
Distributing Python Modules
Release 2.7.2

Guido van Rossum
Fred L. Drake, Jr., editor

October 14, 2011

Python Software Foundation
Email: docs@python.org

CONTENTS

1 An Introduction to Distutils 3
1.1 Concepts & Terminology . 3
1.2 A Simple Example . 3
1.3 General Python terminology . 4
1.4 Distutils-specific terminology . 5

2 Writing the Setup Script 7
2.1 Listing whole packages . 8
2.2 Listing individual modules . 8
2.3 Describing extension modules . 8
2.4 Relationships between Distributions and Packages . 11
2.5 Installing Scripts . 12
2.6 Installing Package Data . 12
2.7 Installing Additional Files . 13
2.8 Additional meta-data . 13
2.9 Debugging the setup script . 15

3 Writing the Setup Configuration File 17

4 Creating a Source Distribution 19
4.1 Specifying the files to distribute . 19
4.2 Manifest-related options . 20
4.3 The MANIFEST.in template . 20

5 Creating Built Distributions 23
5.1 Creating dumb built distributions . 24
5.2 Creating RPM packages . 24
5.3 Creating Windows Installers . 25
5.4 Cross-compiling on Windows . 26
5.5 Vista User Access Control (UAC) . 27

6 Registering with the Package Index 29
6.1 The .pypirc file . 29

7 Uploading Packages to the Package Index 31
7.1 PyPI package display . 31

8 Examples 33
8.1 Pure Python distribution (by module) . 33
8.2 Pure Python distribution (by package) . 34
8.3 Single extension module . 35

9 Extending Distutils 37
9.1 Integrating new commands . 37

i

9.2 Adding new distribution types . 38

10 Command Reference 39
10.1 Installing modules: the install command family . 39

11 API Reference 41
11.1 distutils.core — Core Distutils functionality . 41
11.2 distutils.ccompiler — CCompiler base class . 44
11.3 distutils.unixccompiler — Unix C Compiler . 49
11.4 distutils.msvccompiler — Microsoft Compiler . 50
11.5 distutils.bcppcompiler — Borland Compiler . 50
11.6 distutils.cygwincompiler — Cygwin Compiler . 50
11.7 distutils.emxccompiler — OS/2 EMX Compiler . 50
11.8 distutils.archive_util — Archiving utilities . 50
11.9 distutils.dep_util — Dependency checking . 51
11.10 distutils.dir_util — Directory tree operations . 51
11.11 distutils.file_util — Single file operations . 52
11.12 distutils.util — Miscellaneous other utility functions 52
11.13 distutils.dist — The Distribution class . 54
11.14 distutils.extension — The Extension class . 54
11.15 distutils.debug — Distutils debug mode . 54
11.16 distutils.errors — Distutils exceptions . 55
11.17 distutils.fancy_getopt — Wrapper around the standard getopt module 55
11.18 distutils.filelist — The FileList class . 56
11.19 distutils.log — Simple PEP 282-style logging . 56
11.20 distutils.spawn — Spawn a sub-process . 56
11.21 distutils.sysconfig — System configuration information 56
11.22 distutils.text_file — The TextFile class . 57
11.23 distutils.version — Version number classes . 58
11.24 distutils.cmd — Abstract base class for Distutils commands 58
11.25 Creating a new Distutils command . 58
11.26 distutils.command — Individual Distutils commands . 59
11.27 distutils.command.bdist — Build a binary installer 59
11.28 distutils.command.bdist_packager — Abstract base class for packagers 59
11.29 distutils.command.bdist_dumb — Build a “dumb” installer 59
11.30 distutils.command.bdist_msi — Build a Microsoft Installer binary package 59
11.31 distutils.command.bdist_rpm— Build a binary distribution as a Redhat RPM and SRPM 62
11.32 distutils.command.bdist_wininst — Build a Windows installer 62
11.33 distutils.command.sdist — Build a source distribution 62
11.34 distutils.command.build — Build all files of a package 62
11.35 distutils.command.build_clib — Build any C libraries in a package 62
11.36 distutils.command.build_ext — Build any extensions in a package 62
11.37 distutils.command.build_py — Build the .py/.pyc files of a package 62
11.38 distutils.command.build_scripts — Build the scripts of a package 62
11.39 distutils.command.clean — Clean a package build area 62
11.40 distutils.command.config — Perform package configuration 62
11.41 distutils.command.install — Install a package . 62
11.42 distutils.command.install_data — Install data files from a package 62
11.43 distutils.command.install_headers — Install C/C++ header files from a package . 62
11.44 distutils.command.install_lib — Install library files from a package 62
11.45 distutils.command.install_scripts — Install script files from a package 62
11.46 distutils.command.register — Register a module with the Python Package Index . . . 62
11.47 distutils.command.check — Check the meta-data of a package 63

