Installing Python Modules
Release 2.7.2

Guido van Rossum
Fred L. Drake, Jr., editor

October 14, 2011

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Bestcase: trivial installation e e e e 3
1.2 The new standard: Distutils e e e 3
2 Standard Build and Install 5
2.1 Platform variations e e e e e e e 5
2.2 Splittingthejobup L e e e 5
2.3 Howbuilding works e e e e e e 6
2.4 How installation works e e e e e e 6
3 Alternate Installation 9
3.1 Alternate installation: theuserscheme 9
3.2 Alternate installation: the home scheme 10
3.3 Alternate installation: Unix (the prefix scheme) 10
3.4 Alternate installation: Windows (the prefix scheme) 11
4 Custom Installation 13
4.1 Modifying Python’s Search Path 14
5 Distutils Configuration Files 17
5.1 Locationand names of configfiles L o 17
5.2 Syntaxofconfigfiles e 18
6 Building Extensions: Tips and Tricks 19
6.1 Tweaking compiler/linker flags L e 19
6.2 Using non-Microsoft compilers on Windows L oo 20
A Glossary 23
B About these documents 31
B.1 Contributors to the Python Documentation 31
C History and License 33
C.1 Historyofthesoftware e e e e e e e 33
C.2 Terms and conditions for accessing or otherwise using Python 34
C.3 Licenses and Acknowledgements for Incorporated Software 36
D Copyright 49
Index 51

Installing Python Modules, Release 2.7.2

Author Greg Ward
Release 2.7
Date October 14, 2011

Abstract

This document describes the Python Distribution Utilities (“Distutils”’) from the end-user’s point-of-view,
describing how to extend the capabilities of a standard Python installation by building and installing third-
party Python modules and extensions.

CONTENTS 1

Installing Python Modules, Release 2.7.2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Although Python’s extensive standard library covers many programming needs, there often comes a time when
you need to add some new functionality to your Python installation in the form of third-party modules. This might
be necessary to support your own programming, or to support an application that you want to use and that happens
to be written in Python.

In the past, there has been little support for adding third-party modules to an existing Python installation. With the
introduction of the Python Distribution Ultilities (Distutils for short) in Python 2.0, this changed.

This document is aimed primarily at the people who need to install third-party Python modules: end-users and
system administrators who just need to get some Python application running, and existing Python programmers
who want to add some new goodies to their toolbox. You don’t need to know Python to read this document;
there will be some brief forays into using Python’s interactive mode to explore your installation, but that’s it. If
you’re looking for information on how to distribute your own Python modules so that others may use them, see
the Distributing Python Modules (in Distributing Python Modules) manual.

1.1 Best case: trivial installation

In the best case, someone will have prepared a special version of the module distribution you want to install
that is targeted specifically at your platform and is installed just like any other software on your platform. For
example, the module developer might make an executable installer available for Windows users, an RPM package
for users of RPM-based Linux systems (Red Hat, SuSE, Mandrake, and many others), a Debian package for users
of Debian-based Linux systems, and so forth.

In that case, you would download the installer appropriate to your platform and do the obvious thing with it: run
it if it’s an executable installer, rom —--install itif it’s an RPM, etc. You don’t need to run Python or a setup
script, you don’t need to compile anything—you might not even need to read any instructions (although it’s always
a good idea to do so anyway).

Of course, things will not always be that easy. You might be interested in a module distribution that doesn’t have
an easy-to-use installer for your platform. In that case, you’ll have to start with the source distribution released by
the module’s author/maintainer. Installing from a source distribution is not too hard, as long as the modules are
packaged in the standard way. The bulk of this document is about building and installing modules from standard
source distributions.

1.2 The new standard: Distutils

If you download a module source distribution, you can tell pretty quickly if it was packaged and distributed in the
standard way, i.e. using the Distutils. First, the distribution’s name and version number will be featured promi-
nently in the name of the downloaded archive, e.g. foo-1.0.tar.gz or widget—0.9.7.zip. Next, the
archive will unpack into a similarly-named directory: foo-1.0 or widget-0.9.7. Additionally, the distri-
bution will contain a setup script setup.py, and a file named README . t xt or possibly just README, which
should explain that building and installing the module distribution is a simple matter of running one command
from a terminal:

Installing Python Modules, Release 2.7.2

python setup.py install

For Windows, this command should be run from a command prompt window (Start — Accessories):

setup.py install

If all these things are true, then you already know how to build and install the modules you’ve just downloaded:
Run the command above. Unless you need to install things in a non-standard way or customize the build process,
you don’t really need this manual. Or rather, the above command is everything you need to get out of this manual.

4 Chapter 1. Introduction

CHAPTER
TWO

STANDARD BUILD AND INSTALL

As described in section The new standard: Distutils, building and installing a module distribution using the
Distutils is usually one simple command to run from a terminal:

python setup.py install

2.1 Platform variations

You should always run the setup command from the distribution root directory, i.e. the top-level subdirectory that
the module source distribution unpacks into. For example, if you’ve just downloaded a module source distribution
foo-1.0.tar.gz onto a Unix system, the normal thing to do is:

gunzip -c¢ foo-1.0.tar.gz | tar xf - # unpacks into directory foo-1.0
cd foo-1.0
python setup.py install

On Windows, you’d probably download foo—1.0. zip. If you downloaded the archive file to C: \ Temp, then it
would unpack into C: \Temp\ foo—-1. 0; you can use either a archive manipulator with a graphical user interface
(such as WinZip) or a command-line tool (such as unzip or pkunzip) to unpack the archive. Then, open a
command prompt window and run:

cd c:\Temp\foo-1.0
python setup.py install

2.2 Splitting the job up

Running setup.py install builds and installs all modules in one run. If you prefer to work incrementally—
especially useful if you want to customize the build process, or if things are going wrong—you can use the setup
script to do one thing at a time. This is particularly helpful when the build and install will be done by different
users—for example, you might want to build a module distribution and hand it off to a system administrator for
installation (or do it yourself, with super-user privileges).

For example, you can build everything in one step, and then install everything in a second step, by invoking the
setup script twice:

python setup.py build
python setup.py install

If you do this, you will notice that running the install command first runs the build command, which—in this
case—quickly notices that it has nothing to do, since everything in the bui 1d directory is up-to-date.

You may not need this ability to break things down often if all you do is install modules downloaded off the ‘net,
but it’s very handy for more advanced tasks. If you get into distributing your own Python modules and extensions,
you’ll run lots of individual Distutils commands on their own.

Installing Python Modules, Release 2.7.2

2.3 How building works

As implied above, the build command is responsible for putting the files to install into a build directory. By
default, this is build under the distribution root; if you’re excessively concerned with speed, or want to keep the
source tree pristine, you can change the build directory with the ——build-base option. For example:

python setup.py build --build-base=/tmp/pybuild/foo-1.0

(Or you could do this permanently with a directive in your system or personal Distutils configuration file; see
section Distutils Configuration Files.) Normally, this isn’t necessary.

