
Netcool/OMNIbus
Version 7 Release 3

Event Integration Facility Reference

SC14-7611-00

���





Netcool/OMNIbus
Version 7 Release 3

Event Integration Facility Reference

SC14-7611-00

���



Note
Before using this information and the product it supports, read the information in “Notices” on page 73.

This edition applies to version 7, release 3, modification 1 of IBM Tivoli Netcool/OMNIbus (product number
5724-S44) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About this publication . . . . . . . . v
Intended audience . . . . . . . . . . . . v
What this publication contains . . . . . . . . v
Publications . . . . . . . . . . . . . . vi
Accessibility . . . . . . . . . . . . . . viii
Tivoli technical training . . . . . . . . . . viii
Support information . . . . . . . . . . . viii
Conventions used in this publication . . . . . . ix

Chapter 1. Overview of the Tivoli Event
Integration Facility . . . . . . . . . . 1
Events . . . . . . . . . . . . . . . . 1
Adapters . . . . . . . . . . . . . . . 2
Event classes . . . . . . . . . . . . . . 3
Configuration files . . . . . . . . . . . . 3
Event server . . . . . . . . . . . . . . 3
Event filtering . . . . . . . . . . . . . . 6
Rules . . . . . . . . . . . . . . . . . 6

Chapter 2. Installing the Tivoli Event
Integration Facility . . . . . . . . . . 9
Preparing for installation . . . . . . . . . . 9
Installing . . . . . . . . . . . . . . . 10
Migrating adapters . . . . . . . . . . . . 12

Chapter 3. Event transport . . . . . . 13
Event delivery methods . . . . . . . . . . 13

Connection options . . . . . . . . . . . 13
Transport options . . . . . . . . . . . 13
Shell script and test options . . . . . . . . 17

Event reception for applications . . . . . . . 20
Sending events through firewalls . . . . . . . 21
Event delivery when systems fail . . . . . . . 21

Activating the cache . . . . . . . . . . 22
Configuring backup servers to deliver events . . 23
Using the portmapper keywords . . . . . . 24
Configuring a reception application built with
the C API . . . . . . . . . . . . . . 24

Chapter 4. Building an adapter . . . . 27
Adapter files . . . . . . . . . . . . . . 27
Identifying events to monitor . . . . . . . . 27
Defining the source. . . . . . . . . . . . 28
Defining event classes . . . . . . . . . . . 28
Selecting event delivery methods . . . . . . . 29

Configuring an EIF receiver application for SSL 29
Configuring an EIF client application for SSL . . 31

Programming the adapter . . . . . . . . . 33
Upgrading existing adapters. . . . . . . . 34
Configuration file APIs . . . . . . . . . 34
Communications APIs . . . . . . . . . . 34
Special considerations for Microsoft Windows . . 35
Compiling the adapter built with the C API . . 35
Linking the adapter built with the C API . . . 36

Installing, configuring, and testing the adapter . . 36
Running adapters built with the Event Integration
Facility Java API. . . . . . . . . . . . . 37
Configuring adapters for international environments 37

Chapter 5. Filtering events at the
source . . . . . . . . . . . . . . . 39
Filtering with configuration files . . . . . . . 39

Filtering events when systems fail . . . . . . 40
Regular expressions in filters . . . . . . . 41

Chapter 6. Troubleshooting . . . . . . 43
Message logs . . . . . . . . . . . . . . 43
Trace logs . . . . . . . . . . . . . . . 43
Performance and availability . . . . . . . . 44

Event reception connection parameters . . . . 44
Common problems and scenarios . . . . . . . 45

Building and running adapters . . . . . . . 45
Making connections to the event server . . . . 45
Sending events . . . . . . . . . . . . 46

Appendix A. Application programming
interfaces . . . . . . . . . . . . . 47
C language API . . . . . . . . . . . . . 47

tec_agent_getenv . . . . . . . . . . . 47
tec_agent_init. . . . . . . . . . . . . 47
tec_create_EIF_handle . . . . . . . . . . 48
tec_create_handle . . . . . . . . . . . 49
tec_create_handle_c. . . . . . . . . . . 50
tec_create_handle_r . . . . . . . . . . . 51
tec_destroy_handle . . . . . . . . . . . 52
tec_errno . . . . . . . . . . . . . . 52
tec_get_event . . . . . . . . . . . . . 52
tec_put_event. . . . . . . . . . . . . 53
tec_register_callback . . . . . . . . . . 53

Appendix B. Utilities for the C API . . . 55
ed_scan_get_n . . . . . . . . . . . . . 55
ed_scan_n . . . . . . . . . . . . . . . 55
ed_sleep . . . . . . . . . . . . . . . 56

Appendix C. Java language API . . . . 57
disconnect . . . . . . . . . . . . . . . 57
disconnect(time) . . . . . . . . . . . . . 57
getConfigVal . . . . . . . . . . . . . . 57
onMessage . . . . . . . . . . . . . . 58
receiveEvent . . . . . . . . . . . . . . 58
registerListener . . . . . . . . . . . . . 59
sendEvent . . . . . . . . . . . . . . . 59
TECAgent . . . . . . . . . . . . . . . 59
TECEvent . . . . . . . . . . . . . . . 60

Appendix D. Keywords . . . . . . . . 63

© Copyright IBM Corp. 2003, 2011 iii



Notices . . . . . . . . . . . . . . 73
Trademarks . . . . . . . . . . . . . . 75

Index . . . . . . . . . . . . . . . 77

iv IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



About this publication

The Tivoli Event Integration Facility Reference contains reference material for the
Event Integration Facility toolkit (EIF).

Intended audience
This guide explains the concepts to effectively develop new adapters or modify
existing ones. This book is for developers who have programming knowledge and
need to create custom adapters and use the Tivoli Event Integration Facility within
their applications. This book is also useful for Tivoli Netcool/OMNIbus
administrators who modify configuration files.

Readers should be familiar with the following software:
v Java or C programming languages
v UNIX, Microsoft Windows, or other target operating systems

What this publication contains
This publication contains reference information for the Tivoli Event Integration
Facility.

This publication contains the following sections:
v Chapter 1, “Overview of the Tivoli Event Integration Facility,” on page 1

Introduces the Event Integration Facility.
v Chapter 2, “Installing the Tivoli Event Integration Facility,” on page 9

Describes planning, installing and migrating for the Event Integration Facility.
v Chapter 3, “Event transport,” on page 13

Describes methods for sending information to the event server.
v Chapter 4, “Building an adapter,” on page 27

Describes how to build an adapter to help you monitor events.
v Chapter 5, “Filtering events at the source,” on page 39

Describes how to filter events at the source to deal with large numbers of events.
v Chapter 6, “Troubleshooting,” on page 43

Explains how to troubleshoot problems that can arise installing and using the
Event Integration Facility.

v Appendix A, “Application programming interfaces,” on page 47
Describes how to use APIs to build custom adapters or applications.

v Appendix D, “Keywords,” on page 63
Contains the keywords common to most adapters.

© Copyright IBM Corp. 2003, 2011 v



Publications
This section lists publications in the Tivoli Netcool/OMNIbus library and related
documents. The section also describes how to access Tivoli publications online and
how to order Tivoli publications.

Your Tivoli Netcool/OMNIbus library

The following documents are available in the Tivoli Netcool/OMNIbus library:
v IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide, SC14-7604

Includes installation and upgrade procedures for Tivoli Netcool/OMNIbus, and
describes how to configure security and component communications. The
publication also includes examples of Tivoli Netcool/OMNIbus architectures and
describes how to implement them.

v IBM Tivoli Netcool/OMNIbus Administration Guide, SC14-7605
Describes how to perform administrative tasks using the Tivoli
Netcool/OMNIbus Administrator GUI, command-line tools, and process control.
The publication also contains descriptions and examples of ObjectServer SQL
syntax and automations.

v IBM Tivoli Netcool/OMNIbus Web GUI Administration and User's Guide, SC14-7606
Describes how to perform administrative and event visualization tasks using the
Tivoli Netcool/OMNIbus Web GUI.

v IBM Tivoli Netcool/OMNIbus User's Guide, SC14-7607
Provides an overview of the desktop tools and describes the operator tasks
related to event management using these tools.

v IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide, SC14-7608
Contains introductory and reference information about probes and gateways,
including probe rules file syntax and gateway commands.

v IBM Tivoli Monitoring for Tivoli Netcool/OMNIbus Agent User's Guide, SC14-7610
Describes how to install the health monitoring agent for Tivoli
Netcool/OMNIbus and contains reference information about the agent.

v IBM Tivoli Netcool/OMNIbus Event Integration Facility Reference, SC14-7611
Describes how to develop event adapters that are tailored to your network
environment and the specific needs of your enterprise. This publication also
describes how to filter events at the source.

v IBM Tivoli Netcool/OMNIbus Error Messages Guide, SC14-7612
Describes system messages in Tivoli Netcool/OMNIbus and how to respond to
those messages.

v IBM Tivoli Netcool/OMNIbus Web GUI Administration API (WAAPI) User's Guide,
SC22-5403-00
Shows how to administer the Tivoli Netcool/OMNIbus Web GUI using the XML
application programming interface named WAAPI.

Related publications

The following documents should be consulted when using the IBM® Tivoli
Enterprise Console® as event server. They are available in the IBM Tivoli Enterprise
Console library:
v IBM Tivoli Enterprise Console Adapters Guide, SC32–1242

Provides information about supported adapters, including how to install and
configure these adapters.

vi IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



v IBM Tivoli Enterprise Console Installation Guide, SC32–1233
Describes how to install, upgrade, and uninstall the IBM Tivoli Enterprise
Console product.

v IBM Tivoli Enterprise Console Command and Task Reference, SC32–1232
Provides details about IBM Tivoli Enterprise Console commands, predefined
tasks shipped in the task library, and the environment variables that are
available to tasks that run against an event.

v IBM Tivoli Enterprise Console Rule Developer's Guide, SC32–1234
Describes how to develop rules and integrate them for event correlation and
automated event management.

v IBM Tivoli Enterprise Console User's Guide, SC32–1235
Provides an overview of the IBM Tivoli Enterprise Console product and
describes how to configure and use the IBM Tivoli Enterprise Console product to
manage events.

v IBM Tivoli Enterprise Console Warehouse Enablement Pack: Implementation Guide,
SC32–1236
Describes how to install and configure the warehouse enablement pack for the
IBM Tivoli Enterprise Console product and describes the data flow and
structures that are used by the warehouse pack.

v IBM Tivoli Event Console Release Notes, SC32–1238
Provides release-specific information that is not available until just before the
product is sent to market.

v IBM Tivoli Enterprise Console Rule Set Reference, SC32–1282
Provides reference information about the IBM Tivoli Enterprise Console rule sets.

Accessing terminology online

The Tivoli Software Glossary includes definitions for many of the technical terms
related to Tivoli software. The Tivoli Software Glossary is available at the following
Tivoli software library Web site:

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File > Print window that allows Adobe Reader to print letter-sized pages on
your local paper.

About this publication vii

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp


Ordering publications

You can order many Tivoli publications online at the following Web site:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to the following Web site:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
2. Select your country from the list and click Go. The Welcome to the IBM

Publications Center page is displayed for your country.
3. On the left side of the page, click About this site to see an information page

that includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

With this product, you can use assistive technologies to hear and navigate the
interface. You can also use the keyboard instead of the mouse to operate some
features of the graphical user interface.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site:

http://www.ibm.com/software/tivoli/education

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa.

viii IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa


Conventions used in this publication
This publication uses several conventions for special terms and actions and
operating system-dependent commands and paths.

Typeface conventions

This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip: and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs)
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths

This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables, and replace each forward slash (/) with a backslash (\) in
directory paths. For example, on UNIX systems, the $NCHOME environment
variable specifies the path of the Netcool® home directory. On Windows systems,
the %NCHOME% environment variable specifies the path of the Netcool home
directory. The names of environment variables are not always the same in the
Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

About this publication ix



x IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Chapter 1. Overview of the Tivoli Event Integration Facility

The Event Integration Facility is a toolkit that expands the types of events and
system information that you can monitor. You can use it to develop your own
adapters, tailored to your network environment and to your specific needs.

The Event Integration Facility contains:
v An event application programming interface (API) library for use with the Java

and C programming languages.
v A debugging function that checks event syntax and sends events to a file.

You can use Tivoli Event Integration Facility to do the following tasks:
v Specify the event information to send to the event server for processing.
v Create an adapter to filter, translate, and then forward event information to the

event server.
v Filter and correlate events near the source.
v Create an application that can receive events.

Events
The central unit of information is the event. An event is any significant change in
the state of a system resource or application. Events can be generated for problems
and for successful completions of tasks.

Events provide many different types of information, for example when a host is
down, when someone unsuccessfully tries to log in to a host as an administrator,
or when a hard drive is nearly full. Events can also be generated to clear other
events.

An event begins as an error message, a trap, or a similar piece of information that
is displayed or written to a file. The information provided in an event is
dependent on the source. Some sources provide detailed information about an
event, while other sources are brief in their descriptions. An adapter converts all
events into a format that provides consistency in information, such as the source,
location, date, and time of an event.

Some events, such as traps, contain data that you cannot read. In these cases, the
adapter must translate the data into a format that you can read so that the
information can be further processed. Some sources, such as a system log file,
provide data that you can read without machine translation.

Adapters translate event information into a set of attributes. Each attribute is
predefined by the adapter and contains the attribute name and the attribute value.
The adapter places the appropriate information in each attribute, and then sends
the event to the event server.

This following figure illustrates how an event evolves:

© Copyright IBM Corp. 2003, 2011 1



The following example shows how log file information is translated into events. In
this example, a failed attempt to run the su root command on the host oak is
written to the system log file. You can read the resulting format:
Nov 7 08:51:42 oak su: 'su root’ failed for don on /dev/ttyp0

The adapter then translates the log file information into an event as follows:
Su_Failure:
source=LOGFILE;
origin=oak;
date=”Nov 7 08:51:42 ”;
host=oak;
sub_source=login;
from_user=don;
tty=/dev/ttyp0
to_user=root;
END

Related concepts

“Event server” on page 3

Adapters
Adapters are processes that monitor managed sources. A source is an application
such as a database, or a system resource such as disk space. When an adapter
receives information from its source, the adapter formats the information and
forwards it to the event server.

To monitor a source such as a third-party or custom application, you must use the
Event Integration Facility to create an adapter and event classes for each new
source.

Adapters monitor sources in the following ways:
v An adapter can receive messages from a source that actively produces messages.

For example, adapters can receive messages that are sent by Tivoli software
applications.

v An adapter can check a file at configurable intervals if the source updates a file.
v An adapter can poll a system resource or system condition at configurable

intervals, and then interpret and forward the resulting information directly to
the event server.

event:
native format

event:
Tivoli format

To event server
System

Resource or
Application

Event
Adapter

Figure 1. Evolution of an event

2 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Event classes
Event classes are classifications of events. After separating information into event
classes, adaptors format the information into messages that represent specific
instances of event classes. Then they send the information to the event server,
which processes the information, along with information received from other
adapters.

Event classes can be divided into subclasses to facilitate a further breakdown of
information so that more detailed rules can be applied to the event information.
Essentially, event classes are an agreement between the adapter and the event
server about what information the adapter sends to the event server.

Note: Event classes are not the same as Tivoli objects.
Related concepts

“Defining event classes” on page 28

Configuration files
You can control the behavior of an adapter using the configuration file. A
configuration file enables you to specify configuration parameters.

You can specify the following configuration parameters:
v The information that must be sent to the event server.
v The connection interface used by the adapter.
v The host on which the event server is located.
v The event filtering to be performed by the adapter.
v Any information that is unique to a particular adapter.

After information is separated into event classes, the adapter sends the information
to the event server for further processing. You can use the configuration file to
control the information that the adapter sends to the event server in order to
reduce the load on the network.

You do not need to modify multiple instances of an adapter to run in different
environments. You have to modify only the configuration files.
Related reference

Appendix D, “Keywords,” on page 63

Event server
An event server is a central server that handles all events collected by the
distributed adapters. The event server creates an entry for each incoming event
and evaluates that event against a set of rules to determine if it can respond to the
event, or modify the event automatically.

