
Netcool/OMNIbus ObjectServer Gateway
Version 7 Release 3

Reference Guide

SC14-6090-00

���

Netcool/OMNIbus ObjectServer Gateway
Version 7 Release 3

Reference Guide

SC14-6090-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 55.

Edition notice

This edition applies to version 7 release 3 modification 1 of IBM Tivoli Netcool/OMNIbus ObjectServer Gateway
(product number 5724-S42) and to all subsequent releases and modifications until otherwise indicated in new
editions.

© Copyright IBM Corporation 1996, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. IBM Tivoli Netcool/OMNIbus
ObjectServer Gateway 1
Features of the ObjectServer Gateway 1
Unidirectional ObjectServer Gateways 2
Bidirectional ObjectServer Gateways 3

Chapter 2. Installing the gateway on
Tivoli Netcool/OMNIbus V7.3.0 or later . 5
Installing the gateway on UNIX and Linux operating
systems 5
Installing the gateway on Windows operating
systems 6

Chapter 3. Configuration of the
unidirectional ObjectServer Gateway . . 7
Unidirectional gateway properties 7

Hash table cache 16
Error handling 17
Process Agent control 17
Authentication 17
Buffer size for unidirectional ObjectServer
Gateways 17
Secure connections for unidirectional
ObjectServer Gateways 18
Failback for unidirectional ObjectServer
Gateways 18
Store and forward for unidirectional ObjectServer
Gateways 19
Resynchronization properties of unidirectional
ObjectServer Gateways 19

Chapter 4. Configuration of the
bidirectional ObjectServer Gateway . . 21
Bidirectional gateway properties 21

Hash table cache 35
Error handling 36
Process Agent control 36
Authentication 36
Buffer size for bidirectional ObjectServer
Gateways 36
Secure ObjectServer connections for bidirectional
ObjectServer Gateways 37
Failback for bidirectional ObjectServer Gateways 37
Store and forward for bidirectional ObjectServer
Gateways 38
Alternative deletion strategy. 38
Resynchronization properties of bidirectional
ObjectServer Gateways 39

Chapter 5. ObjectServer Gateway
mapping 41
Mapping attributes 42
Example mapping 43

Chapter 6. Startup command file . . . 49
SHOW PROPS 49
GET CONFIG 49
FAILOVER SYNCH. 49

Chapter 7. Table replication definition
file 51
Example table replication definition file 53

Notices 55
Trademarks 57

Index 59

© Copyright IBM Corp. 1996, 2011 iii

iv IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 1. IBM Tivoli Netcool/OMNIbus ObjectServer Gateway

The ObjectServer Gateway is used to replicate table data (for example, alert-related
data) between different IBM Tivoli Netcool/OMNIbus ObjectServers.

ObjectServer Gateways consist of readers and writers. Readers extract alerts from a
source ObjectServer. Writers send the alert data to a target ObjectServer. An
ObjectServer Gateway can be unidirectional or bidirectional. ObjectServer
Gateways can be used to:
v Maintain a backup ObjectServer.
v Replicate alerts between different Network Operations Centers (NOCs).
v Create a tiered architecture.

The following table provides a summary of the gateway:

Table 1. Summary of the ObjectServer Gateway

Gateway target IBM Tivoli Netcool/OMNIbus ObjectServer V7.1 or later

Gateway executable filename nco_g_objserv_uni for a unidirectional gateway

nco_g_objserv_bi for a bidirectional gateway
Note: Both binaries use the Netcool® Gateways Toolkit
(NGTK) library, which provides the basic framework for
the gateway process and are configured independently
of each other. The NGTK library is installed as a part of
Tivoli Netcool/OMNIbus.

Patch number 1.0

Gateway supported on Solaris, AIX®, HP-UX, Linux, Linux for System z,
Windows

Configuration files $OMNIHOME/etc/server_name.props

Requirements A currently supported version of TivoliTivoli
Netcool/OMNIbus

Licensing Electronic licensing is no longer implemented in IBM®

Tivoli® Netcool products. All IBM Tivoli Netcool
products now use the IBM software licensing process.

Remote connectivity Yes

Failover or failback functionality Available

Features of the ObjectServer Gateway
Unidirectional and bidirectional ObjectServer Gateways share functions that they
use to pass data between ObjectServers.

Passing table data

The gateway can replicate the data in any table between ObjectServers. Details of
the tables to be replicated are stored in the table definition file.

© Copyright IBM Corp. 1996, 2011 1

Centralized property management

The gateway uses centralized property management and separates properties from
data processing configuration. Configuration of the unidirectional and bidirectional
gateways is performed using configuration files.

Failback

The failback function comes into operation when a gateway loses its connection to
the primary ObjectServer; this enables the gateway to connect to a backup
ObjectServer. The failback function also enables the gateway to reconnect to the
primary ObjectServer when it becomes active again.

Unidirectional ObjectServer Gateways
The unidirectional ObjectServer Gateway enables alerts to flow in one direction,
from a source ObjectServer to a destination ObjectServer.

Changes made in the source ObjectServer are reflected in the destination
ObjectServer, but changes in the destination ObjectServer are not reflected in the
source ObjectServer.

The following figure shows the configuration of a unidirectional ObjectServer
Gateway:

Information flow

The unidirectional gateway is comprised of mapper, reader, and writer
components. The flow of information between the components is as follows:
1. The reader component reads from the source ObjectServer and passes the data

to the mapper component.
2. The mapper component receives data from the reader component, transforms

the data into an appropriate form for the target writer using the map definition
file, and passes the data to the writer component.

3. The writer component receives the source data from the mapper component
and writes it to the destination ObjectServer.

Mapper

ObjectServer
NCOMS1

Reader

ObjectServer
NCOMS2

Writer

Figure 1. Unidirectional ObjectServer Gateway

2 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Bidirectional ObjectServer Gateways
The bidirectional ObjectServer Gateway enables alerts to flow in both directions
between a source and a destination ObjectServer.

Any changes made in the source ObjectServer are replicated in the destination
ObjectServer, and changes in the destination ObjectServer are replicated in the
source ObjectServer. This ensures that both ObjectServers contain the same alerts
and allows you to maintain a backup ObjectServer.

The following figure shows the configuration of a bidirectional ObjectServer
Gateway:

Information flow

The bidirectional gateway is comprised of a mapper and two reader/writer
components (one for each ObjectServer). The flow of information between the
components is as follows:
1. A source reader/writer component reads from the source ObjectServer and

passes the data to the mapper component.
2. The mapper component receives data from the source reader/writer

component, transforms the data into an appropriate form using the map
definition file, and passes the data to the target reader/writer component.

3. A second reader/writer component receives the source data from the mapper
component and writes it to the destination ObjectServer.

Note: Bidirectional gateways can be used to create a failover pair of
ObjectServers or to communicate between virtual pairs of ObjectServers.

Mapper

ObjectServer
NCOMS1

Reader

ObjectServer
NCOMS2

Writer

ReaderWriter

Figure 2. Bidirectional ObjectServer Gateway

Chapter 1. IBM Tivoli Netcool/OMNIbus ObjectServer Gateway 3

4 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 2. Installing the gateway on Tivoli Netcool/OMNIbus
V7.3.0 or later

With the introduction of Tivoli Netcool/OMNIbus V7.3.0, all gateways are installed
using the Tivoli Netcool/OMNIbus installer. You can install the gateway using the
installation wizard, using a text-based installer (console mode), or using settings
predefined in a text file (silent mode).

The installation package and patches for the gateway are supplied as archives. The
archive management application that you use to extract the files must be able to
preserve the directory structure contained in the archive on extraction.

Installing the gateway on UNIX and Linux operating systems

To install the gateway on UNIX and Linux operating systems, use the following
steps:
1. Download the installation package for the gateway from the Passport

Advantage Online Web site:
http://www-306.ibm.com/software/howtobuy/passportadvantage/
pao_customers.htm

2. Make a backup of any existing configuration files that you want to retain.
3. Extract the contents of the installation package to a temporary directory.
4. To install the gateway using the installation wizard, use the following steps:

a. Run the following command:
$NCHOME/omnibus/install/nco_install_integration

b. When the installation wizard starts, specify the extracted directory that
contains the README.txt file as the location of the gateway installation files.

c. Accept the license conditions.
5. To install the gateway using console mode, use the following steps:

a. Run the following command:
$NCHOME/omnibus/install/nco_install_integration -i console

b. When the text-based installer starts, specify the extracted directory that
contains the README.txt file as the location of the gateway installation files.

c. Accept the license conditions.
6. To install the gateway using silent mode, use the following steps:

a. Create a text file named reponse.txt and add the following entries:
PROBE_OR_GATE_LOCATION=README_directorypath
LICENSE_ACCEPTED=true

where README_directorypath is the path to the directory containing the
README.txt file in the extracted package.

b. Run the following command:
$NCHOME/omnibus/install/nco_install_integration -i silent -f
response_path/response.txt

where response_path is the full path to the response.txt file.

In each case, the gateway is installed in the $NCHOME/omnibus/gates directory.

© Copyright IBM Corp. 1996, 2011 5

http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm

Installing the gateway on Windows operating systems

To install a gateway on Windows operating systems, use the following steps:
1. Download the installation package for the gateway from the Passport

Advantage Online Web site:
http://www-306.ibm.com/software/howtobuy/passportadvantage/
pao_customers.htm

2. Make a backup of any existing configuration files that you want to retain.
3. Extract the contents of the package to a temporary directory.
4. To install the gateway using the installation wizard, use the following steps:

a. Run the following command:
%NCHOME%\omnibus\install\nco_install_integration

b. When the installation wizard starts, specify the extracted directory that
contains the README.txt file as the location of the gateway installation files.

c. Accept the license conditions.
5. To install the gateway using console mode, use the following steps:

a. Run the following command:
%NCHOME%\omnibus\install\nco_install_integration -i console

b. When the text-based installer starts, specify the extracted directory that
contains the README.txt file as the location of the gateway installation files.

c. Accept the license conditions.
6. To install the gateway using silent mode, use the following steps:

a. Create a text file named reponse.txt and add the following entries:
PROBE_OR_GATE_LOCATION=README_directorypath
LICENSE_ACCEPTED=true

where README_directorypath is the path to the directory containing the
README.txt file in the extracted package.

b. Run the following command:
%NCHOME%\omnibus\install\nco_install_integration -i silent -f
response_path\response.txt

where response_path is the full path to the response.txt file.

In each case, the gateway is installed in the %NCHOME%\omnibus\gates directory.

6 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm

Chapter 3. Configuration of the unidirectional ObjectServer
Gateway

The unidirectional gateway is configured using a properties file. This is a text file
that contains a set of properties and their corresponding values. These properties
define the operational environment of the gateway, such as connection details and
the location of the other configuration files.

To run the unidirectional gateway, enter the following command on the command
line:
nco_g_objserv_uni -name

Note: To reduce latency, run the gateway on the same box to which it writes alerts.
You can also reduce latency by adjusting the buffer size.

The default location for the properties file for the unidirectional gateways is:

$OMNIHOME/etc/server_name.props

The default properties file must be copied to the $OMNIHOME/etc folder.

Note: The properties files for the unidirectional and bidirectional gateways contain
similar properties; however, they are described separately for clarity.

Unidirectional gateway properties
You can configure ObjectServer Gateways by using properties defined in a
properties file. The unidirectional ObjectServer Gateway and the bidirectional
ObjectServer Gateway have some of these properties in common, but each set of
properties is described separately for ease of reference.

For information about the common properties and Interprocess Communication
(IPC) properties, see the IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide
SC14-7608. The following table describes the common gateway properties.

Table 2. Properties and command line options used by unidirectional gateways

Property name Command line option Description

Gate.CacheHash TblSize
integer

-chashtblsize integer Use this property to specify the size (in
elements) that the gateway allocates for
the hash table cache.

The default is 5023.

Gate.MapFile string -mapfile string Use this property to specify the
location of the map definition file.

The default is $OMNIHOME/gates/
objserv_uni/ objserv_uni.map.

Gate.StartupCmdFile
string

-startupcmdfile string Use this property to specify the
location of the startup command file.

The default is $OMNIHOME/objserv_uni/
objserv_uni.startup.cmd.

© Copyright IBM Corp. 1996, 2011 7

Table 2. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Transfer.
FailoverSyncRate
integer

-fsyncrate integer Use this property to specify the rate (in
minutes) of the failover
synchronization.