The default layout for the build tree is as follows:

--— build/ --- 1lib/

or

——— build/ --- lib.<plat>/
temp.<plat>/

where <plat> expands to a brief description of the current OS/hardware platform and Python version. The first
form, with just a 1ib directory, is used for “pure module distributions”’—that is, module distributions that include
only pure Python modules. If a module distribution contains any extensions (modules written in C/C++), then the
second form, with two <plat> directories, is used. In that case, the temp . plat directory holds temporary files
generated by the compile/link process that don’t actually get installed. In either case, the 1ib (or 1ib.plat)
directory contains all Python modules (pure Python and extensions) that will be installed.

In the future, more directories will be added to handle Python scripts, documentation, binary executables, and
whatever else is needed to handle the job of installing Python modules and applications.

2.4 How installation works

After the build command runs (whether you run it explicitly, or the install command does it for you), the
work of the install command is relatively simple: all it has to do is copy everything under build/1ib (or
build/1lib.plat) to your chosen installation directory.

If you don’t choose an installation directory—i.e., if you just run setup.py install—then the install com-
mand installs to the standard location for third-party Python modules. This location varies by platform and by how
you built/installed Python itself. On Unix (and Mac OS X, which is also Unix-based), it also depends on whether
the module distribution being installed is pure Python or contains extensions (‘“non-pure”):

Platform Standard installation location Default value Notes
Unix (pure) | prefix/lib/pythonX.Y/site-packages/local/lib/pythonX.Y/site-@dack
Unix exec—-prefix/lib/pythonX.Y/site—-pmxkageanl/lib/pythonX.Y/site-dack
(non-pure)

Windows prefix\Lib\site—-packages C:\PythonXY\Lib\site-packages (2)
Notes:

1. Most Linux distributions include Python as a standard part of the system, so prefix and exec-prefix
are usually both /usr on Linux. If you build Python yourself on Linux (or any Unix-like system), the
default prefix and exec—-prefixare /usr/local.

2. The default installation directory on Windows was C: \Program Files\Python under Python 1.6al,
1.5.2, and earlier.

prefix and exec—prefix stand for the directories that Python is installed to, and where it finds its libraries
at run-time. They are always the same under Windows, and very often the same under Unix and Mac OS X. You
can find out what your Python installation uses for pre fix and exec—prefix by running Python in interactive
mode and typing a few simple commands. Under Unix, just type python at the shell prompt. Under Windows,
choose Start — Programs — Python X.Y — Python (command line). Once the interpreter is started, you type
Python code at the prompt. For example, on my Linux system, I type the three Python statements shown below,
and get the output as shown, to find out my prefix and exec-prefix:

6 Chapter 2. Standard Build and Install

ages
ages

Installing Python Modules, Release 2.7.2

Python 2.4 (#26, Aug 7 2004, 17:19:02)

Type "help", "copyright", "credits" or "license" for more information.
>>> import sys

>>> sys.prefix

" /usr’

>>> sys.exec_prefix

" /usr’

A few other placeholders are used in this document: X.Y stands for the version of Python, for example 2. 7;
distname will be replaced by the name of the module distribution being installed. Dots and capitalization are
important in the paths; for example, a value that uses python2.7 on UNIX will typically use Python27 on
Windows.

If you don’t want to install modules to the standard location, or if you don’t have permission to write there, then
you need to read about alternate installations in section Alternate Installation. If you want to customize your
installation directories more heavily, see section Custom Installation on custom installations.

2.4. How installation works 7

Installing Python Modules, Release 2.7.2

8 Chapter 2. Standard Build and Install

CHAPTER
THREE

ALTERNATE INSTALLATION

Often, it is necessary or desirable to install modules to a location other than the standard location for third-party
Python modules. For example, on a Unix system you might not have permission to write to the standard third-
party module directory. Or you might wish to try out a module before making it a standard part of your local
Python installation. This is especially true when upgrading a distribution already present: you want to make sure
your existing base of scripts still works with the new version before actually upgrading.

The Distutils install command is designed to make installing module distributions to an alternate location simple
and painless. The basic idea is that you supply a base directory for the installation, and the install command picks
a set of directories (called an installation scheme) under this base directory in which to install files. The details
differ across platforms, so read whichever of the following sections applies to you.

Note that the various alternate installation schemes are mutually exclusive: you can pass ——user, or ——home, or
——prefix and ——exec-prefix, or ——install-base and ——install-platbase, but you can’t mix
from these groups.

3.1 Alternate installation: the user scheme

This scheme is designed to be the most convenient solution for users that don’t have write permission to the global
site-packages directory or don’t want to install into it. It is enabled with a simple option:

python setup.py install —--user

Files will be installed into subdirectories of site.USER_BASE (written as userbase hereafter). This scheme
installs pure Python modules and extension modules in the same location (also known as site.USER_SITE).
Here are the values for UNIX, including Mac OS X:

Type of file Installation directory

modules userbase/lib/pythonX.Y/site-packages
scripts userbase/bin

data userbase

C headers userbase/include/pythonX.Y/distname

And here are the values used on Windows:

Type of file Installation directory

modules userbase\PythonXY\site-packages
scripts userbase\Scripts

data userbase

C headers userbase\PythonXY\Include\distname

The advantage of using this scheme compared to the other ones described below is that the user site-packages
directory is under normal conditions always included in sys.path (see site for more information), which
means that there is no additional step to perform after running the setup . py script to finalize the installation.

The build_ext command also has a ——user option to add userbase/include to the compiler search path
for header files and userbase/1ib to the compiler search path for libraries as well as to the runtime search
path for shared C libraries (rpath).

Installing Python Modules, Release 2.7.2

3.2 Alternate installation: the home scheme

The idea behind the “home scheme” is that you build and maintain a personal stash of Python modules. This
scheme’s name is derived from the idea of a “home” directory on Unix, since it’s not unusual for a Unix user
to make their home directory have a layout similar to /usr/ or /usr/local/. This scheme can be used by
anyone, regardless of the operating system they are installing for.

Installing a new module distribution is as simple as
python setup.py install —--home=<dir>

where you can supply any directory you like for the ——home option. On Unix, lazy typists can just type a tilde
(~); the install command will expand this to your home directory:

python setup.py install —--home=~

To make Python find the distributions installed with this scheme, you may have to modify Python’s search path or
edit sitecustomize (see site)tocall site.addsitedir () oredit sys.path.

The ——home option defines the installation base directory. Files are installed to the following directories under
the installation base as follows:

Type of file | Installation directory

modules home/lib/python

scripts home/bin

data home

C headers home/include/python/distname

(Mentally replace slashes with backslashes if you’re on Windows.) Changed in version 2.4: The ——home option
used to be supported only on Unix.

3.3 Alternate installation: Unix (the prefix scheme)

The “prefix scheme” is useful when you wish to use one Python installation to perform the build/install (i.e., to
run the setup script), but install modules into the third-party module directory of a different Python installation (or
something that looks like a different Python installation). If this sounds a trifle unusual, it is—that’s why the user
and home schemes come before. However, there are at least two known cases where the prefix scheme will be
useful.

