lower event rate threshold for
detecting an anomalous event rate.

The $upper_event_rate threshold multiplier
element sets the multiplier value that is used to
calculate the upper event rate threshold for
detecting an anomalous event rate.

In the flood rules file, the average event rate is
multiplied by these values to set the thresholds
for determining unusually low or unusually
high event rates.

Change the default values as
appropriate for your
requirements.

$discard _event_during flood

This element defines whether an alert is
discarded during an event flood. A value of 1
equates to TRUE and a value of 0 equates to
FALSE.

In the flood rules file, if the
$discard _event during flood value is 1 and the
alert is of a lower severity than the value
specified for $forward_event_minimum_severity,
the alert will be discarded.

Change the default value as
appropriate for your
requirements.

Chapter 3. Probe rules file customizations

61

Table 17. flood.config.rules file entries (continued)

Entry Description Action

$divert_event during flood This element defines whether an alert is To divert an alert of a particular
diverted to an alternative ObjectServer during severity, ensure that the
an event flood. A value of 1 equates to TRUE $divert_event_during_flood
and a value of 0 equates to FALSE. value is set to 1 in the

flood.config.rules file.
In the flood rules file, if the value of

$divert_event during flood is 1 and the alert is | Also ensure that the

of a lower severity than the value specified for |registertarget statement with
$forward_event_minimum_severity, the alert will | the target of FloodEvent0S

be diverted. (defined at the top of the file) is
uncommented and configured
with the appropriate
ObjectServer name and table.

$forward_event_minimum_ This element is set to a value of 4 to indicate Accept or change the default
severity that events with a severity of major or critical value as appropriate for your
should be forwarded to the primary requirements.

ObjectServer during an event flood.

In the flood rules file, this element is used in the
IF condition that defines whether alert is
discarded or diverted during an event flood.

Related reference
[“Flood rules file”]

Flood rules file

Use the flood.rules file to calculate event rates for detecting event floods or an
anomalous receipt of events, and to specify remedial actions. This file must be
used in conjunction with the flood configuration rules file flood.config.rules.

The logic in the flood.rules file is described here to help you understand the
sample configuration provided.

The first time that the probe processes the rules file, the array (event_rate_array)
is initialized, and event rate array variables are used to:

* Set the rolling time window and the maximum number of events that can be
used for calculating an average load, a flood detection load, and an anomaly
detection load. The loads are defined in the format
time_window_in_seconds.max_number_of_samples by using elements defined in the
flood.config.rules file.

* Set the event rate mode to normal.
* Store the current timestamp as the startup time for the probe.
* Indicate that the average event rate is not yet calculated.

Anomalous event rate calculations

During the first $average_event_rate_time_window seconds (default 10 seconds)
after the probe starts, an event count is maintained in order to calculate an average
event rate for the probe.

At the end of this period, upper and lower event rate thresholds are calculated as
percentages of the average event rate. The

$upper_event rate_threshold multiplier and

62 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

$1ower _event rate_threshold multiplier elements, which are defined in the
flood.config.rules file, are used to calculate these thresholds. After the average
rate is determined, the probe periodically checks the current event rate, and
compares it against the upper and lower event rate thresholds as follows:

1. The updateload function is used to capture the time window (prior to the
current time) and the event count that are used for determining the current
event rate for anomalous events. Note that a default time window of one
minute, as set by the $anomaly_detection_time_window element, is used.

2. The getload function is used to calculate the current event rate as events per
second.

3. The current event rate is compared to the upper and lower event rate
thresholds to determine whether the probe is subject to an anomalous rate of
receipt of events.

If an unusually low or unusually high number of events is detected, the genevent
function is used to generate and send informational alerts to the target
ObjectServer that is registered in the flood.config.rules file as DefaultOS.

As an example, suppose 200 events are received within the average event rate time
window, resulting in an average event rate of 20 events per second. Also assume
that the $upper_event_rate_threshold_multiplier element is set to 5, and the

$1ower _event rate threshold multiplier element is set to 0.1 in the
flood.config.rules file.

The upper event rate threshold can be calculated as follows:
average event rate * 5 = 100 events per second
The lower event rate threshold can be calculated as follows:
average event rate * 0.1 = 2 events per second

If the current event rate is calculated as 120 events per second, the probe will
generate and send an alert to the target Default0S ObjectServer, with details about
the high event rate. If the current event rate is calculated as 1 event per second, the
probe will generate and send an alert to the target Default0S ObjectServer, with
details about the low event rate.

Flood detection calculations

When the probe starts, an exclusion period is observed for flood detection. This
period is of a fixed duration from the probe startup time, and is set by the
$flood_detection_startup_time element in the flood.config.rules file.

When this period ends, the updateload function is used to capture the time
window (prior to the current time) and the event count that are used for
determining the current event rate for flood detection. The getload function is then
used to calculate the current event rate as events per second. The current event
rate is compared to the event rate thresholds, which are defined in the
flood.config.rules file, for an event flood and for a normal rate of events. The
event mode is then set to either flood or normal, as appropriate.

If the current event mode is flood, the probe determines whether the event flood
has just started, is in progress, or has just ended, and takes the appropriate action:

Chapter 3. Probe rules file customizations 63

* The genevent function is used to generate and send an informational alert to the
target ObjectServer that is registered in the flood.config.rules file as
Default0S. This informational alert either indicates that an event flood has just
started or has just ended, and includes details about the event flood.

* While the event flood is in progress, alerts can be discarded if their severity is
below a defined minimum level. The default configuration discards alerts with a
severity value that is less than 4 (major).

* While the event flood is in progress, alerts can alternatively be diverted to an
ObjectServer when the alert severity is below a defined minimum level. This
ObjectServer is registered in the flood.config.rules file as the target
(FToodEventOQS) for events during an event flood. The default configuration
diverts events with a severity value that is less than 4 (major).

Message logging

Various messages are written to the log file as the flood rules file is processed.
Details recorded include:

* The probe startup timestamp

* The average event rate

* The event loads

* Unusually high or low event rates

e Flood detection event rates, flood status, remedial actions, event count, and
flood duration

Related reference

[“Flood configuration rules file” on page 59|

[Chapter 5, “Common probe properties and command-line options,” on page 77

[“Sending alerts to alternative ObjectServers and tables” on page 43

Enabling self monitoring of probes

64

You can configure probes to generate ProbeWatch Heartbeat events as a
self-monitoring mechanism to help monitor performance, diagnose performance
problems, and highlight possible performance bottlenecks before they begin to
affect the system.

A ProbeWatch Heartbeat event is generated by the probe, and is not triggered by
an event (or absence of events) from the managed entity. The ProbeWatch
Heartbeat event is generated at a configurable interval, which is controlled by the
ProbeWatchHeartbeatInterval property. This interval is set to 60 seconds by
default. A ProbeWatch Heartbeat event can either be used as a heartbeat to confirm
that the probe is still functioning, or can be used to transport probe statistics:

* The presence of a regularly-occurring ProbeWatch Heartbeat event enables you
to assess whether a probe is inactive due to a lack of incoming events from its
source, due to probe failure, or due to a communications failure with the
ObjectServer. The value that you specify for the ProbeWatchHeartbeatInterval
property defines the maximum time over which the probe can remain silent
before an indication is required that the probe is still functioning. If no other
events have been sent in the previous ProbeWatchHeartbeatInterval time
window, the probe indicates that it is still active (but just not receiving any
events) by sending a ProbeWatch Heartbeat event to the ObjectServer. The
Summary field of this ProbeWatch Heartbeat event is populated with the
following text: Heartbeat ...

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

¢ A ProbeWatch Heartbeat event also acts as a carrier for statistical data for
probes, such as the processing throughput of probes, and CPU and memory
resource utilization. Individual probes can capture usage and resource
information, which is then manipulated within the rules file to calculate metrics
by using a set of dedicated properties. These metrics can be transferred into the
ObjectServer either in one single ProbeWatch Heartbeat event by using nvp_add
functions to specify name-value pairs of extended attributes, or within multiple
ProbeWatch Heartbeat events that are generated using the genevent function.
The generated events are forwarded to the ObjectServer at the interval defined
by the ProbeWatchHeartbeatInterval property.

The metrics provided in the ProbeWatch Heartbeat events can be analyzed to
identify how the different components of the system are running, and to identify
potential problems before performance begins to degrade. The data can also be
collated for use in reports and charts that can be used to help demonstrate how
much of a return on investment is being made.

Related reference
[“ProbeWatch and TSMWatch messages” on page 128|

Configuration setup for self monitoring of probes

Probes can be configured to generate statistical data that can be used to assess
system performance and to help calculate return on investment.

The following figure shows the configuration setup for probe self monitoring.

Raw Data
snmp-trap ** E

=
sequence 14305 n Event

receive time U Data |
829000936 — > Metric

version 10 com-

JITTIITTTT

FaVaYaVaVaVaVaVaVa¥al

o
o)
—
[}

i i Probe ObjectServer
:ennLiglrtyriSsepUb“C Metric Metric Report
01 3% Data _ _ and
o~ Raw Data File

Gateway

o

- Tivoli
ii i Data
== Warehouse

Figure 3. Configuration and data flow for probe self monitoring

The configuration flow is as follows:

Usage and resource information is captured together with raw data that is
sent to the probe.

Chapter 3. Probe rules file customizations 65

66

2] The probe processes the usage and resource information in order to
calculate performance metrics, and to generate ProbeWatch Heartbeat
events that are populated with these metrics. The probe also processes the
raw data in order to generate generic (standard) events.

Both sets of events are forwarded to the ObjectServer.

H ObjectServer automations are used to produce a basic textual report that
summarizes the statistical information generated by the probe .

A and B
The generic event data and ProbeWatch Heartbeat events can optionally be
exported from the ObjectServer into Tivoli Data Warehouse by using a
relational database management system (RDBMS) gateway. These metrics
can then be used for subsequent reporting in Tivoli Common Reporting.

Note: These steps (4 and 5) are outside the scope of the probe
self-monitoring functionality provided by Tivoli Netcool/OMNIbus.
Integration with IBM Tivoli Monitoring (which provides Tivoli Data
Warehouse) and additional configuration will be required for this
additional reporting.

Tivoli Netcool/OMNIbus configuration files for the self
monitoring of probes

When you install Tivoli Netcool/OMNIbus, a number of configuration files are
provided for configuring probes to collect and process statistical data for self
monitoring. Samples of these configuration files are available in the
$NCHOME/omnibus/extensions/roi directory.

Details of the configuration files are as follows:

* probestats.sql file: This file provides a set of automations to capture the
incoming statistical data collected for a probe, and to log the data to a file.
Tables are also created in the ObjectServer to store the probe metrics and to
record the last reporting period for the data. Note that the probe metrics are
stored in the specially-created master.probestats table, rather than the
alerts.status table.

The log file that is created is similar to the profiling log, and includes:

— Individual metrics for each connected probe; for example, the number of
events processed, generated, and discarded since the last reporting period

— A set of collated metrics; for example, the total number of alerts.details and
alerts.journal inserts since the last reporting period

You can review this SQL file to familiarize yourself with the potential changes
that will be applied to the ObjectServer.

* probewatch.include file: This customized rules file is provided for use with
probes, and must be embedded within the main rules file for the probe. The
probewatch.include file expands on the original default ProbeWatch-specific
rules. This file contains new CASE statements for two additional ProbeWatch
messages and for the ProbeWatch Heartbeat events, which act as a carrier for
statistical data.

The probewatch.include rules file is generic to all probes. You can customize
and share this file between multiple (or all) probes to centralize the
administration of ProbeWatch Heartbeat events.

e Omnibus_TDW_Reports_ROI.zip file: This archive file contains a set of sample
reports that require user customization, and integration with Tivoli Data

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Warehouse and Tivoli Common Reporting. Working knowledge of these
components is required to support this configuration.

A number of statistical properties are also added to the configuration for probes.
These properties are used to collect usage and resource information that is specific
to each probe. The statistical properties are different from the standard probe
properties because they cannot be set to a meaningful value in the properties file,
and they cannot be run as command-line options. These property names are all
prefixed with Op1Stats, and are displayed in the output obtained when the probe
is run with the -dumpprops command-line option.

The statistical properties are as follows:

Table 18. Statistical properties for probes

Property Description

Op1StatsCPUTimeSec The CPU time consumed by the probe in seconds.
Example: If 6.002345 seconds CPU time has been
consumed by the probe, Op1StatsCPUTimeSec = 6

Op1StatsCPUTimeUSec The subsecond component of CPU time consumed by

the probe, in millionths of a second.

Example: If 6.002345 seconds CPU time has been
consumed by the probe, Op1StatsCPUTimeUSec = 2345

OplStatsRulesFileTimeSec

The time spent processing rules in seconds.

Example: If 4.372700 seconds is spent processing
rules, Op1StatsRulesFileTimeSec = 4

Opl1StatsRulesFileTimeUSec

The subsecond component of time spent processing
rules, in millionths of a second.

Example: If 4.372700 seconds is spent processing
rules, Op1StatsRulesFileTimeUSec = 372700

Op1StatsProbeStartTime

The time (in UNIX epoch time) at which the probe
was started.

Op1StatsMemoryInUse

The memory footprint (in KB) of the probe.

Opl1StatsNumberEvents

The number of events (including ProbeWatch events)
that the probe has received from its event source
since the probe started.

Op1StatsNumberEventsDiscarded

The number of events that are discarded after rules
processing.

Opl1StatsNumberEventsGenerated

The number of events that are generated using the
genevent function in the rules file.

Chapter 3. Probe rules file customizations 67

68

Configuring probes for self monitoring

As a self-monitoring mechanism, you can configure a probe to collect statistical
data about the amount of memory used for various processing operations, and the
number of events received, discarded, and generated.

To configure a probe to collect and process statistical data:
1. Go to the $NCHOME/omnibus/extensions/roi directory.

2. Copy the probestats.sql file to the $NCHOME/omnibus/etc directory, or another
preferred location. Apply the ProbeWatch Heartbeat customization to the
ObjectServer schema by running the following command from the SQL
interactive interface:

$NCHOME/omnibus/bin/nco_sql -user username -password
password -server servername < directory path/probestats.sql

I "%NCHOME%\omnibus\bin\isq1" -U username -P password -S
servername -i directory path\probestats.sq]l

In these commands, username is a valid user name, password is the
corresponding password, servername is the name of the ObjectServer, and
directory_path is the fully-qualified directory path to the .sql file.

The probestats.sql file adds a set of tables and triggers to the ObjectServer.

3. Copy the $NCHOME/omnibus/extensions/roi/probewatch.include file to a
preferred local or remote directory where the main rules file or any secondary
rules files for the probe is stored. This file is designed to replace the logic in the
ProbeWatch section of your primary rules file, which is typically coded as
follows:

if(match(@Manager, "ProbeWatch"))
{

switch(@Summary)

{

case "Running ...":
@Severity = 1
@AlertGroup = "probestat"
O@Type = 2

case "Going Down ...":
@Severity = 5
@AlertGroup = "probestat"
@Type =1

default:

@Severity =1

}
@PAlertKey = @Agent
@Summary = @Agent + " probe on " + @Node + ": " + @Summary

}

else

{
}

The code shown in bold text needs to be replaced with an include statement
that enables you to_embed the contents of the probewatch.include file, as
instructed in step .

...probe specific rules...

4. Remove the default read-only permissions from your copy of the
probewatch.include file and review the file to familiarize yourself with its
contents. Then edit the file as follows:

* Update any of the elements at the top of the file to define how a ProbeWatch
Heartbeat event should be processed. Use the number sign (#) to comment

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

out any elements that you do not require. The processing logic for these

elements is coded within the case "Heartbeat ...

ProbeWatch section of the file.

statement in the

Table 19. Elements for ProbeWatch Heartbeat events

Element

Action

$0pTHeartbeat_discard

Set this value to 1 if you want to discard the
ProbeWatch Heartbeat event.

Set this value to 0 if you want to forward
the ProbeWatch Heartbeat event to the
ObjectServer.

$0pTHeartbeat populate_master_probestats

Set this value to 1 to enable a new probe
metrics event to be generated by using the
genevent function, which is defined within
the case "Heartbeat ..." statement. The
event data consists a set of OplStats probe
metrics, which are forwarded to the
master.probestats table that was created
when you ran the probestats.sql script.

Set this value to 0 if you do not want to
generate this event for insertion into the
master.probestats table.

$0pTHeartbeat_write_to_probe_log

Set this value to 1 if you want to record the
OplStats metrics in the probe log file. Details
are logged at the INFO level. The metric
details that are logged are defined in the
case "Heartbeat ..." statement.

Set this value to 0 if you do not want to
record the metrics in the log file.

$0pTHeartbeat generate_threshold _events

Set this value to 1 if you want to generate
threshold events that indicate when a
particular probe metric violates a defined
threshold. By default, no code is provided
for threshold events within this rules file
because individual preferences can vary
widely. If you require threshold events, you
must first decide which thresholds you want
to monitor. Then, within the case

"Heartbeat ..." statement, provide the code
for generating threshold events.

* In addition to the standard CASE statements, the file includes the following
two CASE statements, which contain the logic for two new ProbeWatch
events that provide feedback when a probe re-reads its rules files on receipt
of a SIGHUP signal. The first CASE statement applies when the re-read was

successful:

case "Rules file reread upon SIGHUP successful ...":

@Severity =1
EAlertGroup = "rules"
OType = 2

The second CASE statement applies when the re-read was unsuccessful. This
section of code includes two elements ($msg and $file), where $msg is the
error message as reported in the probe log file, and $file is the name of the

file where the error exists.

69

Chapter 3. Probe rules file customizations

70

case "Rules file reread upon SIGHUP failed ...":
@Severity = 4
@AlertGroup = "rules"
@Type = 1
if(exists($msg))
{

}
if(exists($file))
{

}

If you do not require these, use the discard function to prevent them from
being sent to the ObjectServer.

@Summary = @Summary + "("+$msg+")"

@Summary = @Summary + " in file "+$file

* The final CASE statement (case "Heartbeat ...") contains a set of
conditional statements for calculating the probe metrics and processing the

data. IF statements are provided with the logic to discard events and to write

the probe metrics to a log file. Some user input is also required:

Table 20. case "Heartbeat ..." sections that require user input

Locate the section of code that begins with the following lines:

if(int($OplHeartbeat populate master probestats) == 1)

{
Tog(DEBUG, "HEARTBEAT - SENDING PROBESTATS TO MASTER.PROBESTATS")

This section of code contains a genevent statement with a Default0S placeholder that
identifies a target, registered ObjectServer. This target must be defined in a registertarget
statement in the main rules file. Replace this placeholder with the target ObjectServer to
which you want to send events.

Locate the section of code that begins with the following lines:
if(int($OplHeartbeat generate threshold events) == 1) {
#

Area to generate user defined threshold events using genevent
If you set the $0pTHeartbeat_generate_threshold_events element to 1 at the top of the file,
you must enter the code for the type of threshold events that you want to monitor.

You can ignore this section if you do not require threshold events.

* If you have modified the ProbeWatch section of your main rules file
(typically $NCHOME/omnibus/probes/arch/probename.rules), you must make
the same modifications to the probewatch.include file.

¢ If the main rules file includes additional ProbeWatch sections that contain
code for different ProbeWatch messages that are not covered in the
probewatch.include file, copy this additional code into the
probewatch.include file.

Tip: After making all the changes to the probewatch.include file, run the Probe
Rules Syntax Checker (nco_p_syntax) to test the syntax of the rules file.

5. Embed the updated probewatch.include file in your main probe rules file

(typically $NCHOME/omnibus/probes/arch/probename.rules) by using an include
statement. Ensure that the path in the include statement points to the location
where the updated probewatch.include file is stored.

if(match(@Manager, "ProbeWatch"))

include "directory_path/probewatch.include"

}

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

else

{

}

6. Edit the $NCHOME/omnibus/probes/arch/nco_p_probename .props file to specify
the interval (in seconds) at which the ProbeWatch Heartbeat events are
generated. Set the ProbeWatchHeartbeatInterval property to a positive number
to generate the events, or specify 0 (zero) or a negative number for no events.

...probe specific rules...

7. Ensure that the stats_triggers trigger group is enabled. The triggers that are
added by the probestats.sql file are assigned to this trigger group, which
must be enabled for the triggers to run. You can enable the trigger group by
using Netcool/OMNIbus Administrator or the ALTER TRIGGER GROUP
command, as described in the IBM Tivoli Netcool/OMNIbus Administration Guide.

Also enable the probe_statistics_cleanup trigger, which by default is set to
delete probe statistics that are over an hour old. You can change this default
period to increase the length of time for which statistics are stored.

8. Start the probe.
The probe metrics that are collected are recorded in the log file
$NCHOME/omnibus/1og/server_name_probestats.log, where server_name is the
ObjectServer name.

Related concepts

[Chapter 4, “Running probes,” on page 73
Related tasks
[“Testing rules files” on page 53]

Related reference

[“Sending alerts to alternative ObjectServers and tables” on page 43

[“Embedding multiple rules files in a rules file” on page 27|

[Chapter 5, “Common probe properties and command-line options,” on page 77

Chapter 3. Probe rules file customizations 71

72 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 4. Running probes

When running a probe, you can specify properties in a properties file or options at
the command line to configure settings for the probe.

A probe has default values for each property. In an unedited properties file, all
properties are listed with their default values, commented out with a hash symbol
(#) at the beginning of the line.

You can edit the properties file before running the probe, or while the probe is
running. If you edit the properties file while the probe is running, the changes that
you make take effect the next time you start the probe. You can edit probe
property values using a text editor. To override a default value, you must change
the setting in the properties file and then remove the hash symbol.

If you change a property setting on the command line when starting a probe, this
overrides both the default value and the setting in the properties file. To simplify
the command that you type to run the probe, add as many properties as possible
to the properties file instead of using the command-line options.

When running a probe, you must also set up your rules file to define how the
probe should process event data. You can edit the rules file before running the
probe, or while the probe is running. If you edit the rules file while the probe is
running, you must force the probe to re-read the rules file, for the changes to take
effect. You can edit the rules file using a text editor.

Tip: Always read the publication that is specific to the probe you are running for
additional configuration information.

Related concepts

[“Properties file” on page 5

[‘Rules file” on page 6|
Related tasks
[‘Re-reading the rules file” on page 7|

Running probes on UNIX

On UNIX, you can run probes from the command line, or under process control.

Note: Probes should be managed by process control. For further information about
setting up a probe to run under process control, see the IBM Tivoli
Netcool/OMNIbus Administration Guide.

After you install a probe, you must configure the properties and rules files to fit
your environment. For example, if you are using a log file probe such as the HTTP
Common Log Format Probe, you must set the LogFile property, so that the probe
can connect to the event source.

To run a probe:

Enter the following command at the command line:
$OMNIHOME/probes/nco_p_probename [-option [value] ...]

© Copyright IBM Corp. 1994, 2011 73

In this command, the probename is the abbreviated name of the probe that you
want to run. The -option variable is a command-line option, and value is the value
that you are setting the option to. Not every option requires you to specify a value.
For example, to run the Sybase Probe in raw capture mode, enter:
$OMNIHOME/probes/nco_p_sybase -raw

If you specify the -name command-line option, it determines the name used for the
probe files described in the following table:

Table 21. Names of probe files

Type of file Path and file name

Properties file $OMNIHOME/probes/arch/probename .props
Rules file $OMNIHOME/probes/arch/probename.rules
Store-and-forward file $OMNIHOME/var/probename .store.server
Message Log file $OMNIHOME/10g/probename .10g

In these paths, arch represents the name of the operating system on which the
probe is installed; for example, solaris2 when running on a Solaris system.