The Probe for Tivoli EIF acts as the event server for the Tivoli Event Integration
Facility.

Note: For previous versions of EIF, the Tivoli Enterprise Console Server fulfils the
same role.

Chapter 1. Overview of the Tivoli Event Integration Facility 3



An adapter does not typically provide values for all attributes of a particular event;
some attribute values are provided by the event server. The Probe for Tivoli EIF
can process any well-formed EIF event. You have the option to define the
following attributes:

$ClassName
The class name of the event.

$EventSeqNo
The sequence number of the event.

$EventString
The entire event in a single string.

$date The date of the event in mm/dd/yy format.

$EventClass
The class of the event as assigned by the event source.

Note: The Probe for Tivoli EIF uses the event class to identify the format
of the message for each event type.

$hostname
The host name of the system.

$msg The content of the message.

$peerhost
The secondary host.

$severity
The severity of the alarm.

$source
The type of application that has created the event.

$sub_origin
The optional subcategorization of the event origin.

$sub_source
A detailed description of the source.

Rules describe the actions that are performed when the event server receives a
particular system event. In some cases, you can customize other applications to
receive events from the event server.

The event server validates incoming events. If an event is valid, the event server
assigns a unique identification (ID) and time stamp and stores it in an event
database. The event server processes each incoming transaction before processing
the next transaction.

The following example event has been processed by the Probe for Tivoli EIF and
the Tivoli Netcool/OMNIbus ObjectServer:
Node Alias: 9.42.19.243
TECEventHandle:
Process Required: 0
Prec. Entity ID: 0
First Occurrence: 07/28/2009 02:17:23 PM
Rem. Sec Obj.:
Port: 0
Suppr./Escl.: Normal
Rem. Root Obj.:
Extended Attributes:

4 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Slot: 0
Local Node Alias:
Managed Status: Managed
Alert Group: EVENT
Class: TME10tecad
Flash: No
URL:
Summary: hello_eif_probe
Cause Type: Unknown
Count: 1
Poll: 0
Agent: TEC
State Change: 07/28/2009 02:17:23 PM
Alert Key: TEC
Local Sec. Obj.:
TaskList: Not in Task List
Local Root Obj.:
Group: Public
Card:
Serial: 1950
Manager: tivoli_eif probe on austin.tivlab.raleigh.ibm.com
Event Type: Not Defined
Rem. Pri. Obj.:
Customer:
Expire Time: Not Set
Identifier: :TEC:EVENT
Prec. Obj. Inst.: 0
TECRepeatCount: 0
Correlated Notif.:
TECFQHostname:
Specific Problem:
Owner: Nobody
Location:
Server Name: NCOMS
Service:
Internal Timestamp: 07/28/2009 02:17:23 PM
Node: 9.42.19.243
TECStatus:
TECDate:
Probable Cause: Not Defined
Rem. Node Alias:
Severity: Indeterminate
Last Occurrence: 07/28/2009 02:17:23 PM
TECHostname:
Grade: 1
Server Serial: 1950
TECDateReception:
Local Pri. Obj.:
TECServerHandle:
Precision Domain:
Type: Problem
Event ID:
Prec. Serial:
Ack: No

The following example event has been processed by the Tivoli Enterprise Console
Server:
Su_Failure:
server_handle=1;
date_reception=784408852;
event_handle=1;
source=LOG;
sub_source=login;
origin=oak;
sub_origin=’’;
hostname=’’;

Chapter 1. Overview of the Tivoli Event Integration Facility 5



last_modified_time=’Nov 07, 1994 08:51:42’;
adapter_host=’’;
status=OPEN;
administrator=’’;
acl=[admin];
severity=WARNING;
date=’Nov 07, 1994 08:51:42’;
duration=0;
msg=’’;
msg_catalog=’’;
msg_index=0;
num_actions=1;
credibility=0;
repeat_count=0;
cause_date_reception=0;
cause_event_handle=0;
from_user=don;
to_user=root;
END

Related concepts

“Events” on page 1

Event filtering
Event filtering reduces complexity for console operators and improves response
times for complex system errors.

You can filter events with the Tivoli Event Integration Facility by defining filter
statements in the configuration file.
Related concepts

Chapter 5, “Filtering events at the source,” on page 39

Rules
The event server uses rules to specify and control automatic responses to events
throughout an enterprise. If you develop a new adapter, you can write new rules
specifically geared toward enhancing the usefulness of the adapter events.

IBM Tivoli Netcool/OMNIbus automations are similar to EIF rules. The
automations detect changes in the ObjectServer and respond to these changes
automatically, enabling the ObjectServer to process alerts without requiring an
operator to take action. For more information about Tivoli Netcool/OMNIbus
automations, see the IBM Tivoli Netcool/OMNIbus Administration Guide in the
Network Availability Management information center at
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

For more information about the Probe for Tivoli EIF rules, see the following
publications in the IBM Tivoli Network Availability Management information
center at http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp:
v The IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide at

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/
com.ibm.netcool_OMNIbus_probes.doc/welcome_genprb.htm

v The IBM Tivoli Netcool/OMNIbus Probe for Tivoli EIF Reference Guide at
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/
com.ibm.netcool_OMNIbus.doc/probes/tivoli_eif/tivoli_eif/wip/concept/
tveif_intro.html

6 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus_probes.doc/welcome_genprb.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus_probes.doc/welcome_genprb.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/probes/tivoli_eif/tivoli_eif/wip/concept/tveif_intro.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/probes/tivoli_eif/tivoli_eif/wip/concept/tveif_intro.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/probes/tivoli_eif/tivoli_eif/wip/concept/tveif_intro.html


For more information about Tivoli Enterprise Console rules, see the IBM Tivoli
Enterprise Console Rule Developer's Guide in the IBM Tivoli Enterprise Console
information center at
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/
com.ibm.itecruledev.doc/ecodmst.htm

Chapter 1. Overview of the Tivoli Event Integration Facility 7

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.itecruledev.doc/ecodmst.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.itecruledev.doc/ecodmst.htm


8 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Chapter 2. Installing the Tivoli Event Integration Facility

You install the Tivoli Event Integration Facility using a stand-alone installation
process. Custom adapters created with a previous version of the Event Integration
Facility can be migrated only when the SOCKET transport type is used.

Preparing for installation
The Tivoli Event Integration Facility SDK is distributed with IBM Tivoli
Netcool/OMNIbus as a compressed file. This file is available on CD, or you can
download it from the IBM Passport Advantage® Online Web site as part of the
main Tivoli Netcool/OMNIbus download.

Note: The same version of EIF, which is suitable for all operating systems, is
available for download with all versions of Tivoli Netcool/OMNIbus.

Extract the contents of the installation package into a temporary location. Extract
the EIF files to a separate directory from your IBM Tivoli installation directory.

Note: You do not use the Tivoli Netcool/OMNIbus installation process to install
the Tivoli Event Integration Facility. Instead, you merely extract the compressed
EIF files that are bundled with the Tivoli Netcool/OMNIbus files.

Note: The Tivoli Netcool/OMNIbus version of EIF is compiled using Microsoft
Visual C++ 2005 SP1. Therefore EIF executables such as posteifmsg may require the
Microsoft Visual C++ 2005 SP1 Redistributable Package to be installed. The user or
application deploying EIF must install the Redistributable Package, because EIF
does not have an installer program and is not installed by Tivoli
Netcool/OMNIbus. You can download the Redistributable Package from the
following locations:

For x86 operating systems
http://www.microsoft.com/downloads/details.aspx?familyid=200b2fd9-
ae1a-4a14-984d-389c36f85647

For x64 operating systems
http://www.microsoft.com/downloads/details.aspx?familyid=EB4EBE2D-
33C0-4A47-9DD4-B9A6D7BD44DA

Downloading EIF

If you are downloading EIF from the IBM Passport Advantage Online Web site,
follow the instructions in the download document for your operating system.

Table 1. Location of the download documents for all supported Tivoli Netcool/OMNIbus
operating systems

Operating system Download document location

AIX® http://www-01.ibm.com/support/
docview.wss?rs=3120&uid=swg24026995

HP-UX http://www-01.ibm.com/support/
docview.wss?rs=3120&uid=swg24026996

HP-UX Integrity http://www-01.ibm.com/support/
docview.wss?rs=3120&uid=swg24026999

© Copyright IBM Corp. 2003, 2011 9

http://www.microsoft.com/downloads/details.aspx?familyid=200b2fd9-ae1a-4a14-984d-389c36f85647
http://www.microsoft.com/downloads/details.aspx?familyid=200b2fd9-ae1a-4a14-984d-389c36f85647
http://www.microsoft.com/downloads/details.aspx?familyid=EB4EBE2D-33C0-4A47-9DD4-B9A6D7BD44DA
http://www.microsoft.com/downloads/details.aspx?familyid=EB4EBE2D-33C0-4A47-9DD4-B9A6D7BD44DA
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24026995
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24026995
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24026996
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24026996
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24026999
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24026999


Table 1. Location of the download documents for all supported Tivoli Netcool/OMNIbus
operating systems (continued)

Operating system Download document location

Linux http://www-01.ibm.com/support/
docview.wss?rs=3120&uid=swg24026997

Linux for System z® http://www-01.ibm.com/support/
docview.wss?rs=3120&uid=swg24026998

Solaris http://www-01.ibm.com/support/
docview.wss?rs=3120&uid=swg24027000

Windows http://www-01.ibm.com/support/
docview.wss?rs=3120&uid=swg24027001

Installing
You do not use the Tivoli Netcool/OMNIbus installation process to install the
Tivoli Event Integration Facility. Instead, you extract the compressed EIF files that
are bundled with the Tivoli Netcool/OMNIbus files. The EIF SDK includes the JAR
files and C libraries.

Directory structures

EIF has the file and directory structure described in the following list. In this
directory structure, interp maps to the following names:
v aix4-r1
v hpux10
v hpuxia
v linux-ix86
v linux-ppc
v linux-s390
v linux-ia64
v os390
v solaris2
v solaris2-ix86
v w32-ix86

eif.conf
A sample EIF configuration file.

ed_diag_config
A sample configuration file to enable EIF diagnostics.

EIF.version
A file containing the current build version of EIF.

bin/interp
Contains, for each interp, the 32-bit command line tool for sending EIF
events:
v posteifmsg

bin64/interp
Contains, for each interp, the 64-bit command line tool for sending EIF
events:
v posteifmsg

10 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference

http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24026997
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24026997
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24026998
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24026998
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24027000
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24027000
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24027001
http://www-01.ibm.com/support/docview.wss?rs=3120&uid=swg24027001


contrib/interp
Contains compiled sample C programs (32-bit) for each supported interp.

Sample C-based receivers:
v eifrcv1
v eifrcv2
v eifrcv3
v eifrcv4

Sample C-based senders:
v eifsend1
v eifsend2

contrib64/interp
Contains compiled sample C programs (64-bit) for each supported interp:

Sample C-based receivers:
v eifrcv1
v eifrcv2
v eifrcv3
v eifrcv4

Sample C-based senders:
v eifsend1
v eifsend2

include
Contains header files (.h) for building adapters. These are common across
all interps:
v agent_comm.h
v tec_defines.h
v tec_eif.h
v tec_eeif.h

jars Contains all the jar files necessary to use the Java based EIF API:
v evd.jar
v log.jar

javadoc
Contains the javadoc for the Java-based EIF API.

lib/interp
Contains, for each interp type, the 32-bit static library needed for linking
an adapter:
v libeif.a

lib64/interp
Contains, for each interp type, the 64-bit static library needed for linking
an adapter:
v libeif.a

samples
Contains sample adapter source code.

Sample C-based receivers:
v eifrcv1.c

Chapter 2. Installing the Tivoli Event Integration Facility 11



v eifrcv2.c
v eifrcv3.c
v eifrcv4.c

Sample C-based senders:
v eifsend1.c
v eifsend2.c

Sample C-based long running adapter:
v sampleAdapter.c

Sample Java-based long running adapter:
v SampleAdapter.java

Migrating adapters
The new Event Integration Facility is backwardly compatible with earlier versions
only when the SOCKET transport type is used.

Java API
Applications that are migrating to the new Event Integration Facility must
include the following new jar files.
v evd.jar
v log.jar

C API Applications that are migrating to the new Event Integration Facility must
relink any binaries that are dependent on the Event Integration Facility.
This means a static link to libeif.a (previously libteceeif.a).

Related concepts

Chapter 4, “Building an adapter,” on page 27

12 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Chapter 3. Event transport

The Tivoli Event Integration Facility provides several methods for sending
information to the event server. The system on which an adapter is run must
provide a TCP/IP-based interprocess communication facility.

Event delivery methods
Events are delivered by an interprocess communication mechanism. To specify the
delivery methods for adapters and applications using the Tivoli Event Integration
Facility, modify the configuration file and link to the applicable library. To deliver
test events directly from a command prompt, use the command-line interface.
Related concepts

“Selecting event delivery methods” on page 29
Related reference

“Shell script and test options” on page 17

Connection options
The connection options are either connection-oriented or connectionless. In
situations where you want to send many events, you use the connection-oriented
option. In situations where you want to send few events over a period of time, you
use the connectionless option.

You can write a single adapter and use it with a connection-oriented or a
connectionless delivery method. You can specify a delivery method by modifying
the configuration file.
v The default setting for the connection option is connectionless. This method

establishes and discards a new connection for each event or group of events.
v For a connection-oriented event delivery, specify ConnectionMode=CO in the

configuration file. This method keeps the channel to the event server open,
which improves the performance when you are sending many events.

Related concepts

“Selecting event delivery methods” on page 29
Related reference

Appendix D, “Keywords,” on page 63

Transport options
An application can use the Event Integration Facility API to act as an event sender
or an event receiver. The transport options for connections are either SOCKET or
Secure Sockets Layer (SSL), and are defined in the EIF configuration file.

SOCKET
Compatible with both IPv4 and IPv6.

Links to the libeif.a library.

Uses standard TCP/IP to establish connections.

SSL Compatible with both IPv4 and IPv6.

Links to the libeif.a library.

© Copyright IBM Corp. 2003, 2011 13



Performs the standard SSL handshake internally.

Can run in FIPS 140-2 mode.

Requires SSL keystores and truststores from the application.

Note: The keystores and truststores contain the digital certificates and keys
that are required to establish an SSL connection. Use the iKeyman utility
provided with GSKit to create these. GSKit is installed in the following
IBM Tivoli Netcool/OMNIbus location: $NCHOME/platform/arch/lib, with
arch being your operating system directory.

Related concepts

“Federal Information Processing Standard 140–2 (FIPS 140–2) support” on page 17
“Selecting event delivery methods” on page 29
Related reference

“Linking the adapter built with the C API” on page 36

SSL and FIPS 140-2
The Tivoli Event Integration Facility supports the use of the Secure Sockets Layer
(SSL) encryption and authentication protocol to send and receive events. In
addition, EIF SSL connections can operate in FIPS 140-2 mode, which means the
use of FIPS 140-2 approved cryptographic providers.

SSL uses digital certificates for key exchange and authentication. When a client
initiates an SSL connection, the server presents the client with a certificate that is
signed by a Certificate Authority (CA); that is, a trusted party that guarantees the
identity of the certificate and its creator. The server certificate contains the identity
of the server, the public key, and the digital signature of the certificate issuer.

To enable FIPS 140-2 mode, edit the EIF configuration file and set the
channel_nameSSLFIPSMode property to ON. For Java-based EIF applications, you
must also configure the Java Runtime Environment for FIPS 140-2 mode. When in
FIPS 140-2 mode, all encryption and key generation functions that are required for
the secured SSL connections are provided by FIPS 140-2 approved cryptographic
providers. If an EIF receiver application has been enabled for FIPS 140-2 mode, all
EIF client programs that connect to the receiver must also be FIPS-enabled.

For the Java version of EIF, FIPS 140-2 mode is facilitated by the use of IBM Java
Runtime Environment (JRE) 1.4.2 or higher.