The default is 60.

Gate.NGtkDebug boolean -ngtkdebug boolean Use this property to specify whether
the NGTK library should log debug
messages.

The default is TRUE.
Note: You can specify which debug
messages are included in the debug log
file using the Gate.Mapper.Debug,
Gate.Reader.Debug and
Gate.Writer.Debug properties.

Gate.PAAware integer -paaware integer Use this property to specify whether
the gateway is Process Agent (PA)
aware.

The default is 0 (not PA aware).
Note: This property is maintained by
the PA server and is included in the
properties file for information only.

Gate.PAAwareName string -paname string Use this property to specify the name
of the Process Agent controlling the
gateway.

The default is " ".
Note: This property is maintained by
the PA server and is included in the
properties file for information only.

Gate.UsePamAuth boolean -usepamauth boolean Use this property to specify whether
PAM authentication is used.

The default is FALSE.
Note: To run the gateway in FIPS 140-2
mode, you must set this property to
TRUE.

Gate.UnixAdminGroup
string

-unixadmingroup string Use this property to specify the
administration group to which the
gateway must belong if standard UNIX
authentication is used.

The default is " ".

MaxLogFileSize integer -maxlogfilesize integer Use this property to specify the
maximum size (in kilobytes) of the log
file. When the log file reaches this size,
the gateway renames the log file by
appending the name with the
characters .old and creates a new log
file.

The default is 1024.

8 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 2. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

OldTimeStamp boolean -oldtimestamp boolean Use this property to specify old-style
timestamp format the gateway uses in
the log file.

Set the value to TRUE to specify the
timestamp format used in Tivoli
Netcool/OMNIbus V7.2.1, or earlier.

For example: dd/MM/YYYY hh:mm:ss
AM or dd/MM/YYYY hh:mm:ss PM
when the locale is set to en_GB on a
Solaris 9 computer.

Set this value to FALSE to display the
timestamp in ISO 8601 format.

For example: YYYY-MM-DDThh:mm:ss,
where T separates the date and time,
and hh is in 24-hour clock.

The default is FALSE.

Note: Do not set the OldTimeStamp
property to TRUE when running in
UTF-8 mode.

N/A -utf8enabled boolean Use this command line option to
control the encoding of data that is
passed into, or generated by, this
gateway when running on Windows.

Set the value of -utf8enabled to TRUE
to run the application in UTF-8 mode.

The default is FALSE, which causes the
default system code page to be used.

Note: The OldTimeStamp property must
not be set to TRUE when running in
UTF-8 mode.

Mapping properties:

Gate.Mapper.Debug
boolean

-mapperdebug boolean Use this property to specify whether
the gateway includes mapper debug
messages in the debug log.

The default is TRUE.

Gate.Mapper.Forward
HistoricDetails boolean

-mapperforhistdtls
boolean

Use this property to specify whether
the gateway forwards all historic
details on converted update.

The default is FALSE.

Gate.Mapper.Forward
HistoricJournals
boolean

-mapperforhistjrnl
boolean

Use this property to specify whether
the gateway forwards all historic
journals on converted update.

The default is FALSE.

Gateway reader properties:

Chapter 3. Configuration of the unidirectional ObjectServer Gateway 9

Table 2. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Reader.
CommonNames string

-readercommonnames
string

If the gateway is connecting to an
ObjectServer using SSL, and the
Common Name field of the received
certificate does not match the name
specified by the Gate.Reader.Server
property (for example, in a failover
pair or a virtual server setting), use this
property to specify a comma-separated
list of acceptable SSL Common Names.

The default setting is to use the
Gate.Reader.Server property.

Gate.Reader.Debug
boolean

-readerdebug boolean Use this property to specify whether
the gateway includes gateway reader
debug messages in the debug log.

The default is TRUE.

Gate.Reader.
Description string

-readerdescription
string

Use this property to specify the
application description for the reader
connection. This description is used in
triggers and allows you to determine
which component of the gateway
attempted to perform an action.

The default is " ".

Gate.Reader.Details
TableName string

-readerdetailstblname
string

Use this property to specify the name
of the details table that the gateway
reads.

The default is alerts.details.

Gate.Reader.Failback
Enabled boolean

-readerfailbackenabled
boolean

Use this property to specify failback for
this ObjectServer.

The default is TRUE.

Gate.Reader.Failback
Timeout integer

-readerfailbacktimeout
integer

Use this property to specify the time
(in seconds) that the gateway allows
before entering failback mode.

The default is 30.

10 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 2. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Reader.IDUC
FlushRate integer

-readeriducflushrate
integer

Use this property to specify the rate (in
seconds) of the granularity of the
reader.

If you set this property to 0, the reader
gets its updates at the same granular
rate as that of the ObjectServer to
which it is connected.

The default is 0.

Attention: If you set this property to
a value greater than 0, the reader issues
automatic IDUC flush requests to the
ObjectServer with this frequency. This
enables the reader to run at a faster
granularity than that of the
ObjectServer, thus enabling the
gateway to capture more detailed event
changes in systems where the
ObjectServer itself has high granularity
settings.

Gate.Reader.
IgnoreStatusFilter
boolean

-readerignorestatusfilter
boolean

Use this property to permit rows from
the alerts.details table and alerts.details
table to be passed from the collection
layer to the aggregation layer in a
multi-tier setup.

The default is FALSE, that is, rows are
not passed between the layers.

Gate.Reader.Journal
TableName string

-readerjournaltblname
string

Use this property to specify the name
of the journal table that the gateway
reads.

The default is alerts.journal.

Gate.Reader.LogOSSql
boolean

-readerlogossql boolean Use this property to specify whether
the gateway logs all SQL commands
sent to the ObjectServer in debug
mode.

The default is FALSE.

Chapter 3. Configuration of the unidirectional ObjectServer Gateway 11

Table 2. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Reader.Password
string

-readerpassword string Use this property to specify the
password associated with the user
specified by the Gate.Reader.Username
property.

The default is " ".

If the ObjectServer from which the
gateway reads alerts is running on
Tivoli Netcool/OMNIbus V7, 7.1, 7.2,
or 7.2.1 this password must be
encrypted by the nco_g_crypt utility.

If the ObjectServer from which the
gateway reads alerts is running on
Tivoli Netcool/OMNIbus V7.2.1 in
FIPS 140-2 mode, this password must
be either plain text or encrypted using
the nco_aes_crypt utility.

For details about the encryption
utilities, see the IBM Tivoli
Netcool/OMNIbus Administration Guide
(SC14-7605).

Gate.Reader.Reconnect
Timeout integer

-readerreconntimeout
integer

Use this property to specify the time
(in seconds) between each reconnection
poll attempt that the gateway makes if
the connection to the ObjectServer is
lost.

The default is 30.

Gate.Reader.Server
string

-readerserver string Use this property to specify the name
of the ObjectServer from which the
gateway reads alerts.

The default is NCOMS.

Gate.Reader.Status
TableName string

-readerstatustblname
string

Use this property to specify the name
of the status table that the gateway
reads.

The default is alerts.status.

Gate.Reader.Tbl
ReplicateDefFile string

-readertblrepdeffile
string

Use this property to specify the path to
the table replication definition file.

The default is $OMNIHOME/gates/
objserv_uni/
objserv_uni.reader.tblrep.def.

Gate.Reader.Username
string

-readerusername string Use this property to specify the
username that is used to authenticate
the ObjectServer connection.

The default is root.

Gateway writer properties:

12 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 2. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Writer.Buffersize
integer

-writerbufsize integer Use this property to specify the
number of entries that the gateway
stores in the buffer before flushing, if
buffering is enabled. This property can
be used to fine-tune the efficiency of
the gateway.

The default is 25.
Note: The gateway flushes the buffer
when the end of a batch of SQL
statements has been reached regardless
of the buffer size.

Gate.Writer.
CommonNames string

-writercommonnames
string

If the gateway is connecting to an
ObjectServer using SSL, and the
Common Name field of the received
certificate does not match the name
specified by the Gate.Writer.Server
property (for example, in a failover
pair or a virtual server setting), use this
property to specify a comma-separated
list of acceptable SSL Common Names.

The default setting is to use the
Gate.Writer.Server property.

Gate.Writer.Debug
boolean

-writerdebug boolean Use this property to specify whether
the gateway includes gateway writer
debug messages in the debug log.

The default is TRUE.

Gate.Writer.Description
string

-writerdescription
string

Use this property to specify the
application description for the writer
connection. This description is used in
triggers and allows you to determine
which component of the gateway
attempted to perform an action.

The default is " ".

Gate.Writer.Failback
Enabled boolean

-writerfailback
enabled boolean

Use this property to specify failback for
this ObjectServer.

The default is TRUE.

Gate.Writer.Failback
Timeout integer

-writerfailback
timeout integer

Use this property to specify the time
(in seconds) that the gateway allows
before checking for the return of the
master ObjectServer and failing back.

The default is 30.

Gate.Writer.LogOSSql
boolean

-writerlogossql boolean Use this property to specify whether
the gateway logs all SQL commands
sent to the ObjectServer in debug
mode.

The default is FALSE.

Chapter 3. Configuration of the unidirectional ObjectServer Gateway 13

Table 2. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Writer.Password
string

-writerpassword string Use this property to specify the
password associated with the user that
is specified by the
Gate.Writer.Username property.

The default is " ".

If the ObjectServer to which the
gateway writes alerts is running on
Tivoli Netcool/OMNIbus v7, 7.1, 7.2, or
7.2.1, this password must be encrypted
by the nco_g_crypt utility.

If the ObjectServer to which the
gateway writes alerts is running on
Tivoli Netcool/OMNIbus V7.2.1 in
FIPS 140-2 mode, this password must
be either plain text or encrypted using
the nco_aes_crypt utility.

For details about the encryption
utilities, see the IBM Tivoli
Netcool/OMNIbus Administration Guide
(SC14-7605).

Gate.Writer.Reconnect
Timeout integer

-writerreconntimeout
integer

Use this property to specify the time
(in seconds) between each reconnection
poll attempt if the gateway loses the
connection to the ObjectServer.

The default is 30.

Gate.Writer.Refresh
CacheOnUpdate boolean

-writerrefcacheonupd
boolean

Use this property to specify whether
the hash table cache for this
ObjectServer is refreshed.

You have the following options:

v TRUE: The cache is resynchronized
with the target ObjectServer prior to
processing each collection of row
updates for a table in the current
IDUC window.

v FALSE: The gateway assumes that its
cache is accurate and does not
resynchronize it.

The default is TRUE.

Gate.Writer.SAF boolean -writersaf boolean Use this property to specify that the
gateway stores all table entries if the
destination ObjectServer is unavailable
and to forward them when the
ObjectServer becomes available again.

The default is FALSE.

14 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 2. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Writer.SAFFile
string

-writersaffile string Use this property to specify the name
of the file that the gateway uses to
store table entries while the destination
ObjectServer is unavailable.

The default is $OMNIHOME/var/
objserv_uni_NCO_GATE_Writer.store.
Note: This file is only used if the
Gate.Writer.SAF property is set to
TRUE.

Gate.Writer.Server
string

-writerserver string Use this property to specify the name
of the ObjectServer to which the
gateway writes alerts.

The default is REMOTE.

Gate.Writer.Username
string

-writerusername string Use this property to specify the
username that is used to authenticate
the ObjectServer connection. This
username is used to establish both the
writer's IDUC connection and the
subsidiary SQL command connection.

The default is root.

Resynchronization properties:

Gate.Resync.Enable
boolean

-resyncenable boolean Use this property to specify that the
gateway uses resynchronization.

The default is TRUE.

Gate.Writer.SAF
ReplayOnResync boolean

-writersafreplayonresync
boolean

Use this property to specify how
store-and-forward (SAF) replays on
resynchronization.

You have the following options:

v TRUE: SAF replays regardless of
whether Gate.Resync.Enable has
been set to TRUE.

v FALSE: SAF replays only when
Gate.Resync.Enable has been set to
FALSE.

The default is FALSE.

Gate.Resync. LockType
string

-resynclocktype string Use this property to specify the locking
option on the source and destination
ObjectServers while resynchronizing
events.

You have the following options:

v FULL: The gateway locks both the
source and target ObjectServers.

v PARTIAL: The gateway only locks the
destination ObjectServer.

v NONE: The gateway locks neither the
source nor the target ObjectServer.