First, consider that many Linux distributions put Python in /usr, rather than the more traditional /usr/local.
This is entirely appropriate, since in those cases Python is part of “the system” rather than a local add-
on. However, if you are installing Python modules from source, you probably want them to go in
/usr/local/lib/python2.X rather than /usr/1lib/python2.X. This can be done with

/usr/bin/python setup.py install --prefix=/usr/local

Another possibility is a network filesystem where the name used to write to a remote directory is different from
the name used to read it: for example, the Python interpreter accessed as /usr/local/bin/python might
search for modules in /usr/local/lib/python2.X, but those modules would have to be installed to, say,
/mnt/@server/export/lib/python2.X. This could be done with

/usr/local/bin/python setup.py install —--prefix=/mnt/@server/export

In either case, the ——prefix option defines the installation base, and the ——exec—prefix option defines the
platform-specific installation base, which is used for platform-specific files. (Currently, this just means non-pure
module distributions, but could be expanded to C libraries, binary executables, etc.) If ——exec-prefix is not
supplied, it defaults to ——prefix. Files are installed as follows:

10 Chapter 3. Alternate Installation

Installing Python Modules, Release 2.7.2

Type of file Installation directory
Python modules prefix/lib/pythonX.Y/site-packages
extension modules | exec-prefix/lib/pythonX.Y/site-packages

scripts prefix/bin
data prefix
C headers prefix/include/pythonX.Y/distname

There is no requirement that ——prefix or ——exec—prefix actually point to an alternate Python installation;
if the directories listed above do not already exist, they are created at installation time.

Incidentally, the real reason the prefix scheme is important is simply that a standard Unix installation uses the
prefix scheme, but with ——prefix and ——exec-prefix supplied by Python itself as sys.prefix and
sys.exec_prefix. Thus, you might think you’ll never use the prefix scheme, but every time you run python
setup.py install without any other options, you're using it.

Note that installing extensions to an alternate Python installation has no effect on how those extensions are built:
in particular, the Python header files (Python . h and friends) installed with the Python interpreter used to run the
setup script will be used in compiling extensions. It is your responsibility to ensure that the interpreter used to run
extensions installed in this way is compatible with the interpreter used to build them. The best way to do this is
to ensure that the two interpreters are the same version of Python (possibly different builds, or possibly copies of
the same build). (Of course, if your ——prefix and ~—exec-prefix don’t even point to an alternate Python
installation, this is immaterial.)

3.4 Alternate installation: Windows (the prefix scheme)

Windows has no concept of a user’s home directory, and since the standard Python installation under Windows
is simpler than under Unix, the ——prefix option has traditionally been used to install additional packages in
separate locations on Windows.

python setup.py install —--prefix="\Temp\Python"
to install modules to the \ Temp \Python directory on the current drive.

The installation base is defined by the ——prefix option; the ——exec—prefix option is not supported under
Windows, which means that pure Python modules and extension modules are installed into the same location.
Files are installed as follows:

Type of file | Installation directory

modules prefix\Lib\site-packages
scripts prefix\Scripts

data prefix

C headers prefix\Include\distname

3.4. Alternate installation: Windows (the prefix scheme) 11

Installing Python Modules, Release 2.7.2

12 Chapter 3. Alternate Installation

CHAPTER
FOUR

CUSTOM INSTALLATION

Sometimes, the alternate installation schemes described in section Alternate Installation just don’t do what you
want. You might want to tweak just one or two directories while keeping everything under the same base direc-
tory, or you might want to completely redefine the installation scheme. In either case, you’re creating a custom
installation scheme.

To create a custom installation scheme, you start with one of the alternate schemes and override some of the
installation directories used for the various types of files, using these options:

Type of file Override option
Python modules ——install-purelib
extension modules | ——install-platlib
all modules ——install-1lib
scripts —-—install-scripts
data —--install-data

C headers —-—install-headers

These override options can be relative, absolute, or explicitly defined in terms of one of the installation base
directories. (There are two installation base directories, and they are normally the same— they only dif-
fer when you use the Unix “prefix scheme” and supply different ——prefix and —-exec-prefix op-
tions; using ——-install-1ib will override values computed or given for —-install-purelib and
——install-platlib, and is recommended for schemes that don’t make a difference between Python and
extension modules.)

For example, say you’re installing a module distribution to your home directory under Unix—but you want
scripts to go in ~/scripts rather than ~/bin. As you might expect, you can override this directory with
the ——install-scripts option; in this case, it makes most sense to supply a relative path, which will be
interpreted relative to the installation base directory (your home directory, in this case):

python setup.py install —--home=~ --install-scripts=scripts

Another Unix example: suppose your Python installation was built and installed with a prefix of
/usr/local/python, so under a standard installation scripts will wind up in /usr/local/python/bin.
If you want them in /usr/local/bin instead, you would supply this absolute directory for the
-—install-scripts option:

python setup.py install —--install-scripts=/usr/local/bin

(This performs an installation using the “prefix scheme,” where the prefix is whatever your Python interpreter was
installed with— /usr/local/python in this case.)

If you maintain Python on Windows, you might want third-party modules to live in a subdirectory of prefix,
rather than right in prefix itself. This is almost as easy as customizing the script installation directory —you
just have to remember that there are two types of modules to worry about, Python and extension modules, which
can conveniently be both controlled by one option:

python setup.py install --install-1lib=Site

The specified installation directory is relative to prefix. Of course, you also have to ensure that this directory
is in Python’s module search path, such as by putting a .pth file in a site directory (see site). See section
Modifying Python’s Search Path to find out how to modify Python’s search path.

13

Installing Python Modules, Release 2.7.2

If you want to define an entire installation scheme, you just have to supply all of the installation directory options.
The recommended way to do this is to supply relative paths; for example, if you want to maintain all Python
module-related files under python in your home directory, and you want a separate directory for each platform
that you use your home directory from, you might define the following installation scheme:

python setup.py install ——-home=~ \
——install-purelib=python/lib \
—--install-platlib=python/lib.$PLAT \
—-—install-scripts=python/scripts
-—install-data=python/data

or, equivalently,

python setup.py install ——home=~/python \
-—install-purelib=1ib \
-—install-platlib=’1ib.S$PLAT’ \
——install-scripts=scripts
—-—-install-data=data

SPLAT is not (necessarily) an environment variable—it will be expanded by the Distutils as it parses your com-
mand line options, just as it does when parsing your configuration file(s).