For the C version of EIF, FIPS 140-2 mode is facilitated by the use of IBM Global
Security Kit (GSKit) version 7.

Restriction: SSL support is unavailable in the EIF C API for platforms not
supported by GSKit.

Before using SSL in the C version of EIF, ensure that the path to the GSKit libraries
appears in the following environment variables:
v On Windows operating systems, the path to the GSKit libraries must appear in

the PATH environment variable.

Note: The GSKit libraries are located in %NCHOME%\platform\win32\lib

v On UNIX and Linux operating systems, the path to the GSKit libraries must
appear in the LIBPATH, SHLIB_PATH, or LD_LIBRARY_PATH environment
variables.

14 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Note: The GSKit libraries are located in $NCHOME/platform/arch/lib with arch
being your operating system directory.

IBM Key Management utility (iKeyman)

You configure transport types of either SOCKET or SSL in the EIF configuration
file. If you choose SSL, you use iKeyman (provided with GSKit version 7) to
generate and manage keys and digital certificates that are required for SSL
communication.

Note: You can also manage keys and digital certificates from a command-line
interface.

Keystores for EIF receiver applications
Use iKeyman to create keystores for EIF receiver applications.

The keystore of the receiver is a key database, and its default personal
certificate will be presented by the EIF receiver to EIF clients during an
SSL connection. This certificate can be either a self-signed certificate that

you create using iKeyman, or a certificate obtained from and signed by a
Certificate Authority (CA). The certificate must be set as the default
personal certificate in the key database of the receiver.

Note: The Java version of EIF uses the JKS key database format, whereas
the C version of EIF uses the CMS format.

Use the EIF configuration keyword (channel_nameSSLKeystore) to
configure the EIF receiver to use a key database as its keystore. In
situations where the EIF receiver application uses the configuration
keyword (channel_nameSSLRequireClientAuthentication=YES) clients are
also required to present a certificate during an SSL connection. The
keystore of the receiver must then contain not only the personal certificate
of the receiver, but also the default personal certificates of any trusted
clients. Import these trusted certificates into the keystore of the receiver
using iKeyman.

Keystores for EIF client applications
Use iKeyman to create keystores for EIF client applications.

The keystore of the client is a key database containing the default personal
certificates of any EIF receiver applications that are trusted by the EIF
client. These trusted certificates must be imported into the keystore of the
client using iKeyman in order for the client to connect to the EIF receiver
using SSL.

Note: The Java version of EIF uses the JKS key database format, whereas
the C version of EIF uses the CMS format.

Use the EIF configuration keyword (channel_nameSSLKeystore) to
configure an EIF client application to use a key database as its keystore. In
situations where an EIF receiver application uses the configuration
(channel_nameSSLRequireClientAuthentication=YES), clients are required
to present a certificate during an SSL connection. The keystore of the client
must then contain not only the trusted receiver certificates, but also a
separate certificate that will identify the client to the receiver. This new
certificate can either be self-signed or signed by a CA, and it must be the
default certificate in the keystore of the client.

Chapter 3. Event transport 15



Truststore
Truststores are key databases containing certificates that are trusted by an
EIF application.

Any EIF application (whether client or receiver), may use a single key
database to hold both trusted certificates and the default personal
certificate of the application. Such a database would be configured in EIF
using the channel_nameSSLKeystore keyword.

A Java EIF application, however, also has the option of using one key
database to hold trusted certificates, and a second key database to hold the
default personal certificate of the application. Use the
channel_nameSSLTruststore keyword to specify the key database
containing the trusted certificates, and the channel_nameSSLKeystore
keyword to specify the key database containing the default personal
certificate of the application.

Stash file
Applies to EIF applications created using the C API only.

If you require automatic login to gain access to the digital certificates, you
can save the password for a key or trust database in encrypted format to a
stash file. Whenever the keystore or truststore is accessed, the system
checks whether a stash file exists. If found, the file contents are decrypted
and used as input for the password.

Note: To create and store encrypted passwords for applications created
using the Java API, use the
com.tivoli.tec.event_delivery.common.Encryption script.

Ciphers
The SSLCipherList keyword specifies the ciphers that will be permitted
during SSL authentication. The sending and receiving ends of the EIF
connection must have at least one cipher in common in order for the
connection to succeed. FIPS 140–2 mode restricts the ciphers that are
allowed for both C and Java versions of EIF. If no ciphers are specified or
restricted, all available ciphers are permitted.

The following values are valid for C EIF applications:
SSL_RC2_CBC_128_CBC_WITH_MD5

SSL_RC2_CBC_128_CBC_EXPORT40_WITH_MD5

SSL_DES_64_CBC_WITH_MD5

SSL_DES_192_EDE3_CBC_WITH_MD5

SSL_NULL_WITH_NULL_NULL

SSL_RSA_WITH_NULL_MD5

SSL_RSA_WITH_NULL_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_RSA_WITH_DES_CBC_SHA

The following values are valid for Java EIF applications:
Any cipher supported by the IBM JRE is valid.

16 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



For a full list of supported ciphers, see the Java Secure Socket
Extension (JSSE) IBMJSSE2 Provider Reference Guide for the Java 2
SDK, Standard Edition, Version 5 at:
http://www.ibm.com/developerworks/java/jdk/security/50/
secguides/jsse2Docs/JSSE2RefGuide.html

Related concepts

“Selecting event delivery methods” on page 29
Related tasks

“Configuring an EIF client application for SSL” on page 31
“Configuring an EIF receiver application for SSL” on page 29
Related reference

“Shell script and test options”
Appendix D, “Keywords,” on page 63

Federal Information Processing Standard 140–2 (FIPS 140–2)
support
Federal Information Processing Standards (FIPS) are standards and guidelines that
the National Institute of Standards and Technology (NIST) issues for use in United
States federal government computer systems.

The Federal Information Processing Standard 140–2 (FIPS 140–2) defines security
requirements for cryptographic modules that are used to protect sensitive
information in computer and telecommunication systems.

Tivoli Event Integration Facility uses the FIPS 140–2 approved cryptographic
providers, IBMJCEFIPS (certificate 376) or IBMJSSEFIPS (certificate 409), and IBM
Crypto for C (ICC) (certificate 384), for cryptography. The certificates are listed on
the NIST Web site at http://csrc.nist.gov/cryptval/140-1/1401val2004.htm.

The FIPS 140–2 approved cryptographic providers provide both cryptographic
functions and Secure Sockets Layer (SSL) data protection, on both client and server
applications. When Tivoli Event Integration Facility is running in FIPS 140–2 mode,
all encryption and key generation functions are provided by the FIPS 140–2
approved cryptographic modules.
Related concepts

“Selecting event delivery methods” on page 29
Related reference

“Transport options” on page 13

Shell script and test options
Several CLI commands and a Java class are available for sending events.

You can send events manually for the following reasons:
v To troubleshoot event delivery problems after installing a new adapter
v To use shell scripts in order to develop adapters
v To test the adapter after you have:

– Created new event groups and assignments
– Edited rules
– Changed the way a server processes events

Chapter 3. Event transport 17

http://www.ibm.com/developerworks/java/jdk/security/50/secguides/jsse2Docs/JSSE2RefGuide.html
http://www.ibm.com/developerworks/java/jdk/security/50/secguides/jsse2Docs/JSSE2RefGuide.html
http://csrc.nist.gov/cryptval/140-1/1401val2004.htm


Note: When using a user ID other than Administrator or root, ensure that you
have the correct permissions for creating the file specified by the BufEvtPath
keyword (as well as the default value when the keyword is not specified).

You can use posteifmsg to posts an event to the event server, as demonstrated in
the following example:

posteifmsg -S server | -f configuration_file [-m message] [-r severity]
[attribute=value...] class source

You can use com.tivoli.tec.event_delivery.TECAgent to post an event to the event
server, as demonstrated in the following example:

posteifmsg -S server | -f configuration_file [-m message] [-r severity]
[attribute=value...] class source

You can use com.tivoli.tec.event_delivery.common.Encryption to create an
encryption key for SSL communication, as demonstrated in the following example:

java -cp <path to evd.jar> com.tivoli.tec.event_delivery.common.Encryption
createkey [-l key length]

Valid key lengths are 128, 192 and 256. The default value if you do not specify a
value is 128. The -f option turns on FIPS 140-2 mode. Both the EIF sender and the
EIF receiver must be using FIPS for FIPS 140-2 mode to function.

When creating a stash file for the Java version of EIF, you first create the
encryption key file and then the stash file. You use createKey to generate the
encryption key file, and encrypt to generate the stash file. When a stash file is
used, an encryption key file is required.

Note: For the C version of EIF, use iKeyman to create the stash file.

The following command-line script creates an encryption key and saves it to a file:

Example syntax
java -cp <path to evd.jar>
com.tivoli.tec.event_delivery.common.Encryption createkey [-l key
length] -o output_file_path [-f]

Example script
java -cp ./evd.jar com.tivoli.tec.event_delivery.common.Encryption
createkey -l 128 -o ./mykey

The following command line script uses the encryption key to encrypt the
password and saves the encrypted data to a stash file:

Example syntax
java -cp <path to evd.jar>
com.tivoli.tec.event_delivery.common.Encryption encrypt -k
encryption_key_file_path -o output_file_path -d text_to_encrypt
[-f]

Example script
java -cp ./evd.jar com.tivoli.tec.event_delivery.common.Encryption
encrypt -k ./mykey -o ./mypass -d password

18 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Related concepts

“Event delivery methods” on page 13
Related tasks

“Programming the adapter” on page 33
Related reference

“SSL and FIPS 140-2” on page 14
“Installing, configuring, and testing the adapter” on page 36

Setting up the posteifmsg utility on z/OS using USS
Proceed as follows to set up the posteifmsg utility on z/OS® using USS.
1. From the Tivoli Netcool/OMNIbus EIFSDK directory, copy the

bin/os390/posteifsg file to a location where the command will be run.
2. Set up the appropriate posteifmsg configuration file. For example:

TransportList=t1
t1_Channels=c1
c1_ServerLocation=<IP_Address_Goes_Here>
c1_Port=<EventServerListeningPortGoesHere>
t1_Type=SOCKET

BufEvtPath=/tmp/posteifmsg.cache

3. In your USS environment, create the /etc/Tivoli/codeset directory. This
directory contains the EBCDIC codeset files extracted from the Tivoli
Netcool/OMNIbus EIFSDK directory.

Tip: If you downloaded the files to another system, use FTP to transfer the
EBCDIC codeset file or files in binary mode to your USS system, and copy
them to the /etc/Tivoli/codeset directory.
The file names correspond to the codepage number associated with the codeset.
The following codepages are provided for EBCDIC:
v 37
v 273
v 274
v 277
v 278
v 280
v 282
v 284
v 297
v 424
v 500
v 870
v 875
v 933
v 935
v 937
v 939
v 1025
v 1026
v 1047

Chapter 3. Event transport 19



v 1112
v 1122
v 1388
The codepages correspond to the EBCDIC codesets used for Western, East
European, Middle Eastern, and Asian languages. The default language is
English (codeset 1047). The posteifmsg utility uses only the files it requires.
Therefore you can transfer all the codeset files to your USS environment.

4. Run the following command to set the TISDIR environment variable to the
correct value:
export TISDIR=/etc/Tivoli The posteifmsg utility can now access the Tivoli®

Management Framework (TMF), locate the codeset file associated with your
system environment, and then convert it to UTF-8.

5. Run the posteifmsg command to send events. For example:
posteifmsg -f nameOfConfigFile -m testMessage EVENT TESTIN

Event reception for applications
In addition to sending events, the Tivoli Event Integration Facility enables other
applications to receive, that is, listen for, events.

The Event Integration Facility can instantiate one or more event listeners. Each
event listener can have one or more channels. This allows information to flow from
multiple sources. You can specify multiple channels, and the event listener listens
to all of those channels.

The polling mechanism enables the application to retrieve events synchronously, by
using the get method of the API. With the non-polling mechanism, the application
registers a listener or callback and receives events asynchronously.

Additionally, EIF uses a cache for event reception. If the application has a listener,
EIF also registers a listener in the cache. Then it notifies the application and passes
the event to the application listener. If the application does not use a listener, the
application must request the retrieval of the next event.

The following is an example of a configuration file that enables the application to
receive events using sockets:
BufferEvents=YES
BufEvtPath=/tmp/eif_socket_recv.cache

TransportList=t1

t1Type=SOCKET
t1Channels=t_
t_ServerLocation=myserver.com
t_Port=5151

The following is an example of a configuration file that enables an application
created using the C API to receive events using SSL, with FIPS 140-2 mode
enabled:
TransportList=t1_
t1_Type=SSL
t1_Channels=c1_
c1_Port=3443

c1_ServerLocation=myserver.com

c1_SSLKeystore=/my/location/gbkeys.kdb

20 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



c1_SSLKeystorePW=password
c1_SSLCipherList=SSL_RSA_WITH_3DES_EDE_CBC_SHA

c1_SSLFIPSMode=ON

Related tasks

“Activating the cache” on page 22
Related reference

Appendix D, “Keywords,” on page 63

Sending events through firewalls
You can send events through firewalls depending on your environment and
organizational restrictions regarding firewall security.

To send events through firewalls, use Tivoli Management Framework Firewall
Security Toolbox. It collects events and sends them across the firewall using a
proxy. To obtain Tivoli Management Framework Firewall Security Toolbox and its
documentation, contact Customer Support.

To send events through firewalls in non-Tivoli environments, you configure your
firewall to allow arbitrary TCP/IP connections on the port specified for your
adapter. Ensure that the firewall allows inbound communication from the
computer system hosting the adapter.
Related reference

Appendix D, “Keywords,” on page 63

Event delivery when systems fail
To ensure that events are delivered after system failures, the Tivoli Event
Integration Facility provides a cache on the adapter or the application receiving
events.

This repository stores events and removes those events from the cache when they
are delivered. Also, the Event Integration Facility ensures that the same event is
not delivered more than once.

To configure your environment for the reliable delivery of events, you activate the
cache and specify backup servers to deliver events. You can further avoid delivery
failure by specifying a list of servers.
Related tasks

“Activating the cache” on page 22
“Configuring backup servers to deliver events” on page 23
Related reference

“Installing, configuring, and testing the adapter” on page 36

Chapter 3. Event transport 21



Activating the cache
By default, the cache that ensures recovery after system failures stores events. You
control the configuration of the cache with keywords in the configuration file.

You can use the following keywords to configure the cache.

Table 2. Keywords for configuring the cache

Configuration of the Cache Keywords

Activation of the cache BufferEvents

Rate to send events BufferFlushRate
MaxPacketSize

Size of the cache BufEvtMaxSize

You can configure the cache in the following way:
v Store events in memory only with the BufferEvents keyword.
v Save these buffered events to a permanent file with the BufferEvents keyword

set to YES. Also, the BufEvtPath keyword specifies the location of the permanent
file.

The second configuration ensures that no events are lost during a system failure.

The following example from a configuration file demonstrates the use of cache
keywords:
BufferEvents=YES
BufEvtPath=./buffer
MaxPacketSize=130
BufferFlushRate=96
ConnectionMode=CO

When connections to the event server fail, events wait in the cache. The Event
Integration Facilityattempts to reconnect to each of the backup servers in turn. If
no servers are available after all retries, the API caches the events until a
connection is made.

When enabling recovery features, it is important to determine the importance of
performance and reliability. In some environments, the use of the cache can
degrade performance depending on its configuration. Therefore you can bypass
event caching by setting the BufferEvents keyword to NO.
Related concepts

“Event delivery when systems fail” on page 21
“Performance and availability” on page 44
Related tasks

“Configuring backup servers to deliver events” on page 23
“Filtering events when systems fail” on page 40
Related reference

“Event reception for applications” on page 20

22 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Configuring backup servers to deliver events
The configuration uses TCP sockets to deliver events. You specify how to contact
backup servers by defining the transport channel to be the server name and the
port number.