A Glossary 65

B About these documents 73
B.1 Contributors to the Python Documentation . 73

ii

C History and License 75
C.1 History of the software . 75
C.2 Terms and conditions for accessing or otherwise using Python 76
C.3 Licenses and Acknowledgements for Incorporated Software . 78

D Copyright 91

Module Index 93

Index 95

iii

iv

Distributing Python Modules, Release 2.7.2

Authors Greg Ward, Anthony Baxter

Email distutils-sig@python.org

Release 2.7

Date October 14, 2011

This document describes the Python Distribution Utilities (“Distutils”) from the module developer’s point of view,
describing how to use the Distutils to make Python modules and extensions easily available to a wider audience
with very little overhead for build/release/install mechanics.

CONTENTS 1

mailto:distutils-sig@python.org

Distributing Python Modules, Release 2.7.2

2 CONTENTS

CHAPTER

ONE

AN INTRODUCTION TO DISTUTILS

This document covers using the Distutils to distribute your Python modules, concentrating on the role of devel-
oper/distributor: if you’re looking for information on installing Python modules, you should refer to the Installing
Python Modules (in Installing Python Modules) chapter.

1.1 Concepts & Terminology

Using the Distutils is quite simple, both for module developers and for users/administrators installing third-party
modules. As a developer, your responsibilities (apart from writing solid, well-documented and well-tested code,
of course!) are:

• write a setup script (setup.py by convention)

• (optional) write a setup configuration file

• create a source distribution

• (optional) create one or more built (binary) distributions

Each of these tasks is covered in this document.

Not all module developers have access to a multitude of platforms, so it’s not always feasible to expect them to
create a multitude of built distributions. It is hoped that a class of intermediaries, called packagers, will arise to
address this need. Packagers will take source distributions released by module developers, build them on one or
more platforms, and release the resulting built distributions. Thus, users on the most popular platforms will be
able to install most popular Python module distributions in the most natural way for their platform, without having
to run a single setup script or compile a line of code.

1.2 A Simple Example

The setup script is usually quite simple, although since it’s written in Python, there are no arbitrary limits to what
you can do with it, though you should be careful about putting arbitrarily expensive operations in your setup script.
Unlike, say, Autoconf-style configure scripts, the setup script may be run multiple times in the course of building
and installing your module distribution.

If all you want to do is distribute a module called foo, contained in a file foo.py, then your setup script can be
as simple as this:

from distutils.core import setup
setup(name=’foo’,

version=’1.0’,
py_modules=[’foo’],
)

Some observations:

3

Distributing Python Modules, Release 2.7.2

• most information that you supply to the Distutils is supplied as keyword arguments to the setup() func-
tion

• those keyword arguments fall into two categories: package metadata (name, version number) and informa-
tion about what’s in the package (a list of pure Python modules, in this case)

• modules are specified by module name, not filename (the same will hold true for packages and extensions)

• it’s recommended that you supply a little more metadata, in particular your name, email address and a URL
for the project (see section Writing the Setup Script for an example)

To create a source distribution for this module, you would create a setup script, setup.py, containing the above
code, and run this command from a terminal:

python setup.py sdist

For Windows, open a command prompt windows (Start → Accessories) and change the command to:

setup.py sdist

sdist will create an archive file (e.g., tarball on Unix, ZIP file on Windows) containing your setup script
setup.py, and your module foo.py. The archive file will be named foo-1.0.tar.gz (or .zip), and
will unpack into a directory foo-1.0.