The default is FULL.

Chapter 3. Configuration of the unidirectional ObjectServer Gateway 15

Table 2. Properties and command line options used by unidirectional gateways (continued)

Property name Command line option Description

Gate.Resync.Type string -resynctype string Use this property to specify the type of
resynchronization that the gateway
performs.

You have the following options:

v NORMAL: The gateway checks the
contents of the two ObjectServers
specified by the Gate.Reader.Server
and Gate.Writer.Server properties,
and, if necessary, resynchronizes
them.

v UPDATE: The gateway performs the
resynchronization with updates.

v MINIMAL: The gateway only performs
updates for the events that have
changed since a failure occurred.

The default is NORMAL.

Gate.Writer.
UseBulkInsCmd boolean

-usebulkinscmd boolean Use this property to specify bulk
inserts for faster resynchronization.
Note: You can only set this property to
TRUE if you are using the latest version
of both ObjectServer and the gateway.

You have the following options:

v TRUE: The gateway changes the
format of the insert statement to
enable the ObjectServer to process
bulk inserts more efficiently.

v FALSE: The gateway makes no
changes to the insert statement
before sending events to the
ObjectServer.

The default is FALSE.

Hash table cache
The gateway uses a hash table cache to store details of tables that require
transferring from one ObjectServer to another.

The main function of the cache is to facilitate journal and details table insert
operations. When a journal or detail is forwarded for insertion into a target
ObjectServer, the gateway writer needs to know the corresponding status serial in
the target ObjectServer. This information is found in the cache. It is also used for
any other tables specified using the table replication definition table.

The cache aids performance optimization by providing the gateway with an
in-memory summarized view of the contents of the ObjectServers to which it is
linked. This means that the gateway does not have to query an ObjectServer to
check for the existence of an event, or the Serial value or Tally value of an event;
it can check the cache of the target ObjectServer instead.

You can control the size of the hash table cache by using the
Gate.CacheHashTblSize property. By default, the size of the hash table cache is

16 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

5023 elements (or rows). This can be increased if the status table has a large
number of rows (for example, in excess of 20,000).

Note: To maximize efficiency, you should specify a prime number for the
Gate.CacheHashTblSize property.

Error handling
You can troubleshoot problems with the gateway by consulting error messages. To
help you do this, the gateway has configurable error handling.

Error handling is provided by the Netcool/OMNIbus Gateway Toolkit (NGTK)
library. To specify that the NGTK library logs debug messages, set the
Gate.NGtkDebug property to TRUE.

You can specify which debug messages are included in the debug files by using
the Gate.Mapper.Debug, Gate.Reader.Debug, and Gate.Writer.Debug properties;
these can be set to TRUE or FALSE as appropriate.

Process Agent control
You can control how the gateway runs by using Process Agent control.

The gateway can be run under Process Agent (PA) control. The Gate.PAAware
property indicates whether the gateway is PA aware. The Gate.PAAwareName
property indicates which PA is running the gateway.

These properties are maintained automatically by the PA server and provide
information only. Do not change these properties manually.

Authentication
Use the Gate.UsePamAuth property to specify how the gateway authenticates users.

Either standard UNIX authentication or PAM authentication can be used with the
ObjectServer gateway. By default, the gateway uses standard UNIX authentication.
To use PAM authentication, set the Gate.UsePamAuth property to TRUE.

Important: To run the gateway in FIPS 140-2 mode, you must set the
Gate.UsePamAuth property to TRUE.

Buffer size for unidirectional ObjectServer Gateways
The buffer size controls the number of entries that the gateway stores in its buffer
before flushing them to the ObjectServer.

To set the buffer size, use the Gate.Writer.Buffersize property. This property can
be adjusted to fine-tune the efficiency of the gateway.

The optimum value for the buffer size depends upon the average event size and
the speed of the network. The default value has proved to be efficient for many
installations. To determine the most efficient setting for your system, compare the
timing figures for resynchronization operations performed using different settings
for this property.

Chapter 3. Configuration of the unidirectional ObjectServer Gateway 17

Secure connections for unidirectional ObjectServer Gateways
When an ObjectServer is running in secure mode, the gateway must make its
connection either as a known ObjectServer user or as the root user.

If you want to resynchronize security data when your ObjectServers are running in
secure mode, you should run the gateway as the root user. If you fail to do this,
when you attempt the resynchronization the gateway quits and the destination
ObjectServer will have no security data. This is because the gateway deletes the
destination permissions and so cannot insert rows copied from the source table.
Running the gateway as the root user overcomes this problem because it does not
require permissions to be set explicitly.

Failback for unidirectional ObjectServer Gateways
Two ObjectServers can be set up as a pair, with one acting as the primary and the
other as the backup. You can specify how the backup ObjectServer fails back to the
primary ObjectServer using the failback properties defined in the properties file.

Example unidirectional gateway failback configuration

The following figure shows an example unidirectional gateway failback
configuration:

Setting up failback

To set up failback, set the BackupObjectServer property for the backup
ObjectServer to TRUE. For details about setting ObjectServer properties, see the
IBM Tivoli Netcool/OMNIbus Administration Guide.

Enabling failback

To enable failback, in the gateway properties file, set the Gate.Reader.Failback
and Gate.Writer.Failback properties to TRUE. When the primary ObjectServer fails,
the reader and writer fail over to the backup ObjectServer without shutting down.
When the reader or writer have detected that they are now connected to a backup
ObjectServer, they periodically poll for the return of the primary ObjectServer.
When the primary ObjectServer has been detected again, the reader or writer
automatically fail back to the primary ObjectServer.

To specify the frequency with which the reader and writer parts of the gateway
poll the failed (primary) ObjectServer, set the Gate.Reader.FailbackTimeout and
Gate.Writer.FailbackTimeout properties.

ObjectServer
Gateway

Primary
ObjectServer

Backup
ObjectServer

F
a
ilo

v
e
r F

a
ilb

a
c
k

Figure 3. Unidirectional ObjectServer Gateway

18 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Store and forward for unidirectional ObjectServer Gateways
The gateway supports store and forward on any table when the destination
ObjectServer goes offline. This feature can be configured to store and forward
either all or none of the tables being replicated.

To activate the store and forward function, set the Gate.Writer.SAF property to
TRUE. Then, specify the file to which the alerts are written while the destination
ObjectServer is offline using the Gate.Writer.SAFFile property and restart the
gateway. To deactivate the store and forward function, set the Gate.Writer.SAF
property to FALSE and restart the gateway.

Resynchronization properties of unidirectional ObjectServer
Gateways

You specify how unidirectional ObjectServer Gateways perform resynchronization
using the resynchronization properties defined in the properties file.

The following table describes the resynchronization properties of unidirectional
ObjectServer Gateways.

Table 3. Resynchronization properties and command line options of unidirectional
ObjectServer Gateways

Property name Command line option Description

Gate.Resync.Enable
boolean

-resyncenable boolean Use this property to specify that the
gateway uses resynchronization.

The default is TRUE.

Gate.Resync.Type string -resynctype string Use this property to specify the type of
resynchronization that is required.

You have the following options:

v NORMAL: The gateway checks the
contents of the two ObjectServers
specified by the Gate.Reader.Server
property and Gate.Writer.Server
property, and, if necessary,
resynchronizes them.

v UPDATE: The gateway performs the
resynchronization with updates. This
option ensures that updates made in
the upper tier are not lost during the
resynchronization

The default is NORMAL.

Chapter 3. Configuration of the unidirectional ObjectServer Gateway 19

20 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 4. Configuration of the bidirectional ObjectServer
Gateway

The bidirectional gateway is configured using a properties file. This is a text file
that contains a set of properties and their corresponding values. These properties
define the gateway's operational environment, such as connection details and the
location of the other configuration files.

To start the bidirectional gateway, enter the following command on the command
line:
nco_g_objserv_bi -name

To reduce latency, run the gateway on the same box to which it writes alerts. You
can also reduce latency by adjusting the buffer size.

For information about the common properties and Interprocess Control (IPC), see
the IBM Tivoli Netcool/OMNIbus Administration Guide (SC14-7605).

The default location for the properties file for the unidirectional and bidirectional
gateways is:

$OMNIHOME/etc/server_name.props

The default properties file must be copied to the $OMNIHOME/etc folder.

Note: The properties files for the unidirectional and bidirectional gateways contain
similar properties; however, they are described separately for clarity.

Bidirectional gateway properties
You can configure ObjectServer Gateways by using properties defined in a
properties file. The unidirectional ObjectServer Gateway and the bidirectional
ObjectServer Gateway have some of these properties in common, but each set of
properties is described separately for ease of reference.

For information about the common properties and Interprocess Communication
(IPC) properties, see the IBM Netcool/OMNIbus Probe and Gateway Guide
(SC23-6387). The following table describes the common gateway properties.

Table 4. Common gateway properties and command line options

Property name Command line option Description

Gate.CacheHashTblSize
integer

-chashtblsize integer Use this property to specify
the size (in elements) that the
gateway allocates for the
hash table cache.

The default is 5023.

© Copyright IBM Corp. 1996, 2011 21

Table 4. Common gateway properties and command line options (continued)

Property name Command line option Description

Gate.MapFile string -mapfile string Use this property to specify
the location of the map
definition file.

The default is
$OMNIHOME/gates/
objserv_uni/
objserv_uni.map.

Gate.StartupCmdFile string -startupcmdfile string Use this property to specify
the location of the startup
command file.

The default is
$OMNIHOME/objserv_uni/
objserv_uni.startup.cmd.

Gate.Transfer.
FailoverSyncRate integer

-fsyncrate integer Use this property to specify
the rate (in seconds) of the
failover synchronization.

The default is 60.

Gate.NGtkDebug boolean -ngtkdebug boolean Use this property to specify
whether the NGTK library
should log debug messages.

The default is TRUE.
Note: You can specify which
debug messages are included
in the debug log file using
the Gate.Mapper.Debug,
Gate.Reader.Debug and
Gate.Writer.Debug
properties.

Gate.PAAware integer -paaware integer Use this property to specify
whether the gateway is
Process Agent (PA) aware.

The default is 0 (not PA
aware).
Note: This property is
maintained by the PA server
and is included in the
properties file for
information only.

Gate.PAAwareName string -paname string Use this property to specify
the name of the Process
Agent controlling the
gateway.

The default is " ".
Note: This property is
maintained by the PA server
and is included in the
properties file for
information only.

22 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 4. Common gateway properties and command line options (continued)

Property name Command line option Description

Gate.Resync.BackoffRetryTime
integer

-backoffretrytime integer Use this property to specify
the time in seconds to
backoff before attempting to
resynchronize.

The default is 60.

Gate.UsePamAuth boolean -usepamauth boolean Use this property to specify
whether PAM authentication
is used.

The default is FALSE.

Gate.UnixAdminGroup string -unixadmingroup string Use this property to specify
the administration group to
which the gateway must
belong if standard UNIX
authentication is used.

The default is " ".

MaxLogFileSize integer -maxlogfilesize integer Use this property to specify
the size (in bytes) that the
gateway allocates for the log
file. When the log file
reaches this size, the gateway
renames the log file by
appending the name with
the characters .old and
creates a new log file.

The default is 100.

Table 5. Properties and command line options used by bidirectional gateways

Property name Command line option Description

Gate. CacheHashTblSize
integer

-chashtblsize integer Use this property to specify the size (in
elements) that the gateway allocates for
the hash table cache.

The default is 5023.

Gate.MapFile string -mapfile string Use this property to specify the
location of the map definition file.

The default is $OMNIHOME/gates/
objserv_uni/ objserv_uni.map.

Gate.StartupCmdFile
string

-startupcmdfile string Use this property to specify the
location of the startup command file.

The default is $OMNIHOME/objserv_uni/
objserv_uni.startup.cmd.

Chapter 4. Configuration of the bidirectional ObjectServer Gateway 23

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.Transfer.
FailoverSyncRate
integer

-fsyncrate integer Use this property to specify the rate (in
minutes) of the failover
synchronization.

The default is 60.

Gate.NGtkDebug boolean -ngtkdebug boolean Use this property to specify whether
the NGTK library should log debug
messages.

The default is TRUE.
Note: You can specify which debug
messages are included in the debug log
file using the Gate.Mapper.Debug,
Gate.Reader.Debug and
Gate.Writer.Debug properties.