You specify how to contact backup servers by completing the following steps:
1. Create names for connections you want to make to the backup servers. Use the

TransportList keyword to create this list.
2. Specify either an SSL or a SOCKET connection for each of the items in this list

by using the Type keyword.
3. Specify multiple channels as alternate paths for each type of transport, using

the ServerLocation keyword.

Example

The following is a backup example for the C API:
TransportList=t1,t2
t1Type=SSL
t1Channels=c1,c2
c1ServerLocation=sslhost1
c1Port=1111

c1_SSLKeystore=/my/location/gbkeys.kdb
c1_SSLKeystorePW=password
c1_SSLKeystoreStashFile=/my/location/gbkeys.sth
c1_SSLCipherList=SSL_RSA_WITH_3DES_EDE_CBC_SHA

c1_SSLFIPSMode=OFF

c2ServerLocation=sslhost2
c2Port=2222

c2_SSLKeystore=/my/other/location/gbkeys.kdb
c2_SSLKeystorePW=password
c2_SSLCipherList=SSL_RSA_WITH_3DES_EDE_CBC_SHA
c2_SSLFIPSMode=OFF

t2Type=SOCKET
t2Channels=c3,c4
c3ServerLocation=host1
c3Port=1234
c4ServerLocation=host2
c4Port=5678

Note: The backup type for both SOCKET and SSL transport type can be either SSL
or SOCKET. The C API ignores the Java API keywords (TMEHost, TMEUserID,
TMEPassword, and TMEPort).
Related concepts

“Event delivery when systems fail” on page 21
“Performance and availability” on page 44
Related tasks

“Activating the cache” on page 22

Chapter 3. Event transport 23



Using the portmapper keywords
The keywords for the portmapper channel enable the receiver applications to
register multiple ports under various portmapper program names, and the sending
applications to access those registered names.

Note: The Event Integration Facility does not support the portmapper keywords
for the 64-bit OS/390® library.

When the channel_namePortMapper keyword is set to YES, it forces the specified
port to be registered with the portmapper for a receiver application. Thus, it
ignores the specified port in favor of the portmapper to obtain the correct port for
sender code. The API ignores any other value for channel_namePortMapper.

The default values for the channel_namePortMapper,
channel_namePortMapperNumber, and channel_namePortMapperVersion
keywords are the ones used by the event server. If these keywords are not present
in the configuration file for the sender application and the portmapper is
requested, a connection to the event server is attempted. In a receiver application,
the port is only registered if the port is set to zero (0). In this case, the default
values are used.

If a port is set to zero (0), EIF uses the channel_namePortMapper,
channel_namePortMapperNumber, and channel_namePortMapperVersion
keywords. If any of their values are not specified, their default values are used.

If a port is set to a value greater than zero, the portmapper is only used if the
channel_namePortMapper keyword is set to YES. In this case, the specified port is
ignored for the sender side but used for the receiver side. The
channel_namePortMapper keyword allows the port used for portmapper to be
specified. Thus, a port set to zero (0) will pick any available port. On the receiver
side, it is advantageous to use the portmapper so that sending applications can
connect to the receiver by means of the portmapper.

Configuring a reception application built with the C API
A reception application built with the C API can be configured with keywords in
the configuration file.

Use the following keywords in the configuration file to configure a reception
application built with the C API.

ActiveConnections=nn
The number of active connections that the reception process should handle.

The number of possible connections range from 2 to 10000.

A number less than the minimum value sets the value to the minimum
value unless that number is zero, which means unlimited connections. A
number greater than the maximum value sets the value to the maximum
value. Not specifying a value, yields the default value of 128.
Applies to the C API only.

ActiveConnectionsSafety=nn
The percentage of ActiveConnections that the number of actual connections
permits must be reduced to a specific number before connections can be
processed again. This is a threshold value.

24 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Setting ActiveConnections limits the numbers of active connections
handled by the C Event Integration Facility reception process.

For example, if ActiveConnections equals 20 and the
ActiveConnectionsSafety equals 80, the reception process stops accepting
connections when there are 20 connections. The percent can range from 10
to 90. New connections resume when the number of active connections is
reduced to 16 (80% of 20) or less.

The default value is 80 and is only used when ActiveConnections has been
specified.

A number less than the minimum value sets the value to the minimum
value. A number greater than the maximum value sets the value to the
maximum value.
Applies to the C API only.

ConnectionsQueued=nn
The approximate number of queued connections that the reception process
will handle.

The server socket queues up connections that are waiting to be accepted by
the reception process. Connection attempts fail after this limit has been
exceeded.

Use this option to limit the number of connections that can be queued. The
actual number of connections queued can be slightly more than or less
than the value of ConnectionsQueued. The default is 1000. The range of
values can be between 1 and 1000. A number less than the minimum value
sets the value to the minimum value. A number greater than the maximum
value sets the value to the maximum value.
Applies to the C API only.

Example of a reception application build with the C API receiving events over a
SOCKET connection:
BufferEvents=YES
BufEvtPath=/tmp/eif_socket_recv.cache

TransportList=t1
t1Type=SOCKET
t1Channels=t_
t_ServerLocation=myserver.com
t_Port=5151

Example of a reception application build with the C API receiving events over an
SSL connection:
BufferEvents=YES
BufEvtPath=/tmp/eif_socket_recv.cache

TransportList=t1
t1Type=SSL
t1Channels=t_
t_ServerLocation=myserver.com
t_Port=5151

t_SSLKeystore=/my/other/location/gbkeys.kdb
t_SSLKeystorePW=password
t_SSLCipherList=SSL_RSA_WITH_3DES_EDE_CBC_SHA
t_SSLFIPSMode=OFF

Chapter 3. Event transport 25



Note: The procedure to configure a keystore for a reception application is identical
to that of a sender application.

26 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Chapter 4. Building an adapter

Before building an adapter, you must identify events to monitor. You then define
the event source and event classes and select the method for event delivery. You
program the event adapter, and install, configure and test it. You are then ready to
run the adapter.
Related concepts

“Migrating adapters” on page 12

Adapter files
In addition to the header file or Java package, a number of files are related to the
adapter. This section lists these files and shows the relationship between them and
event processing.

There are several adapter files. In addition to the header file or Java package, the
following are files related to the adapter:

.conf file
The configuration file controls filtering and buffering of events. It also
controls communications.

.rls file
The rule file applies custom rules to events for filtering, tasks, and other
actions. Some rule files are installed on the event server by default. You
can optionally specify other rules.

For a detailed description of adapter files, see the IBM Tivoli Enterprise Console
Adapters Guide in the IBM Tivoli Information Center at
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
Related reference

Appendix D, “Keywords,” on page 63

Identifying events to monitor
Before you create an adapter, you must decide what types of events you need to
monitor.

Review the following factors to help you identify significant events:
v Users of IT resources
v Service level agreements
v Network requirements for down-time and up-time
v Application and network dependencies (for example, databases, e-commerce

Web sites, wide area networks, and so forth)
v Performance requirements
v Important servers and network resources

After creating a list of significant events, use this list to define the source.

© Copyright IBM Corp. 2003, 2011 27

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp


Defining the source
The method used to retrieve event information depends on the resources.

When you develop a new adapter, you must determine how to gather information
about the monitored resource. You must also determine a method for identifying
the information that you want to send to the event server. For example, the
necessary information about a resource can be gathered from a system log file.
Then this information must be formatted, and optionally filtered, before being sent
to the event server.

Defining event classes
An important task when you create an adapter is to determine the event classes for
the information that you want to monitor. To help you when you write rules to
handle the events, you must make event definitions as specific as possible.

The Probe for Tivoli EIF has a set of default rules that map attributes of Event
Integration Facility events to columns in alerts.status. You must define these
common attributes so that the probe can process them.

Note: Event class names must be unique.

The event string is adapter-dependent. You can have as many as required pairs of
attributes and values. The following code fragment illustrates the assembly of an
event string:
"MY_EVENT_CLASS;
source=_ANY_DEFINED_SOURCE;
application=myAppl1;
origin=9.179.1.234;
msg=Hello World;
END\n\001"

In the code fragment, source and application are application-specific.

For more information about probe rules and attributes, see the IBM Tivoli
Netcool/OMNIbus Probe for Tivoli EIF guide in the IBM Tivoli Network
Management Information Center at http://publib.boulder.ibm.com/infocenter/
tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/probes/tivoli_eif/tivoli_eif/
wip/concept/tveif_intro.html.

For more information about the default classes hierarchy, see the IBM Tivoli
Enterprise Console Adapters Guide in the IBM Tivoli Information Center at
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
Related concepts

“Event classes” on page 3

28 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp


Selecting event delivery methods
While building an adapter, you also need to decide which event delivery method
the adapter uses to communicate with the event server.

You must define the connection and transport types. You do this by editing the
appropriate keywords in the EIF configuration file. The following connection types
and transport types are available:

Connection options
Connection-oriented

Connectionless

Transport options
SOCKET

SSL
v Normal SSL mode (non FIPS)
v FIPS 140-2 mode

If you choose to use the SSL transport type, you must generate security certificates
and keys. You must also decide whether to operate the SSL connection in FIPS
140-2 mode. If you do, you enable FIPS 140-2 mode by editing the configuration
file.
Related concepts

“Event delivery methods” on page 13
“Connection options” on page 13
“Federal Information Processing Standard 140–2 (FIPS 140–2) support” on page 17
Related reference

“Transport options” on page 13
“SSL and FIPS 140-2” on page 14
Appendix D, “Keywords,” on page 63

Configuring an EIF receiver application for SSL
In order to use Secure Sockets Layer (SSL) communication between EIF receiver
applications and client applications, you must configure the receiver application.
Receivers require a personal certificate that is either self-signed or signed by a
certificate authority (CA).

Before you begin

To configure an EIF receiver application for SSL, complete the following procedure:
1. Create a key database for the EIF receiver.

a. Start the nc_ikeyman utility and create a new key database file.
For C-based EIF applications, use the CMS key database type.
For Java-based EIF applications, use the JKS key database type.

b. Choose a password for the key database.
For CMS key databases, you can encrypt the password in a stash file.

2. Obtain a personal certificate in one of the following ways:
v Use the nc_ikeyman utility to create a new self-signed certificate.
v Use the nc_ikeyman utility to create a certificate request and submit it to a

CA for signing.

Chapter 4. Building an adapter 29



v Obtain a signed certificate from a CA using another method.
3. Add the new personal certificate to the receiver key database and configure it

to be the default personal certificate.
4. Create a configuration file for the EIF receiver. Start with the following code:

TransportList=t1_
t1_Type=SSL
t1_Channels=c1_
c1_Port=[Listening port of the EIF receiver]
c1_ServerLocation=[Hostname or IP address of the EIF receiver]
c1_SSLKeystore=[File location of the receiver key database]

5. Add the password of the receiver key database to the EIF configuration file.
v To specify the password as plain text, add the following line to the EIF

configuration file:
c1_SSLKeystorePW=password of the receiver key database

v To encrypt the password and are using a CMS key database, you can use the
stash file location associated with the key database. Add the following line to
the EIF configuration file:
c1_SSLKeystoreStashFile=File location of the stash file

v To encrypt the password and are using a JKS key database, you can use the
Java EIF utility com.tivoli.tec.event_delivery.common.Encryption to create an
encrypted password and an encryption key that will decode the password.
Add the following lines to the EIF configuration file:
c1_SSLKeystoreStashFile=File containing the encrypted password
c1_SSLKeystoreEncryptionKeyFile=File containing the encryption key

6. Choose the ciphers that the EIF receiver will support.
By default, a C-based EIF application will support all ciphers available in the
IBM GSkit, and a Java-based EIF application will support all ciphers available
in the IBM JRE.
Add the list of cipher names, separated by commas, to the EIF configuration
file, using the following format:
c1_SSLCipherList=Cipher name 1,Cipher name 2, [...]

7. Enable FIPS 140-2 mode.
By default, FIPS 140-2 mode is disabled. To enable FIPS 140-2 mode, add the
following line to the EIF configuration file: c1_SSLFIPSMode=ON
For Java-based EIF applications, the Java Runtime Environment must also be
configured to use FIPS providers. Add the following entries to the list of
security providers in the lib/java/java.security file of your JRE installation:
security.provider.number=com.ibm.fips.jsse.IBMJSSEFIPSProvider
security.provider.number=com.ibm.crypto.fips.provider.IBMJCEFIPS

Note: Use number to indicate the sequence you want to allocate to each
provider in the list.

8. Specify if clients must present a trusted certificate.
By default, EIF does not require clients to present a trusted certificate.
To add a trusted certificate, add the following line to the EIF configuration file:
c1_SSLRequireClientAuthentication=YES

9. For C-based EIF applications, update the required environment variable with
the path to the GSKit library files.

On Windows® operating systems
PATH

Note: The GSKit libraries are located in %NCHOME%\platform\win32\lib

30 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



On UNIX and Linux operating systems
LIBPATH, SHLIB_PATH, or LD_LIBRARY_PATH

Note: The GSKit libraries are located in $NCHOME/platform/arch/lib
with arch being your operating system directory.

What to do next

You must configure the EIF client application for SSL next.
Related reference

“SSL and FIPS 140-2” on page 14
Appendix D, “Keywords,” on page 63

Configuring an EIF client application for SSL
In order to use SSL communication between EIF receiver and client applications,
you must configure the EIF client application.

Before you begin

You need to create the EIF receiver's personal certificate before you can configure
the client application.

To configure an EIF client application for SSL, complete the following procedure:
1. Create a key database for the EIF client.

a. Start the nc_ikeyman utility and create a new key database file.
For C-based EIF applications, use the CMS key database type.
For Java-based EIF applications, use the JKS key database type.

b. Choose a password for the key database.
For CMS key databases, you can encrypt the password in a stash file.

2. Add the personal certificate of the EIF receiver to the client key database.
a. Use the nc_ikeyman utility to export the default personal certificate from the

receiver key database.
b. Use the nc_ikeyman utility to import the certificate into the client key

database.
3. Create a configuration file for the EIF client. Start with the following:

TransportList=t1_
t1_Type=SSL
t1_Channels=c1_
c1_Port=[Listening port of the EIF receiver]
c1_ServerLocation=[Hostname or IP address of the EIF receiver]
c1_SSLKeystore=[File location of the receiver key database]

4. Add the password of the client key database to the EIF configuration file.
v To specify the password as plain text, add the following line to the EIF

configuration file:
c1_SSLKeystorePW=password of the key database

v To encrypt the password and are using a CMS key database, you can use the
stash file location associated with the key database. Add the following line to
the EIF configuration file:
c1_SSLKeystoreStashFile=File location of the stash file

v To encrypt the password and are using a JKS key database, you can use the
Java EIF utility com.tivoli.tec.event_delivery.common.Encryption to create an
encrypted password and an encryption key that will decode the password.
Add the following lines to the EIF configuration file:

Chapter 4. Building an adapter 31



c1_SSLKeystoreStashFile=File containing the encrypted password
c1_SSLKeystoreEncryptionKeyFile=File containing the encryption key

5. Specify the ciphers that are required by the EIF receiver. If the
receiver supports all ciphers, omit this step.
Add the list of cipher names, separated by commas, to the EIF configuration
file, using the following format:
c1_SSLCipherList=Cipher name 1,Cipher name 2, [...]

6. If the EIF receiver has been enabled for FIPS 140-2 mode, enable FIPS 140-2
mode for the client as well. Otherwise, do not enable 140-2 mode for the client.
By default, FIPS 140-2 mode is disabled. To enable FIPS 140-2 mode, add the
following line to the EIF configuration file: c1_SSLFIPSMode=ON
For Java-based EIF applications, the Java Runtime Environment must also be
configured to use FIPS providers. Add the following entries to the list of
security providers in the lib/java/java.security file of your JRE installation:
security.provider.number=com.ibm.fips.jsse.IBMJSSEFIPSProvider
security.provider.number=com.ibm.crypto.fips.provider.IBMJCEFIPS

Note: Use number to indicate the sequence you want to allocate to each
provider in the list.