If you specify the -propsfile command-line option, its value overrides the name
setting for the properties file.

Note: If you are running a proxy server, connect your probes to the proxy server
rather than to the ObjectServer. To do this, use the Server property or the -server
command-line option and specify the name of the proxy server. For more
information about the proxy server, see the IBM Tivoli Netcool/OMNIbus
Administration Guide.

Related reference

(Chapter 5, “Common probe properties and command-line options,” on page 77

Running probes on Windows

74

On Windows, you can run probes as console applications, as Windows services, or
under process control.

Probes are installed as console applications by default.

For further information about setting up a probe to run under process control, see
the IBM Tivoli Netcool/OMNIbus Administration Guide.

Related reference

[Chapter 5, “Common probe properties and command-line options,” on page 77

Running a probe as a console application

Run a probe as a console application from the command line.

To run a probe as a console application, enter the following command from the
probe directory:

nco_p_probename [-option [value] ...]
In this command, probename is the abbreviated name of the probe that you want to
run. The -option variable is a command-line option, and value is the value that you

are setting the option to. Not every option requires you to specify a value.

Additional command-line options are available for the Windows version of each
probe. To display these, enter the following command:

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

nco_p_probename -?

The Windows-specific command-line options are described in the following table.

Table 22. Windows-specific probe command-line options

Command-line option

Description

-install This option installs the probe as a Windows service.

-noauto This option is used with the -install option. It
disables automatic startup for the probe running as a
service. If this option is used, the probe is not started
automatically when the machine boots.

-remove This option removes a probe that is installed as a

service. It is the opposite of the -install command.

-group string

This option is used with the -depend command-line

option. You can group all the probes together under
the same group name. You can then force that group
to be dependent on another service.

-depend sro @grp ...

This option specifies other services or groups that the
probe is dependent on. If you use this option, the
probe will not start until the services (srv) and groups
(@grp) specified with this option have been run.

-cmdLine "-option value..."

This option specifies one or more command-line
options to be set each time the probe service is
restarted.

Related tasks

[“Running a probe as a service”

Related reference

(Chapter 5, “Common probe properties and command-line options,” on page 77

Running a probe as a service

To run a probe as a service, use the -install command-line option when running
the probe with the nco_p_probename command, where probename uniquely identifies

the probe.

After setting up the service, you can configure how the probe starts by defining
the Windows services settings as follows:

1. Click Start > Control Panel. The Control Panel opens.
2. Double-click the Admin Tools icon, then double-click the Services icon. The

Services window opens.

The Services window lists all of the Windows services currently installed on
your machine. All Tivoli Netcool/OMNIbus service names start with NCO.

3. Use the Services window to start and stop Windows services. Indicate whether
the service is started automatically when the machine is booted by clicking the

Startup button.

Note: If the ObjectServer and the probe are started as services, the probe may
start first. The probe will not be able to connect to the ObjectServer until the

ObjectServer is running.

Chapter 4. Running probes 75

Results
Related tasks
[‘Running a probe as a console application” on page 74|

Use of OMNIHOME and NCHOME environment variables for probes

On Netcool/OMNIbus V7.0, or earlier, the UNIX environment variable
$OMNIHOME (%OMNIHOME% on Windows) is used in many configuration files.
Netcool/OMNIbus V7.1, or later, uses the UNIX environment variable $NCHOME
(%NCHOME% on Windows) instead.

Configuration files containing the OMNIHOME environment variable will work on
Netcool/OMNIbus V7.1, or later, as long as you set §OMNIHOME to
$NCHOME/omnibus on UNIX, or set %OMNIHOME% to $NCHOME%\omnibus on
Windows.

76 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 5. Common probe properties and command-line
options

A number of properties and command-line options are common to all probes and
TSMs.

For the properties and command-line options that are specific to a particular probe
or TSM, see the individual publications for each probe and TSM.

Tip: You can encrypt string values in a properties file by using property value
encryption.

The following table lists the common properties and command-line options that
are available to all probes, and provides their default settings.

Table 23. Common probe properties and command-line options

Property Command-line option Description

AuthPassword string N/A Specifies the password associated with the user
name that is used to authenticate the probe
when it connects to a proxy server or an
ObjectServer running in secure mode. The
default is "'.

When in FIPS 140-2 mode, the password can
either be specified in plain text, or can be
encrypted with the nco_aes_crypt utility. If you
are encrypting passwords by using
nco_aes_crypt in FIPS 140-2 mode, you must
specify AES_FIPS as the encryption algorithm.

When in non-FIPS 140-2 mode, the password
can be encrypted with the nco_g_crypt or
nco_aes_crypt utilities. If you are encrypting
passwords by using nco_aes_crypt in non-FIPS
140-2 mode, you can specify either AES_FIPS or
AES as the encryption algorithm. Use AES only if
you need to maintain compatibility with
passwords that were encrypted using the tools
provided in versions earlier than Tivoli
Netcool/OMNIbus V7.2.1.

AuthUserName string N/A Specifies a user name used to authenticate the
probe when it connects to a proxy server or an
ObjectServer running in secure mode. The
defaultis ''.

© Copyright IBM Corp. 1994, 2011 77

Table 23. Common probe properties and command-line options (continued)

Property Command-line option Description
AutoSAF 0 | 1 -autosaf Specifies whether automatic store-and-forward
mode is enabled. In this mode, if the probe
-noautosaf starts but is unable to send events to the

ObjectServer, the probe goes into store mode
instead of terminating.

By default, automatic store-and-forward mode is
not enabled (0).

Note: For automatic store-and-forward to work,
the probe must previously have been connected
at least once to the ObjectServer so that it
knows the format in which to store events for
that ObjectServer. If the probe is trying to
connect to a virtual pair of ObjectServers and
both of the ObjectServers are down, the probe
checks the AutoSAF property setting. If automatic
store-and-forward is enabled, the probe begins
to store events in the store-and-forward file;
otherwise, the probe terminates.

BeatInterval integer

-beatinterval integer

Specifies the heartbeat interval for peer-to-peer
failover. The default is 2 seconds.

BeatThreshold integer

-beatthreshold integer

Specifies the extra period that the slave probe in
a peer-to-peer failover relationship waits for
before switching to active mode. The default is 1
second.

Buffering 0 | 1

-buffer

-nobuffer

Specifies whether buffering is used when
sending alerts to the ObjectServer. By default,
buffering is not enabled (0).

Note: All alerts sent to the same table are sent
in the order in which they were processed by
the probe. If alerts are sent to multiple tables,
the order is preserved for each table, but not
across tables.

If multithreaded processing is in operation (the
default), a separate communication thread is
used to send data to each registered target
ObjectServer, and a separate text buffer is
therefore maintained for each ObjectServer.

BufferSize integer

-buffersize integer

Specifies the number of alerts the probe buffers.
The default is 10.

78 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 23. Common probe properties and command-line options (continued)

Property

Command-line option

Description

ConfigCryptoAlg string

N/A

Specifies the cryptographic algorithm to use for
decrypting string values (including passwords)
that were encrypted with the nco_aes_crypt
utility and then stored in the properties file. Set
the string value as follows:

* When in FIPS 140-2 mode, use AES_FIPS.

* When in non-FIPS 140-2 mode, you can use
either AES_FIPS or AES. Use AES only if you
need to maintain compatibility with
passwords that were encrypted by using the
tools provided in versions earlier than Tivoli
Netcool/OMNIbus V7.2.1.

The value that you specify must be identical to
that used when you ran nco_aes_crypt with the
-c setting, to encrypt the string values.

Use this property in conjunction with the
ConfigKeyFile property.

ConfigKeyFile string

N/A

Specifies the path and name of the key file that
contains the key used to decrypt encrypted
string values (including passwords) in the
properties file.

The key is used at run time to decrypt string
values that were encrypted with the
nco_aes_crypt utility. The key file that you
specify must be identical to the file used to
encrypt the string values when you ran
nco_aes_crypt with the -k setting.

Use this property in conjunction with the
ConfigCryptoAlg property.

N/A

-help

Displays the supported command-line options
and exits.

KeepLastBrokenSAF 0 | 1

-keeplastbrokensaf

-dontkeeplastbrokensaf

Specifies whether to automatically save
corrupted store-and-forward records for future
diagnosis.

If set to 1, corrupted store-and-forward records
are automatically saved. The default is 0.

Use this property in conjunction with the
StoreSAFRejects property.

LogFilePoolSize integer

-logfilepoolsize integer

Specifies the number of log files to use if the
logging system is writing to a pool of files. This
property works only when the LogFileUsePool
property is set to TRUE. The pool size can range
from 2 to 99.

The default is 10.
Note: This option is supported only on
Windows operating systems.

Chapter 5. Common probe properties and command-line options 79

Table 23. Common probe properties and command-line options (continued)

Property

Command-line option

Description

LogFileUsePool 0 | 1

-lTogfileusepool

-nologfileusepool

Specifies whether to use a pool of log files for
logging messages.

If set to 1, the logging system opens the number
of files specified for the pool at startup, and
keeps them open for the duration of its run.
(You define the number of files in the pool by
using the LogFilePoolSize property.) When a
file in the pool reaches its maximum size (as
specified by the MaxLogFileSize property), the
logging system writes to the next file. When all
the files in the pool are at maximum size, the
logging system truncates the first file in the pool
and starts writing to it again. Files in the pool
are named using the format probename.log_ID,
where ID is a two-digit number starting from
01, to the maximum number specified for the
LogFilePoolSize property. When the logging
system starts to use a file pool, the system
writes to the lowest-available file number,
regardless of which file it was writing to when
it last ran.

The default is 0. When set to 0, the default
probename .10g file is renamed

probename .Tog_OLD and a new log file is started
when the maximum size is reached. If the file
cannot be renamed, for example, because of a
read lock on the OLD file, and LogFileUseStdErr
is set to 0, the logging system automatically
starts using a pool of log files. If the file cannot
be renamed, and LogFileUseStdErr is set to 1,
messages are logged to the console if the probe
was run from the command line. If the file
cannot be renamed, and LogFileUseStdErr is set
to 1, messages are logged to a file named
%NCHOME%\omnibus\1og\probename .err if the
probe is running as a Windows service.

Note: This option is supported only on
Windows operating systems.

LogFileUseStdErr 0 | 1

-Togfileusestderr

-nologfileusestderr

Specifies whether to use stderr as an output
stream for logging messages.

The default is 1, which causes messages to be
logged to the console only if the probe was run
from the command line.

If set to 0, the logging system writes to the
default log file or to a pool of log files, as set by
the LogFileUsePool property.

Note: The LogFileUsePool property setting
takes precedence over the LogFileUseStdErr
setting.

Note: This option is supported only on
Windows operating systems.

80 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 23. Common probe properties and command-line options (continued)

Property

Command-line option

Description

LookupTableMode integer

-Tookupmode integer

Specifies how table lookups are performed. It
can be set to 1, 2, or 3. The default is 3.

If set to 1, all external lookup tables are
assumed to have a single value column. Tabs
are not used as column delimiters.

If set to 2, all external lookup tables are
assumed to have multiple columns. If the
number of columns on each line is not the same,
an error is generated that includes the file name
and the line on which the error occurred.

If set to 3, the rules engine attempts to
determine the number of columns in the
external lookup table. An error is generated for
each line that has a different column count from
the previous line. The error includes the file
name and the line on which the error occurred.

Manager string

-manager string

Specifies the value of the Manager field for the
alert. The default value is determined by the
probe.

MaxLogFileSize integer

-maxlogfilesize integer

Specifies the maximum size that the log file can
grow to, in Bytes. The default is 1 MB. When
the log file reaches the size specified, a second
log file is started. When the second file reaches
the maximum size, the first file is overwritten
with a new log file and the process starts again.

MaxRawFileSize integer

N/A

Specifies the maximum size of the raw capture
file, in KB. The default is unlimited (-1).

MaxSAFFileSize integer

-maxsaffilesize integer

Specifies the maximum size (in Bytes) that the
store-and-forward file can grow to when
disconnected from the ObjectServer. The default
is 1 MB.

MessageLevel string

-messagelevel string

Specifies the message logging level. Possible
values are: debug, info, warn, error, and fatal.
The default level is warn.

Messages that are logged at each level are as
follows:

fatal: fatal only.

error: fatal and error.

warn: fatal, error, and warn.

info: fatal, error, warn, and info.

debug: fatal, error, warn, info, and debug.

Messagelog string

-messagelog string

Specifies where messages are logged. The
default is $OMNIHOME/10g/probename .10g.

Messagelog can also be set to stdout or stderr.

Chapter 5. Common probe properties and command-line options ~ 81

Table 23. Common probe properties and command-line options (continued)

Property

Command-line option

Description

Mode string

-master

-slave

Specifies the role of the instance of the probe in
a peer-to-peer failover relationship. The value of
the property can be set to:

master: This instance is the master.
slave: This instance is the slave.
standard: There is no failover relationship.

The default is standard.

MsgDailylLog 0 | 1

-msgdailylog 0 | 1

Specifies whether daily logging is enabled. By
default, the daily backup of log files is not
enabled (0).

Note: Because the time is checked regularly,
when MsgDailylog is set there is a slight
reduction in performance.

MsgTimeLog string

-msgtimelog string

Specifies the time after which the daily log is
created. The default is 0000 (midnight).

If MsgDailyLog set to 0, this value is ignored.

Name string

-name string

Specifies the name of the probe. This value
determines the names of the properties file,
rules file, message log file, store-and-forward
file, and raw capture file.

Note: You can specify alternative file names by
using the PropsFile, RulesFile, Messagelog,
SAFFileName, and RawCaptureFile properties. If
you want to set any of these file names in the
properties file, they must be specified after the
Name property. Otherwise, the Name property will
override any previous setting of the files names.

NetworkTimeout integer

-networktimeout integer

Specifies the length of time (in seconds) that the
probe can wait without a response; after this
time, the connection to the ObjectServer times
out. The maximum value is 2147483, and the
default is 0, meaning that no timeout occurs.

If a timeout occurs, the probe attempts to
connect to the backup ObjectServer, identified
by the ServerBackup property.

If a timeout occurs and no backup ObjectServer
is specified, the probe enters store-and-forward
mode.

The NetworkTimeout setting overrides the
operating system-level TCP/IP timeout setting.

82 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 23. Common probe properties and command-line options (continued)

Property

Command-line option

Description

01dTimeStamp TRUE | FALSE

-oldtimestamp TRUE | FALSE

Specifies the timestamp format to use in the log
file.

Set the value to TRUE to display the timestamp
format that is used in Tivoli Netcool/OMNIbus
V7.2.1, or earlier. For example: dd/MM/YYYY
hh:mm:ss AM or dd/MM/YYYY hh:mm:ss PM
when the locale is set to en_GB on a Solaris 9
computer.

Set the value to FALSE to display the ISO 8601
format in the log file. For example:
YYYY-MM-DDThh:mm:ss, where T separates the
date and time, and hh is in 24-hour clock. The
default is FALSE.

PeerHost string

-peerhost string

Specifies the host name of the network element
acting as the counterpart to this probe instance
in a peer-to-peer failover relationship. The
default is Tocalhost.

PeerPort integer

-peerport integer

Specifies the port through which the master and
slave communicate in a peer-to-peer failover
relationship. The default port is 99.

Pol1Server integer

-pollserver integer

If connected to a backup ObjectServer because
failover occurred, a probe periodically attempts
to reconnect to the primary ObjectServer. This
property specifies the frequency in seconds at
which the probe polls for the return of the
primary ObjectServer. It does this by
disconnecting and then reconnecting to the
primary ObjectServer if available, or to the
secondary ObjectServer if the primary is not
available. Polling is the only way that the probe
can determine if the primary ObjectServer is
available. The default is 0, meaning that no
polling occurs.

When a probe connects to an ObjectServer, the
probe checks the BackupObjectServer property
setting of the ObjectServer to which it is
connecting. Polling occurs only if this property
is set to TRUE, indicating a backup ObjectServer.
Note: A probe can go into store-and-forward
mode when the primary ObjectServer becomes
unavailable. The first alert is not forwarded to
the backup ObjectServer until the second alert
opens the connection to the backup. If
Pol1Server is set to less than the average time
between alerts, the ObjectServer connection is
polled before an alert is sent, and the probe
does not go into store-and-forward mode. For
controlled failback, set Pol1Server to 0 to
disable automatic failback of a probe that is
connected to a failover pair of ObjectServers.

Chapter 5. Common probe properties and command-line options 83

Table 23. Common probe properties and command-line options (continued)

Property

Command-line option

Description

ProbeWatchHeartbeatInterval
integer

-probewatchheartbeatinterval
integer

Generates a ProbeWatch Heartbeat event if this
property is set to a positive number. The
number defines the interval (in seconds) at
which the heartbeats are generated. If set to 0
(zero), or a negative number, no ProbeWatch
heartbeats are generated.

Props.CheckNames TRUE | FALSE

N/A

When TRUE, the probe does not run if any
specified property is invalid. The default is TRUE.

PropsFile string

-propsfile string

Specifies the name of the properties file. The
default is $OMNIHOME/probes/arch/

probename .props, where probename is the name
of the probe and arch represents the operating
system.

RawCapture 0 | 1

-raw

-noraw

Controls the raw capture mode. Raw capture
mode is usually used at the request of IBM
Software Support. By default, raw capture mode
is disabled (0).

Note: Raw capture can generate a large amount
of data. By default, the raw capture file can
grow indefinitely, although you can limit the
size using the MaxRawFileSize property. Raw
capture can also slow probe performance due to
the amount of disk activity required for a busy
probe.

RawCaptureFile string

-capturefile string

Specifies the name of the raw capture file. The
default is $OMNIHOME/var/probename .cap, where
probename is the name of the probe.

RawCaptureFileAppend 0 | 1

-rawcapfileappend

-norawcapfileappend

Specifies whether new data is appended to the
existing raw capture file, instead of overwriting
it. By default, the file is overwritten (0).

RegexpLibrary string

-regexplib string

Defines which regular expression library to use.
Possible values are: NETCOOL and TRE.

The default value of TRE enables the use of the
extended regular expression syntax on
single-byte and multi-byte character languages.
This setting results in decreased system
performance.

The NETCOOL value is useful for single-byte
character processing and provides optimal
system performance.

RetryConnectionCount integer N/A Specifies the number of events the probe
processes in store-and-forward mode before
trying to reconnect to the ObjectServer. The
default is 15.

RetryConnectionTimeOut integer |N/A Specifies the number of seconds that the probe

processes events in store-and-forward mode
before trying to reconnect to the ObjectServer.
The default is 30.

84 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 23. Common probe properties and command-line options (continued)

Property

Command-line option

Description

Ro11SAFInterval integer

-rollsafinterval integer

Used when the probe is connected to an
ObjectServer, and circular store and forward is
enabled by setting StoreAndForward to 2.

Specifies the time interval in seconds after
which a store-and-forward file is rolled over to
the next file in the pool of two files that are
used to store a copy of events that are sent to a
connected ObjectServer.

To minimize event loss during failover and
failback, set the time interval to a value that is
greater than or equal to the granularity of the
ObjectServer. In case of failure, the probe will
have a copy of events from the last granularity
period, which can be replayed to the backup
ObjectServer.

The default is 90 seconds, which is 1.5 times
greater than the default granularity period of 60
seconds that is set for an ObjectServer.

RulesFile string

-rulesfile string

Specifies the name of the rules file.

This can be a file name or Web address that
specifies a rules file located on a remote server
that is accessible using HTTP.

The default is $OMNIHOME/probes/arch/
probename .rules, where probename is the name
of the probe.

SAFFileName string

-saffilename string

Specifies the name of the store-and-forward file.

The default is $OMNIHOME/var/probename.store,
where probename is the name of the probe.

A .servername extension is automatically
appended to the file name, where servername is
the name of the target ObjectServer.

A separate store-and-forward file is created for
each registered target ObjectServer.

SAFPool1Size integer

-safpoolsize integer

Used when the probe is not connected to an
ObjectServer.

Specifies the number of store-and-forward files
in a pool of files that can be used to store alerts.
The default is 3.

Each file rolls over to the next when it reaches
the maximum size specified by the
MaxSAFFileSize property.

Chapter 5. Common probe properties and command-line options 85

Table 23. Common probe properties and command-line options (continued)

Property

Command-line option

Description

SecureLogin 0 | 1

-securelogin

-nosecurelogin

Specifies whether the probe uses an encrypted
secure login to access the host system:

* 0: The probe does not use an encrypted
secure login.

* 1: The probe uses an encrypted secure login.

The default is 0.
Note: Secure login is not available in FIPS 140-2
mode. SSL is more secure than secure login.

Server string

-server string

Specifies the name of the primary ObjectServer
or the proxy server to which alerts are sent. The
default is NCOMS.

If you want the probe to operate in circular
store-and-forward mode, do not specify a
virtual ObjectServer definition as the value of
this property.

ServerBackup string

N/A

Specifies the name of a backup ObjectServer to
which the probe should connect if the primary
ObjectServer connection fails. If NetworkTimeout
is set, use ServerBackup to identify a backup
ObjectServer.

If you want the probe to operate in circular
store-and-forward mode, do not specify a
virtual ObjectServer definition as the value of
this property.

SingleThreadedComms TRUE |
FALSE

-singlethreadedcomms

Specifies whether multithreaded or
single-threaded processing is used to process
and send alerts to the target ObjectServers. The
default is FALSE, which enables multithreaded
communication.

You can also use the SingleThreadedComms
property to enforce an order for sending alerts
to ObjectServers. With multithreaded processing,
alerts are simultaneously sent to the target
ObjectServers. In single-threaded mode, the
order is defined by the order in which the
registertarget statements are listed in the rules
file.

SSLServerCommonName stringl,...

N/A

If the probe is connecting to an ObjectServer
using SSL, and the Common Name field of the
received certificate does not match the name
specified by the Server property, use this
property to specify a comma-separated list of
acceptable SSL Common Names.

The default setting is to use the Server property.

86 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 23. Common probe properties and command-line options (continued)

Property

Command-line option

Description

StoreAndForward integer

-saf integer

Controls the store and forward operations.
Possible values for the property are:

* 0: Do not use store and forward.

 1: Use legacy store and forward, which stores
alerts in a store-and-forward file only if the
alerts cannot be sent to an ObjectServer.

e 2: Use circular store and forward, which
stores all generated alerts in a rolling pool of
store-and-forward files while the probe is
connected to an ObjectServer. If the probe is
disconnected, the circular store and forward
behavior is similar to the legacy store and
forward behavior.

By default, the legacy store-and-forward mode
is enabled (1).

StoreSAFRejects 0 | 1

-storesafrejects

-dontstoresafrejects

Specifies whether the probe should continuously
save the individual corrupted store-and-forward
records for analysis.

If set to 1, corrupted store-and-forward records
are continuously saved. The default is 0.

Use this property in conjunction with the
KeepLastBrokenSAF property.

N/A

-version

Displays version information and exits.

Related concepts

“Probe property versus probe command-line option usage” on page 6|

“Probe property types” on page 5

“Store-and-forward mode for probes” on page 10|

“Raw capture mode for probes” on page 13|

[“Secure mode for probes” on page 13|

[“Peer-to-peer failover mode for probes

” on page 14|

Related reference

[“Multithreaded processing of alert data” on page 46]

[“Lookup table operations” on page 39|

Chapter 5. Common probe properties and command-line options ~ 87

88 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 6. Abou

t gateways

Tivoli Netcool/OMNIbus gateways enable you to exchange alerts between
ObjectServers and complementary third-party applications, such as databases and
helpdesk or Customer Relationship Management (CRM) systems.