If an end-user wishes to install your foo module, all she has to do is download foo-1.0.tar.gz (or .zip),
unpack it, and—from the foo-1.0 directory—run

python setup.py install

which will ultimately copy foo.py to the appropriate directory for third-party modules in their Python installa-
tion.

This simple example demonstrates some fundamental concepts of the Distutils. First, both developers and in-
stallers have the same basic user interface, i.e. the setup script. The difference is which Distutils commands they
use: the sdist command is almost exclusively for module developers, while install is more often for installers
(although most developers will want to install their own code occasionally).

If you want to make things really easy for your users, you can create one or more built distributions for them.
For instance, if you are running on a Windows machine, and want to make things easy for other Windows users,
you can create an executable installer (the most appropriate type of built distribution for this platform) with the
bdist_wininst command. For example:

python setup.py bdist_wininst

will create an executable installer, foo-1.0.win32.exe, in the current directory.

Other useful built distribution formats are RPM, implemented by the bdist_rpm command, Solaris pkgtool
(bdist_pkgtool), and HP-UX swinstall (bdist_sdux). For example, the following command will create an RPM
file called foo-1.0.noarch.rpm:

python setup.py bdist_rpm

(The bdist_rpm command uses the rpm executable, therefore this has to be run on an RPM-based system such as
Red Hat Linux, SuSE Linux, or Mandrake Linux.)

You can find out what distribution formats are available at any time by running

python setup.py bdist --help-formats

1.3 General Python terminology

If you’re reading this document, you probably have a good idea of what modules, extensions, and so forth are.
Nevertheless, just to be sure that everyone is operating from a common starting point, we offer the following
glossary of common Python terms:

module the basic unit of code reusability in Python: a block of code imported by some other code. Three types
of modules concern us here: pure Python modules, extension modules, and packages.

4 Chapter 1. An Introduction to Distutils

Distributing Python Modules, Release 2.7.2

pure Python module a module written in Python and contained in a single .py file (and possibly associated
.pyc and/or .pyo files). Sometimes referred to as a “pure module.”

extension module a module written in the low-level language of the Python implementation: C/C++ for Python,
Java for Jython. Typically contained in a single dynamically loadable pre-compiled file, e.g. a shared object
(.so) file for Python extensions on Unix, a DLL (given the .pyd extension) for Python extensions on
Windows, or a Java class file for Jython extensions. (Note that currently, the Distutils only handles C/C++
extensions for Python.)

package a module that contains other modules; typically contained in a directory in the filesystem and distin-
guished from other directories by the presence of a file __init__.py.

root package the root of the hierarchy of packages. (This isn’t really a package, since it doesn’t have an
__init__.py file. But we have to call it something.) The vast majority of the standard library is in
the root package, as are many small, standalone third-party modules that don’t belong to a larger module
collection. Unlike regular packages, modules in the root package can be found in many directories: in fact,
every directory listed in sys.path contributes modules to the root package.

1.4 Distutils-specific terminology

The following terms apply more specifically to the domain of distributing Python modules using the Distutils:

module distribution a collection of Python modules distributed together as a single downloadable resource and
meant to be installed en masse. Examples of some well-known module distributions are Numeric Python,
PyXML, PIL (the Python Imaging Library), or mxBase. (This would be called a package, except that term
is already taken in the Python context: a single module distribution may contain zero, one, or many Python
packages.)

pure module distribution a module distribution that contains only pure Python modules and packages. Some-
times referred to as a “pure distribution.”

non-pure module distribution a module distribution that contains at least one extension module. Sometimes
referred to as a “non-pure distribution.”

distribution root the top-level directory of your source tree (or source distribution); the directory where
setup.py exists. Generally setup.py will be run from this directory.

1.4. Distutils-specific terminology 5

Distributing Python Modules, Release 2.7.2

6 Chapter 1. An Introduction to Distutils

CHAPTER

TWO

WRITING THE SETUP SCRIPT

The setup script is the centre of all activity in building, distributing, and installing modules using the Distutils.
The main purpose of the setup script is to describe your module distribution to the Distutils, so that the various
commands that operate on your modules do the right thing. As we saw in section A Simple Example above, the
setup script consists mainly of a call to setup(), and most information supplied to the Distutils by the module
developer is supplied as keyword arguments to setup().