Obviously, specifying the entire installation scheme every time you install a new module distribution would be
very tedious. Thus, you can put these options into your Distutils config file (see section Distutils Configuration
Files):

[install]

install-base=$HOME
install-purelib=python/lib
install-platlib=python/lib.SPLAT
install-scripts=python/scripts
install-data=python/data

or, equivalently,

[install]
install-base=$HOME/python
install-purelib=1ib
install-platlib=1ib.S$PLAT
install-scripts=scripts
install-data=data

Note that these two are not equivalent if you supply a different installation base directory when you run the setup
script. For example,

python setup.py install --install-base=/tmp

would install pure modules to /tmp/python/1ib in the first case, and to /tmp/11ib in the second case. (For
the second case, you probably want to supply an installation base of /tmp/python.)

You probably noticed the use of SHOME and $PLAT in the sample configuration file input. These are Distutils
configuration variables, which bear a strong resemblance to environment variables. In fact, you can use envi-
ronment variables in config files on platforms that have such a notion but the Distutils additionally define a few
extra variables that may not be in your environment, such as $SPLAT. (And of course, on systems that don’t have
environment variables, such as Mac OS 9, the configuration variables supplied by the Distutils are the only ones
you can use.) See section Distutils Configuration Files for details.

4.1 Modifying Python’s Search Path

When the Python interpreter executes an import statement, it searches for both Python code and extension
modules along a search path. A default value for the path is configured into the Python binary when the interpreter
is built. You can determine the path by importing the sy s module and printing the value of sys.path.

14 Chapter 4. Custom Installation

Installing Python Modules, Release 2.7.2

$ python

Python 2.2 (#11, Oct 3 2002, 13:31:27)

[GCC 2.96 20000731 (Red Hat Linux 7.3 2.96-112)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import sys

>>> sys.path

[’", "/usr/local/lib/python2.3’, ' /usr/local/lib/python2.3/plat-1linux2’,

" /usr/local/lib/python2.3/1ib-tk’, ’/usr/local/lib/python2.3/1lib-dynload’,
" /usr/local/lib/python2.3/site-packages’]

>>>

The null string in sy s . path represents the current working directory.

The expected convention for locally installed packages is to put them in the . . . /site—-packages/ directory,
but you may want to install Python modules into some arbitrary directory. For example, your site may have a
convention of keeping all software related to the web server under /www. Add-on Python modules might then
belong in /www/python, and in order to import them, this directory must be added to sys.path. There are
several different ways to add the directory.

The most convenient way is to add a path configuration file to a directory that’s already on Python’s path, usually to
the . ../site-packages/ directory. Path configuration files have an extension of . pth, and each line must
contain a single path that will be appended to sys.path. (Because the new paths are appended to sys.path,
modules in the added directories will not override standard modules. This means you can’t use this mechanism
for installing fixed versions of standard modules.)

Paths can be absolute or relative, in which case they’re relative to the directory containing the . pth file. See the
documentation of the site module for more information.

A slightly less convenient way is to edit the site.py file in Python’s standard library, and modify sys.path.
site.py is automatically imported when the Python interpreter is executed, unless the —S switch is supplied to
suppress this behaviour. So you could simply edit site.py and add two lines to it:

import sys
sys.path.append (' /www/python/")

However, if you reinstall the same major version of Python (perhaps when upgrading from 2.2 to 2.2.2, for exam-
ple) site.py will be overwritten by the stock version. You’d have to remember that it was modified and save a
copy before doing the installation.

There are two environment variables that can modify sys.path. PYTHONHOME sets an al-
ternate value for the prefix of the Python installation. For example, if PYTHONHOME is
set to /www/python, the search path will be set to [”, ’/www/python/lib/pythonX.Y/’,
" /www/python/lib/pythonX.Y/plat-linux2’, ...].

The PYTHONPATH variable can be set to a list of paths that will be added to the beginning of sys.path.
For example, if PYTHONPATH is set to /www/python:/opt/py, the search path will begin with
[’ /www/python’, ' /opt/py’]. (Note that directories must exist in order to be added to sys.path;
the site module removes paths that don’t exist.)

Finally, sys.path is just a regular Python list, so any Python application can modify it by adding or removing
entries.

4.1. Modifying Python’s Search Path 15

Installing Python Modules, Release 2.7.2

16 Chapter 4. Custom Installation

CHAPTER
FIVE

DISTUTILS CONFIGURATION FILES

As mentioned above, you can use Distutils configuration files to record personal or site preferences for any Distu-
tils options. That is, any option to any command can be stored in one of two or three (depending on your platform)
configuration files, which will be consulted before the command-line is parsed. This means that configuration
files will override default values, and the command-line will in turn override configuration files. Furthermore, if
multiple configuration files apply, values from “earlier” files are overridden by “later” files.

5.1 Location and names of config files

The names and locations of the configuration files vary slightly across platforms. On Unix and Mac OS X, the
three configuration files (in the order they are processed) are:

Type of file | Location and filename Notes
system prefix/lib/pythonver/distutils/distutils.cfg | (1)
personal SHOME/ .pydistutils.cfg 2)
local setup.cfg 3)

And on Windows, the configuration files are:

Type of file Location and filename Notes
system prefix\Lib\distutils\distutils.cfg | (4)
personal $HOMES%\pydistutils.cfg)
local setup.cfyg A3)

On all platforms, the “personal” file can be temporarily disabled by passing the —no-user-cfg option.

Notes:

1.

Strictly speaking, the system-wide configuration file lives in the directory where the Distutils are installed;
under Python 1.6 and later on Unix, this is as shown. For Python 1.5.2, the Distutils will normally be
installed to prefix/lib/pythonl.5/site-packages/distutils, so the system configuration
file should be put there under Python 1.5.2.

On Unix, if the HOME environment variable is not defined, the user’s home directory will be de-
termined with the getpwuid () function from the standard pwd module. This is done by the
os.path.expanduser () function used by Distutils.

Le., in the current directory (usually the location of the setup script).

(See also note (1).) Under Python 1.6 and later, Python’s default “installation prefix” is C: \Python,
so the system configuration file is normally C:\Python\Lib\distutils\distutils.cfgq.
Under Python 1.5.2, the default prefix was C:\Program Files\Python, and the Distutils
were not part of the standard library—so the system configuration file would be C:\Program
Files\Python\distutils\distutils.cfg in a standard Python 1.5.2 installation under Win-
dows.

On Windows, if the HOME environment variable is not defined, USERPROFILE then HOMEDRIVE and
HOMEPATH will be tried. This is done by the os .path.expanduser () function used by Distutils.

17

Installing Python Modules, Release 2.7.2

5.2 Syntax of config files

The Distutils configuration files all have the same syntax. The config files are grouped into sections. There is one
section for each Distutils command, plus a global section for global options that affect every command. Each
section consists of one option per line, specified as opt ion=value.

For example, the following is a complete config file that just forces all commands to run quietly by default:

[global]
verbose=0

If this is installed as the system config file, it will affect all processing of any Python module distribution by any
user on the current system. If it is installed as your personal config file (on systems that support them), it will
affect only module distributions processed by you. And if it is used as the setup.cfqg for a particular module
distribution, it affects only that distribution.