Gate.PAAware integer -paaware integer Use this property to specify whether
the gateway is Process Agent (PA)
aware.

The default is 0 (not PA aware).
Note: This property is maintained by
the PA server and is included in the
properties file for information only.

Gate.PAAwareName string -paname string Use this property to specify the name
of the Process Agent controlling the
gateway.

The default is " ".
Note: This property is maintained by
the PA server and is included in the
properties file for information only.

Gate.UsePamAuth boolean -usepamauth boolean Use this property to specify whether
PAM authentication is used.

The default is FALSE.
Note: To run the gateway in FIPS 140-2
mode, you must set this property to
TRUE.

Gate.UnixAdminGroup
string

-unixadmingroup string Use this property to specify the
administration group to which the
gateway must belong if standard UNIX
authentication is used.

The default is " ".

MaxLogFileSize integer -maxlogfilesize integer Use this property to specify the
maximum size (in kilobytes) of the log
file. When the log file reaches this size,
the gateway renames the log file by
appending the name with the
characters .old and creates a new log
file.

The default is 1024.

24 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

OldTimeStamp boolean -oldtimestamp boolean Use this property to specify old-style
timestamp format the gateway uses in
the log file.

Set the value to TRUE to specify the
timestamp format used in Tivoli
Netcool/OMNIbus V7.2.1, or earlier.

For example: dd/MM/YYYY hh:mm:ss
AM or dd/MM/YYYY hh:mm:ss PM
when the locale is set to en_GB on a
Solaris 9 computer.

Set this value to FALSE to display the
timestamp in ISO 8601 format.

For example: YYYY-MM-DDThh:mm:ss,
where T separates the date and time,
and hh is in 24-hour clock.

The default is FALSE.

Note: Do not set the OldTimeStamp
property to TRUE when running in
UTF-8 mode.

N/A -utf8enabled boolean Use this command line option to
control the encoding of data that is
passed into, or generated by, this
gateway when running on Windows.

Set the value of -utf8enabled to TRUE
to run the application in UTF-8 mode.

The default is FALSE, which causes the
default system code page to be used.

Note: The OldTimeStamp property must
not be set to TRUE when running in
UTF-8 mode.

Mapping properties:

Gate.Mapper.Debug
boolean

-mapperdebug boolean Use this property to specify whether
the gateway includes mapper debug
messages in the debug log.

The default is TRUE.

Gate.Mapper.Forward
HistoricDetails boolean

-mapperforhistdtls
boolean

Use this property to specify whether
the gateway forwards all historic
details on converted update.

The default is FALSE.

Gate.Mapper.Forward
HistoricJournals
boolean

-mapperforhistjrnl
boolean

Use this property to specify whether
the gateway forwards all historic
journals on converted update.

The default is FALSE.

ObjectServer properties:

Chapter 4. Configuration of the bidirectional ObjectServer Gateway 25

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.ObjectServerA.
Buffersizee integer

-objectserverabufsize
integer

Use this property to specify the
number of entries that the gateway
stores in the buffer for this
ObjectServer before flushing, if
buffering is enabled. This property can
be used to fine-tune the efficiency of
the gateway.

The default is 25.
Note: The gateway flushes the buffer
when the end of a batch of SQL
statements has been reached regardless
of the buffer size.

Gate.ObjectServerA.
CommonNames string

-objectserveracommonnames
string

If the gateway is connecting to an
ObjectServer using SSL, and the
Common Name field of the received
certificate does not match the name
specified by the
Gate.ObjectServerA.Server property
(for example, in a failover pair or a
virtual server setting), use this property
to specify a comma-separated list of
acceptable SSL Common Names.

The default setting is to use the
Gate.ObjectServerA.Server property.

Gate.ObjectServerA.
Debug boolean

-objectserveradebug
boolean

Use this property to specify whether
the gateway includes debug messages
for this ObjectServer in the gateway
debug log.

The default is TRUE.

Gate.ObjectServerA.
DeleteIfNoDedup boolean

-objectserveradelifnodedup
boolean

Use this property to specify whether a
deletion is applied if the gateway
forwards deletes.

You have the following options:

v FALSE: If you make this setting, the
delete is always applied

v TRUE: If you make this setting, the
delete is not applied if the event in
the target server indicates that the
event has occurred again since the
delete was issued.

The default is FALSE.
Note: In most cases, this property is
set to FALSE.

26 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.ObjectServerA.
Description string

-objectserveradescription
string

Use this property to specify an
application description for the
connection to ObjectServer A. This
description is used in triggers and
allows you to determine which
component of the gateway attempted
to perform an action.

The default is " ".

Gate.ObjectServerA.
FailbackEnabled boolean

-objectserverafailbackenabled
boolean

Use this property to enable failback for
this ObjectServer.

The default is FALSE.

Gate.ObjectServerA.
FailbackTimeout integer

-objectserverafailbacktimeoutintegerUse this property to specify the time
(in seconds) that the gateway allows
before checking for the return of the
master ObjectServer and failing back.

The default is 30.

Gate.ObjectServerA.
LogOSSql boolean

-objectserveralogossql
boolean

Use this property to specify whether
the gateway logs all SQL commands
sent to this ObjectServer in debug
mode.

The default is FALSE.

Gate.ObjectServerA.
Password string

-objectserverapassword
string

Use this property to specify the
password associated with the user
specified by the
Gate.ObjectServerA.Username property.

The default is " ".

If the ObjectServer to which the
gateway reads/writes alerts is running
on IBM Tivoli Netcool/OMNIbus v7,
7.1, 7.2 or 7.2.1, this password must be
encrypted by the nco_g_crypt utility.

For details about the encryption
utilities, see the IBM Tivoli
Netcool/OMNIbus Administration Guide
(SC14-7605).

Gate.ObjectServerA.
ReconnectTimeout
integer

-objectserverareconntimeout
integer

Use this property to specify the time
(in seconds) between each reconnection
poll attempt if the connection to this
ObjectServer is lost.

The default is 30.

Chapter 4. Configuration of the bidirectional ObjectServer Gateway 27

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.ObjectServerA.
RefreshCacheOn Update
boolean

-objectserverarefcacheonupd
boolean

Use this property to specify how the
hash table cache is refreshed for this
ObjectServer.

You have the following options:

v TRUE: The cache is resynchronized
with the target ObjectServer before
each collection of row updates for a
table in the current IDUC window is
processed

v FALSE: The gateway assumes that its
cache is accurate and does not
resynchronize it

The default is FALSE.

Gate.ObjectServerA.
SAF boolean

-objectserverasaf
boolean

Use this property to specify whether
the gateway stores all table entries if
the destination ObjectServer is
unavailable and to forward them when
the ObjectServer becomes available
again.

The default is FALSE.

Gate.ObjectServerA.
SAFFile string

-objectserverasaffile
string

Use this property to specify the name
of the file that the gateway uses to
store table entries while the destination
ObjectServer is unavailable.

The default is $OMNIHOME/var/
objserv_bi/
NCO_GATE_ObjectServerA.store.
Note: This file is only used if the
Gate.ObjectServerA.SAF property is set
to TRUE.

Gate.ObjectServerA.
Serverstring

-objectserveraserver
string

Use this property to specify the name
of this ObjectServer.

The default is NCOMS.

Gate.ObjectServerA.
Username string

-objectserverausername
string

Use this property to specify the
username that is used to authenticate
connection to this ObjectServer. This
username is used to establish both the
writer's IDUC connection and the
subsidiary SQL command connection.

The default is root.

Gate.ObjectServerA.
TblReplicateDefFile
string

-objectserveratblrepdeffile
string

Use this property to specify the path to
the table replication definition file.

The default is $OMNIHOME/gates/
objserv_bi/
objserv_bi.objectservera.tblrep.def.

28 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.ObjectServerA.
StatusTableName string

-objectserverastatustblname
string

Use this property to specify the name
of the status table that the gateway
reads.

The default is alerts.status.

Gate.ObjectServera.
JournalTableName string

-objectserverajournaltblname
string

Use this property to specify the name
of the journal table that the gateway
reads.

The default is alerts.journal.

Gate.ObjectServerA.
DetailsTableName string

-objectserveradetailstblname
string

Use this property to specify the name
of the details table that the gateway
reads.

The default is alerts.details.

Gate.ObjectServerA.
IDUCFlushRate integer

-objectserveraiducflushrate
integer

Use this property to specify the rate (in
seconds) of the granularity of the
reader.

If you set this property to 0, the reader
gets its updates at the same granular
rate as that of the ObjectServer to
which it is connected.

The default is 0.

Attention: If you set this property to
a value greater than 0, the reader issues
automatic IDUC flush requests to the
ObjectServer with this frequency. This
enables the reader to run at a faster
granularity than that of the
ObjectServer, thus enabling the
gateway to capture more detailed event
changes in systems where the
ObjectServer itself has high granularity
settings.

Gate.ObjectServerB.
Buffersize integer

-objectserverbbufsize
integer

Use this property to specify the
number of entries that the gateway
stores in the buffer for this
ObjectServer before flushing, if
buffering is enabled. This property can
be used to fine-tune the efficiency of
the gateway.

The default is 25.
Note: The gateway flushes the buffer
when the end of a batch of SQL
statements has been reached regardless
of the buffer size.

Chapter 4. Configuration of the bidirectional ObjectServer Gateway 29

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.ObjectServerB.
CommonNames string

-objectserverbcommonnames
string

If the gateway is connecting to an
ObjectServer using SSL, and the
Common Name field of the received
certificate does not match the name
specified by the
Gate.ObjectServerB.Server property
(for example, in a failover pair or a
virtual server setting), use this property
to specify a comma-separated list of
acceptable SSL Common Names.

The default setting is to use the
Gate.ObjectServerB.Server property.

Gate.ObjectServerB.
Debug boolean

-objectserverbdebug
boolean

Use this property to specify whether
the gateway includes debug messages
for this ObjectServer in the debug log.

The default is TRUE.

Gate.ObjectServerB.
DeleteIfNoDedup boolean

-objectserverbdelifnodedup
boolean

Use this property to specify whether a
deletion is applied if the gateway
forwards deletes.

You have the following options:

v FALSE: If you make this setting, the
delete is always applied

v TRUE: If you make this setting, the
delete is not applied if the event in
the target server indicates that the
event has occurred again since the
delete was issued

The default is FALSE.
Note: In most cases, this property is
set to FALSE.

Gate.ObjectServerB.
Description string

-objectserverbdescription
string

Use this property to specify an
application description for the
connection to ObjectServer B. This
description is used in triggers and
allows you to determine which
component of the gateway attempted
to perform an action.

The default is " ".

Gate.ObjectServerB.
FailbackEnabled boolean

-objectserverbfailbackenabled
boolean

Use this property to specify failback for
this ObjectServer.

The default is FALSE.

Gate.ObjectServerB.
FailbackTimeout integer

-objectserverbfailbacktimeout
integer

Use this property to specify the time
(in seconds) that the gateway allows
before checking for the return of the
master ObjectServer and failing back.

The default is 30.

30 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.ObjectServerB.
LogOSSql boolean

-objectserverblogossql
boolean

Use this property to specify whether
the gateway logs all SQL commands
sent to this ObjectServer in debug
mode.

The default is FALSE.

Gate.ObjectServerB.
Password string

-objectserverbpassword
string

Use this property to specify the
password associated with the user
specified by the
Gate.ObjectServerB.Username property.

The default is " ".

If the ObjectServer to which the
gateway reads/writes alerts is running
on IBM Tivoli Netcool/OMNIbus v7,
7.1, 7.2, or 7.2.1, this password must be
encrypted by the nco_g_crypt utility.

For details about the encryption
utilities, see the IBM Tivoli
Netcool/OMNIbus Administration Guide
(SC14-7605).

Gate.ObjectServerB.
ReconnectTimeout
integer

-objectserverbreconntimeout
integer

Use this property to specify the time
(in seconds) between each reconnection
poll attempt if the gateway loses the
connection to this ObjectServer, this
property defines .

The default is 30.

Gate.ObjectServerB.
RefreshCacheOn Update
boolean

-objectserverbrefcacheonupd
boolean

Use this property to specify whether
the hash table cache is refreshed for
this ObjectServer.