You can use gateways to replicate alerts or to maintain a backup ObjectServer.
Application gateways enable you to integrate different business functions. For
example, you can configure a gateway to send alert information to a helpdesk

syste

m. You can also use a gateway to archive alerts to a database.

The following figure shows an example gateway architecture.

= 1
Event List
@ H
] »
Monitor —
ObjectServer Helpdesk/
NCOMS Gateway C?RM
fla — 4— [
Gateway RDBMS
Gateway n

ObjectServer
DENCO

Figure 4. Gateways in the Tivoli Netcool/OMNIbus architecture

The preceding figure illustrates how to use gateways for a variety of purposes:

2]

© Copyright IBM Corp. 1994, 2011

Probes send alerts to the local ObjectServer.

The ObjectServer Gateway replicates alerts between ObjectServers in a
failover configuration.

The Helpdesk gateway integrates the Network Operations Center (NOC)
and the helpdesk by converting trouble tickets to alerts, and alerts to
trouble tickets.

The RDBMS gateway stores critical alerts in a relational database
management system (RDBMS) so that you can analyze network
performance.

89

After a gateway is correctly installed and configured, the transfer of alerts is
transparent to operators. For example, alerts are forwarded from an ObjectServer to
a database automatically without user intervention.

Note: The information in this publication is generic to all gateways. For
gateway-specific information, see the individual gateway publications in the IBM
Tivoli Network Management Information Center at:

lhttp:/ /publib.boulder.ibm.com /infocenter/ tivihelp /v8r1/index.jsp|

Related concepts

[“Types of gateways’|

Types of gateways

90

There are two main types of gateways: unidirectional gateways and bidirectional
gateways.

Unidirectional gateways allow alerts to flow in only one direction. Changes made in
the source ObjectServer are replicated in the destination ObjectServer or
application, but changes made in the destination ObjectServer or application are
not replicated in the source ObjectServer. Unidirectional gateways can be
considered as archiving tools.

Bidirectional gateways allow alerts to flow from the source ObjectServer to the
target ObjectServer or application, and also allow feedback to the source
ObjectServer. In a bidirectional gateway configuration, changes made to the
contents of a source ObjectServer are replicated in a destination ObjectServer or
application, and the destination ObjectServer or application replicates its alerts in
the source ObjectServer. Bidirectional gateways can be considered as synchronization
tools.

Gateways can send alerts to a variety of targets:
* Another ObjectServer

* A database

* A helpdesk application

* Other applications or devices

ObjectServer gateways are used to exchange alerts between ObjectServers. This is
useful when you want to create a distributed installation, or when you want to
install a backup ObjectServer.

Database gateways are used to store alerts from an ObjectServer. This is useful
when you want to keep a historical record of the alerts forwarded to the
ObjectServer.

Helpdesk gateways are used to integrate Tivoli Netcool/OMNIbus with a range of
helpdesk systems. This is useful when you want to correlate the trouble tickets
raised by your customers with the networks and systems you are using to provide
their services.

Other gateways are specialized applications that forward ObjectServer alerts to
other applications or devices (for example, a flat file or socket).

Note: Only gateways that send alerts to certain targets can be bidirectional.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

Related concepts

[Chapter 6, “About gateways,” on page 89|

ObjectServer gateways

ObjectServer gateways can be unidirectional and bidirectional.

Unidirectional ObjectServer Gateway

A unidirectional ObjectServer Gateway allows alerts to flow from a source
ObjectServer to a destination ObjectServer. Changes made in the source
ObjectServer are replicated in the destination ObjectServer, but changes made in
the destination ObjectServer are not replicated in the source ObjectServer.

The following figure shows the configuration of a unidirectional ObjectServer

Gateway.
Reader Writer
- ® O
ObjectServer ObjectServer
NCOMS DENCO

The Gateway
nco_g_objserv_uni

Figure 5. Unidirectional ObjectServer Gateway

In this figure, changes made in the NCOMS ObjectServer are replicated in the
DENCO ObjectServer, but changes made in the DENCO ObjectServer are not
replicated in the NCOMS ObjectServer.

The unidirectional ObjectServer Gateway is described in detail in the IBM Tivoli
Netcool/OMNIbus ObjectServer Gateway Reference Guide, SC14-7609.

Related concepts

[“Bidirectional ObjectServer Gateway”]

Bidirectional ObjectServer Gateway

A bidirectional ObjectServer Gateway allows alerts to flow from a source
ObjectServer to a destination ObjectServer. Changes made to the contents of a
source ObjectServer are replicated in a destination ObjectServer, and the
destination ObjectServer replicates its alerts in the source ObjectServer.

This enables you, for example, to maintain a system with two ObjectServers
configured as a failover pair.

The following figure shows the configuration of a bidirectional ObjectServer
Gateway:

Chapter 6. About gateways 91

92

Writer

ObjectServer
NCOMS

t

ObjectServer
DENCO

I

The Gateway
nco_g_objserv_bi

Figure 6. Bidirectional ObjectServer Gateway

In this figure, changes made in the NCOMS ObjectServer are replicated in the
DENCO ObjectServer. Changes made in the DENCO ObjectServer are also
replicated in the NCOMS ObjectServer.

The bidirectional ObjectServer Gateway is described in detail in the IBM Tivoli
Netcool/OMNIbus ObjectServer Gateway Reference Guide, SC14-7609.

Related concepts

[“Unidirectional ObjectServer Gateway” on page 91|

ObjectServer Gateway writers and failback (alert replication
between sites)

Failover occurs when a gateway loses its connection to the primary ObjectServer;
this allows the gateway to connect to a backup ObjectServer. Failback functionality
allows the gateway to reconnect to the primary ObjectServer when it becomes
active again.

Because bidirectional ObjectServer gateways are used to resynchronize failover
pairs, failback is automatically disabled. This is because one half of the gateway
can legitimately be connected to a backup server and so should not be forced to
keep failing back to the primary ObjectServer.

However, if a bidirectional gateway is being used to share data between two
separate sites, and each site has a failover pair operating, you can manually enable
failback on each server. When enabled, the writer automatically enables failback on
its counterpart reader.

ObjectServer gateway failover and failback are described in detail in the IBM Tivoli
Netcool/OMNIbus ObjectServer Gateway Reference Guide, SC14-7609.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Database, helpdesk, and other gateways

Most database, helpdesk, and other gateways use a standard architecture, but each
gateway has its own binary file, with additional modules to handle the
communication with the target applications, devices, or files.

For information about specific gateways and their architectures, see the individual
gateway publications.

Gateway components

Gateways have reader and writer components. Readers extract alerts from the
ObjectServer. Writers forward alerts to another ObjectServer or to other
applications.

There is only one type of reader, but there are various types of writers depending
on the destination application.

Routes specify the destination to which a reader forwards alerts. One reader can
have multiple routes to different writers, and one writer can have multiple routes
from different readers.

Gateway filters and mappings configure alert flow. Filters define the types of alerts
that can be passed through a gateway. Mappings define the format of these alerts.

Readers, writers, routes, filters, and mappings are defined in the gateway
configuration file.

Related concepts

[‘Gateway configuration” on page 98|

Unidirectional gateways

A unidirectional database, helpdesk, or other gateway allows alerts to flow from a
source ObjectServer to a destination application. Changes made in the source
ObjectServer are replicated in the destination application, but changes made in the
destination application are not replicated in the source ObjectServer.

A simple example of a unidirectional gateway is the Flat File Gateway, which reads
alerts from an ObjectServer and writes them to a flat file. This example architecture
is shown in the following figure.

Reader Writer
1> > @& |
Route [Cm—
ObjectServer Flat
NCOMS File
The Gateway
nco_g_file

Figure 7. Example Flat File Gateway architecture

Related concepts

[“Bidirectional gateways” on page 94|

Chapter 6. About gateways 93

94

Bidirectional gateways

In a bidirectional database, helpdesk, or other gateway configuration, changes
made to the alerts in a source ObjectServer are replicated in a destination
application, and the destination application replicates changes to its alerts in the
source ObjectServer.

This enables you, for example, to raise trouble tickets in a helpdesk system for
certain alerts. Changes made to the tickets in the helpdesk system can then be sent
back to the ObjectServer.

Bidirectional gateways have a similar configuration to unidirectional gateways,
with an additional COUNTERPART attribute for the writers. The COUNTERPART attribute

defines a link between a gateway writer and reader.

The following figure shows an example bidirectional gateway configuration.

Writer
Reader Module

—> I >
Route

ObjectServer
NCOMS

?

Clarify

<
<

[

Reader

The Gateway
nco_g_clarify

Figure 8. Bidirectional Clarify Gateway

Related concepts

[“Unidirectional gateways” on page 93|

Reader component
A reader extracts alerts from an ObjectServer. There is only one type of reader: the
ObjectServer reader.

When the reader starts, the gateway attempts to open a connection to the source
ObjectServer. If the gateway succeeds in opening the connection, it immediately
starts to read alerts from the ObjectServer.

Writer modules
Writer modules manage communications between gateways and third-party
applications, and format the alert correctly for entry into the application.

The writer module generates log files that can help debug the gateway.

Communication between the writer module and the third-party application uses
helper applications, which interact directly with the application through its APIs or
other interfaces. These processes are transparent to the user (though they are
visible using the ps command or similar utility).

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

The writer module uses a reference number cache to track the alerts and their
associated reference number in the target application. For each alert, the cache
stores the following:

e The serial number of the alert

* A reference number from the target application (for example, Clarify Cases or
ServiceCenter Tickets)

When a ticket is raised in response to an alert, the writer module enters the
reference number in the cache and returns it to the ObjectServer where the alert is

updated to include the reference number.

The following figure shows a simplified example of the writer module architecture.

Reader Writer

o—@ @)1
Reference S

ObjectServer
NCOMS Number Clarify

A

Writer
Module

Reader

The Gateway
nco_g_clarify

Figure 9. Reader/writer module architecture

Related reference

[‘Gateway debugging” on page 102

Routes
Routes create the link between the source reader and the destination writer.

Any alerts received by the source ObjectServer are read by the reader, passed
through the route to the writer, and written into the destination ObjectServer or
application.

Alert updates from the helpdesk

When a helpdesk operator makes additional changes to a ticket, these are
forwarded to the gateway which runs the corresponding action .sql file to update
the alert in the ObjectServer.

Typically the following action .sql files are provided:
* open.sql

* update.sql

e journal.sql

* close.sql

For detailed information on configuring alert updates from the helpdesk, see the
individual gateway publications.

Chapter 6. About gateways 95

Modes of operation of gateways

96

Gateways can operate in store-and-forward mode and secure mode.

Store-and-forward mode for gateways

If there is a problem with the gateway target, the ObjectServer and database
writers can continue to run using store-and-forward mode.

When the writer detects that the target ObjectServer or database is not present or is
not functioning (usually because the writer is unable to write an alert), it switches
into store mode. In this mode, the writer stores everything it would normally send
to the database in a file named:

$OMNIHOME/var/writername .destserver.store

In this file name, writername is the name of the writer and destserver is the name of
the server to which the gateway is attempting to send alerts.

When the gateway detects that the destination server is back on line, it switches
into forward mode and sends the alert information held in the .store file to the
destination server. After all of the alerts in the .store file have been forwarded, the
writer returns to normal operation.

Store-and-forward mode only works when a connection to the ObjectServer or
database destination has been established, used, and then lost. If the destination
server is not running when the gateway starts, store-and-forward mode is not
triggered and the gateway terminates.

If the gateway connects to the destination ObjectServer and a store-and-forward
file already exists, the gateway replays the contents of the store-and-forward file
before it sends new alerts.

Store-and-forward mode is configured using the attributes STORE_AND_FORWARD and
STORE_FILE.

Note: See the individual gateway publications to determine whether an individual
gateway supports store-and-forward mode. Store and forward does not work with
bidirectional gateway configurations, with the exception of the bidirectional
ObjectServer Gateway.

Secure mode for gateways

You can run the ObjectServer in secure mode. When you start the ObjectServer
using the -secure command-line option, the ObjectServer authenticates probe,
gateway, and proxy server connections by requiring a user name and password.

Note: This section applies to gateways that use configuration, rather than
properties, files. If you require information about running the ObjectServer
Gateway in secure mode and FIPS 140-2 mode, see the IBM Tivoli Netcool/OMNIbus
Installation and Deployment Guide and the IBM Tivoli Netcool/OMNIbus ObjectServer
Gateway Reference Guide, SC14-7609.

When a connection request is sent, the ObjectServer issues an authentication
message. The probe, gateway, or proxy server must respond with the correct user
name and password. If the user name and password combination is incorrect, the
ObjectServer issues an error message and rejects the connection.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

If the ObjectServer is not running in secure mode, probe, gateway, and proxy
server connection requests are not authenticated.

When connecting to a secure ObjectServer, the gateway must have the
AUTH_USER and AUTH_PASSWORD commands in the gateway configuration
file. You can choose any valid user name for the AUTH_USER gateway command.
To generate the encrypted AUTH_PASSWORD, use the nco_g_crypt utility. The
command takes the unencrypted password and displays the encrypted password
to be entered for the AUTH_PASSWORD command.

The AUTH_USER and AUTH_PASSWORD commands must precede any reader
commands in the gateway configuration file. Before running the gateway, add the
user name and corresponding encrypted password to the configuration file, for
example:

AUTH_USER 'Gate_User'
AUTH_PASSWORD 'Crypt_Password'

Note: For Tivoli Netcool/OMNIbus V7.1, or later, you must set the gateway
properties for the user name and password when connecting to a secure
ObjectServer from the ObjectServer Gateway. For information about ObjectServer
gateways, see the IBM Tivoli Netcool/OMNIbus ObjectServer Gateway Reference Guide,
SC14-7609.

Encrypting target system passwords

You can use the nco_g_crypt utility to encrypt plain text login passwords (this
method uses DES encryption). The gateways use these encrypted passwords to log
into their target systems. Encrypted passwords are decoded by the gateway before
they are used to log in to the target system.

Note: You cannot use nco_g_crypt in FIPS 140-2 mode. Use nco_aes_crypt
(specifying the algorithm AES_FIPS) to protect the passwords specified in a
properties file. Use operating system protections to protect both the properties file
and the encryption key. Use SSL to protect passwords and other data over the
network.

The user name and password are stored in the USERNAME and PASSWORD attributes in
the gateway writer.

Note: If you are using a helpdesk gateway, substitute USER for USERNAME.

To encrypt a plain text password for a gateway target system:
1. Use the nco_g_crypt utility to obtain an encrypted version of the password.

2. Update the gateway writer in the gateway configuration file by copying the
user name into_the USERNAME attribute value and the encrypted password
created in step|l] into the PASSWORD attribute value.

For example:

START WRITER SYBASE_WRITER
(

TYPE = SYBASE,

REVISION = 1,

SERVER = DARKSTAR,

MAP = SYBASE_MAP,

USER = 'SYSTEM',

PASSWORD = 'MKFGHIFE',
FORWARD DELETES = TRUE
)s

Chapter 6. About gateways 97

3. Run the gateway.
Related concepts

[‘Gateway configuration”

[Chapter 7, “Running gateways,” on page 105

Gateway configuration

98

The configuration file, or files, define the environment in which the gateway
operates and how the gateway maps data onto tables within the ObjectServer.

Note: Most gateways are configured using a single configuration file with the
.conf extension. The following gateways are configured using a properties file
which replaces this configuration file:

* ObjectServer Gateway

* ODBC Gateway

* Gateway for Oracle

For information about configuring these gateways, see the IBM Tivoli
Netcool/OMNIbus ObjectServer Gateway Reference Guide, SC14-7609, IBM Tivoli
Netcool/OMNIbus ODBC Gateway Guide, SC23-9572, and IBM Tivoli Netcool/OMNIbus
Gateway for Oracle Guide, SC23-7669, respectively.

Related concepts

[“Gateway components” on page 93|

(Chapter 7, “Running gateways,” on page 105
Related tasks
[“Encrypting target system passwords” on page 97]

Gateway configuration file

Most gateways have a configuration file, with the .conf extension. When a
gateway of this type starts, it processes the commands in its configuration file. This
defines the connections between the source ObjectServer and the alert destinations.

For example, by default, the Gateway for Clarify uses the following configuration
file:

$OMNIHOME/etc/G_CLARIFY.conf

Before running a gateway, you must add the relevant commands to the
configuration file to specify the reader, writer, route, mapping, and filter
definitions.

When running a gateway, you do not need to specify the configuration file if you
are using the default file that resides in the $OMNIHOME/etc location. If you want to
use a different configuration file, you can use the -config command-line option to
specify the full path and name of the alternative configuration file. For example:
$OMNIHOME/bin/nco_g clarify -config /path/G_CLARIFY.conf

Where path is the full path and name of the alternative configuration file.

Note: The ObjectServer gateway does not use a .conf configuration file. Instead, it
uses a properties file and a number of other configuration files. For information

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

about ObjectServer gateway configuration, see the IBM Tivoli Netcool/OMNIbus
ObjectServer Gateway Reference Guide, SC14-7609.

Related concepts

(Chapter 7, “Running gateways,” on page 105

Related reference

[“Filter commands” on page 116|

“Mapping commands” on page 115

“Reader commands” on page 111]

“Route commands” on page 117]

“Writer commands” on page 112]

Reader configuration

A reader extracts alerts from an ObjectServer. Readers are started using the START
READER command, which defines the name of the reader and the name of the
ObjectServer from which to read.

For example, to start a reader for an NCOMS ObjectServer, add the following
command to the configuration file:

START READER NCOMS_READ CONNECT TO NCOMS;

After this command is issued, the reader starts and the gateway attempts to open a
connection to the source ObjectServer. If the gateway succeeds in opening the
connection, it immediately starts to read alerts from the ObjectServer. For the
reader to forward these alerts to their destination, you must define an associated
route and writer.

Related reference

[‘Reader commands” on page 111

Writer configuration

Writers send the alerts acquired by a reader to the destination application or
ObjectServer. Writers are created using the START WRITER command, which
defines the name of the writer and the information that allows it to connect to its
destination.

For example, to create the writer for a Flat File Gateway, add the following
command to the configuration file:

START WRITER FILE_WRITER

(TYPE = FILE,
REVISION = 1,
FILE = '/tmp/omnibus/10g/NCOMS alert.log',
MAP = FILE MAP,

INSERT_HEADER = 'INSERT: ',
UPDATE_HEADER = 'UPDATE: ',
DELETE_HEADER = 'DELETE: ',
START_STRING = '"',
END_STRING = '"',
INSERT_TRAILER = '\n',
UPDATE_TRAILER = '\n',
DELETE_TRAILER = '\n'

Chapter 6. About gateways 99

100

Route

After the START WRITER command is issued, the gateway attempts to establish
the connection to the alert destination (either an application or another

ObjectServer). The writer sends alerts received from the source ObjectServer until
the STOP WRITER command is issued.

Related reference

[“Writer commands” on page 112]

configuration

Routes create the link between readers and writers. Routes are created using the
ADD ROUTE command. This command defines the name of the route, the source
reader, and the destination writer.

For example, to create the route between the NCOMS ObjectServer reader and the
writer for a Flat File Gateway, add the following command to the configuration
file:

ADD ROUTE FROM NCOMS_READ TO FILE_WRITER;

After this command is issued, the connection between a reader and writer is
established. Any alerts received by the source ObjectServer are read by the reader,
passed through the route to the writer, and written into the destination
ObjectServer or application.

Related reference

[“Route commands” on page 117

Mapping configuration

Mappings define how alerts received from the source ObjectServer should be
written to the destination ObjectServer or application. Each writer has a different
mapping that is defined using the CREATE MAPPING command.

For example, to create the mapping between the ObjectServer reader and the writer
for a Flat File Gateway, add the following command to the configuration file:

CREATE MAPPING FILE_MAP

''= '@ldentifier',

'@Serial’,

'@Node" ,

'@Manager’',

'"@FirstOccurrence' CONVERT TO DATE,
'@LastOccurrence'’ CONVERT TO DATE,
'@Internallast’ CONVERT TO DATE,
'@Tally’,

'@Class’',

'@Grade’',

'"@Location',

'@ServerName',

'@ServerSerial'

In this example, the mapping name is FILE_MAP.

Each line between the parentheses defines how the gateway writes alerts into the
file. For the Flat File Gateway, the CREATE MAPPING command defines the fields
from which data is written into each alert in the output file. The alert fields from
the source ObjectServer are represented by the @ symbol.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

The following example shows INSERT and UPDATE commands using the
FILE_MAP mapping shown in the preceding example.

INSERT: "Downlink6LinkMon4Link",127,"sfo4397","Netcool Probe",12/05/03 15:39:23,
12/65/603 15:39:23,12/05/03 15:30:53,1,3300,0,"","NCOMS",127

UPDATE: "muppetMachineMon2Systems",104,"sfo4397","Netcool Probe",12/05/03 12:29:34,
12/05/03 15:40:06,12/05/03 15:31:36,11,3300,0,"","NCOMS", 104

UPDATE: "muppetMachineMon4Systems",93,"sf04397","Netcool Probe",12/05/03 12:29:11,
12/05/03 15:40:35,12/05/03 15:32:05,12,3300,0,"","NCOMS",93

Other gateways (with the exception of the Socket Writer Gateway) require a field
in the target to be specified for each source ObjectServer field. For example, in the
Gateway for Remedy ARS, source ObjectServer fields are mapped to Remedy ARS
fields, which are identified with long integer values rather than field names. In the
following example, the ARS field 536870913 maps to the Serial field from the
ObjectServer:

536870913 = '@Serial' ON INSERT ONLY

The ON INSERT ONLY clause controls when the field is updated. Fields with the
ON INSERT ONLY clause are forwarded only once, when the alert is created for
the first time in the ObjectServer. Fields that do not have the ON INSERT ONLY
clause are updated each time the alert changes.

Related reference
[‘CREATE MAPPING” on page 115

Filter configuration

You might not always want to send all of the alerts that are read by a reader to the
destination application. Filters define which of the alerts read by the ObjectServer
reader should be forwarded to the destination.

For example, you may want to send only alerts that have a severity level of
Critical.

You create filters using the CREATE FILTER command and apply them using the
START READER command. For example, to create a filter that forwards only
critical alerts to the destination application or ObjectServer, add the following
command to the configuration file:

CREATE FILTER CRITONLY AS 'Severity = 5';

This command creates a filter named CRITONLY, which forwards alerts with a
severity level of Critical (5) only.

To apply the filter to an ObjectServer reader, add the following command to the
configuration file:

START READER NCOMS_READ CONNECT TO NCOMS USING FILTER CRITONLY;

Note: To perform string comparisons with filters, you must escape the quotes in
the CREATE FILTER command with backslashes. For example, to create a filter
that forwards only alerts from a node called fred, the CREATE FILTER command
is:

CREATE FILTER FREDONLY AS 'NODE = \'fred\'';

Creating multiple filters and multiple readers

If you need more than one filter for the same ObjectServer, you can create multiple
readers for it.

Chapter 6. About gateways 101

For example, to create a reader that forwards all critical alerts and another that
forwards everything else, use the following commands:

CREATE FILTER CRITONLY AS 'Severity = 5';

CREATE FILTER NONCRIT AS 'Severity < 5';

START READER CRIT_NCOMS CONNECT TO NCOMS USING FILTER CRITONLY;
START READER NONCRIT_NCOMS CONNECT TO NCOMS USING FILTER NONCRIT;

Loading filters created using the Filter Builder
You can load and use filters that are created in the Filter Builder.

For example:
LOAD FILTER FROM '/usr/filters/myfilt.elf';

This command loads the file /usr/filters/myfilt.elf as a filter. This filter name
is defined by the Filter Builder Name field.