You could override the default “build base” directory and make the build* commands always forcibly rebuild all
files with the following:

[build]
build-base=blib
force=1

which corresponds to the command-line arguments
python setup.py build --build-base=blib --force

except that including the build command on the command-line means that command will be run. Including a
particular command in config files has no such implication; it only means that if the command is run, the options
in the config file will apply. (Or if other commands that derive values from it are run, they will use the values in
the config file.)

You can find out the complete list of options for any command using the ——he 1p option, e.g.:
python setup.py build --help

and you can find out the complete list of global options by using ——he 1p without a command:
python setup.py —--help

See also the “Reference” section of the “Distributing Python Modules” manual.

18 Chapter 5. Distutils Configuration Files

CHAPTER
SIX

BUILDING EXTENSIONS: TIPS AND
TRICKS

Whenever possible, the Distutils try to use the configuration information made available by the Python interpreter
used to run the setup . py script. For example, the same compiler and linker flags used to compile Python will
also be used for compiling extensions. Usually this will work well, but in complicated situations this might be
inappropriate. This section discusses how to override the usual Distutils behaviour.

6.1 Tweaking compiler/linker flags

Compiling a Python extension written in C or C++ will sometimes require specifying custom flags for the compiler
and linker in order to use a particular library or produce a special kind of object code. This is especially true if the
extension hasn’t been tested on your platform, or if you’re trying to cross-compile Python.

In the most general case, the extension author might have foreseen that compiling the extensions would be compli-
cated, and provided a Setup file for you to edit. This will likely only be done if the module distribution contains
many separate extension modules, or if they often require elaborate sets of compiler flags in order to work.

A Setup file, if present, is parsed in order to get a list of extensions to build. Each line in a Setup describes a
single module. Lines have the following structure:

module ... [sourcefile ...] [cpparg ...] [library ...]
Let’s examine each of the fields in turn.

* module is the name of the extension module to be built, and should be a valid Python identifier. You can’t
just change this in order to rename a module (edits to the source code would also be needed), so this should
be left alone.

* sourcefile is anything that’s likely to be a source code file, at least judging by the filename. Filenames ending
in . c are assumed to be written in C, filenames ending in .C, . cc, and . c++ are assumed to be C++, and
filenames ending in .m or .mm are assumed to be in Objective C.

* cpparg is an argument for the C preprocessor, and is anything starting with —~I, -D, —-U or —C.
e library is anything ending in . a or beginning with -1 or —L.

If a particular platform requires a special library on your platform, you can add it by editing the Setup file and
running python setup.py build. For example, if the module defined by the line

foo foomodule.c
must be linked with the math library 1ibm. a on your platform, simply add —1m to the line:
foo foomodule.c -1m

Arbitrary switches intended for the compiler or the linker can be supplied with the ~Xcompiler arg and
-X1linker arg options:

foo foomodule.c —-Xcompiler -032 -Xlinker -shared -1m

19

Installing Python Modules, Release 2.7.2

The next option after ~Xcompiler and -X1inker will be appended to the proper command line, so in the
above example the compiler will be passed the —032 option, and the linker will be passed —shared. If a
compiler option requires an argument, you’ll have to supply multiple —Xcompi 1er options; for example, to pass
-x c++ the Setup file would have to contain ~Xcompiler -x —-Xcompiler c++.

Compiler flags can also be supplied through setting the CFLAGS environment variable. If set, the contents of
CFLAGS will be added to the compiler flags specified in the Setup file.

6.2 Using non-Microsoft compilers on Windows

6.2.1 Borland/CodeGear C++

This subsection describes the necessary steps to use Distutils with the Borland C++ compiler version 5.5. First
you have to know that Borland’s object file format (OMF) is different from the format used by the Python version
you can download from the Python or ActiveState Web site. (Python is built with Microsoft Visual C++, which
uses COFF as the object file format.) For this reason you have to convert Python’s library python25.11ib into
the Borland format. You can do this as follows:

coff2omf python25.1ib python25_bcpp.lib

The coff2omf program comes with the Borland compiler. The file python25.11b is in the Libs directory
of your Python installation. If your extension uses other libraries (zlib, ...) you have to convert them too.

The converted files have to reside in the same directories as the normal libraries.

How does Distutils manage to use these libraries with their changed names? If the extension needs a library (eg.
foo) Distutils checks first if it finds a library with suffix _bcpp (eg. foo_bcpp . 1ib) and then uses this library.
In the case it doesn’t find such a special library it uses the default name (foo.1ib.) !

To let Distutils compile your extension with Borland C++ you now have to type:
python setup.py build —--compiler=bcpp

If you want to use the Borland C++ compiler as the default, you could specify this in your personal or system-wide
configuration file for Distutils (see section Distutils Configuration Files.)

See Also:

C++Builder Compiler Information about the free C++ compiler from Borland, including links to the download
pages.

Creating Python Extensions Using Borland’s Free Compiler Document describing how to use Borland’s free
command-line C++ compiler to build Python.

6.2.2 GNU C/ Cygwin / MinGW

This section describes the necessary steps to use Distutils with the GNU C/C++ compilers in their Cygwin and
MinGW distributions. > For a Python interpreter that was built with Cygwin, everything should work without any
of these following steps.

Not all extensions can be built with MinGW or Cygwin, but many can. Extensions most likely to not work are
those that use C++ or depend on Microsoft Visual C extensions.

To let Distutils compile your extension with Cygwin you have to type:
python setup.py build --compiler=cygwin
and for Cygwin in no-cygwin mode * or for MinGW type:

python setup.py build --compiler=mingw32

! This also means you could replace all existing COFF-libraries with OMF-libraries of the same name.
2 Check http://sources.redhat.com/cygwin/ and http://www.mingw.org/ for more information
3 Then you have no POSIX emulation available, but you also don’t need cygwinl .d11.

20 Chapter 6. Building Extensions: Tips and Tricks

http://www.codegear.com/downloads/free/cppbuilder
http://www.cyberus.ca/~g_will/pyExtenDL.shtml
http://sources.redhat.com/cygwin/
http://www.mingw.org/

Installing Python Modules, Release 2.7.2

If you want to use any of these options/compilers as default, you should consider writing it in your personal or
system-wide configuration file for Distutils (see section Distutils Configuration Files.)

Older Versions of Python and MinGW
The following instructions only apply if you’re using a version of Python inferior to 2.4.1 with a MinGW inferior
to 3.0.0 (with binutils-2.13.90-20030111-1).

These compilers require some special libraries. This task is more complex than for Borland’s C++, because
there is no program to convert the library. First you have to create a list of symbols which the Python
DLL exports. (You can find a good program for this task at http://www.emmestech.com/software/pexports-
0.43/download_pexports.html).

pexports python25.dl1l >python25.def

The location of an installed python25.d11 will depend on the installation options and the version and language
of Windows. In a “just for me” installation, it will appear in the root of the installation directory. In a shared
installation, it will be located in the system directory.