7. If the EIF receiver requires clients to present a trusted certificate, complete the
following steps:
a. Obtain a trusted certificate. You can use the nc_ikeyman utility to create a

new self-signed certificate, or use the nc_ikeyman utility to create a
certificate request and submit it to a CA for signing. Alternatively, you can
obtain a signed certificate from a CA using another method.

b. Add the new certificate to the client key database and configure it to be the
default certificate.

c. Add the new certificate to the receiver key database, but do not configure it
to be the default certificate.

8. For C-based EIF applications, update the required environment variable with
the path to the GSKit library files.

On Windows® platforms
PATH

Note: The GSKit libraries are located in %NCHOME%\platform\win32\lib

On UNIX and Linux platforms
LIBPATH, SHLIB_PATH, or LD_LIBRARY_PATH

Note: The GSKit libraries are located in $NCHOME/platform/arch/lib
with arch being your operating system directory.

Related reference

“SSL and FIPS 140-2” on page 14
Appendix D, “Keywords,” on page 63

32 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Programming the adapter
To program an adapter, you implement the interfaces and the preferred settings for
the configuration file. You decide whether to define attribute values in the
configuration file or the adapter code. You then compile and, if required, link the
adapter.

Before you begin

Sample adapter code
Sample adapter code for the C and Java languages can be found in the
EIFSDK directory.

Data transfer APIs
Data is transferred to the event server by assembling an event string. The
tec_put_event function or sendEvent method sends the string to the event
server.

Compiling the adapter
Adapters can be built using either the C or Java API.

Adapters built using the Event Integration Facility are not thread-safe and
cannot be multithreaded.

Compiling the adapter built with the Java API
To compile a Java source that uses the Event Integration Facility Java API,
import evd.jar into your source file and ensure that evd.jar and log.jar
are available on the compilation class path.

TheEvent Integration Facility provides a C API and a Java API to communicate
with the event server.

Table 3. APIs and their behaviors

Tasks Java API C API

Access configuration files
and read keyword data

TECAgent

getConfigVal

tec_agent_init

tec_agent_getenv

Establish and close
communications with the
event server

TECAgent

disconnect

tec_create_handle

tec_destroy_handle

Send and receive events sendEvent

receiveEvent

registerListener

onMessage

tec_put_event

tec_get_event

tec_register_callback

tec_event_callback

Note: The locale is set independently of the Event Integration Facility, and calling the
tec_create_handle API does not change the locale.

You use the functions and methods to handle the configuration files,
communications, and data transfer.

Chapter 4. Building an adapter 33



Related concepts

Appendix A, “Application programming interfaces,” on page 47
Related reference

Appendix D, “Keywords,” on page 63
“Shell script and test options” on page 17

Upgrading existing adapters
To upgrade existing adapters, link your adapters to the libeif.a library.

When upgrading existing adapters, relink your Event Integration Facility adapter
code with the libeif.a stub library. If you receive an undefined symbol error
message, it means that the EIF function that you have been using is no longer
supported. Update your code and compile and link again.
Related concepts

Appendix A, “Application programming interfaces,” on page 47
Related reference

“Linking the adapter built with the C API” on page 36

Configuration file APIs
The first task performed by the APIs is accessing information from the
configuration files.

To enable the tec_agent_getenv function or getConfigVal method, you first call the
initialization API (tec_agent_init or TECAgent). The initialization API reads in
configuration information that is used by all subsequent functions or methods.
Related reference

Appendix D, “Keywords,” on page 63

Communications APIs
The communications APIs provide a mechanism to communicate with the event
server. The handle is specified when sending an event.

Regardless of the type of transport mechanism, use a single call to
tec_create_handle (or TECAgent) to establish communications with the server. The
following code example instantiates TECAgent, passing as parameters the
configuration file, the delivery mode, and the error-reporting mechanism:
public TECAgent(reader configStream, int deliveryMode, int oneway)

Call the tec_destroy_handle function or disconnect method when you no longer
want to communicate with the event server. This call is optional, because the
channel automatically disconnects when the adapter exits.

34 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Special considerations for Microsoft Windows
An adapter built for Microsoft Windows operating systems must initialize the
Winsock before calling tec_create_handle.

The following example of a Microsoft Windows adapter initializes Winsock before
calling tec_create_handle:
#ifdef WIN32
#include <winsock.h>

WSADATA wsaData;

if ((rc = WSAStartup(MAKEWORD(1, 1), &wsaData)) != 0) {
printf("error %d starting winsock.dll\n", rc);
exit(1);

}

else
printf("Winsock initialized successfully...\n");

#endif

An application must call the WSAStartup function to initialize Winsock, regardless
of which version of Winsock is being used.

WSAStartup initialized Winsock2.dll and a WSADATA structure that contains the
details of the Winsock implementation. When an application or DLL has finished
using Winsock2.dll, it must call WSACleanup to enable Ws2.dll to free any
resources for the application. For every call to WSAStartup, there must be a call to
WSACleanup.

If successful, WSAStartup returns 0. After WSAStartup returns, an application
cannot call WSAGETLastError to determine the error value.

Compiling the adapter built with the C API
To compile a source file that uses the Event Integration Facility C API, you need to
include the tec_eeif.h header file.

When compiling the sample adapter on Windows, you must specify the PC flag as
a compiler argument to avoid compile-time errors.

To link the sample adapter, you must use the NODEFAULTLIB:LIBC.LIB option
when linking the adapter on Windows. This allows the linker to avoid conflicts
with the default libraries.

If there are mutliple wsock32.lib files, you must use the FORCE:MULTIPLE option
when compiling the Windows adapter. This forces the compiler to pick one file to
eliminate compile-time errors. In conjunction with the FORCE:MULTIPLE option,
the INCREMENTAL:NO option must also be used.

Example

The following example shows how to compile and link a sample adapter using the
options mentioned above:
unsecure: adapter.c \
$ (CC) -nologo -Ze -W3 -MD -DUNSECURE -D_WIN32 -DWIN32 -DPC \
-Ic:/Tivoli/include/w32-ix86/TME/TEC -Id:/msdev/include -FosampleAdapter.obj
-c sampleAdapter.c \

Chapter 4. Building an adapter 35



slashes link -subsystem:console -L. -Ld:/msdev/lib -Lc:/Tivoli/lib/w32-ix86 \
-out:sampleAdapter.exe sampleAdapter.obj msvcrt.lib libeif.a \
libsunrpc.a -NODEFAULTLIB:LIBC.LIB -INCREMENTAL:NO -FORCE:MULTIPLE wsock32.lib

Linking the adapter built with the C API
These tables list the libraries required to link adapters developed with the C API.

Table 4. Libraries for adapters developed with the Event Integration Facility C API

Libraries Provided by More details

libeif.a Tivoli Event Integration
Facility

None

libdl.a Operating system Not on Windows and
HPUX

libpthreads.a Operating system For adapters on AIX

libpthread.a Operating system For adapters on Linux

libnsl.a

libsocket.a

libthread.a

Operating system For adapters on the Solaris
Operating Environment

libsunrpc.a Tivoli Event Integration
Facility

For adapters on Windows

Standard C libraries Operating system None

Related reference

“Transport options” on page 13
“Upgrading existing adapters” on page 34

Installing, configuring, and testing the adapter
After assembling all the files for the adapter, you need to install, configure, and
test the adapter before running it.

After installing the adapter, you can also add other features to the adapter. For
example, you can modify the adapter to enable the following features:
v Event filtering
v Event caching for failure and recovery
v Rules (see the IBM Tivoli Enterprise Console Rule Developer's Guide)

Before installing your new adapter in a production environment, test at a
minimum the following functionality:
v Does the adapter successfully install?
v Are events mapped to the appropriate event classes?
v Are events arriving and displaying on the console, if applicable?
v Are events correctly filtered?
Related concepts

“Event delivery when systems fail” on page 21
Related reference

“Shell script and test options” on page 17

36 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Running adapters built with the Event Integration Facility Java API
The Event Integration Facility Java API depends on other classes to accomplish its
tasks. In addition to setting up the appropriate environment using the setup_env
commands, you must add the path to the Java executable file to your library path
environment variable.

The following tables list the Java jar files and libraries required to run an adapter
that is built using the Event Integration Facility Java API.

To run an adapter that uses the Java Event Integration Facility API, you must add
the required libraries to your CLASSPATH environment:

Table 5. Libraries required for adapters developed with the Event Integration Facility Java
API

Required Libraries Provided by More details

evd.jar

log.jar

Tivoli Event Integration Facility None.

ibmjssefips.jar

ibmjsseprovider2.jar

Tivoli Event Integration Facility Optional, for SSL
support only.

Related reference

Appendix D, “Keywords,” on page 63

Configuring adapters for international environments
The event server can receive events in both UTF-8 encoding or the encoding of the
event server host. The event server automatically determines the type of encoding
(UTF-8 or non-UTF-8) of an event by evaluating a particular flag in the event data.

For all adapters using SOCKET and SSL transport types, use UTF-8 encoding to
send events to the event server.

Note: If the adapter is sending events to an event server host running a Tivoli
Enterprise Console version earlier than version 3.7, the format files in localization
directories must remain in English.
Related reference

Appendix D, “Keywords,” on page 63

Chapter 4. Building an adapter 37



38 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Chapter 5. Filtering events at the source

One of the problems associated with event management is working with the high
volume of events that devices can generate. You can address this problem by
filtering events at the source.

A high volume of events can be generated, for example, if a router has dropped
below a key performance threshold, such as the amount of time to return a ping.
Typically, the router would be set to generate an event every 30 seconds until an
operator has found and addressed the underlying problem. This would cause
redundant events to flood the event console, impacting the problem-solving
process.

Tivoli Event Integration Facility addresses this problem with two powerful
techniques for analyzing, summarizing, and distributing the incoming event
information:

Filtering with configuration files
By using configuration files on adapters and gateways, you can filter
events based on matches to event classes.

This is the simpler and limited option in terms of capabilities.

When defined correctly, configuration files optimize event management by
minimizing the number of events that each operator must monitor.
Related concepts

“Event filtering” on page 6

Filtering with configuration files
Normally, an adapter sends all events to the event server. You can optionally list
the events that the adapter can or cannot send to the event server by using the
Filter and FilterCache keywords. Similarly, you can modify the configuration file to
filter events.

A configuration file can contain as many filter entries as needed. You specify the
event class and information such as the origin, severity, or any other attribute and
value pair that is defined for the event class. Depending on how you specify the
Filter and FilterMode keywords, filtered events are either sent to the event server
or discarded.

Define event filters as follows:
v To send all events to the event server (the default behavior):

1. Set FilterMode to OUT.
2. Do not specify any Filter statements.

v To send specific events to the event server:
1. Set FilterMode to IN.
2. Create Filter statements to match the specific events that you want sent.

v To discard all events:
1. Set FilterMode to IN.
2. Do not specify any Filter statements.

© Copyright IBM Corp. 2003, 2011 39



v To discard specific events:
1. Set FilterMode to OUT (the default value).
2. Create Filter statements to match the specific events that you want discarded.

Example

The following example shows two filters. The first filter suppresses all events with
the class disk_event. The second filter suppresses all events with the class
Su_Success from the IP address 126.32.2.14.
#
# Event Filters
#
Filter:Class=disk_event
Filter:Class=Su_Success;origin=126.32.2.14

Related reference

Appendix D, “Keywords,” on page 63

Filtering events when systems fail
When an adapter is unable to connect to the event server, it sends the events to a
file if the BufferEvents keyword is set to YES.

You can filter events sent to a cache file, similar to filtering events for the event
server, by using the FilterCache keyword.

The following procedures describe how to filter events with the FilterCache and
FilterMode keywords, when the event server is unavailable:
v To cache specific events:

1. Set FilterMode to IN.
2. Set BufferEvents to YES (the default value).
3. Create Filter and FilterCache statements to match the specific events that you

want cached.
v To discard specific events:

1. Set FilterMode to OUT.
2. Create Filter and FilterCache statements to match the specific events that you

want discarded.
v To cache all events (the default behavior):

1. Set FilterMode to OUT.
2. Set BufferEvents to YES.
3. Do not specify any FilterCache statements.

Note: All events are discarded when the configuration is as follows:
1. FilterMode is set to IN.
2. No FilterCache statements are specified.
Related tasks

“Activating the cache” on page 22

40 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Regular expressions in filters
You can use Tcl regular expressions in filtering statements.

The format of a regular expression is:
re:’value_fragment’

A regular expression is zero or more branches, separated by a vertical bar (|). A
regular expression matches anything that matches one of the branches.

A branch is zero or more pieces that are concatenated. It matches a match for the
first, followed by a match for the second, and so forth.

A piece is an atom possibly followed by an asterisk (*), a plus sign (+), or a
question mark (?). An atom followed by an asterisk (*) matches a sequence of 0 or
more matches of the atom. An atom followed by a plus sign (+) matches a
sequence of 1 or more matches of the atom. An atom followed by a question mark
(?) matches a match of the atom, or the null string.

An atom is a regular expression in parentheses (matching a match for the regular
expression), a range, a period (.) (matching any single character), a caret (^)
(matching the null string at the beginning of the input string), a dollar sign ($)
(matching the null string at the end of the input string), a back slash (\) followed
by a single character (matching that character), or a single character with no other
significance (matching that character).

A range is a sequence of characters enclosed in brackets [ ]. A range matches any
single character from the sequence. If the sequence begins with a caret (^), it
matches any single character not from the rest of the sequence. If two characters in
the sequence are separated by minus sign (-), this represents the full list of ASCII
characters between them. For example, the range [0-9] matches any decimal digit.
To include a literal right bracket (]) in the sequence, use the right bracket (]) as the
first character, following a possible caret (^). To include a literal minus sign (-), use
the minus sign (-) as the first or last character.

A sample program named regtest and a sample input file named regtest.data
are provided in the EIFSDK directory for testing regular expressions. The sample is
provided for each operating system in the <eifsdk>/bin/$INTERP directory.

Restriction:

1. The regular expression code is a slightly altered version of code originally
written by Henry Spencer, Copyright 1986 by the University of Toronto. It is
not derived from licensed software. Permission is granted to anyone to use this
software for any purpose on any computer system, and to redistribute it freely,
subject to the following restrictions:
a. The author is not responsible for the consequences of use of this software,

even if they arise from defects in it.
b. The origin of this software must not be misrepresented, either by explicit

claim or by omission.
c. Altered versions must be plainly marked as such, and must not be

misrepresented as being the original software.
2. The Event Integration Facility uses an exception to the Tcl regular expression

syntax. The backslash character (\) in the Event Integration Facility indicates

Chapter 5. Filtering events at the source 41



that the following literal character is the character to filter for, not some special
character such as a tab. For example, \t means the tab character in Tcl, but
means t in Event Integration Facility.

The following example shows a Filter statement with a regular expression. This
filter statement matches all events with a class name that starts with TEC_

Filter:Class=re:’TEC_.*’

The following example shows a FilterCache statement with a narrower range. This
filter statement matches all events with a class name that starts with TEC_ and has
a severity of critical:
FilterCache:Class=re:’TEC_.*’;severity=CRITICAL

For more information about Tcl regular expressions, see a Tcl user's guide.

42 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Chapter 6. Troubleshooting

You can troubleshoot problems that can arise installing and using the Tivoli Event
Integration Facility. The logs and tracing utilities can help you determine the
source of problems when they occur. Before systems fail, you can configure the API
to insure the delivery of events. Additionally, you can improve the performance of
event delivery with API configurations.

Message logs
In problem-solving situations, you need to understand how to interpret messages
and what actions you can take to resolve a problem. You use the message log files
to troubleshoot problems in your environment.

To generate log messages for the Java API, you specify keywords in the
configuration file.

Use the LogLevel and LogFileName keywords to specify the amount and
destination of messages.

For the C API, you specify the ed_diag_config_file keyword.
Related reference

Appendix D, “Keywords,” on page 63

Trace logs
Trace logs assist you in determining why a problem is occurring. Trace logging
captures information about the operating environment when the Tivoli Event
Integration Facility fails to operate as intended.

Customer Support personnel use the information captured by trace loggers to trace
a problem to its source or to determine why an error occurred. These tools are not
enabled by default. Because trace messages are intended for Customer Support,
they are generally written to a file that can be viewed for later examination.