Here’s a slightly more involved example, which we’ll follow for the next couple of sections: the Distutils’ own
setup script. (Keep in mind that although the Distutils are included with Python 1.6 and later, they also have an
independent existence so that Python 1.5.2 users can use them to install other module distributions. The Distutils’
own setup script, shown here, is used to install the package into Python 1.5.2.)

#!/usr/bin/env python

from distutils.core import setup

setup(name=’Distutils’,
version=’1.0’,
description=’Python Distribution Utilities’,
author=’Greg Ward’,
author_email=’gward@python.net’,
url=’http://www.python.org/sigs/distutils-sig/’,
packages=[’distutils’, ’distutils.command’],

)

There are only two differences between this and the trivial one-file distribution presented in section A Simple
Example: more metadata, and the specification of pure Python modules by package, rather than by module. This
is important since the Distutils consist of a couple of dozen modules split into (so far) two packages; an explicit
list of every module would be tedious to generate and difficult to maintain. For more information on the additional
meta-data, see section Additional meta-data.

Note that any pathnames (files or directories) supplied in the setup script should be written using the Unix con-
vention, i.e. slash-separated. The Distutils will take care of converting this platform-neutral representation into
whatever is appropriate on your current platform before actually using the pathname. This makes your setup script
portable across operating systems, which of course is one of the major goals of the Distutils. In this spirit, all
pathnames in this document are slash-separated.

This, of course, only applies to pathnames given to Distutils functions. If you, for example, use standard Python
functions such as glob.glob() or os.listdir() to specify files, you should be careful to write portable
code instead of hardcoding path separators:

glob.glob(os.path.join(’mydir’, ’subdir’, ’*.html’))
os.listdir(os.path.join(’mydir’, ’subdir’))

7

Distributing Python Modules, Release 2.7.2

2.1 Listing whole packages

The packages option tells the Distutils to process (build, distribute, install, etc.) all pure Python modules found
in each package mentioned in the packages list. In order to do this, of course, there has to be a correspon-
dence between package names and directories in the filesystem. The default correspondence is the most obvious
one, i.e. package distutils is found in the directory distutils relative to the distribution root. Thus,
when you say packages = [’foo’] in your setup script, you are promising that the Distutils will find a file
foo/__init__.py (which might be spelled differently on your system, but you get the idea) relative to the
directory where your setup script lives. If you break this promise, the Distutils will issue a warning but still process
the broken package anyway.

If you use a different convention to lay out your source directory, that’s no problem: you just have to supply the
package_dir option to tell the Distutils about your convention. For example, say you keep all Python source
under lib, so that modules in the “root package” (i.e., not in any package at all) are in lib, modules in the foo
package are in lib/foo, and so forth. Then you would put

package_dir = {’’: ’lib’}

in your setup script. The keys to this dictionary are package names, and an empty package name stands for the root
package. The values are directory names relative to your distribution root. In this case, when you say packages
= [’foo’], you are promising that the file lib/foo/__init__.py exists.

Another possible convention is to put the foo package right in lib, the foo.bar package in lib/bar, etc.
This would be written in the setup script as

package_dir = {’foo’: ’lib’}

A package: dir entry in the package_dir dictionary implicitly applies to all packages below pack-
age, so the foo.bar case is automatically handled here. In this example, having packages = [’foo’,
’foo.bar’] tells the Distutils to look for lib/__init__.py and lib/bar/__init__.py. (Keep in
mind that although package_dir applies recursively, you must explicitly list all packages in packages: the
Distutils will not recursively scan your source tree looking for any directory with an __init__.py file.)

2.2 Listing individual modules

For a small module distribution, you might prefer to list all modules rather than listing packages—especially the
case of a single module that goes in the “root package” (i.e., no package at all). This simplest case was shown in
section A Simple Example; here is a slightly more involved example:

py_modules = [’mod1’, ’pkg.mod2’]

This describes two modules, one of them in the “root” package, the other in the pkg package. Again, the default
package/directory layout implies that these two modules can be found in mod1.py and pkg/mod2.py, and that
pkg/__init__.py exists as well. And again, you can override the package/directory correspondence using
the package_dir option.