Note: The Name field must be alphabetical and must not contain spaces.
Related reference

[“Filter commands” on page 116
[‘START READER” on page 111|

Gateway debugging

102

When debugging, you should initially check the log file:
$OMNIHOME/10g/NCO_GATENAME .10g
Where GATENAME is the name of the gateway.

You might receive an error message such as the following:
error in srv_select () - file descriptor x is no longer active!

This type of error message indicates that the gateway has aborted because one of
the reader or writer modules failed. In this case, check the following log files:

NCO_GATENAME _XRWY WRITE.Tog
or
NCO_GATENAME_XRWY_READ.1og

Where X identifies the name of the gateway and Y identifies the version of that
gateway.

Related concepts

[“Writer modules” on page 94|

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Gateway writers and failback

The ObjectServer reader can fail over and fail back between source ObjectServers
without shutting down. This ability is not supported by all gateway writers.

If a writer does not support this mode of failback and failover, the writer, on
detection of the reader failover or failback, will shut down the gateway and rely on
the process agent to restart the gateway.

Writers that support reader failover and failback without shutting down are:
* ObjectServer writer

¢ Sybase database writer

* Sybase Reporter writer

* SNMP writer

e ServiceView writer

* Socket writer

* Flat file writer

* Informix® database writer

Writers that support failover and failback with shutdown are:
* Remedy ARS writer

* Siebel eCommunications writer
* Oracle database writer

* Oracle Reporter writer

* DPeregrine writer

* Clarify writer

* HP ITSM writer

* Peoplesoft Vantive writer

e HP Service Desk writer

* ODBC database writer

Creating conversion tables

You can create conversion tables to enable certain data conversions to take place
between fields.

For example, if you are using the Gateway for Remedy, you can create a table
within the ObjectServer to insert values for the Severity field found in Remedy.

To do this, you must use ObjectServer SQL commands. You can run ObjectServer
SQL commands using the following tools:

» UNIX SQL interactive interface (nco_sql)
* Windows SQL interactive interface (isql)
* Netcool/OMNIbus Administrator

Conversion table on Tivoli Netcool/OMNIbus V7.0, or later
The following example ObjectServer SQL creates the table remedy in a Tivoli

Netcool/OMNIbus V7.0, or later, ObjectServer, and inserts six values and
corresponding descriptions for the Severity field:

Chapter 6. About gateways 103

104

create database conversions;

use database conversions;

create table conversions.remedy persistent (
KeyField varchar(255) primary key,

CoTname
OSValue

)s
go

insert
insert
insert
insert
insert
insert
go

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

into
into
into
into
into
into

varchar(255),
varchar(255),
Conversion varchar(255)

conversions.
conversions.
conversions.
.remedy
conversions.
conversions.

conversions

remedy
remedy
remedy

remedy
remedy

values
values
values
values
values
values

('Severity@','Severity','0','Clear');
('Severityl','Severity','1','Indeterminate');
('Severity2','Severity','2','Warning');
('Severity3','Severity','3",'Minor');
('Severityd','Severity','4','Major');
('Severity5','Severity','5", 'Critical');

Chapter 7. Running gateways

A gateway requires an entry in the Server Editor. You must also create your
gateway configuration file. After you have defined the gateway communications
and created your configuration file, you can run the gateway.

Related concepts

“Gateway configuration file” on page 98|

“Gateway configuration” on page 98|
Related tasks
[“Encrypting target system passwords” on page 97|

Running gateways on UNIX

On UNIX, you can run gateways from the command line.
To run a gateway with a default configuration, enter:
$OMNIHOME/bin/nco_g_gatename

This runs a gateway with the default name GATENAME and the default
configuration file $OMNIHOME/etc/G_GATENAME .conf.

To run a gateway with a different name and configuration file, use command-line
options. For example:

$OMNIHOME/bin/nco_g_gatename -name GATE2 -config $OMNIHOME/etc/GATE2.conf
This runs a gateway named GATE2 using a configuration file named GATEZ2.conf.

You must configure gateways to run under process control.
Related reference

[‘Common gateway command-line options” on page 109

Running gateways on Windows

Gateways on Windows can be run as console applications or as services.

Running a gateway as a console application

You run a gateway as a console application from the command line.
To run a gateway as a console application, enter the following command:
%0MNIHOME%\bin\nco g _gatename

This runs a gateway with the default name GATENAME and the default
configuration file 0MNIHOME%\etc\G_GATENAME .conf.

To run a gateway as a console application with your own configuration, use the
command-line options. For example:

© Copyright IBM Corp. 1994, 2011 105

%OMNIHOME%\bin\nco_g gatename -name GATE2 -config %OMNIHOME%\etc\GATE2.conf

This runs a gateway named GATE2 using a configuration file named GATEZ2.conf.
Related reference

[“Common gateway command-line options” on page 109

Running a gateway as a service

To run a gateway as a service, use the -install command-line option.

You can configure how gateways are started by changing the Windows services
settings as follows:

1. Click Start > Control Panel. The Control Panel opens.

2. Double-click the Admin Tools icon, then double-click the Services icon. The
Services window opens.

The Services window lists all of the Windows services currently installed on
your machine. All Tivoli Netcool/OMNIbus services start with NCO.

3. Use the Services window to start and stop Windows services. Define whether
the service is started automatically when the machine is booted by clicking the
Startup button.

Configuring gateways interactively

You can change the configuration of a gateway while it is running by using the
SQL interactive interface (nco_sql).

Note: To connect to a gateway on UNIX using nco_sql, you must specify the user
name and password of a member of the UNIX user group that is allowed to log
into a gateway. This user group is specified using the -admingroup command-line
option. By default, this is the ncoadmin user group. You might need to ask your
system administrator to create this group. Also, the user running the gateway must
have access to the appropriate file that is used to verify passwords so that the
members of ncoadmin can be authenticated when logging into the gateway using
nco_sql.

Use the SQL interactive interface to connect to a gateway as a specific user, as
shown in the following table.

Table 24. Connecting to the gateway using the SQL interactive interface

On Enter the following command
UNIX $OMNIHOME/bin/nco_sql -server servername -user username
Windows %0MNIHOME%\bin\redist\isql -S servername -U username

In these commands, servername is the name of the gateway and username is a valid
user name. If you do not specify a user name, the default is the user running the
command.

You are prompted to enter a password. On UNIX, the default is to enter your
UNIX password. To authenticate users using other methods, use the -authenticate

command-line option.

After connecting with a user name and password, a numbered prompt is
displayed.

106 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

1>

You can enter commands to configure the gateway dynamically. The following
example shows a session in which new routes are added:

$ nco_sql -server REMEDY

Password:

User 'admin' Togged in.

1> ADD ROUTE FROM DENCO_READ TO ARS_WRITER;

2> ADD ROUTE FROM DENCO_READ TO OS_WRITER;

3> go

1>

If you want to disable interactive configuration, add the following line to the end
of the gateway configuration file:

SET CONNECTIONS FALSE;
Related reference

[‘“Common gateway command-line options” on page 109

Saving configurations interactively
You can save the interactive gateway configuration with the command:
SAVE CONFIG TO 'filename';
In this command, filename is the name of a file on a local file system.

You can then use the saved configuration file for other gateways.

Dumping and loading gateway configurations interactively

You can load gateway configurations interactively.

First stop any running readers and writers manually with the STOP command.
Then use the DUMP CONFIG command to discard the current configuration.

The DUMP CONFIG command will not discard the configuration if any readers
and writers are running or if the configuration has been changed interactively,
unless you use the FORCE option. To determine if the configuration has been
changed interactively, use the SHOW SYSTEM command.

After you have dumped the configuration, you can load a new configuration with
the command:

LOAD CONFIG FROM 'filename';

In this command, filename is the name of a file on a local file system.
Related reference

[“SHOW SYSTEM” on page 119|

[“Configuration commands” on page 118|

Chapter 7. Running gateways 107

Use of OMNIHOME and NCHOME environment variables for gateways

On Netcool/OMNIbus V7.0, or earlier, the UNIX environment variable
$OMNIHOME (%OMNIHOME% on Windows) is used in many configuration files.
Netcool/OMNIbus V7.1, or later, uses the UNIX environment variable $NCHOME
(%NCHOME% on Windows) instead.

Configuration files containing the OMNIHOME environment variable will work on
Netcool/OMNIbus V7.1, or later, as long as you set S§OMNIHOME to
$NCHOME/omnibus on UNIX, or set %OMNIHOME% to $NCHOME%\omnibus on
Windows.

108 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Chapter 8. Gateway commands and command-line options

A number of gateway commands and command-line options are common to all
gateways configured using a single configuration file with the .conf extension.

Resynchronization commands are valid only for the ObjectServer Gateway. These
commands are described in the IBM Tivoli Netcool/OMNIbus ObjectServer Gateway
Reference Guide.

Additional information about specific gateways is available in the publication for
each gateway.

Note: The commands and command-line options described in this chapter do not
apply to the following gateways:

* ObjectServer Gateway
* ODBC Gateway
* Gateway for Oracle

For information about configuring these gateways, see the IBM Tivoli
Netcool/OMNIbus ObjectServer Gateway Reference Guide,, IBM Tivoli Netcool/OMNIbus
ODBC Gateway Guide, and IBM Tivoli Netcool/OMNIbus Gateway for Oracle Guide,
respectively.

Common gateway command-line options

A number of command-line options are common to all gateways.

For the command-line options that are specific to a particular gateway, see the
individual publications for each gateway.

The following table lists the command-line options that are common to all
gateways, and provides the default settings.

Table 25. Common gateway command-line options

Command-line option

Description

-admingroup string

Specifies the name of the UNIX user group that has administrator privileges. Members
of this group can log into the gateway. The default group name is ncoadmin.

| HPTCB

-authenticate UNIX | PAM |Specifies the authentication mode to use to verify user credentials. The options are

UNIX, PAM, and HPTCB.

The default authentication mode is UNIX, which means that the Posix getpwnam or
getspnam function is used to verify user credentials on UNIX operating systems.
Depending on system setup, passwords are verified using the /etc/password file, the
/etc/shadow shadow password file, NIS, or NIS+.

If PAM is specified as the authentication mode, Pluggable Authentication Modules are
used to verify user credentials. The service name used by the gateway when the PAM
interface is initialized is netcool. PAM authentication is available on Linux, Solaris,
and HP-UX 11 operating systems only.

If HPTCB is specified as the authentication mode, this HP-UX password protection
system is used. This option is only available on HP trusted (secure) systems.

© Copyright IBM Corp. 1994, 2011 109

Table 25. Common gateway command-line options (continued)

Command-line option

Description

-config string

Specifies the name of the configuration file to be read when the gateway starts. The
default is $OMNIHOME/etc/gatename . conf.

-connections The number of permitted connections. The default is 30.

-debug When specified, debug mode is enabled.

-help Displays help information about the command-line options and exits.
-ipctimeout IPC Session timeout. The default is 60 seconds.

-logfile string

Specifies the name of the log file. If omitted, the default is §OMNIHOME/10g/
gatename .l0g.

-logsize integer

Specifies the maximum size of the log file in KB. The minimum is 16 KB. The default
is 1 MB.

-messagelevel

The level of messages to be logged. The default is warn:
* debug

* info

* warn

* error

* fatal

-messagelog

The path to the message log file.

The default is: /export/build/nco/Developers/jlawder/OMNIbii/Solaris731/omnibus/
10g/NCO_GATE.Tog

-name string

Specifies the gateway name. Specify this name following the -server command-line
option to connect to the gateway using nco_sql.

If omitted, the default is GATENAME.

-notruncate

Specifies that the log file is not truncated.

-oldtimestamp

-propsfile

-queue integer

Specifies the size of the internal queues. The default is 1024. Do not modify unless
advised by IBM Software Support.

-stacksize integer

Specifies the size of the internal threads. The default is 256 KB. Do not modify unless
advised by IBM Software Support.

-uniquelog If -Togfile is not set, this option forces the log file to be uniquely named by
appending the process ID of the gateway to the end of the default log file name.
If -Togfile is set, this has no effect.

-version Displays version information and exits.

110 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Reader commands

A number of reader commands are available for gateways.
Related concepts

“Gateway configuration file” on page 98|

“Reader configuration” on page 99

START READER

Use the START READER command to start a reader named reader_name that
connects to an ObjectServer named server_name.

Syntax
START READER reader_name CONNECT TO server_name [USING FILTER filter_name]
[ORDER BY 'column, ... [ASC | DESC]'] [AFTER IDUC DO 'update command']

[IDUC = integer] [JOURNAL_FLUSH = integer] [IDUC_ORDER];

The optional USING FILTER clause, followed by the name of a filter that has been
created using the CREATE FILTER command, enables you to restrict the number of
rows affected by gateway updates. The filter replaces an SQL WHERE clause, so
the gateway only updates the rows selected by the filter.

The optional ORDER BY clause instructs the gateway to display the results in
sequential order, depending on the values of one or more column names, in either
descending (DESC) or ascending (ASC) order. If the ORDER BY clause is not
specified, no ordering is used.

The optional AFTER IDUC clause instructs the gateway to perform the update
specified in the update_command in the ObjectServer when it places alerts in the
writer queue. This is used to provide feedback when alerts pass through a
gateway.

Note: The update command that follows an AFTER IDUC DO statement in the
START READER command must be a simple UPDATE statement. It must not use
conditions (for example, WHERE or HAVING); these are not supported in this
context.

The value specified in the optional IDUC clause indicates an IDUC interval for
gateways that is more frequent than the value of the Granularity property set in
the source ObjectServer. This enables gateway updates to be forwarded to the
target more rapidly without causing overall system performance to deteriorate.

The value specified in the optional JOURNAL_FLUSH clause indicates a delay in
seconds between when the IDUC update occurs in the ObjectServer (every
Granularity seconds) and when the journal entries are retrieved by the gateway.
Normally, only journal entries that have been made in the last Granularity seconds
are retrieved. When the system is under heavy load, set this clause so journal
entries are retrieved for the last integer + Granularity seconds. This prevents the loss
of any journal entries that are created after the IDUC update but before the
gateway retrieves the entries. Any duplicate journal entries retrieved are eliminated
by deduplication.

The optional IDUC_ORDER clause specifies the order in which the IDUC data is

processed. The default processing mode for gateways is to process DELETE
statements, followed by UPDATE statements, followed by INSERT statements. Do

Chapter 8. Gateway commands and command-line options 111

not change this clause unless you have been advised to do so by IBM Software
Support.

Example

This example uses the Grade field as a state field. Initially, all probes set Grade to
0. The gateway filters any alerts that have a Grade of 1. After the alerts have
passed through the gateway, the AFTER IDUC update provides alert state feedback
by changing the value of the Grade field to 2.

START READER NCOMS_READER CONNECT TO NCOMS USING FILTER CRIT_ONLY
ORDER BY 'SERIAL ASC' AFTER IDUC DO 'update alerts.status set Grade=2';

Related concepts

[“Filter configuration” on page 101]

STOP READER

Use the STOP READER command to stop the reader named reader_name.

Syntax
STOP READER reader_name;

This command does not stop the reader if the reader is in use with any routes.

Example
STOP READER NCOMS_READ;

SHOW READERS

Use the SHOW READERS command to list all the current readers that have been
started, and which are running on the gateway.

Syntax
SHOW READERS;

This command can only be used interactively.

Example
SHOW READERS;

Writer commands

112

A number of writer commands are available for gateways.
Related concepts

“Gateway configuration file” on page 98|

“Writer configuration” on page 99

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

START WRITER

Use the START WRITER command to start a writer named writer_name.

Syntax

START WRITER writer_name
(TYPE=writer_type , REVISION=number
[, keyword setting [, keyword setting 1 ...1);

The START WRITER command is followed by a list of comma-separated keyword
settings in parentheses. The first setting must be a TYPE setting indicating the
writer_type. The next setting must be a REVISION setting. This is currently set to 1
for all writers. The remaining keywords and their settings depend on the type of
writer.

Example

This example starts the writer for a Socket Writer Gateway.

START WRITER SOCKET_WRITER
(
TYPE = SOCKET,
REVISION = 1,
HOST = 'sfo768',
PORT = 4010,
MAP = SOCKET_MAP,
INSERT _HEADER = 'INSERT: ',

UPDATE_HEADER = 'UPDATE: ',
DELETE_HEADER = 'DELETE: ',
START_STRING = '"',
END_STRING = '"',
INSERT_TRAILER = '\n',
UPDATE_TRAILER = '\n',
DELETE_TRAILER = '\n'

)s

STOP WRITER

Use the STOP WRITER command to stop the writer called writer_name.

Syntax
STOP WRITER writer_name;

If any route is using this writer, the writer does not stop.

Example
STOP WRITER ARS_WRITER;

SHOW WRITERS

Use the SHOW WRITERS command to list all the current writers in the gateway.

Syntax
SHOW WRITERS;

This command can only be used interactively.

Example

1>SHOW WRITERS;
2>G0
Name Type Routes Msgq Id Mutex Id Thread

Chapter 8. Gateway commands and command-line options 113

SNMP_WRITER SNMP 1 15 0 0x001b8cd0

1>

SHOW WRITER TYPES

Use the SHOW WRITER TYPES command to list all the currently known types of
writers that are supported by the gateway.

Syntax
SHOW WRITER TYPES;

This command can only be used interactively.

Example

1> SHOW WRITER TYPES;

2> GO

Type Revision Description

ARS Action Request System V3.0

1
OBJECT_SERVER 1 Netcool/OMNIbus ObjectServer V7
SYBASE 1 Sybase SQL Server 10.0 RDBMS

SNMP 1 SNMP Trap forwarder
SERVICE_VIEW 1 Service View

SHOW WRITER ATTRIBUTES

Use the SHOW WRITER ATTRIBUTES command to show all the settings (or
attributes) of the writer named writer_name.

Syntax
SHOW WRITER { ATTRIBUTES | ATTR } FOR writer_name;

The ATTRIBUTES keyword is interchangeable with the abbreviated ATTR
keyword.

This command can only be used interactively.

Example

1> SHOW WRITER ATTR FOR SNMP_WRITER;
2> GO

Attribute Value

MAP SNMP_MAP

TYPE SNMP

REVISION 1

GATEWAY penelope

1>

114 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Mapping commands

A number of mapping commands are available for gateways.
Related concepts

[“Gateway configuration file” on page 98|

CREATE MAPPING

DROP

Use the CREATE MAPPING command to create a mapping file named
mapping_name, for use by a writer.

Syntax
CREATE MAPPING mapping name (mapping [, mapping]);

Mapping lines have the following syntax:

{ string | integer } = { string | integer | name | real | boolean }
[ON INSERT ONLY] [CONVERT TO { INT | STRING | DATE }]

The first argument is an identifier for the destination field and the second
argument is an identifier for the source field (or a preset value).

The right side of the mapping is dependent on the writer with which the mapping
is to be used. (For gateway-specific details, see the writer section of the individual
gateway publications.)

The optional ON INSERT ONLY clause determines the update behavior of the
mapping. Without the ON INSERT ONLY clause, the field is updated every time a
change is made to an alert. With the ON INSERT ONLY clause, the field is inserted
at creation time (that is, when the alert appears for the first time) but is not
updated on subsequent updates of the alert even if the field value is changed.

The optional CONVERT TO type clause allows the mapping to define a forced
conversion for situations where a source field may not match the type of the
destination field. The type can be INT, STRING, or DATE. This forces the source
field to be converted to the specified data type.

Example

CREATE MAPPING SYBASE_MAP

(

'Node'="'@Node' ON INSERT ONLY,

'Summary'="@Summary' ON INSERT ONLY,
'Severity'="'@Severity');

MAPPING

Use the DROP MAPPING command to remove the mapping named mapping_name
from the gateway.

Syntax
DROP MAPPING mapping _name;

This command does not drop the map if it is being used by a writer.

Chapter 8. Gateway commands and command-line options 115

Example
DROP MAPPING SYBASE_MAP;

SHOW MAPPINGS

Use the SHOW MAPPINGS command to list all the mappings that are currently
created in the gateway.

Syntax
SHOW MAPPINGS;

This command can only be used interactively.

Example

1> SHOW MAPPINGS;

2> GO

Name Writers
SNMP_MAP 1
1>

SHOW MAPPING ATTRIBUTES

Use the SHOW MAPPING ATTRIBUTES command to show the mappings (or
attributes) of the mapping named mapping_name.

Syntax
SHOW MAPPING { ATTRIBUTES | ATTR } FOR mapping name;

The ATTRIBUTES keyword is interchangeable with the abbreviated ATTR
keyword. This command can only be used interactively.

Example
SHOW MAPPING ATTR FOR SYBASE_MAP;

Filter commands

116

A number of filter commands are available for gateways.
Related concepts

[‘Gateway configuration file” on page 98|

[‘Filter configuration” on page 101

CREATE FILTER

Use the CREATE FILTER command to create a filter named filter_name for use by a
reader.

Syntax
CREATE FILTER filter_name AS filter_condition;

The filter specification filter_condition is an SQL condition.
Example

CREATE FILTER HIGH_TALLY_LOG AS 'Tally > 100';
CREATE FILTER NCOMS_FILTER AS 'Agent = \'NNM\'';

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

LOAD FILTER
Use the LOAD FILTER command to load a filter from a file.

Syntax
LOAD FILTER FROM 'filename's

Include the path to the file. Filter files have a .elf file extension.

Example
LOAD FILTER FROM '/disk/filters/newfilter.elf';

DROP FILTER

Use the DROP FILTER command to remove the filter named filter_name from the
gateway.

Syntax
DROP FILTER filter _name;

The filter is not dropped if it is being used by a reader.

Example
DROP FILTER HIGH TALLY_LOG;

Route commands

A number of route commands are available for gateways.
Related concepts

[“Gateway configuration file” on page 98|

[‘Route configuration” on page 100|

ADD ROUTE

Use the ADD ROUTE command to add a route between a reader named
reader_name and a writer named writer_name, to allow alerts to pass through the
gateway.

Syntax
ADD ROUTE FROM reader _name TO writer_name;

Example
ADD ROUTE FROM NCOMS_READER TO ARS_WRITER;

REMOVE ROUTE

Use the REMOVE ROUTE command to remove an existing route between a reader
named reader_name and a writer named writer_name.

Syntax
REMOVE ROUTE FROM reader_name TO writer_name;

Example
REMOVE ROUTE FROM NCOMS_READER TO ARS_WRITER;

Chapter 8. Gateway commands and command-line options 117

SHOW ROUTES

Use the SHOW ROUTES command to show all currently-configured routes in the
gateway.

Syntax
SHOW ROUTES;

This command can only be used interactively.

Example

1> SHOW ROUTES;

2> G0

Reader Writer

NCOMS_READER SNMP_WRITER

1>

Configuration commands

118

A number of configuration commands are available for gateways.

LOAD CONFIG

Use the LOAD CONFIG command to load a gateway configuration file from a file
named filename.

Syntax
LOAD CONFIG FROM 'filename';

Example
LOAD CONFIG FROM '/disk/config/gateconf.conf';

SAVE CONFIG

Use the SAVE CONFIG command to save the current configuration of the gateway
into a file named in filename.

Syntax
SAVE CONFIG TO 'filename';

Example
SAVE CONFIG TO '/disk/config/newgate.conf';

DUMP CONFIG

Use the DUMP CONFIG command to clear the current configuration.

Syntax
DUMP CONFIG [FORCE];

If the gateway is active and forwarding alerts, this command does not clear the
configuration unless the optional keyword FORCE is used.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Example
DUMP CONFIG;

General commands

A number of general commands are available for gateways.

SHUTDOWN

Use the SHUTDOWN command to instruct the gateway to shut down; all readers
and writers are stopped.