You have the following options:

v TRUE: The cache is resynchronized
with the target ObjectServer prior to
processing each collection of row
updates for a table in the current
IDUC window

v FALSE - The gateway assumes that its
cache is accurate and does not
resynchronize it

The default is FALSE.

Gate.ObjectServerB.
SAF boolean

-objectserverbsaf
boolean

Use this property to specify that the
gateway stores all table entries if the
destination ObjectServer is unavailable
and to forward them when the

ObjectServer becomes available again.

The default is FALSE.

Chapter 4. Configuration of the bidirectional ObjectServer Gateway 31

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.ObjectServerB.
SAFFile string

-objectserverbsaffile
string

Use this property to specify the name
of the file that the gateway uses to
store table entries while the destination
ObjectServer is unavailable.

The default is $OMNIHOME/var/
objserv_bi/
NCO_GATE_ObjectServerB.store.
Note: This file is only used if the
Gate.ObjectServerB.SAF property is set
to TRUE

Gate.ObjectServerB.
Server string

-objectserverbserver
string

Use this property to specify the name
of this ObjectServer.

The default is NCOMS.

Gate.ObjectServerB.
Username string

-objectserverbusername
string

Use this property to specify the
username used to authenticate the
connection to this ObjectServer. This
username is used to establish both the
IDUC connection of the writer and the
subsidiary SQL command connection.

The default is root.

Gate.ObjectServerB.
TblReplicateDefFile
string

-objectserverbtblrepdeffile
string

Use this property to specify the path to
the table replication definition file.

The default is $OMNIHOME/gates/
objserv_bi/
objserv_bi.objectserverb.tblrep.def.

Gate.ObjectServerB.
StatusTableName string

-objectserverbstatustblname
string

Use this property to specify the name
of the status table that the gateway
reads.

The default is alerts.status.

Gate.ObjectServerB.
JournalTableName string

-objectserverbjournaltblname
string

Use this property to specify the name
of the journal table that the gateway
reads.

The default is alerts.journal.

Gate.ObjectServerB.
DetailsTableName string

-objectserverbdetailstblnamestringUse this property to specify the name
of the details table that the gateway
reads.

The default is alerts.details.

32 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.ObjectServerB.
IDUCFlushRate integer

-objectserverbiducflushrate
integer

Use this property to specify the rate, in
seconds, of the granularity of the
reader.

If you set this property to 0, the reader
gets its updates at the same granular
rate as that of the ObjectServer to
which it is connected.

The default is 0.

Attention: If you set this property to
a value greater than 0, the reader issues
automatic IDUC flush requests to the
ObjectServer with this frequency. This
enables the reader to run at a faster
granularity than that of the
ObjectServer, thus enabling the
gateway to capture more detailed event
changes in systems where the
ObjectServer itself has high granularity
settings.

Resynchronization properties:

Gate.Resync.Enable
boolean

-resyncenable boolean Use this property to specify that the
gateway uses resynchronization.

The default is TRUE.

Gate.ObjectServerA.
SAFReplayOnResync
boolean

-objectserverasafreplayonresync
boolean

Use this property to specify how
store-and-forward (SAF) file for
ObjectServerA replays on
resynchronization.

You have the following options:

v TRUE: SAF replays regardless of
whether Gate.Resync.Enable has
been set to TRUE.

v FALSE: SAF replays only when
Gate.Resync.Enable has been set to
FALSE

The default is FALSE.

Gate.ObjectServerB.
SAFReplayOnResync
boolean

-objectserverbsafreplayonresync
boolean

Use this property to specify how
store-and-forward (SAF) file for
ObjectServerB replays on
resynchronization.

You have the following options:

v TRUE: SAF replays regardless of
whether Gate.Resync.Enable has
been set to TRUE.

v FALSE: SAF replays only when
Gate.Resync.Enable has been set to
FALSE

The default is FALSE.

Chapter 4. Configuration of the bidirectional ObjectServer Gateway 33

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.Resync.Master
string

-resyncmaster string Use this property to specify which
ObjectServer the gateway should
always treat as the master during
resynchronization.

Valid values are ObjectServerA and
ObjectServerB.

The default is "".
Note: If you omit this property, the
gateway always treats the ObjectServer
that has been running the longest as
the master.

Gate.Resync.Preferred
string

-resyncpreferred string Use this property to specify which
ObjectServer the gateway should treat
as the master during resynchronization
if the Gate.Resynch.Master has been
omitted and both ObjectServers have
been running for the same length of
time.

Valid values are ObjectServerA and
ObjectServerB.

The default is "".

Gate.Resync.Typestring -resynctypestring Use this property to specify the type of
resynchronization that the gateway
performs.

You have the following options:

v NORMAL: The gateway checks the
contents of the two ObjectServers,
and, if necessary, resynchronizes
them.

v UPDATE: The gateway performs the
resynchronization with updates.

v MINIMAL: The gateway performs the
resynchronization with updates only
for the events that have changed
since a failure has occurred.

The default is NORMAL.

Gate.Resync.LockType
string

-resynclocktype string Use this property to specify the locking
option on the source and destination
ObjectServers while resynchronizing
events.

You have the following options:

v FULL: The gateway locks both the
source and target ObjectServers.

v PARTIAL: The gateway only locks the
destination ObjectServer.

v NONE: The gateway locks neither the
source nor the target ObjectServer.

The default is FULL.

34 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Table 5. Properties and command line options used by bidirectional gateways (continued)

Property name Command line option Description

Gate.ObjectServerA.
UseBulkInsCmd boolean

-usebulkinscmd boolean Use this property to specify bulk
inserts for faster resynchronization.
Note: You can only set this property to
TRUE if you are using the latest version
of both ObjectServer and the gateway.

You have the following options:

v TRUE: The gateway changes the
format of the insert statement it
sends to ObjectServerA, which
allows ObjectServerA to process the
inserts more efficiently.

v FALSE: The gateway makes no
changes to the insert statement
before sending events to
ObjectServerA.

The default is FALSE.

Gate.ObjectServerB.
UseBulkInsCmd boolean

-usebulkinscmd boolean Use this property to specify bulk
inserts for faster resynchronization.
Note: You can only set this property to
TRUE if you are using the latest version
of both ObjectServer and the gateway.

You have the following options:

v TRUE: The gateway changes the
format of the insert statement it
sends to ObjectServerB, which allows
ObjectServerB to process the inserts
more efficiently.

v FALSE: The gateway makes no
changes to the insert statement
before sending events to
ObjectServerB.

The default is FALSE.

Hash table cache
The gateway uses a hash table cache to store details of tables that require
transferring from one ObjectServer to another.

The main function of the cache is to facilitate journal and details table insert
operations. When a journal or detail is forwarded for insertion into a target
ObjectServer, the gateway writer needs to know the corresponding status serial in
the target ObjectServer. This information is found in the cache. It is also used for
any other tables specified using the table replication definition table.

The cache aids performance optimization by providing the gateway with an
in-memory summarized view of the contents of the ObjectServers to which it is
linked. This means that the gateway does not have to query an ObjectServer to
check for the existence of an event, or the Serial value or Tally value of an event;
it can check the cache of the target ObjectServer instead.

Chapter 4. Configuration of the bidirectional ObjectServer Gateway 35

You can control the size of the hash table cache by using the
Gate.CacheHashTblSize property. By default, the size of the hash table cache is
5023 elements (or rows). This can be increased if the status table has a large
number of rows (for example, in excess of 20,000).

Note: To maximize efficiency, you should specify a prime number for the
Gate.CacheHashTblSize property.

Error handling
You can troubleshoot problems with the gateway by consulting error messages. To
help you do this, the gateway has configurable error handling.

Error handling is provided by the Netcool/OMNIbus Gateway Toolkit (NGTK)
library. To specify that the NGTK library logs debug messages, set the
Gate.NGtkDebug property to TRUE.

You can use the following properties to specify which debug messages are
included in the debug files. Set the properties toTRUE or FALSE as required.
v Gate.Mapper.Debug

v Gate.ObjectServerB.Debug

v Gate.ObjectServerA.Debug

Process Agent control
You can control how the gateway runs by using Process Agent control.

The gateway can be run under Process Agent (PA) control. The Gate.PAAware
property indicates whether the gateway is PA aware. The Gate.PAAwareName
property indicates which PA is running the gateway.

These properties are maintained automatically by the PA server and provide
information only. Do not change these properties manually.

Authentication
Use the Gate.UsePamAuth property to specify how the gateway authenticates users.

Either standard UNIX authentication or PAM authentication can be used with the
ObjectServer gateway. By default, the gateway uses standard UNIX authentication.
To use PAM authentication, set the Gate.UsePamAuth property to TRUE.

Important: To run the gateway in FIPS 140-2 mode, you must set the
Gate.UsePamAuth property to TRUE.

Buffer size for bidirectional ObjectServer Gateways
The buffer size controls the number of entries that the gateway stores in its buffer
before flushing them to the ObjectServer.

The buffer size controls the number of entries that the gateway stores in its buffer
before flushing them to the ObjectServer. The gateway uses separate buffers for the
source and destination ObjectServers and their sizes can be set using the
Gate.ObjectServerA.Buffersize and Gate.ObjectServerB.Buffersize properties.
These properties can be adjusted to fine-tune the efficiency of the gateway.

36 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

The optimum value for the buffer size depends upon the average event size and
the speed of the network. The default value has proved to be efficient for many
installations. To determine the most efficient setting for your system, compare the
timing figures for resynchronization operations performed using different settings
for this property.

Secure ObjectServer connections for bidirectional
ObjectServer Gateways

When an ObjectServer is running in secure mode, the gateway must make its
connection either as a known ObjectServer user or as the root user.

If you want to resynchronize security data when your ObjectServers are running in
secure mode, you should run the gateway as the root user. If you fail to do this,
when you attempt the resynchronization the gateway quits and the destination
ObjectServer will have no security data. This is because the gateway deletes the
destination permissions and so cannot insert rows copied from the source table.
Running the gateway as the root user overcomes this problem because it does not
require permissions to be set explicitly.

Failback for bidirectional ObjectServer Gateways
Two ObjectServers can be set up as a pair, with one acting as the primary and the
other as the backup. You can specify how the backup ObjectServer fails back to the
primary ObjectServer using the failback properties defined in the properties file.

Setting up failback

To set up failback, set the BackupObjectServer property for the backup
ObjectServer to TRUE.

Example bidirectional gateway failback configuration

The following figure shows an example bidirectional gateway failback
configuration:

Enable failback

To enable failback, in the gateway properties file, you must set the
Gate.ObjectServerA.Failback property to TRUE (if ObjectServer A has a backup
ObjectServer) and Gate.ObjectServerB.Failback property to TRUE (if ObjectServer
B has a backup ObjectServer). When the primary ObjectServer fails, the gateway

ObjectServer
Gateway

Primary
ObjectServer

Backup
ObjectServer

F
a
ilo

v
e
r F

a
ilb

a
c
k Primary

ObjectServer

Backup
ObjectServer

F
a
ilo

v
e
r F

a
ilb

a
c
k

Figure 4. Bidirectional ObjectServer Gateway

Chapter 4. Configuration of the bidirectional ObjectServer Gateway 37

fails over to the backup ObjectServer without shutting down. When the gateway is
connected to a backup ObjectServer, it periodically polls for the return of the
primary ObjectServer. When the primary ObjectServer has been detected again, the
gateway automatically fails back to the primary ObjectServer.

To specify the frequency with which the gateway polls the failed ObjectServer, set
the Gate.ObjectServerA.FailbackTimeout and
Gate.ObjectServerB.FailbackTimeout properties.

Note: Failback does not apply when the bi-directional gateway connects to an
ObjectServer that is not in a virtual pair. For example, if you are using a
bi-directional gateway to maintain a backup ObjectServer, failback does not apply.

Store and forward for bidirectional ObjectServer Gateways
The gateway supports store and forward on any table when the destination
ObjectServer goes offline. This feature can be configured to store and forward
either all or none of the tables being replicated.

To activate the store and forward function for ObjectServer A, set the
Gate.ObjectServerA.SAF property to TRUE, specify the file to which the alerts are
written while the destination ObjectServer is offline using the
Gate.ObjectServerA.SAFFile property and restart the gateway. To deactivate the
store and forward function, set the GateObjectServerA.SAF property to FALSE and
restart the gateway.