2.3 Describing extension modules

Just as writing Python extension modules is a bit more complicated than writing pure Python modules, describing
them to the Distutils is a bit more complicated. Unlike pure modules, it’s not enough just to list modules or
packages and expect the Distutils to go out and find the right files; you have to specify the extension name, source
file(s), and any compile/link requirements (include directories, libraries to link with, etc.).

All of this is done through another keyword argument to setup(), the ext_modules option. ext_modules
is just a list of Extension instances, each of which describes a single extension module. Suppose your distri-
bution includes a single extension, called foo and implemented by foo.c. If no additional instructions to the
compiler/linker are needed, describing this extension is quite simple:

Extension(’foo’, [’foo.c’])

8 Chapter 2. Writing the Setup Script

Distributing Python Modules, Release 2.7.2

The Extension class can be imported from distutils.core along with setup(). Thus, the setup script
for a module distribution that contains only this one extension and nothing else might be:

from distutils.core import setup, Extension
setup(name=’foo’,

version=’1.0’,
ext_modules=[Extension(’foo’, [’foo.c’])],
)

The Extension class (actually, the underlying extension-building machinery implemented by the build_ext
command) supports a great deal of flexibility in describing Python extensions, which is explained in the following
sections.

2.3.1 Extension names and packages

The first argument to the Extension constructor is always the name of the extension, including any package
names. For example,

Extension(’foo’, [’src/foo1.c’, ’src/foo2.c’])

describes an extension that lives in the root package, while

Extension(’pkg.foo’, [’src/foo1.c’, ’src/foo2.c’])

describes the same extension in the pkg package. The source files and resulting object code are identical in both
cases; the only difference is where in the filesystem (and therefore where in Python’s namespace hierarchy) the
resulting extension lives.

If you have a number of extensions all in the same package (or all under the same base package), use the
ext_package keyword argument to setup(). For example,

setup(...,
ext_package=’pkg’,
ext_modules=[Extension(’foo’, [’foo.c’]),

Extension(’subpkg.bar’, [’bar.c’])],
)

will compile foo.c to the extension pkg.foo, and bar.c to pkg.subpkg.bar.

2.3.2 Extension source files

The second argument to the Extension constructor is a list of source files. Since the Distutils currently only
support C, C++, and Objective-C extensions, these are normally C/C++/Objective-C source files. (Be sure to use
appropriate extensions to distinguish C++source files: .cc and .cpp seem to be recognized by both Unix and
Windows compilers.)

However, you can also include SWIG interface (.i) files in the list; the build_ext command knows how to deal
with SWIG extensions: it will run SWIG on the interface file and compile the resulting C/C++ file into your
extension.

This warning notwithstanding, options to SWIG can be currently passed like this:

setup(...,
ext_modules=[Extension(’_foo’, [’foo.i’],

swig_opts=[’-modern’, ’-I../include’])],
py_modules=[’foo’],

)

Or on the commandline like this:

> python setup.py build_ext --swig-opts="-modern -I../include"

2.3. Describing extension modules 9

Distributing Python Modules, Release 2.7.2

On some platforms, you can include non-source files that are processed by the compiler and included in your
extension. Currently, this just means Windows message text (.mc) files and resource definition (.rc) files for
Visual C++. These will be compiled to binary resource (.res) files and linked into the executable.

2.3.3 Preprocessor options

Three optional arguments to Extension will help if you need to specify include directories to search or prepro-
cessor macros to define/undefine: include_dirs, define_macros, and undef_macros.

For example, if your extension requires header files in the include directory under your distribution root, use
the include_dirs option:

Extension(’foo’, [’foo.c’], include_dirs=[’include’])

You can specify absolute directories there; if you know that your extension will only be built on Unix systems
with X11R6 installed to /usr, you can get away with

Extension(’foo’, [’foo.c’], include_dirs=[’/usr/include/X11’])

You should avoid this sort of non-portable usage if you plan to distribute your code: it’s probably better to write
C code like

#include <X11/Xlib.h>

If you need to include header files from some other Python extension, you can take advantage of
the fact that header files are installed in a consistent way by the Distutils install_headers command.
For example, the Numerical Python header files are installed (on a standard Unix installation) to
/usr/local/include/python1.5/Numerical. (The exact location will differ according to your plat-
form and Python installation.) Since the Python include directory—/usr/local/include/python1.5 in
this case—is always included in the search path when building Python extensions, the best approach is to write C
code like