Syntax
SHUTDOWN [FORCE];

By default, the gateway is not shut down if interactive changes to the
configuration have not been saved.

If the optional FORCE keyword is used, the gateway is shut down, even if the
configuration has been changed interactively.

Example
SHUTDOWN ;

SET CONNECTIONS

Use the SET CONNECTIONS command to enable or disable connections to the
gateway using the SQL interactive interface.

Syntax
SET CONNECTIONS { TRUE | FALSE | YES | NO };

When set to FALSE or NO, it is not possible to connect to the gateway with nco_sql.
When set to TRUE or YES, it is possible to connect to the gateway with nco_sql. This
command determines whether interactive reconfiguration is allowed.

Example
SET CONNECTIONS TRUE;

SHOW SYSTEM

Use the SHOW SYSTEM command to display information about the current
gateway settings.

Syntax
SHOW SYSTEM;

The parameters returned are shown in the following table.

Table 26. Show system parameters

System Parameter |Description

Version Version number of the gateway.
Server Type Type of server. Set to Gateway.
Connections Status of the SET CONNECTIONS flag.
Debug Mode Status of the SET DEBUG MODE flag.

Chapter 8. Gateway commands and command-line options 119

120

Table 26. Show system parameters (continued)

System Parameter |Description

Multi User Gateway multi-user mode. Set to YES.

Configuration If the configuration has been changed interactively, this is set to YES.
Changed

More parameters can be returned when in debug mode. This command can only
be used interactively.

Example

1> SHOW SYSTEM;

2> GO

System Parameter Value
Version 7.0
Server Type Gateway
Connections ENABLED
Debug Mode NO
Multi User YES

Related reference
[‘'SET CONNECTIONS” on page 119|
[‘'SET DEBUG MODE"|

SET DEBUG MODE

Use the SET DEBUG MODE command to set the debugging mode of the gateway:.

Syntax
SET DEBUG MODE { TRUE | FALSE | YES | NO };

When set to TRUE or YES, debugging messages are sent to the log file. The default
setting is NO or FALSE. Use this command only under the advice of IBM Software
Support.

Example
SET DEBUG MODE NO;

TRANSFER

Use the TRANSFER command to transfer the contents of one database table to
another database table.

Syntax

TRANSFER 'tablename' FROM readername TO writername [AS 'tableformat']
{ DELETE | DELETE condition | DO NOT DELETE }
[USE TRANSFER MAP] [USING FILTER filter clause 1;

You can use this command to transfer tables between Sybase, Oracle, Informix,
ODBC, CORBA, and Socket Writer gateways.

The AS tableformat clause specifies the format of the destination table if it is
different from the source table format.

The DELETE and DO NOT DELETE clauses define how the destination table is
processed. By default, the contents of the destination table are deleted before the

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

contents of the source table are transferred. You can optionally specify a condition
that determines whether the deletion occurs. If you specify the DO NOT DELETE
clause, the contents of the destination table are not deleted before the contents of

the source table are transferred.

Note: The DELETE clause does not function with the Socket Writer Gateway and
the CORBA gateways.

The USE TRANSFER_MAP clause instructs the gateway to use the mapping
definition that is assigned as the map to the writer used in the TRANSFER
command. The USE TRANSFER_MAP clause is only available for use with the
Oracle Gateway.

An optional filter clause can be applied by specifying USING FILTER followed by
the filter. Enter a valid filter.

Example

TRANSFER 'alerts.conversions' FROM NCO_READER TO SYBASE_WRITER AS
'alerts.conversions' DELETE;

TRANSFER 'alerts.status' FROM NCOMS_READ TO DENCO_WRITE AS 'ncoms.status'
USING FILTER 'ServerName = \'NCOMS\'' DELETE USE TRANSFER_MAP;

Related reference
[“CREATE FILTER” on page 116

Chapter 8. Gateway commands and command-line options 121

122 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Appendix A. Probe error messages and troubleshooting

techniques

A number of error messages are common to all probes. This includes ProbeWatch
and TSMWatch messages. Troubleshooting information is also available for probes.

See the individual probe publications for information about probe-specific

messages.

Generic error messages

Probes can generate the following types of messages: fatal, error, warning,
information, and debug.

Fatal-level messages

The probe automatically terminates when a fatal message is issued.

Table 27. Fatal level probe messages

Message

Description

Action

Connection to ObjectServer marked
DEAD - aborting...

The connection to the ObjectServer
ceased (and store and forward is not
enabled in the probe).

Check that the ObjectServer is
available.

Session create failed - aborting

Failed to access OMNIHOME The probe was unable to locate the | Check that the OMNIHOME

directory: "directory name" interfaces file. environment variable is set to the
correct destination.

Failed to set interfaces file

Tocation

Failed to connect - aborting The ObjectServer is not available. Check that the ObjectServer is
running, that the interfaces file on the
system where the probe is installed
has an entry for the ObjectServer, and
that there is no networking problem
between the two systems.

Failed to create property Internal errors. See your support contract for
information about contacting IBM

Failed to define argument Software Support.

Failed to initialise

Failed to set property

Failed to process arguments

Failed to read rules - aborting

A property or command-line option

is pointing to a non-existent rules file.

Check that the command-line option
or properties file refers to the correct
rules file.

Field "field name" not found in
status table

No matching field found for "field
name"

The rules file being used refers to a
field of the format @fieldname which
does not exist in the status table.

Check the rules file and correct the
problem.

© Copyright IBM Corp. 1994, 2011

123

Table 27. Fatal level probe messages

(continued)

Message

Description

Action

Unknown data type returned from
ObjectServer

The ObjectServer has returned
unknown data.

See your support contract for
information about contacting IBM
Software Support.

Error-level messages

The probe is likely to terminate when an error message is issued.

Table 28. Error level probe messages

Message

Description

Action

Can't set generic property
"property name" via command line

Property "property name" for
option "option name" does not
exist

An option in the probe is not
mapped correctly to a property.

Check the properties file for the
named property and see the probe
publication for supported properties.

Could not send alert

The probe was unable to send an
alert (usually an internal alert) to the
ObjectServer.

Check that the ObjectServer is
available.

Could not set "fieldname" field

The probe was unable to set a field
value. This may be because the
ObjectServer tables have been
modified so that default fields are no
longer present.

Check if the ObjectServer tables have
been modified.

CreateAndSet failed

CreateAndSet failed for attr:
"element name"

The probe is unable to create an
element.

See your support contract for
information about contacting IBM
Software Support.

Error Setting SIGINT Handler
Error Setting SIGQUIT Handler

Error Setting SIGTERM Handler

The probe was unable to set up a
signal handler for either an INT,
QUIT, or TERM.

See your support contract for
information about contacting the IBM
Software Support.

Failed to open file: "file name"

A file referred to in the rules file (for
example, with the table function)
does not exist.

Check the rules file and ensure the
file is available.

Failed to open message Tog: "file
name"

The probe is unable to open the
specified log file.

Check the command line or
properties file and correct the
problem.

Failed to open Properties file:
"properties file name"

The probe is unable to open the
properties file.

Check the properties file or command
line to ensure the properties file is in
the specified location.

Failed to open Rules file: "rules
file name"

The rules file for the probe is
not available or incorrectly
specified.

The probe is unable to open the rules
file.

Check the properties file or command
line to ensure the rules file is in the
specified location.

124

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 28. Error level probe messages (continued)

Message

Description

Action

No extraction data for "regexp" -
missing ()'s?

Regexp doesn't match for "string"

A regular expression being used in
the extract function may be missing
parentheses.

The string data that is being used to
extract may not match the regular
expression.

The extract function is unable to
extract data.

Check the rules file and correct the
problem.

Option "option name" used without
argument

The option used expects a value
which has not been supplied.

Check the probe publication and the
contents of the command line.

0S Error: "error message"

Procedure "procedure name": "error
message"

Server "server name": "error

message"

There is an error in the Sybase
connection. There should be a
subsequent message from the probe
which details the effect of this error.

See your support contract for
information about contacting IBM
Software Support.

Properties file: "error
description" at line "line no"

There is an error in the format of the
properties file.

Check the properties file at the
specified line number and correct the
problem.

PropGetValue failed

A required property has not been set.

Check the properties file.

Regular Expression Error: "regexp"

A regular expression is incorrectly
formed in the rules file.

Check the rules file for the regular
expression and correct the problem.

Results processing failed

Unexpected return from results
processing
Unexpected value during results

processing

There is a problem with the
ObjectServer.

See your support contract for
information about contacting IBM
Software Support.

Rules file:
line "line

"error description" at
noll

There is an error in the rules file
format or syntax.

Check the rules file at the specified
line number and correct the problem.

SendAlert failed

The probe was unable to send an
alert to the ObjectServer.

Check that the ObjectServer is
available.

SessionProcess failed

The probe was unable to process the
alert against the rules file.

See your support contract for
information about contacting IBM
Software Support.

Unknown message level "message
level string" - using WARNING
level

The properties file or command line
specified a message level which is
not supported.

Check the properties file or command
line and use a supported message
level (debug, info, warning, error,
fatal).

Unknown option: "option name"

An option has been used on the
command line to start the probe
which is not supported by the probe.

Check the probe documentation and
the contents of the command line.

Unknown property "property name" -
ignored

A property specified in the properties
file does not exist in the probe.

Check the properties file for the
named property and see the probe
publication for supported properties.

Appendix A. Probe error messages and troubleshooting techniques

125

Warning-level messages

These messages are issued as warnings but should not cause the probe to

terminate.

Table 29. Warning level probe messages

Message

Description

Action

Failed to install Client Message
Callback

Failed to install Server Message
Callback

Failed to retrieve connection
status - attempting to continue

Results processing failed

There is a problem with the
ObjectServer.

The probe will try to continue.

Failed to set SYBASE in
environment

The probe was unable to override the
SYBASE environment variable.

Check that the SYBASE environment
variable is correctly set.

New value for field "field name"
truncated to "number" characters

A string being copied into an alert
field has had to be truncated to fit
the field.

Check the rules file.

Type mismatch for property
"property name" - new value
ignored

A property has been set with the
wrong data type.

Check the properties file or command
line to ensure that the property is
correctly set.

Information-level messages

This message

is for information purposes.

Table 30. Information level probe messages

Message

Description

Action

Using stderr for logging

The probe was unable to open a log
file.

No action required. The probe is
writing messages to stderr.

Debug-level me

ssages

Debug level messages provide information about the internal functions of the
probe. These messages are aimed at probe developers but are listed here for
completeness.

Table 31. Debug level probe messages

Message

Description

Action

A value for "string" doesn't exist
in Tookup table "table name"

A value requested from a lookup
table is not available.

No action required. The function in
the rules file returns an empty string.

126 IBM Tivoli Netcool/OMNIbus: Prob

e and Gateway Guide

Table 31. Debug level probe messages (continued)

Message

Description

Action

Attempted to duplicate NULL string
Attempted to free NULL pointer
Attempted to realloc NULL pointer

Failed to allocate memory
(Requested size was "number"
bytes)

Failed to duplicate string

Failed to reallocate memory block
at address "hex address"
(Requested size was "number"
bytes)

An error or problem has occurred in
the memory allocation or string
handling components of the probe
library.

No action required. The library
handles the problem.

Failed to allocate command

structure

Failed to
structure

allocate context

Failed to bind column

Failed to connect
Failed to describe column
Failed to fetch number of columns

Failed to
internals:

initialise Sybase
"number"
Failed to send command
Failed to set appname
Failed to set command query
Failed to set hostname
Failed to set password
Failed to set username
Got a row fail - continuing

No columns in result set

A problem or error has occurred at
the Sybase or ObjectServer
connection level.

N/A

Failed to flush alerts before EXIT

Problem during disconnect before
EXIT

Problem during session destruction
before EXIT

Problem during shutdown before
EXIT

A problem has occurred during probe
shutdown.

N/A

New value for field "field name"
is "value"

A field value has been set.

N/A

Appendix A. Probe error messages and troubleshooting techniques

127

Table 31. Debug level probe messages (continued)

Message

Description

Action

OplInitialise() called more than
once

Multiple calls have been made to the
OplInitialise C probe API function,
which can only be called once.

N/A

ProbeWatch and TSMWatch messages

In some situations, a probe or TSM generates events of its own. These events can
provide information (such as startup or shutdown messages) or identify problems.

A number of elements are common to all ProbeWatch and TSMWatch messages.

ProbeWatch and TSMWatch messages are processed in the rules file and converted
into alerts like other events. The following table shows the elements that are

common to ProbeWatch and TSMWatch events.

Table 32. Common ProbeWatch and TSMWatch elements

Element name

Description

Summary Summary string, described in the following tables.

Node Name of the node on which the probe or TSM is running.
Agent Name of the probe or TSM.

Manager ProbeWatch or TSMWatch.

The following table describes summary strings that are common to all probes and

TSMs.

Table 33. Common ProbeWatch and TSMWatch summary strings

ProbeWatch/TSMWatch message

Description

Cause

running.

Going down ... The probe or TSM is shutting down. | The probe or TSM is running a
shutdown routine.
Running ... The probe or TSM has started The probe or TSM has just been

started.

Unable to get events ...

The probe or TSM encountered a
problem while listening for events.

There was a problem initializing the
connection or there was a license or
connection failure after some events
were received. See your support
contract for information about
contacting IBM Software Support.

Rules file reread upon SIGHUP
successful ...

The probe successfully re-read its
rules file on receipt of a SIGHUP
signal.

The probe received a SIGHUP signal.

Rules file reread upon SIGHUP
failed ...

The probe could not re-read its rules
file on receipt of a SIGHUP signal.

The probe received a SIGHUP signal.

Heartbeat ... Heartbeat event Not applicable
See the individual probe publications for additional summary strings for each
probe.

128 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

TSMWatch messages are in the same format as ProbeWatch messages. The
following table describes summary strings that are common to all TSMs.

Table 34. Common TSMWatch summary strings

TSMWatch message

Description

Action

Connection Attempted ...
Connection Succeeded ...
Connection Failed ...

Connection Timed out ...

Connection Lost ...

Messages relating to the establishment of a TCP/IP
connection.

N/A

Disconnection Attempted ...
Disconnection Succeeded ...

Disconnection Failed ...

Messages relating to relinquishing a TCP/IP connection.

N/A

Wakeup Attempted ...
Wakeup Succeeded ...

Wakeup Failed ...

Messages relating to wake up functionality.

N/A

Login Attempted ...
Login Succeeded ...
Login Timed out ...

Login Failed ...

Messages relating to host login.

N/A

Logout Attempted ...
Logout Succeeded ...
Logout Timed out ...

Logout Failed ...

Messages relating to host logout.

N/A

Heartbeat Sent ...

Heartbeat Received ...

Heartbeat Timed out ...

Messages relating to sending and receiving heartbeat
messages to and from the host.

N/A

Resynchronisation Attempted ...
Resynchronisation Succeeded ...

Resynchronisation Failed ...

Messages relating to synchronizing current alerts between
the switch and Tivoli Netcool/OMNIbus.

N/A

Appendix A. Probe error messages and troubleshooting techniques 129

Troubleshooting probes

This topic describes some of the common problems experienced by Tivoli
Netcool/OMNIbus users and explains possible causes and solutions.

This troubleshooting information is divided into two areas:
e Common problem causes
* What to do if

Table 35. Troubleshooting probes

Area

Description

Common problem causes This information contains a list of common problem causes. If you are

unsure what your problem is, you should start by reading this part and
following the instructions. If you cannot solve your problem by
following the instructions in this part, move on to the "What to do if"
information.

What to do if

This information describes common symptoms caused by probe
problems and step-by-step instructions to help you locate and solve the
problem. If none of the headings match the symptoms of your problem,
read through the lists of instructions and make sure that you have tried
all of the most likely solutions listed there.

130

Common problem causes

The most common causes of probe problems are:
* Incorrectly set OMNIHOME environment variable
* Errors in the rules file, particularly in extract statements

* Configuration errors in the properties file

For information about setting the OMNIHOME environment variable, see the IBM
Tivoli Netcool/OMNIbus Installation and Deployment Guide.

Check that all of the properties are set correctly in the probe properties file. For
example, check that the Server property contains the correct ObjectServer or proxy
server name and that the RulesFile property contains the correct rules file name.

If you cannot solve the problem, read through the next section and make sure that
you have tried all of the most likely solutions listed there.

What to do if

The headings in this topic describe the most common symptoms of probe
problems. Find the heading that most closely describes your problem and follow
the instructions until you have located the cause and solved the problem.

If none of the headings match the symptoms of your problem, read through the
lists of instructions and make sure that you have tried all of the most likely
solutions listed there. If you have tried all of the suggested problem solutions and
your probe still does not work, See your support contract and contact IBM
Software Support.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

The probe does not start

If the probe does not start:

1.
2.

10.

11.

12.

Run the probe in debug mode.

Check that the ObjectServer is running by trying to connect using nco_ping or
nco_sql.

If you can connect successfully, the ObjectServer is running. If the
ObjectServer is not running, this is likely to be the cause of the problem.

Check that there are no other probes running with the same configuration
using the commands:

ps -ef | grep nco p
A list of probe processes is displayed. Check that none of the processes
correspond to the same type of probe. You cannot run two identical probe

configurations because this duplicates all of the events forwarded to the
ObjectServer.

Check that you are using the correct probe for the current version of the target
software.

Check that there are no syntax errors in the rules file.

Check that your system has not run out of system resources and can launch
more processes. You can do this using df -k or top. See the df and top man
pages for more information about using these commands.

Check to see if the $OMNIHOME/var/probename.saf store-and-forward file exists.
If it exists, check that it has not become too large. If your disk is full, the
probes and ObjectServers are not able to work properly.

Attention: Store and forward is not designed to handle very large numbers
of events. Left unattended, a store-and-forward file will continue to grow until
it runs out of disk space.

Check that the store-and-forward file has not been corrupted. If the
store-and-forward file has been corrupted there should be an error message in
the log file (SOMNIHOME/1og/probename .10g). If the file is corrupted, delete it
and restart the probe.

Check that the probe binary you are trying to run is the correct one for the
current architecture by entering:

$OMNIHOME/bin/arch/probename -version
Check that the probe version matches your system architecture.
If you are running the probe on a remote host:

Check that the probe host can connect to the ObjectServer host using the ping
command. Try to ping the ObjectServer host machine using the hostname and
the IP address. See the ping man page for more information about how to do
this.

If you cannot connect to the ObjectServer host using the ping command, there
is a problem with the connection between your probe host and your
ObjectServer host.

Check that the ObjectServer has been configured correctly in the Server Editor
(nco_xigen) and that the interfaces information has been distributed to the
ObjectServer and probe hosts.

Check to see if there is a firewall between the probe host and the ObjectServer
host. If there is, make sure that the firewall allows traffic between the probe
and the ObjectServer.

Appendix A. Probe error messages and troubleshooting techniques 131

132

Related tasks

[‘Testing rules files” on page 53

[‘Debugging rules files” on page 53|

Related reference

(Chapter 5, “Common probe properties and command-line options,” on page 77

The probe is not sending alerts to the ObjectServer
If the probe is not sending alerts to the ObjectServer:

1.

10.

1.

12.

Check that the probe is running by entering:
ps -ef | grep nco p

A list of probe processes is displayed. If the probe is not running, start the
probe from the command line.

Check that there are no other probes running with the same configuration by
entering:

ps -ef | grep nco p

A list of probe processes is displayed. Check that none of the processes
correspond to the same type of probe. You cannot run two identical probe

configurations because this duplicates all of the events forwarded to the
ObjectServer.

Read the probe properties file and check that all of the properties are set
correctly. For example, check that the Server property contains the correct
ObjectServer name and that the RulesFile property contains the correct rules
file name.

Check that the probe event source has events to send to the ObjectServer.

Check that the ObjectServer you are logged in to is the same ObjectServer that
the probe is forwarding events to.

Check that the event source you are trying to probe is working correctly. See
the documentation supplied with your element manager for more information
about how to do this.

Check that you are using the correct probe.

Check that the probe is not running in store-and-forward mode. To do this,
check the $OMNIHOME/var/probename.saf and $OMNIHOME/var/probename .reco
files to see if they are growing. If they are, disable store-and-forward mode.

Check that your system has not run out of system resources and can launch
more processes. You can do this using df -k or top. See the df and top man
pages for more information about using this command.

Check for any discard functions in the probe rules file. The discard function
must be in a conditional statement; otherwise, all events are discarded.

If you are running the probe on a remote host:

Check that the probe host can connect to the ObjectServer host using the ping
command. Try to ping the ObjectServer host machine using the hostname and
the IP address. See the ping man page for more information about how to do
this.

If you cannot connect to the ObjectServer host using the ping command, there
is a problem with the connection between your probe host and your
ObjectServer host.

Check that the ObjectServer has been configured correctly through the Server
Editor (nco_xigen) and that the interfaces information has been distributed to
the ObjectServer and probe hosts.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

13. Check to see if there is a firewall between the probe host and the ObjectServer
host. If there is, make sure that the firewall allows traffic between the probe
and the ObjectServer.

Related concepts

[“Store-and-forward mode for probes” on page 10|

The probe is losing events
If not all of the events are being forwarded to the ObjectServer:

1. Run the probe in debug mode.

2. Check that the event source you are trying to probe is working correctly. See
the documentation supplied with your element manager for more information
about how to do this.

3. Check that the probe event source has events to send to the ObjectServer.

4. Check that all of the properties in the properties file are set correctly. For
example, check that the Server property contains the correct ObjectServer name
and that the RulesFile property contains the correct rules file name.

5. Check for any discard functions in the probe rules file. The discard function
discards events based on specified conditions.

Related tasks
[“Debugging rules files” on page 53|

The probe is consuming too much CPU time

If the probe is consuming too much CPU time:

1. Run the probe in debug mode.

2. Check that the probe can connect to the event source.

3. Check to see if the $OMNIHOME/var/probename.saf store-and-forward file exists.

If it exists, check that it has not become too large. If your disk is full, the
probes and ObjectServer will not be able to work properly.

Attention: Store and forward is not designed to handle very large numbers of
alerts. Left unattended, a store-and-forward file will continue to grow until it
runs out of disk space.

4. Check that the store-and-forward file has not been corrupted. If the
store-and-forward file has been corrupted there should be an error message in
the probe log file (SOMNIHOME/10g/probename.10g). If the store-and-forward file
is corrupted, delete it and restart the probe.

The event list is not being populated properly
If the probe is detecting events and forwarding them to the ObjectServer but the
event list fields are not being populated correctly:

1. Run the probe in debug mode.

2. Check that fields which are not being populated properly are being correctly
mapped to elements in the rules file.

3. Check that it is not a GUI problem by querying the alerts.status table using
ObjectServer SQL.

Appendix A. Probe error messages and troubleshooting techniques 133

134 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Appendix B. Common gateway error messages

A number of error messages are common to all gateways. The gateway_name in
each error message refers to the individual gateway name and indicates which
gateway generated the error.

Table 36. Common gateway error messages

Error

Description

Action

Gateway_name Writer: HashAlloc
failure in _gateway_name
CacheAdd ().

Gateway name Writer: MemStrDup()
failure in _gateway name
CacheAdd ().

The gateway failed to allocate
memory.

Tl'y to free more memory.

Gateway_name Writer: Failed to
allocate memory.

Gateway_name Writer writer_name:
Memory allocation failed.

Gateway _name Writer: Memory
allocation failure.

Gateway_name Writer: Memory
allocation error.

Gateway_name Writer: Memory
reallocation error.

Failed to allocate memory in writer
writer_name.

The gateway failed to allocate
memory.

Try to free more memory.