To activate the store and forward function for ObjectServer B, set the
Gate.ObjectServerB.SAF property to TRUE, specify the file to which the alerts are
written while the destination ObjectServer is offline using the
Gate.ObjectServerB.SAFFile property, and restart the gateway. To deactivate the
store and forward function, set the Gate.ObjectServerB.SAF property to FALSE and
restart the gateway.

Alternative deletion strategy
You can set ObjectServer Gateways to collect insert, update, and delete events from
a set of ObjectServers and pass them on to an ObjectServer that aggregates them
and only passes back deletes.

For example, the aggregation ObjectServer may make available events pooled from
a set of ObjectServer. Deletion events would be passed back by the aggregation
ObjectServer as events are addressed. In this situation, you may want to prevent a
deletion from being applied if the event in the target server indicates that the event
has occurred again since the delete was issued; for example, if an attempted
resolution to a problem has failed.

To set up this deletion strategy, set the Gate.ObjectServerA.DeleteIfNoDedup and
Gate.ObjectServerB.DeleteIfNoDedup properties to TRUE.

38 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Resynchronization properties of bidirectional ObjectServer
Gateways

You specify how bidirectional ObjectServer Gateways perform resynchronization
using the resynchronization properties defined in the properties file.

Bidirectional ObjectServer Gateways have more resynchronization properties than
unidirectional ObjectServer Gateways.

The following table describes the resynchronization properties of bidirectional
ObjectServer Gateways.

Table 6. Resynchronization properties and command line options of bidirectional
ObjectServer Gateways

Property name Command line option Description

Gate.Resync.Enable
boolean

-resyncenable boolean Use this property to specify that the
gateway uses resynchronization.

The default is TRUE.

Gate.Resync.Master
string

-resyncmaster string Use this property to specify which
ObjectServer the gateway should
always treat as the master during
resynchronization.

Valid values are ObjectServerA and
ObjectServerB.

The default is "".
Note: If you omit this property, the
gateway always treats the ObjectServer
that has been running the longest as
the master.

Gate.Resync.Preferred
string

-resyncpreferred string Use this property to specify which
ObjectServer the gateway should treat
as the master during resynchronization
if the Gate.Resynch.Master has been
omitted and both ObjectServers have
been running for the same length of
time.

Valid values are ObjectServerA and
ObjectServerB.

The default is "".

Chapter 4. Configuration of the bidirectional ObjectServer Gateway 39

Table 6. Resynchronization properties and command line options of bidirectional
ObjectServer Gateways (continued)

Property name Command line option Description

Gate.Resync.Type string -resynctypestring Use this property to specify the type of
resynchronization that is required.

You have the following options:

v NORMAL: The gateway checks the
contents of the two ObjectServers
specified by the Gate.Reader.Server
and Gate.Writer.Server properties,
and, if necessary, resynchronizes
them.

v UPDATE: The gateway performs the
resynchronization with updates.

v MINIMAL: The gateway only performs
updates for the events that have
changed since a failure occurred.

The default is NORMAL.

40 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 5. ObjectServer Gateway mapping

The gateway can replicate any table in the ObjectServer. To do this, the gateway
maps data to the appropriate fields in the ObjectServer using a map definition file.

If you want to replicate user related system tables (for example, SecurityUsers,
SecurityGroups, SecurityRoles, SecurityRoleGrants, and SecurityGroupMembers),
you must also include details of these mappings in this file. The path of the map
definition file is determined by the Gate.Mapfile property in the properties file.

The following map definition file conversion functions can be used in the map
definition file:
v TO_STRING (<column_name>)
v TO_INTEGER (<column_name>)
v TO_TIME (<column_name>)

Syntax

Mappings for use with the ObjectServer writer must adhere to the following
syntax:

CREATE MAPPING mappingname (' dest_fieldname' = ('@src_fieldname' |
simple_expression | attribute) [ON INSERT ONLY] [CONVERT TO type]
[NOT NULL ('@src_fieldname')] [, 'dest_fieldname' = ('@src_fieldname' |
simple_expression | attribute) [ON INSERT ONLY] [CONVERT TO type]
[NOT NULL ('@src_fieldname')]] ...) ;

Where:
v mappingname is the name of the mapping to be created.
v dest_fieldname is the name of the field to be written in the destination

ObjectServer.
v src_fieldname is the name of a field in the ObjectServer alerts.status table.
v simple_expression is an integer or a set of integers and operators.
v attribute is an attribute name.

The optional ON INSERT ONLY controls the updating of the field during the life of
the alert; when omitted, the field is updated when any change in the state of the
alert occurs. When included, the field is created once for the alert, but is never
updated.

Tip: The ON INSERT ONLY option only applies when setting the value of variables.

The optional CONVERT TO type enables the mapping to define a forced conversion
for situations where a source field may not match the type of the destination field.
The type can be INTEGER, STRING, or DATE.

The optional NOT NULL indicates that the mapping is only performed if the source
field is not null; that is, has a value set for it.

© Copyright IBM Corp. 1996, 2011 41

Mapping attributes
You use attribute names to include additional data in mapping definitions. You can
specify two types of attribute: cache value access attributes or dynamic attributes.

Cache value access attributes

The gateway uses cache value attributes to access values that are stored in the
cross-reference cache. The following table describes the cache value attributes that
can be used in mapping definitions.

Table 7. Cache value access attributes

Attribute name Description

STATUS.SERIAL Cached serial number for the status table row that is
associated with the current journal or details table
row.

STATUS.SERVER_SERIAL Cached server serial number for the status table row
that is associated with the current journal or details
table row.

STATUS.SERVER_NAME Cached server name for the status table row that is
associated with the current journal or details table
row.

STATUS.IDENTIFIER Cached identifier for the status table row that is
associated with the current journal or details table
row.

JOURNAL.SERIAL Cached serial number of the journal table row.

DETAILS.IDENTIFIER Cached identifier of the details table row.

Dynamic attributes

Dynamic attributes enable the gateway to access dynamic values that are
automatically generated by the gateway. The following table describes the dynamic
attributes that can be used in mapping definitions.

Table 8. Dynamic attributes

Attribute name Description

ACTION_CODE This attribute displays a single character string that
specifies the type of operation performed. Valid
values are:

v I: Insert

v U: Update

v D : Delete

ACTION_TIME This attribute displays the time in UTC that the
action occurred.

DELETEDAT This attribute displays the date on which the row
was deleted, if applicable.

42 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Example mapping
Mappings define how the gateways replicate tables by assigning data to
appropriate fields in the ObjectServer.

The following example shows the mappings for the ObjectServer tables into which
the gateway writes:
CREATE MAPPING StatusMap
(
’Identifier’ = ’@Identifier’ ON INSERT ONLY,
’Node’ = ’@Node’ ON INSERT ONLY,
’NodeAlias’ = ’@NodeAlias’ ON INSERT ONLY

NOTNULL ’@Node’,
’Manager’ = ’@Manager’ ON INSERT ONLY,
’Agent’ = ’@Agent’ ON INSERT ONLY,
’AlertGroup’ = ’@AlertGroup’ ON INSERT ONLY,
’AlertKey’ = ’@AlertKey’ ON INSERT ONLY,
’Severity’ = ’@Severity’,
’Summary’ = ’@Summary’,
’StateChange’ = ’@StateChange’,
’FirstOccurrence’ = ’@FirstOccurrence’ ON INSERT ONLY,
’LastOccurrence’ = ’@LastOccurrence’,
’InternalLast’ = ’@InternalLast’,
’Poll’ = ’@Poll’ ON INSERT ONLY,
’Type’ = ’@Type’ ON INSERT ONLY,
’Tally’ = ’@Tally’,
’ProbeSubSecondId’ = ’@ProbeSubSecondId’,
’Class’ = ’@Class’ ON INSERT ONLY,
’Grade’ = ’@Grade’ ON INSERT ONLY,
’Location’ = ’@Location’ ON INSERT ONLY,
’OwnerUID’ = ’@OwnerUID’,
’OwnerGID’ = ’@OwnerGID’,
’Acknowledged’ = ’@Acknowledged’,
’BSM_Identity’ = ’@BSM_Identity’
’Flash’ = ’@Flash’,
’EventId’ = ’@EventId’ ON INSERT ONLY,
’ExpireTime’ = ’@ExpireTime’ ON INSERT ONLY,
’ProcessReq’ = ’@ProcessReq’,
’SuppressEscl’ = ’@SuppressEscl’,
’Customer’ = ’@Customer’ ON INSERT ONLY,
’Service’ = ’@Service’ ON INSERT ONLY,
’PhysicalSlot’ = ’@PhysicalSlot’ ON INSERT ONLY,
’PhysicalPort’ = ’@PhysicalPort’ ON INSERT ONLY,
’PhysicalCard’ = ’@PhysicalCard’ ON INSERT ONLY,
’TaskList’ = ’@TaskList’,
’NmosSerial’ = ’@NmosSerial’,
’NmosObjInst’ = ’@NmosObjInst’,
’NmosCauseType’ = ’@NmosCauseType’,
’NmosDomainName’ = ’@NmosDomainName’,
’NmosEntityId’ = ’@NmosEntityId’,
’NmosManagedStatus’= ’@NmosManagedStatus’,
’NmosEventMap’ = ’@NmosEventMap’,
’LocalNodeAlias’ = ’@LocalNodeAlias’ ON INSERT ONLY,
’LocalPriObj’ = ’@LocalPriObj’ ON INSERT ONLY,
’LocalSecObj’ = ’@LocalSecObj’ ON INSERT ONLY,
’LocalRootObj’ = ’@LocalRootObj’ ON INSERT ONLY,
’RemoteNodeAlias’ = ’@RemoteNodeAlias’ ON INSERT ONLY,
’RemotePriObj’ = ’@RemotePriObj’ ON INSERT ONLY,
’RemoteSecObj’ = ’@RemoteSecObj’ ON INSERT ONLY,
’RemoteRootObj’ = ’@RemoteRootObj’ ON INSERT ONLY,
’X733EventType’ = ’@X733EventType’ ON INSERT ONLY,
’X733ProbableCause’= ’@X733ProbableCause’ ON INSERT ONLY,
’X733SpecificProb’ = ’@X733SpecificProb’ ON INSERT ONLY,
’X733CorrNotif’ = ’@X733CorrNotif’ ON INSERT ONLY,
’URL’ = ’@URL’ ON INSERT ONLY,

Chapter 5. ObjectServer Gateway mapping 43

’ExtendedAttr’ = ’@ExtendedAttr’ ON INSERT ONLY,
’ServerName’ = ’@ServerName’ ON INSERT ONLY,
’ServerSerial’ = ’@ServerSerial’ ON INSERT ONLY
);

CREATE MAPPING JournalMap
(
’KeyField’ = TO_STRING(STATUS.SERIAL) + ":" +

TO_STRING(’@UID’) + ":" +
TO_STRING(’@Chrono’) ON INSERT ONLY,

’Serial’ = STATUS.SERIAL,
’Chrono’ = ’@Chrono’,
’UID’ = TO_INTEGER(’@UID’),
’Text1’ = ’@Text1’,
’Text2’ = ’@Text2’,
’Text3’ = ’@Text3’,
’Text4’ = ’@Text4’,
’Text5’ = ’@Text5’,
’Text6’ = ’@Text6’,
’Text7’ = ’@Text7’,
’Text8’ = ’@Text8’,
’Text9’ = ’@Text9’,
’Text10’ = ’@Text10’,
’Text11’ = ’@Text11’,
’Text12’ = ’@Text12’,
’Text13’ = ’@Text13’,
’Text14’ = ’@Text14’,
’Text15’ = ’@Text15’,
’Text16’ = ’@Text16’
);

CREATE MAPPING DetailsMap
(
’KeyField’ = ’@Identifier’ + ’####’ +

TO_STRING(’@Sequence’) ON INSERT ONLY,
’Identifier’ = ’@Identifier’,
’AttrVal’ = ’@AttrVal’,
’Sequence’ = ’@Sequence’,
’Name’ = ’@Name’,
’Detail’ = ’@Detail’
);

CREATE MAPPING IducMap
(
’ServerName’ = ’@ServerName’ ON INSERT ONLY,
’AppName’ = ’@AppName’,
’AppDesc’ = ’@AppDesc’ ON INSERT ONLY,
’ConnectionId’ = ’@ConnectionId’ ON INSERT ONLY,
’LastIducTime’ = ’@LastIducTime’
);