#include <Numerical/arrayobject.h>

If you must put the Numerical include directory right into your header search path, though, you can find that
directory using the Distutils distutils.sysconfig module:

from distutils.sysconfig import get_python_inc
incdir = os.path.join(get_python_inc(plat_specific=1), ’Numerical’)
setup(...,

Extension(..., include_dirs=[incdir]),
)

Even though this is quite portable—it will work on any Python installation, regardless of platform—it’s probably
easier to just write your C code in the sensible way.

You can define and undefine pre-processor macros with the define_macros and undef_macros options.
define_macros takes a list of (name, value) tuples, where name is the name of the macro to define (a
string) and value is its value: either a string or None. (Defining a macro FOO to None is the equivalent of a
bare #define FOO in your C source: with most compilers, this sets FOO to the string 1.) undef_macros is
just a list of macros to undefine.

For example:

Extension(...,
define_macros=[(’NDEBUG’, ’1’),

(’HAVE_STRFTIME’, None)],
undef_macros=[’HAVE_FOO’, ’HAVE_BAR’])

is the equivalent of having this at the top of every C source file:

#define NDEBUG 1
#define HAVE_STRFTIME
#undef HAVE_FOO
#undef HAVE_BAR

10 Chapter 2. Writing the Setup Script

Distributing Python Modules, Release 2.7.2

2.3.4 Library options

You can also specify the libraries to link against when building your extension, and the directories to search for
those libraries. The libraries option is a list of libraries to link against, library_dirs is a list of directories
to search for libraries at link-time, and runtime_library_dirs is a list of directories to search for shared
(dynamically loaded) libraries at run-time.

For example, if you need to link against libraries known to be in the standard library search path on target systems

Extension(...,
libraries=[’gdbm’, ’readline’])

If you need to link with libraries in a non-standard location, you’ll have to include the location in
library_dirs:

Extension(...,
library_dirs=[’/usr/X11R6/lib’],
libraries=[’X11’, ’Xt’])

(Again, this sort of non-portable construct should be avoided if you intend to distribute your code.)

2.3.5 Other options

There are still some other options which can be used to handle special cases.

The optional option is a boolean; if it is true, a build failure in the extension will not abort the build process,
but instead simply not install the failing extension.

The extra_objects option is a list of object files to be passed to the linker. These files must not have exten-
sions, as the default extension for the compiler is used.

extra_compile_args and extra_link_args can be used to specify additional command line options for
the respective compiler and linker command lines.

export_symbols is only useful on Windows. It can contain a list of symbols (functions or variables) to
be exported. This option is not needed when building compiled extensions: Distutils will automatically add
initmodule to the list of exported symbols.

The depends option is a list of files that the extension depends on (for example header files). The build command
will call the compiler on the sources to rebuild extension if any on this files has been modified since the previous
build.

2.4 Relationships between Distributions and Packages

A distribution may relate to packages in three specific ways:

1. It can require packages or modules.

2. It can provide packages or modules.

3. It can obsolete packages or modules.

These relationships can be specified using keyword arguments to the distutils.core.setup() function.

Dependencies on other Python modules and packages can be specified by supplying the requires keyword argu-
ment to setup(). The value must be a list of strings. Each string specifies a package that is required, and
optionally what versions are sufficient.

To specify that any version of a module or package is required, the string should consist entirely of the module or
package name. Examples include ’mymodule’ and ’xml.parsers.expat’.

If specific versions are required, a sequence of qualifiers can be supplied in parentheses. Each qualifier may consist
of a comparison operator and a version number. The accepted comparison operators are:

2.4. Relationships between Distributions and Packages 11

Distributing Python Modules, Release 2.7.2

< > ==
<= >= !=

These can be combined by using multiple qualifiers separated by commas (and optional whitespace). In this case,
all of the qualifiers must be matched; a logical AND is used to combine the evaluations.