To generate trace messages for the Java API, you specify keywords in the
configuration file.

Use the TraceLevel and TraceFileName keywords to specify the amount and
destination of tracing.

For the C API, you specify the ed_diag_config_file keyword.
Related reference

Appendix D, “Keywords,” on page 63

© Copyright IBM Corp. 2003, 2011 43



Performance and availability
The Tivoli Event Integration Facility can control performance and availability for
event processing.

To prevent overloading with event delivery, you can add timers for event delivery,
and specify the maximum number of events in the cache.

When using timers, the Event Integration Facility notifies the event receiver that
there are cached events. This occurs when the timer expires or when the maximum
number of events is exceeded. Therefore the receiver can process the whole cache
contents at once.

Additionally, you can increase the availability of events by setting up backup
servers.
Related tasks

“Activating the cache” on page 22
“Configuring backup servers to deliver events” on page 23

Event reception connection parameters
The reception process creates a server socket that listens on a specified port. The
listening process marks a connection-mode socket as accepting connections and
limits the number of outstanding connections in the queue of the listening socket
to the value specified by the ConnectionsQueued value.

The implementation can include incomplete connections in the queue subject to the
queue limit. Implementations can limit the length of the queued listening socket by
specifying ConnectionsQueued.

TCP/IP allows data to be sent and the connection to be closed by the sender
before the receiving application can receive the data. The reception process
eventually accepts the connection and processes the data. ConnectionsQueued
allows these types of connections to be limited. Connection attempts are refused
when TCP/IP can no longer queue up connections.

The number of active connections handled by the reception process can be limited
by the ActiveConnections keyword. This prevents the reception process from
accumulating too many connections that consume system resources.

If all of the initial connections are ConnectionOriented and the ActiveConnections
have been reached, then no more connections are accepted by the reception
process. However, connections are still being considered by the TCP/IP up to the
amount of ConnectionsQueued has been reached and if all ActiveConnections are
connection oriented then the state remains unchanged until the number of active
connections is reduced to the amount specified by the percentage of
ActiveConnections through the use of ActiveConnectionsSafety.

Note: The connections that were handled by TCP/IP (ConnectionsQueued) are
discarded when the program ends. The connections that are in the
ActiveConnections list are all closed and any data, residing on the connections, is
discarded.

44 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Common problems and scenarios
When using the Tivoli Event Integration Facility you can encounter a number of
common problems and scenarios.

Building and running adapters
A number of scenarios can occur when there are problems building, compiling,
and running the adapter.

My adapter on a Windows operating system has compile-time errors

Cause There are multiple wsock32.lib files.

Remedy
Use the FORCE:MULTIPLE option when compiling the Windows
NT adapter.

This forces the compiler to pick one file.

I changed the configuration file, but my changes do not take effect

Cause There could be improperly specified statements in the
configuration file.

Remedy
Review the following for the changed keywords:
v Check for typos in the spelling of keywords.
v Ensure that any blank spaces are enclosed in single quotation

marks.

I received a LOG0014E error

Cause The system cannot find the file specified by the LogFileName
keyword.

Remedy
Correct the path name specified by the LogFileName keyword.

Making connections to the event server
A number of scenarios can occur when there are problems connecting to the event
server.

I received a connection error when I use posteifmsg

Cause The error indicates that you might be using a user ID other than
Administrator or root. Therefore your ID does not have the correct
permissions to create and write the file specified by the BufEvtPath
keyword.

Remedy
Ensure that you have the correct permissions for creating the file
specified by the BufEvtPath keyword.

Chapter 6. Troubleshooting 45



Sending events
A number of scenarios can occur when there are problems sending events to the
event server.

My adapter is not sending all the events to the event server.

Cause There is either a communication problem between the adapter and
the event server, or there is a problem internal to the adapter code.

Remedy
Send events to a file instead of directly to the event server. Then,
verify the event delivery.

The following steps describe how to do this:
1. Set the TestMode keyword to YES in the adapter configuration

file.
2. Specify the file to receive the events with the ServerLocation

keyword.
3. Restart the adapter.
4. Review the file specified by the ServerLocation keyword and

check to see if all the events appear there.

If all events appear in the file, then there is a communication
problem with the event server.

If the events are missing from the file, then there is problem
internal to the adapter. Check the adapter code.

Note: When you complete testing of the adapter, reset the
TestMode keyword, so that events are sent to the event server and
no longer directed to a file.

I am using the posteifmsg commands to send events, but they are not arriving at
the event server

Cause The events are being sent to the cache on the adapter or gateway,
because of one of the following situations:
v A portmapper is in use on the sending side, but a portmapper is

not in use on the event server. For Windows systems, there is no
portmapper daemon.

v A non-valid port, host name, or event server was specified.

Remedy
Resolve the non-valid name or port issues.

46 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Appendix A. Application programming interfaces

The APIs for Tivoli Event Integration Facility are defined by C language functions
and Java methods and help you to build a custom adapter or an application that
receives events.
Related tasks

“Programming the adapter” on page 33
Related reference

“Upgrading existing adapters” on page 34

C language API
In order to build a custom adapter in the C language, you must have a C compiler.

tec_agent_getenv
The tec_agent_getenv function retrieves the value of the variable contained in the
configuration file.

Synopsis
char *tec_agent_getenv(char *keyword)

Arguments

keyword
The keyword variable to retrieve.

Examples
#include "tec_eeif.h"
char *serverLoc=tec_agent_getenv("ServerLocation")

Return codes

Returns a pointer to a string which is the value of the variable. Do not free this
pointer. Returns a NULL if the keyword does not appear in the configuration file.

tec_agent_init
The tec_agent_init function is an initialization function that reads the configuration
file and caches the information.

Note: The tec_agent_init function is the first function called to initialize the Tivoli
Event Integration Facility module. Only call the tec_agent_init function once for
each adapter, and call it before any of the other functions.

Synopsis
int tec_agent_init(char *cfgfile)

Arguments

cfgfile The full path to the configuration file.

© Copyright IBM Corp. 2003, 2011 47



Examples
#include "tec_eeif.h"
tec_agent_init(“config”);

Return codes

Returns 0 if successful.

tec_create_EIF_handle
The tec_create_EIF_handle function establishes a handle for sending events to the
event server or receiving events from a source with the first argument specifying a
configuration file. A handle is created using the configuration information specified
in the configuration file. This function is similar to tec_create_handle.

Synopsis
tec_handle_t tec_create_EIF_handle(char *cfgfile, int oneway,delivery_mode mode)

Arguments

cfgfile The full path to the configuration file.

oneway
Used for managed node adapters only, and is used to designate whether
calls to tec_put_event returns exceptions to the caller in the event of
failure. A value of one (1) means that exceptions, if any, are not returned to
the caller of tec_put_event because the caller does not wait for a response
from the oserv process. A value of zero (0) means that exceptions are
returned to the caller because the caller waits for the oserv process to
return the success or failure of the method.

mode The possible values are the following:
v submission
v reception

Use the submission mode when the handle is used for transmitting. Use
the reception mode when the handle is used for receiving.

Examples
#include "tec_eeif.h"
if((th =tec_create_EIF_handle("config",0,submission))==NULL){

fprintf(stderr,"%s:tec_create_handle failed errno=%d \n ",
progname,tec_errno);

exit(1);
}

Return codes

A handle to an internal data structure. The handle is used in calls to other API
functions.

48 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



tec_create_handle
The tec_create_handle function establishes a handle for sending events to the
event server.

Synopsis
tec_handle_t tec_create_handle(char *location, unsigned short port,
int oneway, tec_delivery_type type)

Arguments

location
The host name or host protocol address of the event server.

oneway
Used for managed node adapters only, and is used to designate whether
calls to tec_put_event returns exceptions to the caller in the event of
failure. A value of one (1) means that exceptions, if any, are not returned to
the caller of tec_put_event because the caller does not wait for a response
from the oserv process. A value of zero (0) means that exceptions are
returned to the caller because the caller waits for the oserv process to
return the success or failure of the method.

port The port the event server listens on.

type The possible values are the following:
v connection_less
v connection_oriented
v use_default

The use_default value reads the setting from the configuration file for the
ConnectionMode keyword and sets up a connectionless handle if the
ConnectionMode keyword is not specified.

Examples
#include "tec_eeif.h"
if((th = tec_create_handle(tec_server, port, oneway, type)) == NULL) {

fprintf(stderr, “%s: tec_create_handle failed errno=,
progname, tec_errno);

exit(1);

}

Return codes

A handle to an internal data structure. The handle is used in calls to
tec_put_event. If the location is NULL, the configuration file ServerLocation entry is
used to derive the location. If the port is zero, the ServerPort entry is used, if any;
or else the portmapper is queried for the port on which the event server listens.

Appendix A. Application programming interfaces 49



tec_create_handle_c
The tec_create_handle_c function establishes a handle for sending events to the
event server or receiving events from a source with the first argument specifying a
configuration file. A handle is created using the configuration information specified
in the configuration file. This function is similar to tec_create_handle.

Synopsis
tec_handle_t tec_create_handle_c (char *cfgfile,char *location, unsigned short
port, int oneway, tec_delivery_type type, delivery_mode mode)

Arguments

cfgfile The full path to the configuration file.

location
The host name or host protocol address of the event server.

mode The possible values are the following:
v submission
v reception

Use the submission mode when the handle is used for transmitting. Use
the reception mode when the handle is used for receiving.

oneway
Used for managed node adapters only, and is used to designate whether
calls to tec_put_event returns exceptions to the caller in the event of
failure. A value of one (1) means that exceptions, if any, are not returned to
the caller of tec_put_event because the caller does not wait for a response
from the oserv process. A value of zero (0) means that exceptions are
returned to the caller because the caller waits for the oserv process to
return the success or failure of the method.

port The port the event server listens on for non-TME versions.

type The possible values are the following:
v connection_less
v connection_oriented
v use_default

The use_default value reads the setting from the configuration file for the
ConnectionMode keyword and sets up a connectionless handle if the
ConnectionMode keyword is not specified.

Examples
#include "tec_eeif.h"
if((th
=tec_create_handle_c("config","tecserver.com",5529,0,connection_less,submission))

==NULL){
fprintf(stderr,"%s:tec_create_handle failed errno=%d \n ",

progname,tec_errno);
exit(1);

}

Return codes

A handle to an internal data structure. The handle is used in calls to tec_put_event.
If the location is NULL, the configuration file ServerLocation entry is used to
derive the location. If the port is zero, the ServerPort entry is used, if any; or else

50 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



the portmapper is queried for the port on which the event server listens.

tec_create_handle_r
The tec_create_handle_r function establishes a handle for sending events to the
event server with the first argument specifying a configuration file. A handle is
created using the configuration information specified in the configuration file.
Similar to tec_create_handle.

Synopsis
tec_handle_t tec_create_handle_r (char *cfgfile,char *location, unsigned short
port, int oneway, tec_delivery_type type)

Arguments

cfgfile The full path to the configuration file.

location
The host name or host protocol address of the event server.

oneway
Used for managed node adapters only, and is used to designate whether
calls to tec_put_event returns exceptions to the caller in the event of
failure. A value of one (1) means that exceptions, if any, are not returned to
the caller of tec_put_event because the caller does not wait for a response
from the oserv process. A value of zero (0) means that exceptions are
returned to the caller because the caller waits for the oserv process to
return the success or failure of the method.

port The port the event server listens on for non-TME versions.

type The possible values are the following:
v connection_less
v connection_oriented
v use_default

The use_default value reads the setting from the configuration file for the
ConnectionMode keyword and sets up a connectionless handle if the
ConnectionMode keyword is not specified.

Examples
#include "tec_eeif.h"
th = tec_create_handle_r(“config”,“localhost”,1234, 0, use_default)) == NULL) */

Return codes

A handle to an internal data structure. The handle is used in calls to tec_put_event.
If the location is NULL, the configuration file ServerLocation entry is used to
derive the location. If the port is zero, the ServerPort entry is used, if any; or else
the portmapper is queried for the port on which the event server listens.

Appendix A. Application programming interfaces 51



tec_destroy_handle
The tec_destroy_handle function destroys the handle to the event server created by
tec_create_handle, tec_create_handle_c, tec_create_EIF_handle, and
tec_create_handle_r and closes any established connections.

Synopsis
void tec_destroy_handle (tec_handle_t th)

Arguments

th The tec handle returned from a call to a create_handle function.

Examples
#include "tec_eeif.h"
tec_destroy_handle(th);

tec_errno
When a function returns an error, the tec_errno function is set to the appropriate
error code.

Synopsis
extern int tec_errno

tec_get_event
The tec_get_event function allows an application to receive events. It receives
events from the configured transport, on demand. The data returned can contain
more than one event. Use the ed_scan_n utility to determine the number of events.
The memory allocated for the event must be freed.

Synopsis
long tec_get_event (tec_handle_t th, unsigned char ** event_message);

Arguments

th The event server handle returned from a call to a create_handle function.

event_message
Contains the event data of the message received from a transport.

Examples
#include "tec_eeif.h"
char *event;
long event_len;
int rc;

event=NULL;
event_len = tec_get_event(th, &event);
if (event && event_len)
{
n =ed_scan_n (event,event_len);
}
if (event)

free(event)

Return codes

Returns the length of the event message. Returns 0 (zero) when no events are
available.

52 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



tec_put_event
The tec_put_event function sends an event to the event server.

Note: If buffering is enabled in the configuration file, events are placed into a
buffer and then sent on a separate thread. If a call to tec_put_event is followed by
a call to tec_destroy_handle, the handle might be destroyed before the event can be
sent. To prevent this from happening, use the ed_sleep utility function after
tec_put_event to allow time for the event to be sent:
ed_sleep(0,100);

Synopsis
long tec_put_event (tec_handle_t th, char *event)

Arguments

event The character string representing the event.

th The event server handle returned from a call to a create_handle function.

Examples
#include "tec_eeif.h"
if ( tec_put_event(th, event_string) == -1 {

fprintf(stderr, “%s: tec_put_event failed, errno=,
progname, tec_errno);

exit(1);

}

Return codes

Returns the number of bytes sent to the event server, other applications listening
for events, or the cache file. A zero return means the event is filtered out. A
negative return indicates an error.

tec_register_callback
The tec_register_callback function allows an application to receive events through
an upcall. The application registers a callback, passing as a parameter the method
that handles the received events.

tec_event_callback syntax

The syntax for tec_event_callback is as follows:
int (*tec_event_callback)(tec_handle_t h, unsigned char *msg, long _msg_len);

The data returned can contain more than one event. Use the ed_scan_n utility to
determine the number of events returned. The memory allocated for the event
must be freed.

The tec_event_callback function returns –1 or zero (0). A zero indicates that there
were no errors and that the event has been processed. A –1 indicates that there was
a problem processing the event and to not remove it from the cache if one is
configured.

Synopsis
void tec_register_callback(tec_handle_t th, tec_event_callback *fn)

Appendix A. Application programming interfaces 53



Arguments

th The event server handle returned from a call to a create_handle function.

fn The function to be called when the event arrives.

Examples
#include "tec_eeif.h"
int on_message (tec_handle_t th, unsigned char *event, long event_len)
{
long n;
if (event && event_len)
{

int i;
char *ev;
long len;
long idx = 1;

n =ed_scan_n (event,event_len);
for(i =0;i <n;i++,idx++)
{

ev =(char *)ed_scan_get_n ((char *)event, idx, event_len, &len);
free (ev);

}
}
return 0;
}

tec_register_callback(th,on_message)

54 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Appendix B. Utilities for the C API

Tivoli Event Integration Facility provides a number of utilities for the C API.

ed_scan_get_n
Events received through the reception API can contain more than one event. Use
the ed_scan_get_n utility to get the n'th event from the packet.

Synopsis
char * ed_scan_get_n (char *packet,long index,long packet_len, long *result_len);

Arguments

packet The pointer returned by tec_get_event or passed to the callback when
tec_register_callback is used.

index The n'th element in the packet starting at 1.

Packet_len
The maximum length of the packet to search.

Result_len
Contains the resulting length of the packet.