CREATE MAPPING SecurityUsersMap
(
’UserID’ = ’@UserID’ ON INSERT ONLY,
’UserName’ = ’@UserName’,
’SystemUser’ = ’@SystemUser’,
’FullName’ = ’@FullName’,
’Passwd’ = ’@Passwd’,
’UsePAM’ = ’@UsePAM’,
’Enabled’ = ’@Enabled’
);
#
#

44 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

CREATE MAPPING SecurityGroupsMap
(
’GroupID’ = ’@GroupID’ ON INSERT ONLY,
’GroupName’ = ’@GroupName’,
’SystemGroup’ = ’@SystemGroup’,
’Description’ = ’@Description’
);
#
#
CREATE MAPPING SecurityRolesMap
(
’RoleID’ = ’@RoleID’ ON INSERT ONLY,
’RoleName’ = ’@RoleName’,
’SystemRole’ = ’@SystemRole’,
’Description’ = ’@Description’,
’RoleScope’ = ’@RoleScope’
);
#
#
CREATE MAPPING SecurityRoleGrantsMap
(
’GranteeType’ = ’@GranteeType’ ON INSERT ONLY,
’GranteeID’ = ’@GranteeID’ ON INSERT ONLY,
’RoleID’ = ’@RoleID’ ON INSERT ONLY
);
#
#
CREATE MAPPING SecurityGroupMembersMap
(
’UserID’ = ’@UserID’ ON INSERT ONLY,
’GroupID’ = ’@GroupID’ ON INSERT ONLY,
’Compat’ = ’@Compat’
);
#
#
CREATE MAPPING CatalogRestrictionFiltersMap
(
’RestrictionName’ = ’@RestrictionName’ ON INSERT ONLY,
’TableName’ = ’@TableName’,
’DatabaseName’ = ’@DatabaseName’,
’ConditionText’ = ’@ConditionText’,
’CreationText’ = ’@CreationText’
);
#
#
CREATE MAPPING SecurityRestrictionFiltersMap
(
’GranteeType’ = ’@GranteeType’ ON INSERT ONLY,
’GranteeID’ = ’@GranteeID’ ON INSERT ONLY,
’RestrictionName’ = ’@RestrictionName’,
’DatabaseName’ = ’@DatabaseName’,
’TableName’ = ’@TableName’
);
#
#
CREATE MAPPING SecurityPermissionsMap
(
’ApplicationID’ = ’@ApplicationID’ ON INSERT ONLY,
’ObjectType’ = ’@ObjectType’ ON INSERT ONLY,
’Object’ = ’@Object’ ON INSERT ONLY,
’GranteeType’ = ’@GranteeType’ ON INSERT ONLY,
’GranteeID’ = ’@GranteeID’ ON INSERT ONLY,
’Allows’ = ’@Allows’,
’Denies’ = ’@Denies’,
’GrantOptions’ = ’@GrantOptions’
);
#

Chapter 5. ObjectServer Gateway mapping 45

#
CREATE MAPPING ToolsMenusMap
(
’MenuID’ = ’@MenuID’ ON INSERT ONLY,
’Name’ = ’@Name’,
’Owner’ = ’@Owner’,
’Enabled’ = ’@Enabled’
);
#

CREATE MAPPING ToolsMenuItemsMap
(
’KeyField’ = TO_STRING(’@MenuID’) + ":" +
TO_STRING(’@MenuItemID’)
ON INSERT ONLY,
’MenuID’ = ’@MenuID’ ON INSERT ONLY,
’MenuItemID’ = ’@MenuItemID’ ON INSERT ONLY,
’Title’ = ’@Title’,
’Description’ = ’@Description’,
’Enabled’ = ’@Enabled’,
’InvokeType’ = ’@InvokeType’,
’InvokeID’ = ’@InvokeID’,
’Position’ = ’@Position’,
’Accelerator’ = ’@Accelerator’
);
#
#
CREATE MAPPING ToolsActionsMap
(
’ActionID’ = ’@ActionID’ ON INSERT ONLY,
’Name’ = ’@Name’,
’Owner’ = ’@Owner’,
’Enabled’ = ’@Enabled’,
’Description1’ = ’@Description1’,
’Description2’ = ’@Description2’,
’Description3’ = ’@Description3’,
’Description4’ = ’@Description4’,
’HasInternal’ = ’@HasInternal’,
’InternalEffect1’ = ’@InternalEffect1’,
’InternalEffect2’ = ’@InternalEffect2’,
’InternalEffect3’ = ’@InternalEffect3’,
’InternalEffect4’ = ’@InternalEffect4’,
’InternalForEach’ = ’@InternalForEach’,
’HasExternal’ = ’@HasExternal’,
’ExternalEffect1’ = ’@ExternalEffect1’,
’ExternalEffect2’ = ’@ExternalEffect2’,
’ExternalEffect3’ = ’@ExternalEffect3’,
’ExternalEffect4’ = ’@ExternalEffect4’,
’ExternalForEach’ = ’@ExternalForEach’,
’RedirectOut’ = ’@RedirectOut’,
’RedirectErr’ = ’@RedirectErr’,
’Platform’ = ’@Platform’,
’JournalText1’ = ’@JournalText1’,
’JournalText2’ = ’@JournalText2’,
’JournalText3’ = ’@JournalText3’,
’JournalText4’ = ’@JournalText4’,
’JournalForEach’ = ’@JournalForEach’,
’HasForcedJournal’ = ’@HasForcedJournal’
);
#
#
CREATE MAPPING ToolsActionAccessMap
(
’ActionAccessID’ = ’@ActionAccessID’ ON INSERT ONLY,
’ActionID’ = ’@ActionID’,
’GID’ = ’@GID’,
’ClassID’ = ’@ClassID’

46 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

);
#
#
CREATE MAPPING ToolsMenuDefsMap
(
’Name’ = ’@Name’ ON INSERT ONLY,
’DatabaseName’ = ’@DatabaseName’,
’TableName’ = ’@TableName’,
’ShowField’ = ’@ShowField’,
’AssignField’ = ’@AssignField’,
’OrderbyField’ = ’@OrderbyField’,
’WhereClause’ = ’@WhereClause’
);
#
CREATE MAPPING ToolsPromptDefsMap
(
’Name’ = ’@Name’ ON INSERT ONLY,
’Prompt’ = ’@Prompt’,
’Default’ = ’@Default’,
’Value’ = ’@Value’,
’Type’ = ’@Type’
);
#
#
CREATE MAPPING AlertsConversionsMap
(
’KeyField’ = ’@KeyField’ ON INSERT ONLY,
’Colname’ = ’@Colname’ ON INSERT ONLY,
’Value’ = ’@Value’ ON INSERT ONLY,
’Conversion’ = ’@Conversion’
);
#
CREATE MAPPING AlertsColVisualsMap
(
’Colname’ = ’@Colname’ ON INSERT ONLY,
’Title’ = ’@Title’,
’DefWidth’ = ’@DefWidth’,
’MaxWidth’ = ’@MaxWidth’,
’TitleJustify’ = ’@TitleJustify’,
’DataJustify’ = ’@DataJustify’
);
#
#
CREATE MAPPING AlertsColorsMap
(
’Severity’ = ’@Severity’ ON INSERT ONLY,
’AckedRed’ = ’@AckedRed’,
’AckedGreen’ = ’@AckedGreen’,
’AckedBlue’ = ’@AckedBlue’,
’UnackedRed’ = ’@UnackedRed’,
’UnackedGreen’ = ’@UnackedGreen’,
’UnackedBlue’ = ’@UnackedBlue’
);
#
#
CREATE MAPPING MasterServergroupsMap
(
’ServerName’ = ’@ServerName’ ON INSERT ONLY,
’GroupID’ = ’@GroupID’,
’Weight’ = ’@Weight’
);

Chapter 5. ObjectServer Gateway mapping 47

48 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 6. Startup command file

The startup command file contains a set of commands that the gateway performs
automatically each time it starts.

After the gateway has started, you can use the nco_sql command to issue the
commands manually. For details about nco_sql, see the IBM Tivoli
Netcool/OMNIbus Administration Guide .

SHOW PROPS
Use the SHOW PROPS command to display the current configuration of the gateway
by listing all properties and their values.

Syntax

SHOW PROPS ;

Example
SHOW PROPS ;
go

GET CONFIG
Use the GET CONFIG command to display the current configuration of the gateway
by listing all properties and their values.

GET CONFIG is identical to the SHOW PROPS command; it may be removed from later
versions of the ObjectServer gateway.

Syntax

GET CONFIG ;

Example
GET CONFIG ;
go

FAILOVER SYNCH
Use the FAILOVER SYNCH command to synchronize data between primary and
backup ObjectServers. The command specifies which master tables are transferred
during the data transfer operation.

For information about ObjectServer failover, see the IBM Tivoli Netcool/OMNIbus
Administration Guide (SC14-7605).

Syntax

FAILOVER_SYNC [ADD 'TABLENAME' TO | REMOVE 'TABLENAME' FROM
] WRITERNAME ;

© Copyright IBM Corp. 1996, 2011 49

Example
FAILOVER_SYNC ADD ’master.names’ TO ObjectServerA;
FAILOVER_SYNC ADD ’master.groups’TO ObjectServerA;
FAILOVER_SYNC ADD ’master.members’ TO ObjectServerA;
FAILOVER_SYNC ADD ’master.permissions’ TO ObjectServerA;
FAILOVER_SYNC ADD ’master.profiles’TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.actions’ TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.action_access’ TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.menus’ TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.menu_defs’ TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.menu_items’ TO ObjectServerA;
FAILOVER_SYNC ADD ’tools.prompt_defs’TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.conversions’ TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.col_visuals’ TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.colors’ TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.objclass’ TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.objmenus’ TO ObjectServerA;
FAILOVER_SYNC ADD ’alerts.objmenuitems’TO ObjectServerA;

50 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Chapter 7. Table replication definition file

The table replication definition file defines the tables in the source that the
ObjectServer replicates in the target system.

For unidirectional gateways, the table definition file is specified using the
Gate.Reader.TblReplicateDefFile property. For bidirectional gateways, a table
definition file can be specified for both ObjectServers using the
Gate.ObjectServerA.TblReplicateDefFile and
Gate.ObjectServerB.TblReplicateDefFile properties.

Syntax

REPLICATE {ALL | INSERTS, UPDATES, DELETES FT_INSERTS,
FT_UPDATES, FT_DELETES} FROM TABLE sourcetable USING MAP
mapname [FILTER WITH filter_clause] [INTO destinationtable] [ORDER BY
column_name] [WITH NORESYNC][RESYNC DELETES FILTER
condition] [SET UPDTOINS CHECK TO {ENABLED|DISABLED|FORCED}]
[AFTER IDUC DO command] [CACHE FILTER condition]

Where:
v sourcetable is the table to be replicated in the target ObjectServer.
v mapname is the map definition that the defines the table.
v filter_clause defines the filter the gateway uses to select rows for replicating. By

default, filtering is inclusive. That is, the filter sends only those events that
match the filter definition. However, you can specify that the filter sends events
that do not match the filter definition by preceding the equals sign (=) with an
exclamation mark (!). For example, the following filter clause sends all events
whose severity is not set to 5: FILTER with ’Severity !=5’.

v destinationtable is the table to receive the replicted table. If this clause is omitted
the name of the destination table is the same as the value of sourcetable.

v column_name is the column by which the rows returned to the gateway from the
ObjectServer are ordered.

v condition is the SQL condition that the gateway adds to the SELECT statement
when limiting the cache entries that the gateway retrieves during a cache
refresh.

v propertyname is the property the gateway uses to filter the table data (only rows
that satisfy the filter are replicated).

v propertyvalue is argument to be used in the filter.
v targettable is the name of the table in which to replicate the data.
v delete_filter_clause defines the resynchronization delete filter that the gateway

issues to the target ObjectServer.

ALL is the equivalent of INSERTS, UPDATES, DELETES.

The optional WITH NORESYNC option allows you to specify tables that should not be
resynchronized.

The optional ORDER BY option allows you to specify the order in which the rows
are returned to the gateway from the ObjectServer. ASC specifies that the rows are

© Copyright IBM Corp. 1996, 2011 51

sorted in ascending order; DESC specifies descending order. If you specify neither
ASC nor DESC, the rows are sorted in ascending order.