Then you can create from these information an import library for gcc.
/cygwin/bin/dlltool —--dllname python25.dl11 —--def python25.def —--output-lib libpython25.:

The resulting library has to be placed in the same directory as python25.1ib. (Should be the 1ibs directory
under your Python installation directory.)

If your extension uses other libraries (zlib,...) you might have to convert them too. The converted files have to
reside in the same directories as the normal libraries do.

See Also:

Building Python modules on MS Windows platform with MinGW Information about building the required li-
braries for the MinGW environment.

6.2. Using non-Microsoft compilers on Windows 21

http://www.emmestech.com/software/pexports-0.43/download_pexports.html
http://www.emmestech.com/software/pexports-0.43/download_pexports.html
http://www.zope.org/Members/als/tips/win32_mingw_modules

Installing Python Modules, Release 2.7.2

22

Chapter 6. Building Extensions: Tips and Tricks

APPENDIX
A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1ib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3 - Automated Python 2 to 3 code translation (in The Python Library
Reference).

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods
(in The Python Language Reference)). ABCs introduce virtual subclasses, which are classes that don’t
inherit from a class but are still recognized by isinstance () and issubclass () ; see the abc module
documentation. Python comes with many built-in ABCs for data structures (in the collect ions module),
numbers (in the numbers module), and streams (in the i o module). You can create your own ABCs with
the abc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-length: * accepts or passes (if in the function definition or call)
several positional arguments in a list, while » = does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in
the CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same
file is faster the second time (recompilation from source to bytecode can be avoided). This “intermediate
language” is said to run on a virtual machine that executes the machine code corresponding to each bytecode.
Do note that bytecodes are not expected to work between different Python virtual machines, nor to be stable
between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module (in The Python Library
Reference).

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes will be
removed in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves
two arguments of the same type. For example, int (3.15) converts the floating point number to the

23

http://www.python.org/~guido/

Installing Python Modules, Release 2.7.2

integer 3, but in 3+4.5, each argument is of a different type (one int, one float), and both must be
converted to the same type before they can be added or it will raise a TypeError. Coercion between
two operands can be performed with the coerce built-in function; thus, 3+4.5 is equivalent to call-
ing operator.add (xcoerce (3, 4.5)) and results in operator.add (3.0, 4.5). Without
coercion, all arguments of even compatible types would have to be normalized to the same value by the
programmer, e.g., f1loat (3) +4. 5 rather than just 3+4 . 5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of —1), often written i in mathematics or j in engineering. Python has built-in support for complex
numbers, which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1 7.
To get access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly
advanced mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely
ignore them.

context manager An object which controls the environment seen in a with statement by defining
__enter_ () and_exit__ () methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The
term “CPython” is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f£(...):
f = staticmethod (£f)

@staticmethod
def f£(...):

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions (in The Python Language Reference) and class definitions (in The Python Language Reference)
for more about decorators.

descriptor Any new-style object which defines the methods __get__ (), __set__ (),or __delete__ ().
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a,
but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to
a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors (in The Python Language
Reference).

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () functionand __eq__ () methods. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored
when the suite is executed, it is recognized by the compiler and put into the ___doc___ attribute of the
enclosing class, function or module. Since it is available via introspection, it is the canonical place for
documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right in-
terface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like
a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code im-
proves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type () or
isinstance (). (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employs hasattzr () tests or EAFP programming.

24 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343
http://python.org

Installing Python Modules, Release 2.7.2

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of many try and except statements. The technique contrasts with the
LBYL style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There
are also statements which cannot be used as expressions, such as print or if. Assignments are also
statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user
code.

file object An object exposing a file-oriented API (with methods such as read () orwrite ()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or
to another other type of storage or communication device (for example standard input/output, in-memory
buffers, sockets, pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the 10 module. The canonical way to create a file object is by using the open ()
function.

file-like object A synonym for file object.

finder An object that tries to find the /oader for a module. It must implement a method named
find_module (). See PEP 302 for details.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is / /. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2. 75 returned by float true division.
Note that (-11) // 4 1is —3 because thatis —2 .75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also argument and method.

__future__ A pseudo-module which programmers can use to enable new language features which are not com-
patible with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the
module in which it is executed had enabled true division by executing:

from future import division

the expression 11 /4 would evaluate to 2. 75. By importing the ___future__ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the

default:
>>> import __ future_
>>> _ future_ .division

_Feature((2, 2, 0, "alpha’, 2), (3, 0, 0, ’"alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles.

generator A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series a values usable in a for-loop or that can be retrieved one at a time with
the next () function. Each yield temporarily suspends processing, remembering the location execution
state (including local variables and pending try-statements). When the generator resumes, it picks-up where
it left-off (in contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(ixi for i1 in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

25

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0238

Installing Python Modules, Release 2.7.2

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (in-
cluding critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire
interpreter makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism
afforded by multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released
when doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granular-
ity) have not been successful because performance suffered in the common single-processor case. It is
believed that overcoming this performance issue would make the implementation much more complicated
and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needs an __eq___ () or __cmp__ ()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is their 1d () .

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently
evaluates to 2 in contrast to the 2. 75 returned by float division. Also called floor division. When dividing
two integers the outcome will always be another integer (having the floor function applied to it). However,
if one of the operands is another numeric type (such as a £ 1oat), the result will be coerced (see coercion)
to a common type. For example, an integer divided by a float will result in a float value, possibly with a
decimal fraction. Integer division can be forced by using the / / operator instead of the / operator. See also
_ future__.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remember help (x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as 1ist, str, and tuple) and some non-sequence types like dict and £ile and objects
of any classes you define with an __iter_ () or __getitem__ () method. Iterables can be used in
a for loop and in many other places where a sequence is needed (zip (), map (), ...). When an iterable
object is passed as an argument to the built-in function iter (), it returns an iterator for the object. This
iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call
iter () or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence,
and generator.

26 Appendix A. Glossary

Installing Python Modules, Release 2.7.2

iterator An object representing a stream of data. Repeated calls to the iterator’s next () method return suc-
cessive items in the stream. When no more data are available a StopIteration exception is raised
instead. At this point, the iterator object is exhausted and any further calls to its next () method just raise
StopIlteration again. Iterators are required to have an ___iter__ () method that returns the iterator
object itself so every iterator is also iterable and may be used in most places where other iterables are ac-
cepted. One notable exception is code which attempts multiple iteration passes. A container object (such
as a 1ist) produces a fresh new iterator each time you pass it to the iter () function or use itin a for
loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found in Iterator Types (in The Python Library Reference).

key function A key function or collation function is a callable that returns a value used for sorting or ordering.
For example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort
conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted(), list.sort (), heapg.nsmallest (), heapg.nlargest (),
and itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve
as a key function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a
lambda expression such as lambda r: (r[0]1, r[2]). Also, the operator module provides
three key function constuctors: attrgetter (), itemgetter (), and methodcaller (). See the
Sorting HOW TO (in) for examples of how to create and use key functions.

keyword argument Arguments which are preceded with a variable_name= in the call. The variable name
designates the local name in the function to which the value is assigned. *x is used to accept or pass a
dictionary of keyword arguments. See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is 1ambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many i f statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition be-
tween “the looking” and “the leaping”. For example, the code, if key in mapping: return
mapping[key] can fail if another thread removes key from mapping after the test, but before the lookup.
This issue can be solved with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with
the results. result = ["0x%02x" % x for x in range(256) 1if x % 2 == 0] generates
a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The i f clause is optional. If

omitted, all elements in range (256) are processed.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically
returned by a finder. See PEP 302 for details.

mapping A container object that supports arbitrary key lookups and implements the methods speci-
fied in the Mapping or MutableMapping abstract base classes (in The Python Library Refer-
ence). Examples include dict, collections.defaultdict, collections.OrderedDict and
collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found in Customizing class creation (in The Python Language Reference).