Gateway_name Writer writer_name:
Could not create serial cache -
memory problems.

Gateway_name Writer writer_name:
Failed to allocate memory for a
GPCModule handle.

The gateway failed to allocate
memory.

Try to free more memory.

Gateway_name Writer: Failed to Tock
connection mutex.

The writer failed to lock the
ObjectServer feedback connection in
order to access the connection and
feed back problem ticket data for the
associated alert. This lock failure
may be due to insufficient resources
or as a result of the underlying
threading system preventing a
deadlock between multiple threads
that are contending for the resource.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Failed to
re-acquire alert details from 0S.

This error message comes from the
gateway cache reclamation
subsystem. This message indicates
that the gateway failed to re-acquire
the trouble ticket number and
reclaim its internal cache entry from
the ObjectServer.

Refer to your support contract for
information about contacting the
helpdesk.

© Copyright IBM Corp. 1994, 2011

135

Table 36. Common gateway error messages (continued)

Error

Description

Action

Gateway name Writer: Invalid
datatype for problem number
feedback field.

The data type is invalid.

Refer to the IBM Tivoli
Netcool/OMNIbus Administration
Guide for information about data

types.

Gateway _name Writer: Serial x
already in serial Cache. Cannot
add.

The gateway tried to add a serial
number that already exists.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Serial x not
found in serial cache. Cannot
Delete.

The gateway could not delete this
alert because it has already been
deleted in Tivoli Netcool/OMNIbus.

You do not need to do anything.

Gateway_name Writer writer_name:
Failed to construct path to
gateway name Read/Write Module.

The gateway could not locate the
reader or writer module application.

Check that the module is installed in
the correct location.

Gateway_name Writer writer_name:
Failed to construct the argument
list for gateway name Module.

Failed to construct the argument list
for gateway module.

Check that the arguments in the
configuration file are set correctly.

Gateway_name Writer writer_name:
GPCModule creation failed.

Failed to create the GPCModule due
to insufficient memory.

Tl‘y to free more memory.

Gateway_name Writer writer_name:

Writer.

Gateway_name Writer writer_name:

Reader.

Failed to start the 0S-gateway_name

Failed to start the gateway_name-0S

Failed to start the ObjectServer
gateway reader or writer module.

Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_name:
Failed to shutdown gateway name
Writer.

Failed to stop gateway writer
module.

Check the writer log file for more
information.

Gateway_name Writer writer_name:
Failed to construct path to
gateway name Read/Write Module.

Failed to construct the path to the
gateway reader or writer module
application.

Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_name:
Failed to find the gateway name
Read/Write Module [x].

Cannot find the module binary.

Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_name:
Incorrect permissions on the
gateway_name module binary [x].

The module's file permissions are set
incorrectly.

Check that the module is installed in
the correct location and that the file
permissions are set correctly.

Gateway_name Writer writer_name:
Failed to create the Serial Cache
Mutex.

The gateway writer failed to create
the necessary data protection
structure for the internal serial
number cache due to insufficient
resources. This is generally due to
insufficient memory.

Try to free more memory.

Gateway_name Writer writer_name:
Failed to create the Conn Mutex.

The gateway writer failed to create
the necessary data protection
structure for the ObjectServer
connection due to insufficient
resources.

Try to free more memory.

Gateway_name Writer writer_name:
Failed to start the
gateway _name-to-0S service thread.

The gateway failed to spawn the
service thread.

Check that the gateway can access
the ObjectServer.

136

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 36. Common gateway error messages (continued)

Error

Description

Action

Gateway _name Writer writer_name:
Failed to send a shutdown request
to the gateway_name Writer.

The gateway did not shut down
cleanly.

Check the writer log file for more
information.

Failed to install SIGCHLD handler.

Failed to install SIGPIPE handler.

The gateway failed during handler

installation.

Refer to your support contract for
information about contacting the
helpdesk.

No <mapname> attribute for
gateway _name writer writer_name.

The gateway could not find the map
name.

Check the configuration file.

<mapname> attribute is not a name
for gateway _name writer
writer_name.

Incorrect writer name given.

Check the configuration file.

A MAP called <map> does not exist
for gateway _name writer
writer_name.

The gateway could not find the
specified map.

Check the configuration file.

MAP <map> is invalid for
gateway _name writer writer_name.

The given map is not valid.

Check the configuration file.

Map <map> is not the journal map
and cannot contain the <journal map
name> map item in gateway_name
Writer writer_name.

If this map is not the journal map,
then the JOURNAL_MAP_NAME attribute
is set incorrectly.

Check the JOURNAL_MAP_NAME
attribute in the gateway
configuration file.

Gateway name Writer: Failed to send
gateway _name Event to the
gateway_name Writer module.

The gateway failed to send a given
event.

Check the log files for more
information.

Gateway name Writer: Failed to wait
for return from the gateway_name
Writer module.

There was an error in retrieving the
success statement.

Check the log files for more
information.

Gateway name Writer: Failed to read
the status return message from the
gateway _name Writer module.

The gateway failed to retrieve the
status of a module.

Check the log files for more
information.

Gateway name Writer: Failed to send
event to gateway_name.

The module failed to send the event
to gateway.

Check the log files for more
information.

Gateway_name Writer: gateway_name
Writer Module experienced Fatal
Error.

There was a fatal error.

Check the log files for more
information.

Gateway _name Writer: Failed to send
event to gateway name. Unknown

type.

The gateway received unexpected
type.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway name Writer: Failed to
build serial index.

The gateway failed to build indexes.

Check that the Serial column exists
in the ObjectServer alerts.status
table.

Incorrect data type for the Serial
column.

The gateway did not receive the
correct data type.

Check that the data type for the
Serial column in the ObjectServer
alerts.status table is an integer.

Gateway name Writer: Failed to
build server serial index.

The gateway failed to get the server
serial index.

Check that the ServerSerial column
exists in the ObjectServer
alerts.status table.

Incorrect data type for the Server
Serial column.

The gateway did not receive the
correct data type.

Check that the data type for the
ServerSerial column in the
ObjectServer alerts.status table is an
integer.

Appendix B. Gateway error messages

137

Table 36. Common gateway error messages (continued)

Error

Description

Action

Gateway name Writer: Failed to
build server name index.

The gateway failed to get the server
name index.

Check that the ServerName column
exists in the ObjectServer
alerts.status table.

Incorrect data type for the Server
Name column.

The gateway did not receive the
correct data type.

Check that the data type for the
ServerName column in the
ObjectServer alerts.status table is a
string.

Gateway _name Writer: Failed to find
field <fieldnumber> in gateway_name
Event.

The gateway could not find the field
number it was looking for.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway _name Writer: Invalid field
name for expansion on action SQL
[<field>].

The gateway received an invalid
field name.

Refer to the IBM Tivoli
Netcool/OMNIbus Administration
Guide for information about
ObjectServer SQL.

Gateway_name Writer: Unenclosed
field expansion request in action
SQL [<sql action>].

The gateway did not find an
enclosing bracket.

Check the action.sql file.

Gateway_name Writer: Failed to turn
counter-part notification back-on.
Fatal error in gateway_name-to-0S
Feedback.

Gateway _name Writer: Failed to turn
counter-part notification off.

Gateway_name-to-0S Feedback failed.

The gateway failed to send a notify
command.

This is an internal error. Refer to
your support contract for
information about contacting the
helpdesk.

Gateway name Writer: Failed to send
SQL command to ObjectServer.

Gateway _name-to-0S Feedback failed.

The gateway failed to send the SQL
command to the ObjectServer.

Check the ObjectServer log file.

Failed to find the column
<column_name> in map <map_name>.

The gateway failed to find the given
column.

Check that the given column name
is entered correctly in the
configuration file and that it is
shown in the ObjectServer
alerts.status table.

Gateway _name Writer: Failed to Tock
the cache mutex.

The writer failed to lock the
ObjectServer feedback connection in
order to access the connection and
feed back problem ticket data
changes for the associated alert.

This lock failure may be due to
insufficient resources or as a result
of the underlying threading system
preventing a deadlock between
multiple threads that are contending
for the resource.

Failed to find cached problem
ticket for serial <serial number>
using map <map name>.

The gateway failed to find the
specified cache problem ticket
number.

Check that the specified ticket was
originally created by the gateway.

Gateway _name Writer: Failed to
unlock the cache mutex.

After access to the cache, an attempt
to unlock the data structures
protection lock failed. This message
indicates that the gateway is in a
position which will lead to a
deadlock situation.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway name Writer: Cache add
error.

The gateway could not add the
serial to the serial cache due to
insufficient resources.

Try to free more memory.

138

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 36. Common gateway error messages (continued)

Error

Description

Action

Gateway _name Writer writer_name:
Failed to create gateway_name Event
for journal update.

The gateway failed to create the
journal event update.

Check the writer log file.

Gateway _name Writer writer_name:
Failed to send journal update event
to gateway_name.

The gateway failed to send journal
event update.

Check the writer log file.

<attribute name> attribute is not a
string for gateway_name writer
writer_name.

An attribute in the writer was of an
incorrect data type.

Check the writer definition in the
configuration file.

No <attribute name> attribute for
gateway_name writer writer_name
given.

The gateway failed to find the
attribute.

Add the attribute to the writer

definition in the configuration file.

Gateway_name Writer writer_name:
Failed to find the <counterpart
attribute> attribute for the
writer. This is necessary due to
bi-directional nature.

An attempt to find the necessary
counterpart attribute failed.

Check the configuration file.

Gateway_name Writer writer_name: Is
not a name for an Object Server
reader.

The gateway found an incorrect data
type.

Check the configuration file.

Gateway_name Writer writer_name:
Reader <reader> was not found for
counter part.

The reader was not found.

Check the counterpart configuration

in the configuration file.

Gateway_name Writer writer_name:
Failed to send SKIP Command.

This command failed to disable
IDUC on a bidirectional connection.

Refer to your support contract for

information about contacting the
helpdesk.

Connection to feedback server
failed.

The gateway failed to make a
connection.

Check the ObjectServer log file.

Failed to set the death call on the
feedback connection.

The gateway failed to set the
necessary property.

This is an internal error. Refer to
your support contract for
information about contacting the
helpdesk.

Writer counterpart error.

The gateway failed to find the
counterpart attribute for gateway
writer.

Check the counterpart configuration

in the configuration file.

Gateway name Writer: Failed to
stat() the action SQL file
"filename" .

The gateway failed to stat the file in
order to determine its size.

Check the file access permissions
the specified action file.

for

Gateway_name Writer:
SQL file "filename".

Empty action

File "filename" is empty.

Check the action SQL file.

Gateway_name Writer: Failed to open |The gateway failed to open the file. |Check the file permissions.
the action SQL file "filename".

Gateway_name Writer: Failed to read |The gateway failed to read the file. |Check the file permissions.
the action SQL file "filename".

Gateway _name Writer: No Action SQL [There is no action SQL in the file. Check the file.

find in file "filename".

Gateway _name Writer writer_name:
Failed to read the conversions
table.

The gateway failed to read the
conversions table.

Check the file permissions.

Appendix B. Gateway error messages

139

Table 36. Common gateway error messages (continued)

Error

Description

Action

Gateway name Writer: Failed to find
PM %s in cache for return PMO
event.

The gateway has received a Problem
Management Open return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer's cache, in order to determine
the serial number of the ticket's
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Open Feedback
Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer SQL file.

Gateway name Writer: No Update
action SQL for gateway_name Update
event.

There is no update action SQL
statement.

Check the configuration file.

Gateway name Writer: Failed to find
PM %s in cache for return PMU
event.

The gateway has received a Problem
Management Update return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer's cache in order to determine
the serial number of the ticket's
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Update
Feedback Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer log file.

Gateway name Writer: Failed to find
PM %s in cache for return PMJ
event.

The gateway has received a Problem
Management Journal return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer's cache in order to determine
the serial number of the ticket's
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Journal
Feedback Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer log file.

Gateway _name Writer: Failed to find
PM %s in cache for return PMC
event.

The gateway has received a Problem
Management Close return event
from gateway for the problem ticket.
When an attempt was made to look
up the problem ticket number in the
writer's cache in order to determine
the serial number of the ticket's
associated alert, no record could be
reclaimed or found.

Refer to your support contract for
information about contacting the
helpdesk.

140

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 36. Common gateway error messages (continued)

Error

Description

Action

Gateway name Writer: Close Feedback
Failed.

The gateway failed to construct the
open action SQL statement or send
the SQL action command to the
server.

Check the ObjectServer log file.

Received error code <code> from
Reader/Writer Module - [<message>].

The gateway received an error
message.

Check the module log files.

Gateway name Writer: Failed to read
gateway _name event from
gateway _name Reader Module.

The gateway failed to read the event
sent by the gateway reader module.

Check the reader log files.

Gateway name Writer: Received event
of type <event type> which was
unexpected.

The gateway received an unknown
event type.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway name Writer: Received
invalid known message from
Reader/Writer Module for this
system.

The gateway received an invalid
known message.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway _name Writer: Received
unknown message from Reader/Writer
ModuTe.

The gateway received an invalid
unknown message.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Failed to
block on data feed from
gateway name Reader Module.

The gateway failed to block due to a
shutdown request. This message is
displayed when the gateway is
shutting down.

Refer to your support contract for
information about contacting the
helpdesk.

Gateway_name Writer: Fatal thread
termination. Stopping gateway.

A thread exited unexpectedly.

Check the gateway log files.

<attribute name> attribute is not a
string for gateway_name writer
writer_name - IGNORED

An attribute name is not recognized.
The gateway will ignore it.

Check the gateway log files.

<attribute name> attribute must be
set to TRUE or FALSE for writer
writer_name.

An attribute name has not been set
to TRUE or FALSE.

Check the gateway configuration
file.

Gateway_name Writer writer_name:
Failed to shutdown gateway name
Reader/Writer Modules.

The gateway failed to shut down the
reader and writer modules.

Check the module log file.

Gateway_name Writer writer_name:
Failed to disconnect feedback
connection.

The disconnect of feedback channel
failed.

Check the ObjectServer log file.

Failed to create gateway_name event
structure for a problem management
open event in writer writer_name.

The gateway writer failed to allocate
a gateway event structure for a
problem management open event
due to insufficient memory
resources.

Try to free more memory.

Gateway name Writer: FEEDBACK
FAILED!!

The gateway failed to store the
problem number.

Check the ObjectServer log file.

Failed to create journal for
gateway_name writer writer_name
(from INSERT)

The gateway failed to create journal.

Check the writer log file.

Appendix B. Gateway error messages

141

Table 36. Common gateway error messages (continued)

Error

Description

Action

Failed to create gateway name event
structure for a problem management
update event in writer writer_name.

The gateway writer failed to allocate
a gateway event structure for a
problem management update event
due to insufficient memory
resources.

Try to free more memory.

Gateway_name Writer writer_name:
Failed to delete problem ticket
from cache for serial <serial
number>.

The gateway failed to delete serial
number from cache.

This is an internal error. You can
ignore it.

Failed to create gateway _name event
structure for a PMC event in writer
writer_name.

The gateway writer failed to allocate
a gateway event structure for a
Problem Management Close event
due to insufficient memory
resources.

Try to free more memory.

142

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Appendix C. Regular expressions

Tivoli Netcool/OMNIbus supports the use of regular expressions in search queries
that you perform on ObjectServer data. Regular expressions are sequences of atoms
that are made up of normal characters and metacharacters.

An atom is a single character or a pattern of one or more characters in parentheses.
Normal characters include uppercase and lowercase letters, and numbers.
Metacharacters are non-alphabetic characters that possess special meanings in
regular expressions.

Two types of regular expression libraries are available for use with the
ObjectServer:

¢ NETCOOL: This library is useful for single-byte character processing.

* TRE: This library enables use of the POSIX 1003.2 extended regular expression
syntax, and provides support for both single-byte and multi-byte character
languages. When the UTF-8 encoding is enabled on Windows, only the
characters within Unicode plane 0, the Basic Multilingual Plane (BMP), are
supported in regular expression patterns. Any character outside of the BMP,
which is found in the pattern, will result in an error. The matching strings for
the regular expression pattern can contain any UTF-8 character.

Note: Use of the TRE library can lead to a marked decrease in system
performance. Optimal system performance is achieved with the NETCOOL
library.

You can use the ObjectServer property RegexpLibrary to specify which library
should be used for regular expression matching. The NETCOOL regular expression
library is enabled by default.

NETCOOL regular expression library

If your system supports single-byte character languages, you can use the
NETCOOL regular expression library to run search queries on your data. You
obtain optimal system performance with this library, over the TRE regular
expression library.

The NETCOOL regular expression library supports the use of normal characters
and metacharacters. The following table describes the set of metacharacters
supported by the NETCOOL regular expression library.

Table 37. Metacharacters

Metacharacter | Description Examples
* Matches zero or more goo* matches my godness, my goodness, and
instances of the preceding my gooodness, but not my gdness.

atom. Matches as many
instances as possible.

+ Matches one or more goo+ matches my goodness and my
instances of the preceding gooodness, but not my godness.
atom. Matches as many
instances as possible.

© Copyright IBM Corp. 1994, 2011 143

Table 37. Metacharacters (continued)

Metacharacter

Description

Examples

?

Matches zero or more
instances of the preceding
atom.

goo? matches my godness, my goodness, and
my gooodness, but not my gdness.

colou?r matches color and colour.

end-?user matches enduser and end-user.

Matches the end of the
string.

end$ matches the end, but not the ending.

Matches the beginning of the
string.

~severity matches severity level 5, but
not The severity is 5.

Matches any single character.

b.at matches baat, bBat, and b4at, but not
bat or bB4at.

[abed]

Matches any character in the
square brackets.

[nN] [00] matches no, n0, No, and NO.

gr[ae]y matches both spellings of the word
‘grey’; that is, gray and grey.

[a-d]

Matches any character in the
range of characters separated
by a hyphen (-).

[0-9] matches any decimal digit.
[ab3-5] matches a, b, 3, 4, and 5.

~[A-Za-z]+$ matches any string that
contains only upper or lowercase
characters.

[~abcd]

[a-d]

Matches any character except
those in the square brackets
or in the range of characters
separated by a hyphen (-).

[*0-9] matches any string that does not
contain any numeric characters.

0

Indicates that the characters
within the parentheses
should be treated as a
character pattern.

A(boo)+Z matches AbooZ, AboobooZ, and
AbooboobooZ, but not AboZ or AboooZ.

Jan(uary)? matches Jan and January.

Matches one of the atoms on
either side of the pipe
character.

A(B|C)D matches ABD and ACD, but not AD,
ABCD, ABBD, or ACCD.

(AB | CD) matches AB and CD, but not ABD
and ACD.

Indicates that the
metacharacter following
should be treated as a
regular character. The
metacharacters listed in this
table require a backslash
escape character as a prefix
to switch off their special
meaning.

* matches the * character.
\\ matches the \ character.
\. matches the . character.

\[[0-9]*\] matches an opening square
bracket, followed by any digits or spaces,
followed by a closed bracket.

Related concepts

[“TRE regular expression library” on page 145|

144

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

TRE regular expression library

Use the TRE regular expression library to run search queries on both single-byte
and multi-byte character languages.

The TRE regular expression library supports usage of the POSIX 1003.2 extended
regular expression syntax in the form of:

* Metacharacters

¢ Minimal or non-greedy quantifiers

* Bracket expressions

* Constructs for multicultural support
* Backslash sequences

Restriction: A marked decrease in system performance might be observed when
using this library.
Related reference

["'NETCOOL regular expression library” on page 143|

Metacharacters

Metacharacters are non-alphabetic characters that possess special meanings in
regular expressions.

The set of metacharacters that can be used in extended regular expression syntax is
as follows:

*+28~ 00 [N

The following table describes all of these metacharacters except the square bracket
[metacharacter. You can use the [metacharacter to construct bracket expressions.

Table 38. Metacharacters

Metacharacter | Description Examples
* Matches zero or more goo* matches my godness, my goodness, and
instances of the preceding my gooodness, but not my gdness.

atom. Matches as many
instances as possible.

+ Matches one or more goo+ matches my goodness and my
instances of the preceding gooodness, but not my godness.
atom. Matches as many
instances as possible.

? Matches zero or more goo? matches my godness, my goodness, and
instances of the preceding my gooodness, but not my gdness.
atom.

colou?r matches color and colour.

end-?user matches enduser and end-user.

$ Matches the end of the end$ matches the end, but not the ending.
string.

Matches the beginning of the |“severity matches severity level 5, but
string. not The severity is 5.

The ~ metacharacter can also
be used in bracket
expressions.

Appendix C. Regular expressions 145

146

Table 38. Metacharacters (continued)

Metacharacter

Description

Examples

Matches any single character.

b.at matches baat, bBat, and b4at, but not
bat or bB4at.

0

Indicates that the characters
within the parentheses
should be treated as a
character pattern.

A(boo)+Z matches AbooZ, AboobooZ, and
AbooboobooZ, but not AboZ or AboooZ.

Jan(uary)? matches Jan and January.

Matches one of the atoms on
either side of the pipe
character.

A(B|C)D matches ABD and ACD, but not AD,
ABCD, ABBD, or ACCD.

(AB | CD) matches AB and CD, but not ABD
and ACD.

Indicates that the
metacharacter following
should be treated as a
regular character. The
metacharacters listed in this
section require a backslash
escape character as a prefix
to switch off their special
meaning.

The \ metacharacter can also
be used to construct
backslash sequences.

* matches the * character.
\\ matches the \ character.

\. matches the . character.

{m, n}

Matches from m to n
instances of the preceding
atom, where m is the
minimum and n is the
maximum. Matches as many
instances as possible.

Note: mand n are unsigned
decimal integers between 0
and 255.

f{1,2}ord matches ford and fford.

N/{1,3}A matches N/A, N//A, and N///A, but
not NA or N////A.

Matches m or more instances
of the preceding atom.

Z{2,} matches two or more repititions of Z.

Matches exactly m instances
of the preceding atom.

a{3} matches aaa.

1{2} matches 11.

Related reference

[“Bracket expressions” on page 148]

[“Backslash sequences” on page 149

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Minimal or non-greedy quantifiers

Regular expressions are generally considered greedy because an expression with
repetitions will attempt to match as many characters as possible. The asterisk (*),
plus (+), question mark (?), and curly braces ({}) metacharacters exhibit
'repetitious' behavior, and attempt to match as many instances as possible.

To make a subexpression match as few characters as possible, a question mark (?)
can be appended to these metacharacters to make them minimal or non-greedy. The
following table describes the non-greedy quantifiers.

Table 39. Minimal/non-greedy quantifiers

instances of the preceding
atom, where m is the
minimum and n is the
maximum. Matches as few
instances as possible.

Note: m and n are unsigned
decimal integers between 0
and 255.

Quantifier Description Examples
*? Matches zero or more Given an input string of Netcool Tool
instances of the preceding Library:
atom. Matches as few * The first group in ~(.*1).*$ matches
instances as possible. Netcool Tool .
* The first group in ~(.*?1) .*$ matches
Netcool.
+? Matches one or more Given an input string of Tittle:
instances of the preceding « .%?1 matches 1.
atom. Matches as few .
- . e ~.+]1 matches 1itt1.
instances as possible.
?? Matches zero or one instance | .??b matches ab in abc, and b in bbb.
of the preceding atom.
Matches as few instances as | - 7b matches ab in abc, and bb in bbb.
possible.
{m, n}? Matches from m to n Given an input string of Netcool Tool Cool

Fool Library:

e ~((.*?001)*).%$ matches Netcool Tool
Cool Fool.

e ~((.*?001)+).%$ matches Netcool Tool
Cool Fool.

e ~((.%?001)+7?).*$ matches Netcool.

e ~((.*?001){2,5}).*$ matches Netcool
Tool Cool Fool.

e ~((.*?001){2,5}?).*$ matches Netcool
Tool.

e ~((.*?001){2,5}) [FL].*$ matches
Netcool Tool Cool Fool.

e ~((.*?001){2,5}?) [FL].*$ matches
Netcool Tool Cool.