You can define multiple columns for sorting by specifying a comma-separated list;
for example:
ORDER BY ’Serial DESC, StateChange ASC’

The optional RESYNC DELETE FILTER option is used when the rows in the target and
source tables are not an exact match. This option allows you to define a
resynchronization deletion filter that specifies which rows to remove before
insertion into the target table.

The optional SET UPDTOINS CHECK TO option allows you to configure the
update-to-insert functionality. ENABLED (the default setting) instructs the gateway to
perform normal update-to-insert conversions - when an update is received from
the source ObjectServer for a given table, and the row that has been updated does
not exist within the destination ObjectServer, it converts the update to an insert, so
that the row is repopulated within the destination ObjectServer. If the row does
exist within the destination, the gateway will update the existing row with the
update from the source ObjectServer; DISABLED instructions the gateway to always
send an update to the destination ObjectServer for each update received from the
source ObjectServer - any update sent to the destination for rows that do not exist
are dropped as they will affect no rows within the destination ObjectServer; FORCED
instructs the gateway to convert all updates from the source ObjectServer to an
insert on the destination ObjectServer - if the row already exists within the
destination ObjectServer, a de-duplication action is performed by the destination
ObjectServer - this effectively makes the gateway behave like a probe.

The optional AFTER IDUC DO option allows you to specify a column and associated
value that the gateway applies to all rows that have been inserted, updated, or
deleted.

The optional CACHE FILTER option allows you to reduce the amount of data that the
gateway retrieves during a unidirectional gateway cache refresh. The gateway adds
the condition to the end of the select statement that it uses to retrieve cache entries.

Note: If you want to use the CACHE FILTER option, it must be the last entry in
the table replication definition.

Forwarding deletes and memory size

When the forwarding of deletes is disabled (for example, if only inserts and
updates are specified by the REPLICATE command), the deletion details are
dropped by the ObjectServer gateway mapper and not passed on to the writer
itself. This means that the cache entries for the deleted rows are not removed from
the cache. To overcome this, the ObjectServer gateway mapper deletes cache entries
for deleted rows in the destination ObjectServer cache on behalf of the
ObjectServer gateway writer when the forwarding of deletes has been disabled.
This allows you to maintain a stable memory size.

If the forwarding of deletes is enabled and the destination ObjectServer is not fast
enough to keep up with the data being sent to it, the memory used for the
gateway will grow in size.

52 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Example table replication definition file
The table replication definition file defines how the ObjectServer gateway replicates
tables between the source and target ObjectServers. Use this example to familiarize
yourself with how the file works.

The following example shows a table replication definition file:
REPLICATE INSERT, DELETE FROM TABLE ’alerts.status’
USING MAP ’StatusMap’
ORDER BY ’Serial ASC’
FILTER WITH ’Severity=!5’
SET UPDTOINS CHECK TO FORCED
AFTER IDUC DO ’Location=\’PASSED BY GW\’’
CACHE FILTER ’ServerName IN (\’NCOMBS_P\’,\’NCOMBS_B\’)’;

REPLICATE ALL FROM TABLE ’alerts.journal’
USING MAP ’JournalMap’;

REPLICATE ALL FROM TABLE ’alerts.details’
USING MAP ’DetailsMap’;

##
NOTE: If replication of the user related system tables is required, uncomment
the replication definitions below. The associated maps will also need to be
uncommented.
##

REPLICATE ALL FROM TABLE ’security.users’
USING MAP ’SecurityUsersMap’
INTO ’transfer.users’;
#
REPLICATE ALL FROM TABLE ’security.groups’
USING MAP ’SecurityGroupsMap’
INTO ’transfer.groups’;
#
REPLICATE ALL FROM TABLE ’security.roles’
USING MAP ’SecurityRolesMap’
INTO ’transfer.roles’;
#
REPLICATE ALL FROM TABLE ’security.role_grants’
USING MAP ’SecurityRoleGrantsMap’
INTO ’transfer.role_grants’;
#
REPLICATE ALL FROM TABLE ’security.group_members’
USING MAP ’SecurityGroupMembersMap’
INTO ’transfer.group_members’;

Chapter 7. Table replication definition file 53

54 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2011 55

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia

IBM Corporation
896471/H128B
76 Upper Ground
London SE1 9PZ
United Kingdom

IBM Corporation
JBF1/SOM1
294 Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

56 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
AIX, IBM, the IBM logo, ibm.com®, Netcool, Netcool/OMNIbus, and Tivoli are
trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based
trademarks are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 57

58 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

Index

Special characters
$OMNIHOME/etc folder 7, 21

A
activate store and forward

bidirectional gateway 38
unidirectional gateway 19

aggregation ObjectServer 38
alternative deletion strategy 38
attributes, cache value access 42
attributes, dynamic 42
attributes, mapping 42
authentication

bidirectional gateway 36
unidirectional gateway 17

B
backup ObjectServer

bidirectional gateway 37
unidirectional gateway 18

BackupObjectServer property
bidirectional gateway 37
unidirectional gateway 18

backward compatibility 1
bidirectional gateway

properties file 21
bidirectional ObjectServer gateway

alternative deletion strategy 38
buffer size 36
configuration 21, 39

common gateway properties 21
debugging 36
description 3
error handing 36
example 3
hash table cache 35
information flow 3
properties 37
resynchronization properties 39
secure mode connection 37
start 21
store and forward 38

buffer size
bidirectional gateway 36
unidirectional gateway 17

C
cache value access attributes 42
cache, hash table

bidirectional gateway 35
unidirectional gateway 16

command
FAILOVER SYNCH 49
GET CONFIG 49
nco_g_objserv_bi 21
nco_g_objserv_uni 7

command (continued)
nco_sql 49
SHOW PROPS 49

command file, startup 49
command line options

bidirectional gateway
common gateway properties 21
resynchronization properties 39

unidirectional gateway
common gateway properties 7
resynchronization properties 19

commands 49
compatibilty

with IBM Tivoli Netcool/OMNIbus
version 3.x 1

configuration
common gateway properties

bidirectional gateway 21
unidirectional gateway 7

resynchronization properties
bidirectional gateway 39
unidirectional gateway 19

conversion functions 41

D
deactivate store and forward

bidirectional gateway 38
unidirectional gateway 19

debugging
bidirectional gateway 36
unidirectional gateway 17

deletion events 38
deletion filter, resynchronization 51
deletion strategy, alternative 38
dynamic attributes 42

E
enable failback

bidirectional gateway 37
unidirectional gateway 18

enable store and forward
bidirectional gateway 38
unidirectional gateway 19

error handling
bidirectional gateway 36
unidirectional gateway 17

example table replication definition
file 53

F
failback

description 1
example 1
setup

bidirectional gateway 37
unidirectional gateway 18

failover 49

FAILOVER SYNCH command 49
file, map definition 41, 43
file, table replication definition 51
fine-tuning

bidirectional gateway 36
unidirectional gateway 17

G
Gate.Mapper.Debug property

bidirectional gateway 36
unidirectional gateway 17

Gate.ObjectServerA.DeleteIfNoDedup 38
Gate.ObjectServerA.Failback property 37
Gate.ObjectServerA.FailbackTimeout

property 37
Gate.ObjectServerB.DeleteIfNoDedup 38
Gate.ObjectServerB.Failback property 37
Gate.ObjectServerB.FailbackTimeout

property 37
Gate.Reader.Debug property 17
Gate.Reader.Failback property

bidirectional gateway 37
unidirectional gateway 18

Gate.UsePamAuth property
bidirectional gateway 36
unidirectional gateway 17

Gate.Writer.Buffersize property
bidirectional gateway 36
unidirectional gateway 17

Gate.Writer.Debug property 17
Gate.Writer.Failback property

bidirectional gateway 37
unidirectional gateway 18

Gate.Writer.SAF property
bidirectional gateway 38
unidirectional gateway 19

Gate.Writer.SAFFile property
bidirectional gateway 38
unidirectional gateway 19

gateway mapping, ObjectServer 41
GET CONFIG command 49

H
handle errors

bidirectional gateway 36
unidirectional gateway 17

hash table cache
bidirectional gateway 35
unidirectional gateway 16

M
map definition file 41, 43
map definition file conversion

functions 41
mapper 2
mapping attributes 42
mapping, ObjectServer gateway 41

© Copyright IBM Corp. 1996, 2011 59

N
nco_g_objserv_bi command 21
nco_g_objserv_uni command 7
nco_sql command 49
NGTK library 17, 36

O
ObjectServer

backup 3
failover pair 3
secure mode connection

bidirectional gateway 37
unidirectional gateway 18

ObjectServer failover 49
ObjectServer gateway

bidirectional 3
common gateway properties 21
configuration 21
resynchronization properties 39

description 1
example mapping 43
features 1
licensing 1
mapping 41
summary 1
unidirectional 2

common gateway properties 7
resynchronization properties 19

user and password 18, 37
uses 1

ObjectServers, primary and backup 49
operation, table insert

bidirectional gateway 35
unidirectional gateway 16

P
PAM authentication

bidirectional gateway 36
unidirectional gateway 17

pass data between ObjectServers 1
platforms, supported 1
primary and backup ObjectServers 49
properties file

bidirectional ObjectServer
gateway 21

unidirectional gateway 7

R
reader 2
reader/writer 3
readers 1
reduce latency

bidirectional gateway 36
unidirectional gateway 17

replicate data between ObjectServers 1
replication, table 51
resynchronization deletion filter 51
resynchronization properties

bidirectional gateway 39
unidirectional gateway 19

S
set up failback

bidirectional gateway 37
unidirectional gateway 18

SHOW PROPS command 49
start bidirectional gateway 21
start unidirectional gateway 7
startup command file 49
store and forward

bidirectional gateway 38
unidirectional gateway 19

supported platforms 1

T
table data

centralized property management 1
property management, centralized 1
replication 1
table data

passing 1
table insert operation

bidirectional gateway 35
table insert operations

unidirectional gateway 16
table replication 51
table replication definition file 51
table replication definition file,

example 53
transfer data between ObjectServers 1

U
unidirectional ObjectServer gateway

authentication 17
buffer size 17
configuration 7

common gateway properties 7
resynchronization properties 19

description 2
error handling 17
example 2
hash table cache 16
information flow 2
properties 19
properties file 7
start 7
store and forward 19

unidirectional ObjectServer gateway
properties

ObjectServer
secure mode 18

secure mode connection 18
update-to-insert 51

W
writer 2
writers 1

60 IBM Tivoli Netcool/OMNIbus ObjectServer Gateway: Reference Guide

����

Printed in USA

SC14-6090-00

	Contents
	Chapter 1. IBM Tivoli Netcool/OMNIbus ObjectServer Gateway
	Features of the ObjectServer Gateway
	Unidirectional ObjectServer Gateways
	Bidirectional ObjectServer Gateways

	Chapter 2. Installing the gateway on Tivoli Netcool/OMNIbus V7.3.0 or later
	Installing the gateway on UNIX and Linux operating systems
	Installing the gateway on Windows operating systems

	Chapter 3. Configuration of the unidirectional ObjectServer Gateway
	Unidirectional gateway properties
	Hash table cache
	Error handling
	Process Agent control
	Authentication
	Buffer size for unidirectional ObjectServer Gateways
	Secure connections for unidirectional ObjectServer Gateways
	Failback for unidirectional ObjectServer Gateways
	Store and forward for unidirectional ObjectServer Gateways
	Resynchronization properties of unidirectional ObjectServer Gateways

	Chapter 4. Configuration of the bidirectional ObjectServer Gateway
	Bidirectional gateway properties
	Hash table cache
	Error handling
	Process Agent control
	Authentication
	Buffer size for bidirectional ObjectServer Gateways
	Secure ObjectServer connections for bidirectional ObjectServer Gateways
	Failback for bidirectional ObjectServer Gateways
	Store and forward for bidirectional ObjectServer Gateways
	Alternative deletion strategy
	Resynchronization properties of bidirectional ObjectServer Gateways

	Chapter 5. ObjectServer Gateway mapping
	Mapping attributes
	Example mapping

	Chapter 6. Startup command file
	SHOW PROPS
	GET CONFIG
	FAILOVER SYNCH

	Chapter 7. Table replication definition file
	Example table replication definition file

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	M
	N
	O
	P
	R
	S
	T
	U
	W