27

http://www.python.org/dev/peps/pep-0302

Installing Python Modules, Release 2.7.2

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and
nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id () . See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time.localtime () returns a tuple-like object where the year is accessible either with an
index such as t [0] or with a named attribute like t . tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple (). The latter approach automatically provides extra features such as a
self-documenting representation like Employee (name=’ jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functions __builtin__ .open ()
and os.open () are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writing random. seed ()
or itertools.izip () makes it clear that those functions are implemented by the random and
itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes by default work only
for reference and not for assignment. Local variables both read and write in the innermost scope. Likewise,
global variables read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Any class which inherits from object. This includes all built-in types like 1ist and dict.
Only new-style classes can use Python’s newer, versatile features like ___slots__, descriptors, properties,
and __getattribute__ ().

More information can be found in New-style and classic classes (in The Python Language Reference).

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
any new-style class.

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the call. = is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a function. See argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable using a for statement. Many other languages don’t
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. The sys module defines a getrefcount () function that programmers can
call to return the reference count for a particular object.

28 Appendix A. Glossary

http://www.python.org/download/releases/2.3/mro/

Installing Python Modules, Release 2.7.2

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is
best reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iferable which supports efficient element access using integer indices via the ___getitem__ ()
special method and defines a 1en () method that returns the length of the sequence. Some built-in se-
quence types are 1ist, str, tuple, and unicode. Note that dict also supports ___getitem__ ()
and __len__ (), but is considered a mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation,
[1 with colons between numbers when several are given, such as in variable_name[1:3:5]. The
bracket (subscript) notation uses s1ice objects internally (or in older versions, ___getslice__ () and
__setslice__ ().

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented in Special method names (in The Python Language Reference).

statement A statement is part of a suite (a “block” of code). A statement is either an expression or a one of
several constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple
in that elements can either be accessed either by index or as an attribute. However, they do not have
any of the named tuple methods like _make () or _asdict (). Examples of struct sequences include
sys.float_info and the return value of os.stat ().

triple-quoted string A string which is bound by three instances of either a quotation mark (‘) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type
is accessible as its___class___ attribute or can be retrieved with type (obj).

view The objects returned from dict.viewkeys (), dict.viewvalues (), and dict.viewitems ()
are called dictionary views. They are lazy sequences that will see changes in the underlying dictionary. To
force the dictionary view to become a full list use 1ist (dictview). See Dictionary view objects (in
The Python Library Reference).

virtual machine A computer defined entirely in software. Python’s virtual machine executes the byfecode emit-
ted by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typing “import this” at the interactive prompt.

29

Installing Python Modules, Release 2.7.2

30

Appendix A. Glossary

APPENDIX
B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically writ-
ten for the Python documentation.

Development of the documentation and its toolchain takes place on the docs@python.org mailing list. We’re
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

e Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

* the Docutils project for creating reStructuredText and the Docutils suite;
¢ Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

See Reporting Bugs for information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete — if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.org), and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver An-
drich, Heidi Annexstad, Jesus Cea Avidén, Manuel Balsera, Daniel Barclay, Chris Barker, Don Bashford, Anthony
Baxter, Alexander Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti,
Georg Brandl, Keith Briggs, Ian Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles
Civario, Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell,
L. Peter Deutsch, Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy
Eskilsson, Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Herndn Martinez Foffani, Stefan Franke,
Jim Fulton, Peter Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi,
Jonathan Giddy, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark
Hammond, Harald Hanche-Olsen, Manus Hand, Gerhard Hiring, Travis B. Hartwell, Tim Hatch, Janko Hauser,
Ben Hayden, Thomas Heller, Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert
Hofkamp, Gregor Hoffleit, Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall
Hopper, Michael Hudson, Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz
Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Kamil Kisiel, Greg
Kochanski, Guido Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno Kuusela,
Ross Lagerwall, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann, Marc-André
Lemburg, Ross Light, Ulf A. Lindgren, Everett Lipman, Mirko Liss, Martin von Lowis, Fredrik Lundh, Jeff Mac-
Donald, John Machin, Andrew Maclntyre, Vladimir Marangozov, Vincent Marchetti, Westley Martinez, Laura
Matson, Daniel May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross
Moore, Sjoerd Mullender, Dale Nagata, Michal Nowikowski, Steffen Daode Nurpmeso, Ng Pheng Siong, Koray
Oner, Tomas Oppelstrup, Denis S. Otkidach, Zooko O’Whielacronx, Shriphani Palakodety, William Park, Joonas
Paalasmaa, Harri Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris
Phoenix, Francois Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Terry J. Reedy, Sean Reifschneider,

31

http://docutils.sf.net/rst.html
http://sphinx.pocoo.org/
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

Installing Python Modules, Release 2.7.2

Bernhard Reiter, Armin Rigo, Wes Rishel, Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace
Rouse II, Mark Russell, Nick Russo, Chris Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil
Schemenauer, Barry Scott, Joakim Sernbrant, Justin Sheehy, Charlie Shepherd, Yue Shuaijie, Michael Simcich,
Ionel Simionescu, Michael Sloan, Gregory P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo,
Frank Stajano, Anthony Starks, Greg Stein, Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson,
Jim Tittsler, David Turner, Sandro Tosi, Ville Vainio, Martijn Vries, Charles G. Waldman, Greg Ward, Barry War-
saw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener,
Timothy Wild, Paul Winkler, Collin Winter, Blake Winton, Dan Wolfe, Adam Woodbeck, Steven Work, Thomas
Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

It is only with the input and contributions of the Python community that Python has such wonderful documentation
— Thank You!