Matches m or more instances
of the preceding atom.
Matches as few instances as
possible.

Given an input string of Netcool Tool Cool
Fool Library:

e ~((.*?001){2,}).*$ matches Netcool
Tool Cool Fool.

e ~((.*?001){2,}?).*$ matches Netcool
Tool.

e ~((.*?001){2,}) [FL].*$ matches
Netcool Tool Cool Fool.

e ~((.*?001){2,}?) [FL].*$ matches
Netcool Tool Cool.

Appendix C. Regular expressions 147

148

Bracket expressions

Bracket expressions can be used to match a single character or collating element.

The following table describes how to use bracket expressions.

Table 40. Bracket expressions

Expression Description Examples

[abcd] Matches any character in the | [nN] [00] matches no, n0, No, and NO.

square brackets.
gr[ae]y matches both spellings of the word

'grey’; that is, gray and grey.

[a-d] Matches any character in the | [0-9] matches any decimal digit.
range of characters separated
by a hyphen (-). [ab3-5] matches a, b, 3, 4, and 5.

[0-9] {4} matches any four-digit string.

~[A-Za-z]+$ matches any string that
contains only upper or lowercase
characters.

\[[0-9 1*\] matches an opening square
bracket, followed by any digits or spaces,
followed by a closed bracket.

[~abcd] Matches any character except | [*0-9] matches any string that does not
those in the square brackets |contain any numeric characters.

[a-d] or in the range of characters
separated by a hyphen (-).

[.ab.] Matches a multi-character [.ch.] matches the multi-character collating
collating element. sequence ch (if the current language

supports that collating sequence).

[=a=] Matches all collating [=e=] matches e and all the variants of e in

elements with the same the current locale.

primary sort order as that
element, including the
element itself.

Note the following points:

* The caret character (*) only has a special meaning when included as the first
character after the open bracket ([). Otherwise, it is treated as a normal
character.

* The hyphen character (-) is treated as a normal character only under either of
the following conditions:
— The hyphen character is the first or last character within the square brackets,
for example, [ab-] or [-xy].
— The hyphen character is the only (both first and last) character; that is, [-].
* To match a closing square bracket within a bracketed expression, the closing

bracket must be the first character within the enclosing brackets; for example,
[1[xy] matches], [, x, and y.

* Other metacharacters are treated as normal characters within square brackets,
and do not need to be escaped; for example, [ca$] will match c, a, or §.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Related reference

[‘Metacharacters” on page 145

Constructs for multicultural support

The sort order of characters (and any of their variants) is locale-dependent, so
different regular expressions are generally required to match characters of the same
class, in different locales. To facilitate multicultural support, a set of predefined
names enclosed in [: and :] can be used to represent characters of the same class.

The set of valid names depends on the value of the LC_CTYPE environment
variable of the current locale, but the names shown in the following table are valid
in all locales.

Table 41. Multicultural constructs

Construct Description

[:alnum:] Matches any alphanumeric character.

[:alpha:] Matches any alphabetic character.

[:blank:] Matches any blank character - that is, space and TAB.

[:cntrl:] Matches any control characters; these are non-printable.

[:digit:] Matches any decimal digits.

[:graph:] Matches any printable character except space.

[:Tower:] Matches any lowercase alphabetic character.

[:print:] Matches any printable character including space.

[:punct:] Matches any printable character that is not a space or
alphanumeric; that is, punctuation.

[:space:] Matches any whitespace character.

[:upper:] Matches any uppercase alphabetic character.

[:xdigit:] Matches any hexadecimal digit.

Example: Multicultural constructs
[[:Tower:]AB] matches the lowercase letters and uppercase A and B.
[[:space:][:alpha:]] matches any character that is either whitespace or aphabetic.

[[:alpha:]] matches to [A-Za-z] in the English locale (en), but would include
accented or additional letters in another locale.

Backslash sequences

When constructing regular expressions, the backslash character can be used in a
variety of ways.

The backslash character (\) can be used to:

e Turn off the special meaning of metacharacters so they can be treated as normal
characters.

¢ Include non-printable characters in a regular expression.
* Give special meaning to some normal characters.

* Specify backreferences. Backreferences are used to specify that an earlier matching
subexpression is matched again later.

Appendix C. Regular expressions 149

150

Note: The backslash character cannot be the last character in a regular expression.

The following table describes how to specify backslash sequences for non-printable
characters and backreferences. This table also shows how to use backslash
sequences to apply special meaning to some normal characters.

Table 42. Backslash sequences

Backslash sequence | Description

\a Matches the bell character (ASCII code 7).

\e Matches the escape character (ASCII code 27).

\f Matches the form-feed character (ASCII code 12).

\n Matches the new-line or line-feed character (ASCII code 10).

\r Matches the carriage return character (ASCII code 13).

\t Matches the horizontal tab character (ASCII code 9).

\v Matches the vertical tab character.

\< Matches the beginning of a word, or the beginning of an identifier,
defined as the boundary between non-alphanumerics and
alphanumerics (including underscore). This matches no characters,
only the context.

\> Matches the end of a word or identifier.

\b Matches a word boundary; that is, matches the empty string at the
beginning or end of an alphanumeric sequence.

Enables a 'whole words only' search.

\B Matches a non-word boundary; that is, matches the empty string
not at the beginning or end of a word.

\d Matches any decimal digit.
Equivalent to [0-9] and [[:digit:]].

\D Matches any non-digit character.
Equivalent to [*0-9] or [*[:digit:]].

\s Matches any whitespace character.
Equivalent to [\t\n\r\f\v] or [[:space:]].

\S Matches any non-whitespace character.
Equivalent to [~ \t\n\r\f\v] or [*[:space:]].

\w Matches a word character; that is, any alphanumeric character or
underscore.

Equivalent to [a-zA-Z0-9_] or [[:alnum:]_].

\W Matches any non-alphanumeric character.
Equivalent to [*a-zA-20-9_] or [~[:alnum:]_].

\[1-9] A backslash followed by a a single non-zero decimal digit n is
termed a backreference.

Matches the same set of characters matched by the nth
parenthesized subexpression.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Example backslash constructs

\bcat\b matches cat but not cats or bobcat.

\d\s matches a digit followed by a whitespace character.
[\d\s] matches any digit or whitespace character.

. ([XY]).([XY]). matches aXbXc and aYbYc, but also aXbYc and aYbXc. However,
.([XY]).\1. will only match aXbXc and aYbYc.

Related reference

[“Metacharacters” on page 145

Appendix C. Regular expressions 151

152 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Appendix D. ObjectServer tables and data types

This appendix contains ObjectServer database table information.

alerts.status table

Table 43. Columns in the alerts.status table

The alerts.status table contains status information about problems that have been

detected by probes.

The following table describes the columns in the alerts.status table.

Column name

Data type

Mandatory

Description

Identifier

varchar(255)

Yes

Controls ObjectServer deduplication. The Identifier
field controls the deduplication feature of the
ObjectServer, and also supports compatibility with
the GenericClear automation by ensuring resolution
events are properly inserted into the ObjectServer
and not deduplicated with their respective problem
events.

The following identifier correctly identifies repeated
events in a typical environment:

@Identifier=@GNode+" "+@AlertKey+"
"+@AlertGroup+" "+@Type+" "+@Agent+"
"+@Manager

Additional information might need to be appended
to the Identifier field to ensure correct deduplication
and compatibility with the GenericClear automation.
For example, if an SNMP specific trap contains a
status enumeration value in one of its variable
bindings, the specific trap number and the value of
the relevant varbind must be appended to the
Identifier field as follows:

@Identifier=@Node +" "+ @AlertKey+"
"+@AlertGroup+" "+@Type+" "+@Agent+"
"+@Manager+" "+$specific-trap+"
u+$2

Serial

incr

Yes

The Tivoli Netcool/OMNIbus serial number for the
TOW.

© Copyright IBM Corp. 1994, 2011

153

Table 43. Columns in the alerts.status table (continued)

Column name

Data type Mandatory

Description

Node

varchar(64) Yes

Identifies the managed entity from which the alarm
originated. This could be a device or host name,
service name, or other entity.

For IP network devices or hosts, the Node column
contains the resolved name of the device or host. In
cases where the name cannot be resolved, the Node
column must contain the IP address of the device or
host.

For non-IP network devices or hosts, alarms must
contain similar information to the IP device or host.
That is, the Node column must contain the name of
the device or host which allows direct
communication, or can be resolved to allow direct
communication, with the device or host.

NodeAlias

varchar(64) No

The alias for the node. For network devices or hosts,
this should be the logical (layer-3) address of the
entity. For IP devices or hosts, this must be the IP
address.

For non-IP devices or hosts, there are several
addressing schemes that could be used. When
selecting a value for the NodeAlias field, the value
should allow for direct communication with the
device or host. For example, a device managed by
TL-1. The NodeAlias field may be populated by a
lookup table or Netcool/Impact policy, with the IP
address and port number of the terminal server
through which the TL-1 device can be reached.

Manager

varchar(64) Yes

The descriptive name of the probe that collected and
forwarded the alarm to the ObjectServer. This can
also be used to indicate the host on which the probe
is running. Ideally this is set in the properties file of
the probe, however the rules file should check to
ensure it is set correctly, and modify if necessary.

For example, the following syntax can be used to
define the Manager field:

@Manager="MTTrapd Probe on" + hostname()

154

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 43. Columns in the alerts.status table (continued)

Column name Data type Mandatory

Description

Agent varchar(64) No

The descriptive name of the sub-manager that
generated the alert.

Probes which process SNMP traps must set the
Agent field to either the name of the vendor or the
standards body which defined the trap, and provide
a description of the MIB, or MIB Definition Name,
where the trap is defined. It must be presented in
the following format: vendor-MIB description

For example::

Cisco-Accounting Control, Cisco-Health Monitor,
IETFBRIDGEMIB, ATMF-ATM-FORUM-MIB

Optionally, vendor-specific information, such as
device model numbers, can be appended to the
Agent field for vendor-specifc implementations of
standard traps.

The Syslog probe should set the Agent field to the
name of the vendor which defined the received
message, and provide any logical description for the
family of messages to which the received message
belongs.

For example, Cisco defines messages received from
I0S-based devices in separate documentation from
messages received from the PIX Firewall. The format
of the messages is also slightly different. Therefore
the Syslog messages received from Cisco will have
the Agent field set to either Cisco-I0S or Cisco- PIX
Firewall.

The TL-1 TSM should set the Agent field to the
name of the vendor which defined the received
message, and provide any logical description for the
family of messages to which the received message
belongs.

AlertGroup varchar(255) No

The descriptive name of the failure type indicated
by the alert. For example:

Interface Status or CPU Utilization).

The AlertGroup field must contain the same value
for related problem and resolution events.

For example, SNMP trap 2 (linkDown) and trap 3
(linkUp) must both contain the same AlertGroup
value of Link Status.

The AlertGroup field for a TL-1 message will be set
to the value of the message's alarm type.

Appendix D. ObjectServer tables and data types 155

Table 43. Columns in the alerts.status table (continued)

Column name

Data type

Mandatory

Description

AlertKey

varchar(255)

Yes

The descriptive key that indicates the managed
object instance referenced by the alert. For example,
the disk partition indicated by a file system full alert
or the switch port indicated by a utilization alert.

* SNMP Trap-related probes: Probes that process
SNMP traps should set the AlertKey field to one
of the following values (in order of preference):

— The SNMP instance of the managed object
which is represented by the alarm. This is
normally obtained by extracting the instance
from the OID of one of the variable bindings of
the trap. Additionally, it might also be
contained in a combination of one or more of
the trap's variable binding values.

For example, the first variable binding of a
linkDown trap contains the ifIndex value
(interface number) of the interface which failed.
The AlertKey can be set with either of the

following:
@ATertKey = extract($0ID1, "\.([0-9]+)$")
OAlertKey = $1

— A textual description of the instance derived
from the trap name or trap description.

For example, a device with two power supplies
(A and B) might be able to send two separate
specific traps, without variable bindings, to
indicate the failed status of either power
supply. The appropriate power supply instance
would need to be derived from the trap
definitions of the MIB and then encoded in the
rules file:

switch($specific-trap)

case "1":
QAlertKey = "A"
case "2":
O@ATertKey = "B"
default:

}

— A mixed combination of variable binding
values and information derived from the trap
name or trap description. Therefore, any
instance information that is not available in the
previous two methods, but is required to
ensure correct deduplication and GenericClear
compatibility.

156 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 43. Columns in the alerts.status table (continued)

Column name

Data type

Mandatory

Description

* The Syslog Probe: The Syslog Probe should set
the AlertKey to a textual description of the
instance derived from the log message text.
Ideally this is a textual name of the same
managed entity.

For example:
Nov 20 13:12:57 device.customer.net
195.180.208.193 19986: 37w0d: %LINK-3-UPDOWN:

Interface FastEthernet0/13, changed state to
down

In the previous example, the AlertKey would be
set to FastEthernet0/13 using the following
syntax:
OAlertKey = extract($Details, "Interface
(.*), changed")

e TL-1 TSM: Typically the AlertKey field for a TL-1
message is set to the value of the message's alarm
location.

Appendix D. ObjectServer tables and data types 157

Table 43. Columns in the alerts.status table (continued)

Column name

Data type Mandatory

Description

Severity

integer Yes

Indicates the alert severity level, which indicates
how the perceived capability of the managed object
has been affected. The color of the alert in the event
list is controlled by the severity value:

0: Clear. The Clear severity level indicates the
clearing of one or more previously reported alarms.
The alarms have either been cleared manually by a
network operator, or automatically by a process
which has determined the fault condition no longer
exists. Automatic processes, for example the
GenericClear Automation process, typically clear all
alarms for a managed object (the AlertKey) that
have the same Alarm Type and/or probable cause
(the Alert Group).

1: Indeterminate. The Indeterminate severity level
indicates that the severity level cannot be
determined. Additionally, all problem resolving
alarms are initially defined as indeterminate until
they have been correlated with problem indicating
alarms (for example by the GenericClear
Automation), when all correlated alarms are set to
Clear.

2: Warning. The Warning severity level indicates the
detection of potential or impending service affecting
faults. If necessary, a further investigation of the
fault should be made to prevent it from becoming
more serious.

3: Minor. The Minor severity level indicates the
existence of a non-service affecting fault condition.
Corrective action should be taken to prevent it from
becoming a more serious fault. This severity level
may be reported, for example, when the detected
alarm condition is not currently degrading the
capacity of the managed object.

4: Major. The Major severity level indicates that a
service affecting condition has developed and
corrective action is urgently required. This severity
level may be reported, for example, when there is a
severe degradation in the capability of the managed
object, and its full capability must be restored.

5: Critical. The Critical severity level indicates that a
service affecting condition has occurred, and
corrective action is immediately required. This
severity level may be reported, for example, when a
managed object is out of service, and its capability
must be restored.

158

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 43. Columns in the alerts.status table (continued)

Column name Data type Mandatory

Description

Summary varchar(255) Yes

Contains text which describes the alarm condition
and the affected managed object instance.

* You must ensure that the information presented
in the Summary field is concise and sufficiently
detailed.

e The Summary field must contain, in parenthesis, a
description of the managed object instance
provided by the available alarm data. For
example, a linkDown trap from a Cisco device
will contain the ifDescr value in the 2nd variable
binding. The text summary of such an event
would be similar to:

"Link Down (FastEthernet0/13)"

* For alarms that relate to thresholds containing the
compared or threshold values, you should select
one of the following formats based on the
available data:

— No values provided:
"Link Utilization High (BRI2/0:1)"
— Compared value name provided:

"Link Utilization High: inOctets
Exceeded Threshold (BRI2/0:1)"

— Compared value name and value provided:

"Link Utilization High: inOctets, 7100,
Exceeded Threshold (BRI2/0:1)"

— Threshold name provided:

"Link Utilization High: inOctetsMax
Exceeded (BRI2/0:1)"

— Threshold Value provided:

"Link Utilization High: inOctetsMax, 7000,
Exceeded (BRI2/0:1)"

— Compared value and threshold value provided:

"Link Utilization High: 7100
Exceeded 7000 (BRI2/0:1)"

— Both names and values provided:

"Link Utilization High: inOctets, 7100,
Exceeded inOctetsMax,7000 (BRI2/0:1)"

StateChange time Yes

An automatically-maintained ObjectServer
timestamp of the last insert or update of the alert
from any source.

FirstOccurrence time Yes

The time in seconds (from midnight January 1, 1970)
when this alert was created or when polling started
at the probe.

LastOccurrence time Yes

The time when this alert was last updated at the
probe.

InternalLast time Yes

The time when this alert was last updated at the
ObjectServer.

Poll integer No

The frequency of polling for this alert in seconds.

Appendix D. ObjectServer tables and data types 159

Table 43. Columns in the alerts.status table (continued)

Column name

Data type

Mandatory

Description

Type

integer

No

The type of alarm, where type refers to the problem
or resolution state of the Alarm. This field is
important for the correct correlation of events by the
GenericClear Automation. The following values are
valid for the Type field:

0: Type not set

1: Problem

2: Resolution

3: Netcool/Visionary problem
4: Netcool/ Visionary resolution
7: Netcool/ISMs new alarm

8: Netcool/ISMs old alarm

11: More Severe

12: Less Severe

13: Information

Some scenarios cannot be categorized as either a
Problem or Resolution. For example, events which
are increasingly becoming an issue but do not
currently represent a failure, and events which are
becoming less of an issue but do not currently
indicate the failure has been completely resolved. In
which case, the Type field must be set to Problem,
More Severe or Less Severe to maintain
compatibility with the GenericClear Automation.

For example, the following rule file logic is used for
handling traps associated with BGP Peer Connection
Status:

switch ($bgpPeerState)
{

case "1": ### idle
@Severity = 4

OType =1

case "2": ### connect
@Severity = 2

O@Type = 12

case "3": ### active
@Severity = 2

OType = 12

case "4": ### opensent
@Severity = 2

160 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 43. Columns in the alerts.status table (continued)

Column name Data type Mandatory |Description
O@Type = 12
case "5": ### openconfirm
@Severity = 2
@Type = 12
case "6": ### established
@Severity =1
Q@Type = 2
default:

@Severity = 2
OType =1
1

Tally integer Yes Automatically-maintained count of the number of
inserts and updates of the alert from any source.
This count is affected by deduplication.

Class integer Yes The alert class used to identify the probe or vendor
from which the alert was generated. Controls the
applicability of context-sensitive event list tools.

Grade integer No Indicates the state of escalation for the alert:

0: Not Escalated
1: Escalated

Location varchar(64) No Indicates the physical location of the device, host, or
service for which the alert was generated.

OwnerUID integer Yes The user identifier of the user who is assigned to
handle this alert. The default is 65534, which is the
identifier for the nobody user.

OwnerGID integer No The group identifier of the group that is assigned to
handle this alert.

The default is 0, which is the identifier for the
public group.

Acknowledged integer Yes Indicates whether the alert has been acknowledged:
0: No
1: Yes
Alerts can be acknowledged manually by a network
operator or automatically by a correlation or
workflow process.

Flash integer No Enables the option to make the event list flash.

Eventld varchar(255) No The event ID (for example, SNMPTRAP-Tink down).
Multiple events can have the same event ID.

The event ID is populated by the probe rules file
and used by IBM Tivoli Network Manager IP
Edition.

ExpireTime integer Yes The number of seconds from the time this alert was
last received by the ObjectServer (LastOccurence)
until it is cleared automatically. Used by the Expire
automation.

Appendix D. ObjectServer tables and data types 161

Table 43. Columns in the alerts.status table (continued)

Column name

Data type

Mandatory

Description

ProcessReq

integer

No

Indicates whether the alert should be processed by
IBM Tivoli Network Manager IP Edition. This is
populated by the probe rules file and used by IBM
Tivoli Network Manager IP Edition.

SuppressEscl

integer

Yes

Used to suppress or escalate the alert:
0: Normal

1: Escalated

2: Escalated-Level 2

3: Escalated-Level 3

4: Suppressed

5: Hidden

6: Maintenance

The suppression level is manually selected by
operators from the event list.

Customer

varchar(64)

The name of the customer affected by this alert.

Service

varchar(64)

The name of the service affected by this alert.

PhysicalSlot

integer

The slot number indicated by the alert.

PhysicalPort

integer

The port number indicated by the alert.

PhysicalCard

varchar(64)

The card name or description indicated by the alert.

TaskList

integer

Indicates whether a user has added the alert to the
Task List:

0: No
1: Yes

Operators can add alerts to the Task List from the
event list.

NmosSerial

varchar(64)

The serial number of the event that is suppressing
the current event. Populated by IBM Tivoli Network
Manager IP Edition.

NmosObjInst

integer

Populated by IBM Tivoli Network Manager IP
Edition during alert processing.

NmosCauseType

integer

The alert state, populated by IBM Tivoli Network
Manager IP Edition as an integer value:

0: Unknown
1: Root cause

2: Symptom

162 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 43. Columns in the alerts.status table (continued)

Column name Data type Mandatory

Description

NmosDomainName varchar(64) No

The name of the IBM Tivoli Network Manager IP
Edition domain that is managing the event.

By default, this column is populated only for events
that are generated by IBM Tivoli Network Manager
IP Edition polls. To populate this column for other
event sources such as probes, you must modify the
rules files.

NmosEntityld integer No

A unique numerical ID that identifies the IBM Tivoli
Network Manager IP Edition topology entity with
which the event is associated.

This column is similar to the NmosObjlnst column,
but is more granular. For example, the
NmosEntityld value can represent the ID of an
interface within a device.

NmosManagedStatus integer No

The managed status of the network entity for which
the event was raised. Can apply to events from IBM
Tivoli Network Manager IP Edition and from any
probe.

You can use this column to filter out events from
interfaces that are not considered relevant.

NmosEventMap varchar(64) No

Contains the required IBM Tivoli Network Manager
IP Edition V3.9 or later, eventMap name and
optional precedence for the event, which indicates
how IBM Tivoli Network Manager IP Edition should
process the event.

The optional precedence number can be
concatenated to the end of the value, following a
period (.). If the precedence is not supplied, it is set
to 0. The following examples show the configuration
for an event map with an explicit event precedence
of 900, and another where the precedence defaults
to 0:

e ItnmLinkdownlIfIndex.900

e PrecisionMonitorEvent

LocalNodeAlias varchar(64) Yes

The alias of the network entity indicated by the
alert. For network devices or hosts, this is the logical
(layer-3) address of the entity, or another logical
address that enables direct communication with the
device. For use in managed object instance
identification.

LocalPriObj varchar(255) No

The primary object referenced by the alert. For use
in managed object instance identification.

LocalSecObj varchar(255) No

The secondary object referenced by the alert. For use
in managed object instance identification.

LocalRootObj varchar(255) Yes

An object that is equivalent to the primary object
referenced in the alarm. For use in managed object
instance identification.

RemoteNodeAlias varchar(64) Yes

The network address of the remote network entity.
For use in managed object instance identification.

Appendix D. ObjectServer tables and data types 163

Table 43. Columns in the alerts.status table (continued)

Column name Data type Mandatory |Description

RemotePriObj varchar(255) No The primary object of a remote network entity
referenced by an alarm. For use in managed object
instance identification.

RemoteSecObj varchar(255) No The secondary object of a remote network entity
referenced by an alarm. For use in managed object
instance identification.