Examples
#include "tec_eeif.h"
char *package
char *ev;
int i;
long n,len,idx=1;

package=tec_get_event(th);

n = ed_scan_n (package, strlen (package));
for (i = 0; i < n; i++, idx++)
{
ev =(char *) ed_scan_get_n ((char *) package, idx, strlen (package),&len);
free (ev);
}

Return codes

Returns a pointer to a newly allocated buffer containing the requested event. This
pointer must be freed.

ed_scan_n
Events received through the reception API can contain more than one event. You
use the ed_scan_n utility to determine the number of events contained in the
packet.

Synopsis

long ed_scan_n (char *packet, long packet_len );

© Copyright IBM Corp. 2003, 2011 55



Arguments

packet The pointer returned by tec_get_event or passed to the callback when
tec_register_callback is used.

Packet_len
The maximum length of the packet to search.

Examples
#include "tec_eeif.h"
char *package
char *ev;
int i;
long n,len,idx=1;

package=tec_get_event(th);

n = ed_scan_n (package, strlen (package));
for (i = 0; i < n; i++, idx++)
{
ev =(char *) ed_scan_get_n ((char *) package, idx, strlen (package),&len);
free (ev);
}

Return codes

Returns the number of events, zero (0) if none are found, and –1 when an error
occurs.

ed_sleep
The ed_sleep utility pauses running for the specified duration, and allows threads
to switch. This utility is called by managed node adapters in the main loop to
release the execution of the internal threads.

Synopsis

int ed_sleep (long seconds, long millis);

Arguments

millis Specifies the amount of milliseconds.

seconds
Specifies the amount of seconds.

Examples
#include "tec_eeif.h"
/* pause for 3.5 seconds */
ed_sleep (3, 500);

/* sleep duration is zero but yields briefly so other threads can run */
ed_sleep (0, 0);

Return codes

Returns zero (0).

56 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Appendix C. Java language API

To build an adapter in Java, you must have the Java 1.3.1 (or higher) compiler. The
Java API is provided in Jar files.

disconnect
The disconnect function closes any open connection to the event server.

Synopsis
disconnect()

Examples
public synchronized void disconnect()

disconnect(time)
The disconnect(time) function flushes the cache and then closes any open
connection to the event server.

Synopsis
disconnect (max_seconds_to_wait)

Arguments

Note: For all values, control is returned to the caller as soon as the cache is
emptied.

< 0 Wait forever or until the cache is emptied. If the server is down, this
routine will not return.

= 0 Send events from the cache while the connection remains up. This could
take a long time if the cache is large.

>= 0 Stop emptying the cache after the specified number of seconds.

Examples
public synchronized void disconnect(int max_seconds_to_wait)

getConfigVal
The getConfigVal function retrieves the value of a variable contained in the
configuration file.

Synopsis
getConfigVal (String key)

key Specifies the configuration keyword label.

Examples
public String getConfigVal(String key)

© Copyright IBM Corp. 2003, 2011 57



Return codes

Returns the string value associated with key in the configuration file used to
initialize the TECAgent function.

If key is not in the configuration file, null is returned. For keywords such as Filter,
which have multiple values, only the last value specified in the configuration files
is returned.

onMessage
The onMessage function handles the events received asynchronously from the API.

Synopsis
onMessage (String event)

Arguments

event A string contained in the event, which is returned to the application.

Examples
public void onMessage( String event )

Return codes

The application returns true if the received event was processed with success,
indicating to the API to remove the event from the cache or persistent log, or both
to avoid resending the event in the future.

The application returns false if the event was not processed with success,
indicating to the API to resend the event to the event server for further processing.
In this case, the event is not removed from the cache or persistent log, or both.

receiveEvent
The receiveEvent function enables an application to receive events synchronously.
It receives events from all the event servers specified in the configuration file used
to initialize the TECAgent function.

Synopsis
String receiveEvent()

Examples
public synchronized String receiveEvent()

Return codes

Returns event data that was received by this API. The delimiter
TECEvent.TECAD_EVENT_END_CHAR (A) separates the events returned in this
string.
Related reference

“registerListener” on page 59

58 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



registerListener
The registerListener function registers the calling application as a listener, enabling
the asynchronous reception of events. You must pass an object that implements the
IEventProcessing interface as a parameter.

Synopsis
registerListener (IEventProcessing)

Arguments

IEventProcessing
The application class that implements the IEventProcessing callback.

Examples
public void registerListener (IEventProcessing)

Related reference

“receiveEvent” on page 58

sendEvent
This function sends events to the event servers specified in the configuration file
used to initialize the TECAgent function. You must pass a serialized TECEvent as a
parameter. If the BufferEvents=YES keyword is specified, the events are cached
and persistent before they are sent.

Synopsis
sendEvent (String event)

Arguments

event Event data to be sent to the event server. If event is non-null, it must be at
least TECEvent.MIN_EVENT_LEN characters long, or sendEvent returns
immediately with an error.

Examples
public synchronized int sendEvent(String event)

Return codes

Returns the number of bytes sent to the event server, other applications listening
for events, or the cache file. A zero return means the event is filtered out. A
negative return indicates an error.

TECAgent
The TECAgent function accesses the configuration file and sets the transport
mechanism. It is the top-level object that enables the sending and receiving of
events to and from the event server.

Synopsis
TECAgent (Reader configStream, int deliveryMode, boolean oneway)

Appendix C. Java language API 59



Arguments

configStream
Object that reads the configuration keywords.

deliveryMode
Specifies the delivery mode. The values are SENDER_MODE and RECEIVE_MODE.

oneway
Used for connections to TME adapters on managed nodes. Designates
whether calls to sendEvent() returns exceptions to the caller in the event of
failure. A value of one (1) means that exceptions are not returned to the
caller; a value of zero (0) means that exceptions are returned to the caller.

Examples
public TECAgent(Reader configStream, int deliveryMode, boolean oneway)

Return codes

An exception is raised if the TECAgent cannot be created.

TECEvent
The TECEvent function encapsulates the code for parsing event definitions into a
class name and attribute=value pairs.

Synopsis
TECEvent()
init(String event)

Arguments

event The event string to be parsed. Here are some examples of valid event
strings:
Class1;msg=’text.’;hostname=artemis;source=TEC;END
Class2;END
Class3;msg=theMessage;END

A valid event string has the following form:
ID SEMICLN ( ID = (STRING | VALUE | EMPTY_STRING) SEMICLN )* "END"[CTRL_A]

The tokens for the event string grammar are explained as follows:
SEMICLN := ";"

EQUALS := "="

CNTRL_A := "\001"

ID := Any non-empty sequence of characters from the set
a-z, A-Z, 0-9, _, -, .

containing at least one character from
a-z, A-Z

STRING :=

Begins and ends with either single quotes or double quotes. Any
embedded quotes that are the same as the quotes being used to delimit the
string must be escaped with the same quote character. For example:
v ’embedded single(’)’ would be written ’embedded single(’’)’

60 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



v "embedded double(")" would be written "embedded double("")"

v "embedded single(’)" would be written "embedded single(’)"

Note: STRING tokens cannot contain the NUL character (’\000’) or
control-A (’\001’)
VALUE :=

Any non-empty sequence of characters excluding the following:
v all ASCII control characters ("" - "")

v the space character (" ")

v the single quote ("’")

v the equal sign ("=")

v the semi-colon (";")

EMPTY_STRING := This token represents an empty string. Quotes are not
needed for this value.

The first ID token is the class name of the event. The sequence of instances
of "ID=(STRING|VALUE);" specifies the slot/value pairs and"END" marks the
end of the event. The terminating character ^A is optional. Each ID used as
a slot name must be unique with respect to all the other IDs used as slot
names and the slot name cannot be "END". There can be an arbitrary
amount of whitespace (characters " ", "\t", "\r", "\n") before and after
any of the tokens in an event string, with the following exception. If a
terminating ^A is present, nothing can appear after it. Examples of valid
event strings are as follows:
Class1;

msg=’embedded quote ’’.’ ;
hostname=artemis;

END

Class2;END^A
Class3; msg = theMessage ; END
Class4;

msg=’Here’’s a newline
rest of msg’;

END

Examples
public boolean init(String event);

Return codes

The return code for the init() call is true when the event string is parsed
successfully, and false if it is not.

Appendix C. Java language API 61



62 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Appendix D. Keywords

A configuration file can contain keywords. You use these keywords in order to
configure your system.

Format

Keywords use the following format:
keyword=value

Type each keyword on a separate line. Do not use blank spaces in keyword
statements unless enclosed in single quotation marks.

Note: Adapters do not issue error messages for misspelled keywords or keywords
set to a value that is not valid.

Note: Not all keywords apply to all adapters, and some adapters have additional
keywords specific to them.

A configuration file can contain the following keywords, which are common to
most adapters.

BufEvtMaxSize=kilobytes
Specifies the maximum size, in kilobytes, of the adapter cache file.

The default value is 64 and the minimum size is 8. File sizes below this
level are ignored, and 8 KB is used. There is no upper limit for the file
size.

This keyword is optional.

The cache file stores events on disk when they cannot be sent to the event
server and the BufferEvents keyword is set to YES.

Note: If the cache file already exists, you must delete the file for keyword
changes to take effect.

BufEvtPath=pathname
Specifies the full path name of the adapter cache file.

The default path name is cache.dat.

This is a required keyword when the BufferEvents keyword is set to YES.

Note: If more than one application on the same system uses the Event
Integration Facility, ensure that each application has unique values for the
path name.

BufferEvents=YES | MEMORY_ONLY | NO
Specifies how event buffering is enabled.

YES Stores events in the file specified by the BufEvtPath keyword.

MEMORY_ONLY
Buffers events in memory.

NO Does not store or buffer events.

© Copyright IBM Corp. 2003, 2011 63



If UseStateCorrelation=YES and BufferEvents=YES, the API also stores
events in files that are specified with the BufEvtPath keyword. The
StateCorrelationMaxFileSize and StateCorrelationTotalSize keywords
control the size and number of files.

The value is not case-sensitive. The default value is YES. This keyword is
optional.

BufferFlushRate=events_per_minute
Specifies the number of events that are sent per minute. Once the adapter
has recovered the lost connection, and there are events in the buffer, the
events are sent at this rate per minute. The default value is zero (0);
consequently all events are sent in one burst.

This keyword is optional.

ConnectionMode=connection_oriented | connection_less
Specifies the connection mode to use to connect to the the event server.
The default value is connection_less.

connection_oriented
A connection is established at adapter initialization and is
maintained for all events sent. A new connection is established
only if the initial connection is lost. The connection is discarded
when the adapter is stopped. This option can be abbreviated to co
or CO.

connection_less
A new connection is established and discarded for each event or
group of events that is sent.

This keyword is optional.

ed_diag_config_file=./diag_config
For the C API only, this file generates log and trace messages. The ./
diag_config file must be present, or else logging and tracing do not occur.

To enable logging, specify error or warning in the ./diag_config file.

To enable tracing, specify trace0, trace1, or trace2 in the ./diag_config
file.

Each level of logging or tracing also includes all levels below it. For
example, when you specify warning logging, error logging is automatically
enabled.

Note: Be aware that increasing the level of tracing produces a large trace
output.

When the Event Integration Facility restarts, the API truncates the
/tmp/tec_ed trace file. To avoid truncation, change the
Truncate_on_restart line from true to false.

This keyword is optional.

Filter Works with the FilterMode keyword to determine how events are filtered.

An event matches a Filter statement when each attribute=value pair in
the Filter statement is identical to the corresponding attribute=value pair
in the event.

A Filter statement must contain the event class, and optionally can include
any other attribute=value pair that is defined for the event class.

64 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



The format of a filtering statement is as follows:
Filter:Class=class_name;[attribute=value;...;attribute=value]

Each statement must be on a single line. The attribute=value pair is case
sensitive.

This keyword is optional.

FilterCache
Works with the FilterMode and Filter keywords to determine which
events are stored in the cache when events cannot be sent successfully to
the event server. To store events in the cache, you must set
BufferEvents=YES. An event matches a FilterCache statement when each
attribute=value pair in the FilterCache statement is identical to the
corresponding attribute=value pair in the event.

A FilterCache statement must contain the event class (class_name) and can
include any attribute=value pair that is defined for that event class. The
format of a filtering statement is as follows:
FilterCache:Class=class_name;[attribute=value;...;attribute=value]

Each statement must be on a single line. The attribute=value pair is case
sensitive. You must specify the Filter keyword, when you use the
FilterCache keyword. Additionally, the FilterCache statement must specify
the same class or subset of classes that the Filter statement specifies.

This keyword is optional.

Note: When using the FilterCache keyword with endpoint adapters, you
must set the filtering statements at both locations to the same
specifications.

FilterMode=IN | OUT
Specifies whether events that match a Filter or FilterCache statement are
sent to the event server (FilterMode=IN) or discarded (FilterMode=OUT).

The default value is OUT. The valid values are IN or OUT, without regard for
case. If you set FilterMode=IN, you must have one or more Filter and
FilterCache statements defined.
This keyword is optional.

FQDomain= YES | NO | fully.qualified.domain.suffix
Specifies how the adapter should set the value of the fqhostname attribute
of events sent to the event server. This attribute is used to specify the fully
qualified host name of the originating host. Possible values for this
keyword are:

YES The adapter attempts to determine the fully qualified host name. If
this is successful, the fqhostname attribute is set to this value; if
not, the attribute has a null value. This the default, unless the
FQDomain keyword has been specified.

NO The fqhostname attribute has a null value. This is the default value
if the FQDomain keyword is not specified.

fully.qualified.domain.suffix
This value is appended to the host name to set the fqhostname
slot.

Note: This keyword is valid only for the OpenView, SNMP, UNIX log file,
and Windows event log adapters.

Appendix D. Keywords 65



LogFileName=pathname
Specifies the full path name of the log file for the Java API. The default
location for the file is $TIVOLIHOME/tec/eif.log.

The default value for the path is eif.log.

If you specify a non-valid path name, the API returns the following error:
LOG0014E Unable to open the handler output file <filename>.
java.io.FileNotFoundException: <filename>
(The system cannot find the path specified)

This keyword is optional.

LogLevel=level
Specifies whether the Java API generates log messages or not. By default,
no messages are generated.

Specify ALL to generate messages. If you specify any other value or no
value, the API does not generate messages.

This keyword is optional.

MaxPacketSize=bytes
Specifies the number of bytes to be sent at the rate specified by the
BufferFlushRate keyword.

The default value is zero (0), where one event is sent at a time. This
keyword is optional.

NO_UTF8_CONVERSION=YES | NO
Specifies whether Tivoli Event Integration Facility encodes event data in
UTF-8.

When this keyword is set to YES, the Event Integration Facility does not
encode event data in UTF-8. The data is assumed to already be in UTF-8
encoding when passed to the Event Integration Facility. It does, however,
prepend the flag indicating that the data is in UTF-8 encoding if the flag
does not exist at the beginning of the event data.

This keyword is optional. The default value for this keyword is NO.

Pre37Server=YES | NO

Specifies whether the adapter sends events in the encoding of the event
server host or in UTF-8 encoding.

Event server host versions earlier than the Tivoli Enterprise Console 3.7
product do not support UTF-8 encoding of events.

The following values are not case-sensitive:

YES Disables UTF-8 encoding and allows the adapter to communicate
with event server host versions earlier than the Tivoli Enterprise
Console 3.7 product. When this keyword is set to YES, you must
also specify the Pre37ServerEncoding keyword.

NO The adapter sends events in UTF-8 encoding.

This keyword is optional. The default value is NO.

Pre37ServerEncoding=encoding
Determines which language to use when a non-TME adapter
communicates with a non-UTF-8 event server host (versions earlier than
the Tivoli Enterprise Console 3.7 product).

This keyword is active only when the Pre37Server keyword is set to YES.

66 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



This keyword is optional.

RetryInterval=timeout
When ConnectionMode=connection_oriented, and the connection to the
event server is lost, an adapter waits the specified number of seconds
before again attempting to connect to the primary or secondary servers, or
to buffer the events. While the adapter is waiting for the expiration of this
interval, no new events are processed by the adapter.