32 Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from | Year Owner GPL compatible?
0.9.0thru1.2 | n/a 1991-1995 | CWI yes
1.3thrul1.52 | 1.2 1995-1999 | CNRI yes
1.6 1.52 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
222 22.1 2002 PSF yes
223 222 2002-2003 | PSF yes
23 222 2002-2003 | PSF yes
2.3.1 2.3 2002-2003 | PSF yes
232 2.3.1 2003 PSF yes
233 2.3.2 2003 PSF yes
234 233 2004 PSF yes
235 234 2005 PSF yes
2.4 23 2004 PSF yes
2.4.1 2.4 2005 PSF yes
242 24.1 2005 PSF yes
243 242 2006 PSF yes
Continued on next page

33

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

Installing Python Modules, Release 2.7.2

Table C.1 - continued from previous page

244 243 2006 PSF yes
2.5 24 2006 PSF yes
2.5.1 2.5 2007 PSF yes
252 2.5.1 2008 PSF yes
253 252 2008 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes
2.6.2 2.6.1 2009 PSF yes
2.6.3 2.6.2 2009 PSF yes
2.6.4 2.6.3 2010 PSF yes
2.7 2.6 2010 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.7.2

. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or

Organization (“Licensee’) accessing and otherwise using Python 2.7.2 software in source or binary form
and its associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.7.2 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2010 Python Software
Foundation; All Rights Reserved” are retained in Python 2.7.2 alone or in any derivative version prepared
by Licensee.

. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.7.2 or any part

thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.7.2.

. PSF is making Python 2.7.2 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.7.2 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.2 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.2, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or

joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

. By copying, installing or otherwise using Python 2.7.2, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

34

Appendix C. History and License

Installing Python Modules, Release 2.7.2

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga

Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-

censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-

RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of

California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and

conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an

office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”’) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-

sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): ‘“Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013.”

. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part

thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

c.2.

Terms and conditions for accessing or otherwise using Python 35

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Installing Python Modules, Release 2.7.2

5. CNRISHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, INNO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.

Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

36 Appendix C. History and License

http://www.math.keio.ac.jp/

Installing Python Modules, Release 2.7.2

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac. jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (),and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘'AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE

FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

C.3. Licenses and Acknowledgements for Incorporated Software 37

http://www.wide.ad.jp/

Installing Python Modules, Release 2.7.2

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

Copyright (c) 1996.
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe
privately-owned rights. Reference herein to any specific commer-
cial products, ©process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
endorsement purposes.

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided ’"as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

38

Appendix C. History and License

Installing Python Modules, Release 2.7.2

including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfcl321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order) :

2002-04-13 1lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.

1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 1lpd Original version.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS

C.3. Licenses and Acknowledgements for Incorporated Software 39

Installing Python Modules, Release 2.7.2

OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O’Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby

granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in

40 Appendix C. History and License

Installing Python Modules, Release 2.7.2

supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

— Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface 1is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR

C.3. Licenses and Acknowledgements for Incorporated Software 41

Installing Python Modules, Release 2.7.2

BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘'AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

42 Appendix C. History and License

Installing Python Modules, Release 2.7.2

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to
and from strings, is derived from the file of the same name by David M. Gay, currently available from
http://www.netlib.org/fp/. The original file, as retrieved on March 16, 2009, contains the following copyright
and licensing notice:

/**
The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

*

*

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* 1s included in all copies of any software which is or includes a copy

x or modification of this software and in all copies of the supporting

* documentation for such software.
*
*
*
*
*
*
*

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

**/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows installers for Python include a copy of the OpenSSL libraries,
so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

b S . . T

C.3. Licenses and Acknowledgements for Incorporated Software 43

http://www.netlib.org/fp/

Installing Python Modules, Release 2.7.2

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘'AS IS’’ AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

I S R T R i A . R N T N N S IS S . . S S S N R S S S S S

Original SSLeay License

/+ Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*

«+ This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*

* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions

+ apply to all code found in this distribution, be it the RC4, RSA,

«+ lhash, DES, etc., code; not Jjust the SSL code. The SSL documentation

44 Appendix C. History and License

Installing Python Modules, Release 2.7.2

included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word ’'cryptographic’ can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

L I S T T R R R S S S S S N S S T I I S T A R R T

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
——-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,

C.3. Licenses and Acknowledgements for Incorporated Software 45

Installing Python Modules, Release 2.7.2

distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINEFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
——with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘‘Software’’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘'‘'AS IS’’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. 1IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is
too old to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided ’'as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

46 Appendix C. History and License

Installing Python Modules, Release 2.7.2

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software

47

Installing Python Modules, Release 2.7.2

48

Appendix C. History and License

APPENDIX
D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2010 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

49

Installing Python Modules, Release 2.7.2

50

Appendix D. Copyright

Symbols
v 23

_ future__, 25
_ slots__, 28

>>> 23

2t03, 23

A

abstract base class, 23
argument, 23
attribute, 23

B

BDFL, 23
bytecode, 23

C

CFLAGS, 20

class, 23

classic class, 23
coercion, 23
complex number, 24
context manager, 24
CPython, 24

D

decorator, 24
descriptor, 24
dictionary, 24
docstring, 24
duck-typing, 24

E

EAFP, 24

environment variable
CFLAGS, 20
HOME, 17
HOMEDRIVE, 17
HOMEPATH, 17
PYTHONHOME, 15
PYTHONPATH, 15
USERPROFILE, 17

expression, 25

extension module, 25

INDEX

F

file object, 25
file-like object, 25
finder, 25

floor division, 25
function, 25

G

garbage collection, 25
generator, 25

generator expression, 25
GIL, 25

global interpreter lock, 25

H

hashable, 26
HOME, 17
HOMEDRIVE, 17
HOMEPATH, 17

IDLE, 26
immutable, 26
importer, 26
integer division, 26
interactive, 26
interpreted, 26
iterable, 26
iterator, 26

K

key function, 27
keyword argument, 27

L

lambda, 27

LBYL, 27

list, 27

list comprehension, 27
loader, 27

M

mapping, 27
metaclass, 27
method, 27

51

Installing Python Modules, Release 2.7.2

method resolution order, 28
MRO, 28
mutable, 28

N

named tuple, 28
namespace, 28
nested scope, 28
new-style class, 28

O

object, 28

P

positional argument, 28
Python 3000, 28

Python Enhancement Proposals

PEP 238, 25

PEP 302, 25, 27

PEP 343, 24
PYTHONHOME, 15
Pythonic, 28
PYTHONPATH, 15

R

reference count, 28

S

sequence, 29

slice, 29

special method, 29
statement, 29
struct sequence, 29

T

triple-quoted string, 29
type, 29

U

USERPROFILE, 17

V

view, 29
virtual machine, 29

Z

Zen of Python, 29

52

Index

	Introduction
	Best case: trivial installation
	The new standard: Distutils

	Standard Build and Install
	Platform variations
	Splitting the job up
	How building works
	How installation works

	Alternate Installation
	Alternate installation: the user scheme
	Alternate installation: the home scheme
	Alternate installation: Unix (the prefix scheme)
	Alternate installation: Windows (the prefix scheme)

	Custom Installation
	Modifying Python's Search Path

	Distutils Configuration Files
	Location and names of config files
	Syntax of config files

	Building Extensions: Tips and Tricks
	Tweaking compiler/linker flags
	Using non-Microsoft compilers on Windows

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