RemoteRootObj varchar(255) Yes An object that is equivalent to the remote entity's
primary object referenced in the alarm. For use in
managed object instance identification.

X733EventType integer No Indicates the alert type:

0: Not defined

1: Communications

2: Quality of Service

3: Processing error

4: Equipment

5: Environmental

6: Integrity violation

7: Operational violation

8: Physical violation

9: Security service violation
10: Time domain violation

X733ProbableCause integer No Indicates the probable cause of the alert.

X733SpecificProb varchar(64) No Identifies additional information for the probable
cause of the alert. Used by probe rules files to
specify a set of identifiers for use in managed object
instance identification.

X733CorrNotif varchar(255) No A listing of all notifications with which this
notification is correlated.

ServerName varchar(64) Yes The name of the originating ObjectServer. Used by
gateways to control propagation of alerts between
ObjectServers.

ServerSerial integer Yes The serial number of the alert on the originating
ObjectServer (if it did not originate on this
ObjectServer). Used by gateways to control the
propagation of alerts between ObjectServers.

URL varchar(1024) No Optional URL which provides a link to additional
information in the vendor's device or ENMS.

164 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Table 43. Columns in the alerts.status table (continued)

Column name Data type Mandatory

Description

Extended Attr varchar(4096) No

Holds name-value pairs (of Tivoli Enterprise
Console® extended attributes) or any other
additional information for which no dedicated
column exists in the alerts.status table.

Use this column only through the nvp_get, nvp_set,
and nvp_exists SQL functions.

An example of a name-value string is:

Region="EMEA";host="sf01392w";
Error="errno=32: ""Broken pipe

In this example, the Region attribute has a value of
EMEA, the host attribute has a value of sf01392w, and
the Error attribute has a value of errno=32: "Broken

pipe".

Notice that quotation marks are escaped by
doubling them, as shown with the Error attribute
value.

In name-value pairs, the value is always enclosed in
quotation marks (" ") and embedded quotation
marks are escaped by doubling them. The separator
between name-value pairs is a semicolon (;). No
whitespace is allowed around the equal sign (=) or
semicolon.

Note: The column can hold only 4096 bytes, so
there will be fewer than 4096 characters if
multi-byte characters are used.

OldRow integer No

Maintains the local state of the row in each
ObjectServer during resynchronization in the
failover pair. This column must not be added to the
gateway mapping files.

The value of OldRow is changed to 1 in the
destination ObjectServer for the duration of
resynchronization if the Gate.ResyncType property
of the gateway is set to Minimal.

The default is 0.

ProbeSubSecondld integer No

For those alerts that a probe sends within the same
one-second interval, and which therefore have the
same LastOccurrence value, an incremental value,
starting at 1, is added to the ProbeSubSecondlId field
to differentiate the LastOccurrence time. The default
is 0.

MasterSerial integer No

Identifies the master ObjectServer if this alert is
being processed in a desktop ObjectServer
environment.

This column is added when you run the database
initialization utility nco_dbinit with the
-desktopserver option.

Note: MasterSerial must be the last column in the
alerts.status table if you are using a desktop
ObjectServer environment.

Appendix D. ObjectServer tables and data types 165

Table 43. Columns in the alerts.status table (continued)

Column name

Data type

Mandatory | Description

BSM_Identity

varchar(1024)

No The unique identifier of the resource from where the
event originates, and is used to correlate the event
to that resource in IBM Tivoli Business Service
Manager (TBSM).

Note: You can display only columns of type CHAR, VARCHAR, INCR, INTEGER,
and TIME in the event list. Do not add columns of any other type to the
alerts.status table.

alerts.details table

Table 44. Columns in the alerts.details table

The alerts.details table contains the detail attributes of the alerts in the system.

The following table describes the columns in the alerts.details table.

Column name

Data type

Description

KeyField

varchar(255)

Internal sequencing string for uniqueness.

The Keyfield value is composed of an Identifer value plus four #
plus a sequence number starting at a count of 1; for example:

Identifier#1

Where Identifier is a data type of varchar(255), which is used to
relate details to entries in the alerts.status table.

If the Identifier value is over a certain length, there is a possibility
that the Keyfield value could exceed its defined 255 limit,
resulting in truncation of the sequence number. Keyfield values
could therefore no longer be unique, and the unintended
duplication could cause inserts into the alerts.details table to fail.
Tip: To prevent an overflow in KeyField (and ensure uniqueness),
the length of the Identifier value must be sufficiently less than 255
to allow the four # and a sequence number (of one or more digits)
to be appended.

Identifier

varchar(255)

Identifier to relate details to entries in the alerts.status table.

The Identifier is used to compute the Keyfield value, and is
required to be less than a certain length to ensure that each
computed Keyfield value remains unique. For guidelines on the
maximum length of the Identifier value, see the tip in the
preceding KeyField row.

AttrVal

integer

Boolean; when false (0), just the Detail column is valid. Otherwise,
the Name and Detail columns are both valid.

Sequence

integer

Sequence number, used for ordering entries in the event list Event
Information window.

Name

varchar(255)

Name of attribute stored in the Detail column.

Detail

varchar(255)

Attribute value.

166 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

alerts.journal table

Table 45. Columns in the alerts.journal table

The alerts.journal table provides a history of work performed on alerts.

The following table describes the columns in the alerts.journal table.

Column name Data type Description

KeyField varchar(255) Primary key for table.

Serial integer Serial number of alert that this journal entry is related to.
UID integer User identifier of user who made this entry.
Chrono time Time and date that this entry was made.
Textl varchar(255) First block of text for journal entry.

Text2 varchar(255) Second block of text for journal entry.
Text3 varchar(255) Third block of text for journal entry.
Text4 varchar(255) Fourth block of text for journal entry.
Text5 varchar(255) Fifth block of text for journal entry.

Text6 varchar(255) Sixth block of text for journal entry.
Text7 varchar(255) Seventh block of text for journal entry.
Text8 varchar(255) Eighth block of text for journal entry.
Text9 varchar(255) Ninth block of text for journal entry.
Text10 varchar(255) Tenth block of text for journal entry.
Textl1 varchar(255) Eleventh block of text for journal entry.
Text12 varchar(255) Twelfth block of text for journal entry.
Text13 varchar(255) Thirteenth block of text for journal entry.
Text14 varchar(255) Fourteenth block of text for journal entry.
Text15 varchar(255) Fifteenth block of text for journal entry.
Text16 varchar(255) Sixteenth block of text for journal entry.

service.status table

Table 46. Columns in the service.status table

The service.status table is used to control the additional features required to
support IBM® Tivoli Composite Application Manager for Internet Service
Monitoring.

The following table describes the columns in the service.status table.

Column name Data type Description
Name varchar(255) Name of the service.
CurrentState integer Indicates the state of the service:

0: Good
1: Bad
2: Marginal

3: Unknown

Appendix D. ObjectServer tables and data types

167

Table 46. Columns in the service.status table (continued)

Column name Data type Description

StateChange time Indicates the last time the service state changed.
LastGoodAt time Indicates the last time the service was Good (0).
LastBadAt time Indicates the last time the service was Bad (1).
LastMarginal At time Indicates the last time the service was Marginal (2).
LastReportAt time Time of the last service status report.

ObjectServer data types

Table 47. ObjectServer data types

Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column.

For example, the plus operator (+) adds integer values or concatenates string
values, but does not act on Boolean values. The data types supported by the
ObjectServer are listed in the following table:

SQL type

Description

Default value

ObjectServer ID for data type

INTEGER

32-bit signed integer.

0

0

INCR

32-bit unsigned auto-incrementing integer.
Applies to table columns only, and can
only be updated by the system.

0

5

UNSIGNED

32-bit unsigned integer.

0

12

BOOLEAN

TRUE or FALSE.

FALSE

REAL

64-bit signed floating point number.

0.0

14

TIME

Time, stored as the number of seconds
since midnight January 1, 1970. This is the
Coordinated Universal Time (UTC)
international time standard.

Thu Jan 1
01:00:00 1970

CHAR(integer)

Fixed size character string, integer
characters long (8192 Bytes is the
maximum).

The char type is identical in operation to
varchar, but performance is better for
mass updates that change the length of
the string.

10

VARCHAR(integer)

Variable size character string, up to integer
characters long (8192 Bytes is the
maximum).

The varchar type uses less storage space
than the char type and the performance is
better for deduplication, scanning, insert,
and delete operations.

INTEGER64

64 bit signed integer.

16

UNSIGNED64

64 bit unsigned integer.

17

168

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Note: You can display only columns of type CHAR, VARCHAR, INCR, INTEGER,
and TIME in the event list. Do not add columns of any other type to the

alerts.status table.

Appendix D. ObjectServer tables and data types 169

170 IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2011 171

172

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

958 /NH04

IBM Centre, St Leonards
601 Pacific Hwy

St Leonards, NSW, 2069
Australia

IBM Corporation

896471/H128B

76 Upper Ground
London SE1 9PZ

United Kingdom

IBM Corporation
JBF1/SOM1

294 Route 100

Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

AIX, IBM, the IBM logo, ibm.com®, Informix, Netcool, System z, Tivoli, and Tivoli
Enterprise Console are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based
trademarks are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or

(registered trademarks of Sun Microsystems, Inc. in the United States,
), other countries, or both.
St
JCOMPATIBLE

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 173

174 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Index

Special characters

$ symbol
in probe rules files 17
@ symbol
in gateway mappings 100
in probe rules files 8, 17
@Identifier 8,9
@Tally 9
% symbol
in probe rules files 18

A
accessibility viii
ADD ROUTE gateway command 100,
117

alerts.details table 166
alertsjournal table 167
alerts.status table 153
anomalous event rates

configuring 58
API probes 3
arch

operating system directory viii
arithmetic functions

in probe rules files 36
arithmetic operators

in probe rules files 31
atoms

description 143
audience v

B

backslash sequences

regular expressions 149
bidirectional gateways 90, 91
bit manipulation operators

in probe rules files 31
BOOLEAN data type 168
bracket expressions

regular expressions 148

C

CHAR data type 168
command line options

gateways 109

probes 77
comparison operators

in probe rules files 32
configuration commands

gateways 118
configuration files

gateways 98
configuring

anomalous event rates 58

event flood 58

probe statistics 68

© Copyright IBM Corp. 1994, 2011

conventions, typeface viii

CORBA probes 3

correlation of events 9

COUNTERPART attribute in
gateways 94

CREATE FILTER gateway
command 101, 116

CREATE MAPPING gateway
command 115

D

data types 168
database probes 3
date functions
in probe rules files 37
debugging
probes 13, 130
rules files 53
deduplication 9, 41
deleting
elements in probe rules files 33
details function
in probe rules files 41
device probes 2
DROP FILTER gateway command 117
DROP MAPPING gateway
command 115
DUMP CONFIG gateway
command 107, 118

E

editing
probe properties 73
education
see Tivoli technical training viii
elements
in probe rules files 17
encrypting
passwords for gateway target
systems 97
passwords for the ObjectServer 13,
96
environment variables, notation viii
error messages
gateways 135
probes 123
event flood
configuring 58
exists function
in probe rules files 33

F

fields
Identifier 9
in probe rules files 17
Tally 9

filters

commands 116

in gateways 101
flood configuration rules file 59
flood rules file 62
flood.config.rules 59
flood.rules 62
functions

rules files 28

G

gateways

ADD ROUTE command 117

bidirectional 90, 91

command line options 109

configuration commands 118

COUNTERPART attribute 94

CREATE FILTER command 116

CREATE MAPPING command 115

DROP FILTER command 117

DROP MAPPING command 115

DUMP CONFIG command 118

dumping configurations
interactively 107

encrypting target system
passwords 97

error messages 135

filter commands 116

filter description 101

general commands 119

LOAD CONFIG command 118

LOAD FILTER command 117

loading configurations
interactively 107

log files 102

mapping commands 115

mapping description 100

overview 89

reader commands 111

reader description 94, 99

reader/writer modules 94

REMOVE ROUTE command 117

route commands 117

route description 95, 100

SAVE CONFIG command 118

saving configurations
interactively 107

secure mode 96

SET CONNECTIONS command 119

SET DEBUG MODE command 120

SHOW MAPPING ATTRIBUTES
command 116

SHOW MAPPING command 116

SHOW READERS command 112

SHOW ROUTES command 118

SHOW SYSTEM command 119

SHOW WRITER ATTRIBUTES
command 114

SHOW WRITER TYPES
command 114

175

gateways (continued)
SHOW WRITERS command 113
SHUTDOWN command 119
START READER command 111
START WRITER command 113
STOP READER command 112
STOP WRITER command 113
store-and-forward mode 96
TRANSFER command 120
types 90
unidirectional 90, 93
writer commands 112
writer description 99

Generic probe 13

genevent 43, 44

Identifier field 9
IDUC 111
IF statements in rules files 26
include files

in probe rules files 27
INCR data type 168
INTEGER data type 168
INTEGERG64 data type 168

L

LOAD CONFIG gateway command 107,
118
LOAD FILTER gateway command 117
log file probes 2
log function
in probe rules files 42
logical operators
in probe rules files 32
lookup tables 39
in probe rules files 39

M

manuals vi
mappings

commands 115

in gateways 100
math functions

in probe rules files 36
math operators

in probe rules files 31
messagelevel command line option 53
messagelog command line option 53
metacharacters

regular expressions 145
minimal quantifiers

regular expressions 147
miscellaneous probes 4
multicultural constructs

regular expressions 149
multithreaded processing 46

N

nco_aes_crypt 13, 97
nco_g crypt 13, 96, 97

176

nco_objserv 73
ncoadmin user group 106, 109
NETCOOL regular expression
library 143
non-greedy quantifiers
regular expressions 147

(o)

ObjectServer
data types 168
ObjectServer tables
alerts.details 166
alertsjournal 167
alerts.status 153
service.status 167
ON INSERT ONLY flag in gateways 100
online publications vi
operating system directory
arch viii
operators
rules files 28
ordering publications vi

P

password encryption 13, 96
peer-to-peer failover mode
probes 14
Ping probe 5
probe rules language
reserved words 51
probe self monitoring
resources 66
probe statistics
configuring 68
probes
anomalous event rates 58
API 3
arithmetic functions in rules files 36
arithmetic operators in rules files 31
bit manipulation operators in rules
files 31
command line options 77
comparison operators in rules

files 32
components 4
CORBA 3
customizations 57
database 3

date functions in rules files 37
debugging 13, 130

debugging rules files 53
deduplication in rules files 41
deleting elements in rules files 33
details function in rules files 41
device 2

editing properties 73

elements in rules files 17

error messages 123

event flood detection 58
executable file 4

fields in rules files 17
Identifier field 9

IF statements in rules files 26
include files in rules files 27

IBM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

probes (continued)
log file 2
log function in rules files 42
logical operators in rules files 32
lookup tables 39
lookup tables in rules files 39
math functions in rules files 36
math operators in rules files 31
metric data collection 68
miscellaneous 4
operation 10
overview 1
peer-to-peer failover mode 14
properties 5
properties file 5
properties in rules files 18
raw capture 13
rules file 6
rules file processing 17
search and replace function in rules

files 47

secure mode 13
self monitoring 64, 68
self monitoring setup 65
service function in rules files 49
setlog function in rules files 42
store and forward 10
string functions in rules files 33
string operators in rules files 31
SWITCH statement in rules files 26
temporary elements in rules files 18
testing rules files 53
time functions in rules files 37
troubleshooting 130
types 2
update function in rules files 41
using a specific probe 7

properties
in probe rules files 18
probes 77

publications vi

R

raw capture mode in probes 13
readers
commands 111
in gateways 94, 99
REAL data type 168
RegexpLibrary property 143
registertarget 43
regular expressions
atoms 143
backslash sequences 149
bracket expressions 148
metacharacters 145
minimal quantifiers 147
multicultural constructs 149
NETCOOL library 143
non-greedy quantifiers 147
overview 143
RegexpLibrary property 143
TRE library 145
REMOVE ROUTE gateway
command 117
reserved words
probe rules language 51

routes
commands 117
in gateways 95, 100
rules file processing 17
bit manipulation operators 31
comparison operators 32
date functions 37
deduplication 9
deleting elements 33
details function 41
exists function 33
IF statements 26
log function 42
logical operators 32
lookup tables 39
math functions 36
math operators 31
rules file examples 54
search and replace function 47
setlog function 42, 49
string functions 33
string operators 31
SWITCH statement 26
time functions 37
update function 41
rules files 53
functions 28
operators 28

S

SAVE CONFIG gateway command 107,
118
saving
gateway configurations
interactively 107
search and replace function
in probe rules files 47
secure mode
for gateways 96
for probes 13
self monitoring
probes 64
service function
in probe rules files 49
service.status table 167
SET CONNECTIONS gateway
command 106, 119
SET DEBUG MODE gateway
command 120
setdefaulttarget 43
setlog function
in probe rules files 42
settarget 43
SHORT data type 168
SHOW MAPPING ATTRIBUTES gateway
command 116
SHOW MAPPINGS gateway
command 116
SHOW READERS gateway
command 112
SHOW ROUTES gateway command 118
SHOW SYSTEM gateway command 107,
119
SHOW WRITER ATTRIBUTES gateway
command 114

SHOW WRITER TYPES gateway
command 114
SHOW WRITERS gateway
command 113
SHUTDOWN gateway command 119
START READER gateway command 99,
111
START WRITER gateway command 99,
113
STOP gateway command 107
STOP READER gateway command 112
STOP WRITER gateway command 99,
113
store-and-forward mode
in gateways 96
in probes 10
string functions
in probe rules files 33
string operators
in probe rules files 31
support information viii
SWITCH statement in rules files 26

-

Tally field 9
temporary elements

in probe rules files 18
testing

rules files 53
time functions

in probe rules files 37
Tivoli software information center vi
Tivoli technical training viii
training, Tivoli technical viii
TRANSFER gateway command 120
TRE regular expression library 145
troubleshooting

gateways 135

probes 130
typeface conventions viii

U

unidirectional gateways 90
UNSIGNED data type 168
UNSIGNED64 data type 168
update function

in probe rules files 41
UTC data type 168

\'

VARCHAR data type 168
variables, notation for viii

w

writers
commands 112
in gateways 99

Index

177

178 1BM Tivoli Netcool/OMNIbus: Probe and Gateway Guide

Printed in the Republic of Ireland

SC14-7608-00

	Contents
	About this publication
	Intended audience
	What this publication contains
	Publications
	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this publication

	Chapter 1. About probes
	Types of probes
	Device probes
	Log file probes
	Database probes
	API probes
	CORBA probes
	Miscellaneous probes

	Probe components
	Executable file
	Properties file
	Probe property types
	Probe property versus probe command-line option usage

	Rules file
	Re-reading the rules file

	Naming conventions for probe component files

	Probe architecture
	How unique identifiers are constructed for events
	Modes of operation of probes
	Store-and-forward mode for probes
	Raw capture mode for probes
	Secure mode for probes
	Peer-to-peer failover mode for probes

	Chapter 2. Probe rules file syntax
	Elements, fields, properties, and arrays in rules files
	Assigning values to ObjectServer fields
	Assigning temporary elements in rules files
	Assigning property values to fields
	Assigning values to properties
	Changing the value of the RawCapture property in the rules file

	Using arrays

	Rules file development guidelines
	Control statements in rules files
	FOREACH statement
	Examples of the looping function

	IF statement
	SWITCH statement
	BREAK statement

	Embedding multiple rules files in a rules file
	Rules file functions and operators
	Math and string operators
	Bit manipulation operators
	Comparison operators
	Logical operators
	Existence function
	Elements and event functions
	String functions
	Math functions
	Date and time functions
	Host and process utility functions
	Lookup table operations
	Defining lookup tables in the rules file
	Defining lookup tables in a separate file

	Update on deduplication function
	Details function
	Message logging functions
	Log function
	Setlog function
	Example: Message logging

	Sending alerts to alternative ObjectServers and tables
	Registering target ObjectServers and setting targets for alerts
	Sending alerts to multiple ObjectServers and tables
	Multithreaded processing of alert data

	Search and replace function
	Service function
	Monitoring probe loads
	Reserved words in the probe rules language

	Testing rules files
	Debugging rules files
	Rules file examples

	Chapter 3. Probe rules file customizations
	Detecting event floods and anomalous event rates
	Configuring probes to detect event floods and anomalous event rates
	Flood configuration rules file
	Flood rules file

	Enabling self monitoring of probes
	Configuration setup for self monitoring of probes
	Tivoli Netcool/OMNIbus configuration files for the self monitoring of probes
	Configuring probes for self monitoring

	Chapter 4. Running probes
	Running probes on UNIX
	Running probes on Windows
	Running a probe as a console application
	Running a probe as a service

	Use of OMNIHOME and NCHOME environment variables for probes

	Chapter 5. Common probe properties and command-line options
	Chapter 6. About gateways
	Types of gateways
	ObjectServer gateways
	Unidirectional ObjectServer Gateway
	Bidirectional ObjectServer Gateway
	ObjectServer Gateway writers and failback (alert replication between sites)

	Database, helpdesk, and other gateways
	Gateway components
	Unidirectional gateways
	Bidirectional gateways
	Reader component
	Writer modules
	Routes
	Alert updates from the helpdesk

	Modes of operation of gateways
	Store-and-forward mode for gateways
	Secure mode for gateways
	Encrypting target system passwords

	Gateway configuration
	Gateway configuration file
	Reader configuration
	Writer configuration
	Route configuration
	Mapping configuration
	Filter configuration

	Gateway debugging
	Gateway writers and failback
	Creating conversion tables

	Chapter 7. Running gateways
	Running gateways on UNIX
	Running gateways on Windows
	Running a gateway as a console application
	Running a gateway as a service

	Configuring gateways interactively
	Saving configurations interactively
	Dumping and loading gateway configurations interactively

	Use of OMNIHOME and NCHOME environment variables for gateways

	Chapter 8. Gateway commands and command-line options
	Common gateway command-line options
	Reader commands
	START READER
	STOP READER
	SHOW READERS

	Writer commands
	START WRITER
	STOP WRITER
	SHOW WRITERS
	SHOW WRITER TYPES
	SHOW WRITER ATTRIBUTES

	Mapping commands
	CREATE MAPPING
	DROP MAPPING
	SHOW MAPPINGS
	SHOW MAPPING ATTRIBUTES

	Filter commands
	CREATE FILTER
	LOAD FILTER
	DROP FILTER

	Route commands
	ADD ROUTE
	REMOVE ROUTE
	SHOW ROUTES

	Configuration commands
	LOAD CONFIG
	SAVE CONFIG
	DUMP CONFIG

	General commands
	SHUTDOWN
	SET CONNECTIONS
	SHOW SYSTEM
	SET DEBUG MODE
	TRANSFER

	Appendix A. Probe error messages and troubleshooting techniques
	Generic error messages
	Fatal-level messages
	Error-level messages
	Warning-level messages
	Information-level messages
	Debug-level messages

	ProbeWatch and TSMWatch messages
	Troubleshooting probes
	Common problem causes
	What to do if
	The probe does not start
	The probe is not sending alerts to the ObjectServer
	The probe is losing events
	The probe is consuming too much CPU time
	The event list is not being populated properly

	Appendix B. Common gateway error messages
	Appendix C. Regular expressions
	NETCOOL regular expression library
	TRE regular expression library
	Metacharacters
	Minimal or non-greedy quantifiers
	Bracket expressions
	Constructs for multicultural support
	Backslash sequences

	Appendix D. ObjectServer tables and data types
	alerts.status table
	alerts.details table
	alerts.journal table
	service.status table
	ObjectServer data types

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