This option allows an adapter to send all events to the primary event
server even if the primary event server is stopped briefly, such as when
loading a new rule base. If you use this keyword to wait for restarting an
event server, set the value for a period of time longer than necessary for
the event server to be stopped and then restarted.

This keyword is optional. The default value is 120 seconds.

ServerLocation=host
Specifies the name of the host on which the EIF receiver is installed. The
value of this field must be either host_name or IP_address.

Note: Use the dotted format for IP_address.

The ServerLocation keyword is optional and not used when the
TransportList keyword is specified.

Note: The ServerLocation keyword defines the path and name of the file
for logging events, instead of the event server, when used with the
TestMode keyword.

The ServerLocation keyword can contain up to eight values, separated by
commas. The first location is the primary event server, while others are
secondary servers to be used in the order specified when the primary
server is down.

The default value is localhost.

ServerPort=number
Specifies the port number on a non-TME adapter only on which the event
server listens for events.

Set this keyword value to zero (0), the default value, unless the
portmapper is not available on the event server, which is the case if the
event server is running on a Microsoft Windows system or the event server
is a Tivoli Availability Intermediate Manager (see the following note). If the
port number is specified as zero (0) or it is not specified, the port number
is retrieved using the portmapper.

Note: Portmapper is not supported for reception of events from non-TME
adapters at the Tivoli Enterprise Console gateway. If your non-TME
adapter is sending events to this gateway, then you must code the
ServerPort keyword to match the value in the gwr_ReceptionPort keyword
in the Tivoli Enterprise Console gateway configuration file.

The ServerPort keyword is optional and not used when the TransportList
keyword is specified.

The ServerPort keyword can contain up to eight values, separated by
commas. For adapters that send events to a UNIX event server, use the
default value of 0 (only one value of 0, even if multiple UNIX event
servers are specified with the ServerLocation keyword). For adapters that

Appendix D. Keywords 67



send events to a Windows event server or a Tivoli Availability Intermediate
Manager, specify one value for each event server defined with the
ServerLocation keyword.

The ServerPort keyword is optional when the event server is running on
the UNIX operating system, but mandatory when running on Windows
operating system. It is not used when the TransportList keyword is
specified.

TestMode=YES | NO
Specifies whether test mode is turned on or off.

When TestMode=YES, the ServerLocation keyword specifies the file to
which events are logged, instead of being sent to the event server. Valid
values are YES and NO, without regard to case. The default is NO.
This keyword is optional.

TraceFileName=pathname
Specifies the full path name of the trace file for the Java API.

This keyword is optional.

The default location of the file is $TIVOLIHOME/tec/eif.trc.

If you specify an invalid path name, the API returns the following error:
LOG0014E Unable to open the handler output file <filename>.
java.io.FileNotFoundException: <filename>
(The system cannot find the path specified)

TraceLevel=level
Specifies whether the Java API generates trace messages or not. By default,
no messages are generated.

Specify ALL to generate messages. If you specify any other value or no
value, the API does not generate messages.

This keyword is optional.

TransportList=type_name,...
Specifies the user-supplied names of the transport mechanisms, separated
by commas. When a transport mechanism fails for sender applications, the
API uses the following transport mechanisms in the order specified in the
list. For receiving applications, the API creates and uses all the transport
mechanisms.

Note: This keyword is supported only for Solaris, AIX, Linux, and
Windows adapters. It is not supported for other adapters.

This keyword is optional. If it is specified, the transport type and channel
for each type_name must be specified using the Type and Channels
keywords:

type_nameType=SOCKET | SSL
Specifies the transport type for the transport mechanism specified
by the TransportList keyword.

This keyword is required.

The server and port for each channel_name are specified by the
ServerLocation and Port keywords.

68 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



type_nameChannels=channel_name,...
Specifies the user-supplied names of the channels for the transport
mechanism specified by the TransportList keyword, separated by
commas.

This keyword is required.

Depending on the Type (SOCKET or SSL), you use the following
keywords:

channel_namePort=number
Specifies the port number on which the transport
mechanisms server listens for the specified channel, as set
by the Channel keyword.

When this keyword is set to zero (0), the portmapper is
used. This keyword is required.

channel_namePortMapper=YES | NO
Enables the portmapper for the specified channel.

This optional keyword is valid only when the transport
type is set to SOCKET.

channel_namePortMapperName=name
If the portmapper is enabled, specifies the name of the
portmapper. This optional keyword is valid only when the
transport type is set to SOCKET.

channel_namePortMapperNumber=rpc_id
Specifies the ID registered by the remote procedure call.
This optional keyword is valid only when the transport
type is set to SOCKET.

channel_namePortMapperVersion=version_number
If the portmapper is enabled, specifies the version of the
portmapper. This optional keyword is valid only when the
transport type is set to SOCKET.

channel_nameServerLocation=server[region]
Specifies the hostname or IP address of the server and
region on which the server for transport mechanisms is
located for the specified channel.

The channel is set by the Channel keyword. This keyword
is required.

channel_nameSSLKeystore=pathname
Specifies the path to the keystore containing the keys and
certificates that will be used during SSL authentication.

This keyword is required when the transport Type keyword
is set to SSL.

channel_nameSSLKeystorePW=password
Specifies the password of the keystore defined in
channel_nameSSLKeystore.

This keyword or the channel_nameSSLKeystoreStashFile
keyword is required when the transport Type keyword is
set to SSL.

channel_nameSSLKeystoreStashFile=pathname
Specifies the pathname to the stash file which contains the

Appendix D. Keywords 69



password for the keystore defined in the
channel_nameSSLKeystore keyword.

This keyword or the channel_nameSSLKeystorePW keyword
are required when the transport type is set to SSL.

channel_nameSSLKeystoreEncryptionKeyFile=pathname
Specifies the pathname to the file which contains the
encryption key which can be used to decode the data
contained in channel_nameSSLKeystoreStashFile.

This keyword is only recognized by the Java API and is
required only when channel_nameSSLKeystoreStashFilehas
been specified.

channel_nameSSLTruststore=pathname
Specifies the path to the keystore containing the keys and
certificates that will be trusted by the Event Integration
Facility during SSL authentication.

This keyword is only recognized by the Java API. If the
keyword is not specified, the file defined in
channel_nameSSLKeystorewill be used as the trust store.

channel_nameSSLTruststorePW=password
Specifies the password for the keystore defined in
channel_nameSSLTruststore.

This keyword is recognized only by the Java API.

channel_nameSSLTruststoreStashFile=pathname
Specifies the pathname to the stash file which contains the
password for the keystore defined in
channel_nameSSLTruststore.

This keyword is recognized only by the Java API.

channel_nameSSLTruststoreEncryptionKeyFile=pathname
Specifies the pathname to the file which contains the
encryption key which can be used to decode the data
contained in the channel_nameSSLTruststoreStashFile file.

This keyword is recognized only by the Java API and is
required only when the
channel_nameSSLTruststoreStashFile keyword has been
specified.

channel_nameSSLCipherList=cipher1,cipher2,cipher3,...
Specifies the ciphers that will be permitted during SSL
authentication, delimited by commas.

If the list is not specified, all available ciphers will be
permitted.

channel_nameSSLFIPSMode=ON | OFF
Specifies whether the SSL handshake will operate in FIPS
140-2 mode or not. The default value is OFF.

Note: FIPS mode restricts the types of ciphers that can be
used.

channel_nameSSLRequireClientAuthentication=YES | NO
Specifies whether an Event Integration Facility application

70 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



acting as a server will require a client to present a
certificate during an SSL handshake.

This keyword has no effect when specified in the client
configuration, only in the server configuration.

The default value is NO.
Related concepts

“Configuration files” on page 3
“Connection options” on page 13
“Selecting event delivery methods” on page 29
“Configuration file APIs” on page 34
“Configuring adapters for international environments” on page 37
“Message logs” on page 43
“Trace logs” on page 43
Related tasks

“Programming the adapter” on page 33
“Filtering with configuration files” on page 39
“Configuring an EIF receiver application for SSL” on page 29
“Configuring an EIF client application for SSL” on page 31
Related reference

“Sending events through firewalls” on page 21
“Event reception for applications” on page 20
“SSL and FIPS 140-2” on page 14
“Adapter files” on page 27
“Running adapters built with the Event Integration Facility Java API” on page 37

Appendix D. Keywords 71



72 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2011 73



Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia

IBM Corporation
896471/H128B
76 Upper Ground
London SE1 9PZ
United Kingdom

IBM Corporation
JBF1/SOM1
294 Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

74 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
These terms are trademarks of International Business Machines Corporation in the
United States, other countries, or both:

AIX
IBM
Netcool
OS/390
Passport Advantage
System z
Tivoli
Tivoli Enterprise Console
TME
z/OS
zSeries

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based
trademarks are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 75



76 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference



Index

Numerics
64-bit libraries 1

A
accessibility viii
adapters

building 33
overview 27

built with the C API
compiling 35
linking to libraries 36

C APIs 47
compiling 33
configuring 36
event classes 28
event delivery methods 29
files 27
identifying events 27
installing 36
internationalization 37
Java API 57
migrating 12
multithreaded 33
overview 2
required Java API files 37
sample code 33
testing 36
upgrading 34
Windows considerations 35

API utilities
C

ed_scan_get_n 55
ed_scan_n 55
ed_sleep 56

APIs
C 47

tec_agent_getenv 47
tec_agent_init 47
tec_create_EIF_handle 48
tec_create_handle 49
tec_create_handle_c 50
tec_create_handle_r 51
tec_destroy_handle 52
tec_errno 52
tec_get_event 52
tec_put_event 53
tec_register_callback 53

communications 34
configuration files 34
Java

disconnect 57
disconnect(time) 57
getConfigVal 57
onMessage 58
receiveEvent 58
registerListener 59
sendEvent 59
TECAgent 59
TECEvent 60

APIs (continued)
overview 47

attributes
overview 1

audience v
availability

events 44

B
backup

servers configuration 23
BAROC files 3

C
C API

reception application
configuration 24

utilities 55
cache 21

activating 22
certificate 14
ciphers 14
CLI commands 17
communications

APIs 34
configuration file

keywords 63
configuration files

APIs 34
filtering events 39

connection parameters
event reception 44

connections
connection-oriented delivery 13
connectionless delivery 13

content summary v
conventions, typeface ix

D
daemon

portmapper 24
directory structure 10
disconnect 57
disconnect(time) 57
downloading

EIF 9

E
ed_scan_get_n 55
ed_scan_n 55
ed_sleep 56
education

see Tivoli technical training viii
environment variables, notation ix
event classes 28

event delivery
connection options 13
selecting methods 29
transport options 13

Event Integration Facility
overview 1
what's new

64-bit libraries 1
FIPS 140-2 1
IPv6 support 1
SSL 1
transport types 1

event servers 3
event transport

overview 13
events 40

availability 44
classes 3
defining classes 28
delivery methods 13
delivery when systems fail 21
example 3
filtering 6, 39
firewalls 21
flow 27
identification 3, 27
monitoring 28
reception

example 20
reception connection parameters 44
state correlation 39
translated 1

F
files

root.baroc 3
filtering

configuration files 39
regular expressions 41
state correlation 39

filtering events
system failures 40

filtering when system fails 40
filters

event filtering overview 6
FIPS 140-2 1, 14

introduction 17
firewalls

sending events 21
functions

disconnect 57
disconnect(time) 57
getConfigVal 57
onMessage 58
receiveEvent 58
registerListener 59
sendEvent 59
tec_agent_getenv 47
tec_agent_init 47
tec_create_EIF_handle 48

© Copyright IBM Corp. 2003, 2011 77



functions (continued)
tec_create_handle 49
tec_create_handle_c 50
tec_create_handle_r 51
tec_destroy_handle 52
tec_errno 52
tec_get_event 52
tec_put_event 53
tec_register_callback 53
TECAgent 59
TECEvent 60

G
getConfigVal 57

I
iKeyman 13, 14
installation

migration 12
overview 9
preparing 9

installing 10
IPv6 support 1

J
Java API

overview 57

K
keystore 14
keywords

configuration file 63
configuration files 3
list 63

L
libeif.a library 13
logs

messages 43
trace 43

M
manuals vi
message logs 43
migrating adapters 12
monitoring

events 28

O
online publications vi
onMessage 58
ordering publications vi

P
performance

preventing overloading 44
portmapper daemon 24
problem determination

troubleshooting 43
publications vi

R
receiveEvent 58
recovery

systems 21
registerListener 59
regular expressions

filtering 41
rules 6

S
sendEvent 59
SOCKET 13
SSL 1, 13, 14
stash file 14
support information viii
system failures 21

T
Tcl regular expressions

filtering events 41
tec_agent_getenv 47
tec_agent_init 47
tec_create_EIF_handle 48
tec_create_handle 49
tec_create_handle_c 50
tec_create_handle_r 51
tec_destroy_handle 52
tec_errno 52
tec_get_event 52
tec_put_event 53
tec_register_callback 53
TECAgent 59
TECEvent 60
Tivoli software information center vi
Tivoli technical training viii
trace logs 43
training, Tivoli technical viii
transport

options 13
transport types 1
troubleshooting

building and running adapters 45
common scenarios 45
connection error when using

posteifmsg 45
event reception connection

parameters 44
events sent error

general 46
using posteifmsg 46

message logs 43
overview 43
trace logs 43

truststore 14

typeface conventions ix

U
utilities

C API 55
ed_scan_get_n 55
ed_scan_n 55
ed_sleep 56

V
variables, notation for ix

W
Windows

special considerations 35

78 IBM Tivoli Netcool/OMNIbus: Event Integration Facility Reference





����

Printed in the Republic of Ireland

SC14-7611-00


	Contents
	About this publication
	Intended audience
	What this publication contains
	Publications
	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this publication

	Chapter 1. Overview of the Tivoli Event Integration Facility
	Events
	Adapters
	Event classes
	Configuration files
	Event server
	Event filtering
	Rules

	Chapter 2. Installing the Tivoli Event Integration Facility
	Preparing for installation
	Installing
	Migrating adapters

	Chapter 3. Event transport
	Event delivery methods
	Connection options
	Transport options
	SSL and FIPS 140-2
	Federal Information Processing Standard 140–2 (FIPS 140–2) support

	Shell script and test options
	Setting up the posteifmsg utility on z/OS using USS


	Event reception for applications
	Sending events through firewalls
	Event delivery when systems fail
	Activating the cache
	Configuring backup servers to deliver events
	Using the portmapper keywords
	Configuring a reception application built with the C API


	Chapter 4. Building an adapter
	Adapter files
	Identifying events to monitor
	Defining the source
	Defining event classes
	Selecting event delivery methods
	Configuring an EIF receiver application for SSL
	Configuring an EIF client application for SSL

	Programming the adapter
	Upgrading existing adapters
	Configuration file APIs
	Communications APIs
	Special considerations for Microsoft Windows
	Compiling the adapter built with the C API
	Linking the adapter built with the C API

	Installing, configuring, and testing the adapter
	Running adapters built with the Event Integration Facility Java API
	Configuring adapters for international environments

	Chapter 5. Filtering events at the source
	Filtering with configuration files
	Filtering events when systems fail
	Regular expressions in filters


	Chapter 6. Troubleshooting
	Message logs
	Trace logs
	Performance and availability
	Event reception connection parameters

	Common problems and scenarios
	Building and running adapters
	Making connections to the event server
	Sending events


	Appendix A. Application programming interfaces
	C language API
	tec_agent_getenv
	tec_agent_init
	tec_create_EIF_handle
	tec_create_handle
	tec_create_handle_c
	tec_create_handle_r
	tec_destroy_handle
	tec_errno
	tec_get_event
	tec_put_event
	tec_register_callback


	Appendix B. Utilities for the C API
	ed_scan_get_n
	ed_scan_n
	ed_sleep

	Appendix C. Java language API
	disconnect
	disconnect(time)
	getConfigVal
	onMessage
	receiveEvent
	registerListener
	sendEvent
	TECAgent
	TECEvent

	Appendix D. Keywords
	Notices
	Trademarks

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W