Let’s look at a bunch of examples:

Requires Expression Explanation
==1.0 Only version 1.0 is compatible
>1.0, !=1.5.1, <2.0 Any version after 1.0 and before 2.0 is compatible, except 1.5.1

Now that we can specify dependencies, we also need to be able to specify what we provide that other distributions
can require. This is done using the provides keyword argument to setup(). The value for this keyword is a list
of strings, each of which names a Python module or package, and optionally identifies the version. If the version
is not specified, it is assumed to match that of the distribution.

Some examples:

Provides Expression Explanation
mypkg Provide mypkg, using the distribution version
mypkg (1.1) Provide mypkg version 1.1, regardless of the distribution version

A package can declare that it obsoletes other packages using the obsoletes keyword argument. The value for this
is similar to that of the requires keyword: a list of strings giving module or package specifiers. Each specifier
consists of a module or package name optionally followed by one or more version qualifiers. Version qualifiers
are given in parentheses after the module or package name.

The versions identified by the qualifiers are those that are obsoleted by the distribution being described. If no
qualifiers are given, all versions of the named module or package are understood to be obsoleted.

2.5 Installing Scripts

So far we have been dealing with pure and non-pure Python modules, which are usually not run by themselves but
imported by scripts.

Scripts are files containing Python source code, intended to be started from the command line. Scripts don’t
require Distutils to do anything very complicated. The only clever feature is that if the first line of the script starts
with #! and contains the word “python”, the Distutils will adjust the first line to refer to the current interpreter
location. By default, it is replaced with the current interpreter location. The --executable (or -e) option will
allow the interpreter path to be explicitly overridden.

The scripts option simply is a list of files to be handled in this way. From the PyXML setup script:

setup(...,
scripts=[’scripts/xmlproc_parse’, ’scripts/xmlproc_val’]
)

Changed in version 2.7: All the scripts will also be added to the MANIFEST file if no template is provided. See
Specifying the files to distribute.

2.6 Installing Package Data

Often, additional files need to be installed into a package. These files are often data that’s closely related to the
package’s implementation, or text files containing documentation that might be of interest to programmers using
the package. These files are called package data.

Package data can be added to packages using the package_data keyword argument to the setup() function.
The value must be a mapping from package name to a list of relative path names that should be copied into
the package. The paths are interpreted as relative to the directory containing the package (information from the

12 Chapter 2. Writing the Setup Script

Distributing Python Modules, Release 2.7.2

package_dir mapping is used if appropriate); that is, the files are expected to be part of the package in the
source directories. They may contain glob patterns as well.

The path names may contain directory portions; any necessary directories will be created in the installation.

For example, if a package should contain a subdirectory with several data files, the files can be arranged like this
in the source tree:

setup.py
src/

mypkg/
__init__.py
module.py
data/

tables.dat
spoons.dat
forks.dat

The corresponding call to setup() might be:

setup(...,
packages=[’mypkg’],
package_dir={’mypkg’: ’src/mypkg’},
package_data={’mypkg’: [’data/*.dat’]},
)

New in version 2.4.Changed in version 2.7: All the files that match package_data will be added to the
MANIFEST file if no template is provided. See Specifying the files to distribute.

2.7 Installing Additional Files

The data_files option can be used to specify additional files needed by the module distribution: configuration
files, message catalogs, data files, anything which doesn’t fit in the previous categories.

data_files specifies a sequence of (directory, files) pairs in the following way:

setup(...,
data_files=[(’bitmaps’, [’bm/b1.gif’, ’bm/b2.gif’]),

(’config’, [’cfg/data.cfg’]),
(’/etc/init.d’, [’init-script’])]

)

Note that you can specify the directory names where the data files will be installed, but you cannot rename the
data files themselves.

Each (directory, files) pair in the sequence specifies the installation directory and the files to install there. If
directory is a relative path, it is interpreted relative to the installation prefix (Python’s sys.prefix for pure-
Python packages, sys.exec_prefix for packages that contain extension modules). Each file name in files is
interpreted relative to the setup.py script at the top of the package source distribution. No directory information
from files is used to determine the final location of the installed file; only the name of the file is used.

You can specify the data_files options as a simple sequence of files without specifying a target directory, but
this is not recommended, and the install command will print a warning in this case. To install data files directly
in the target directory, an empty string should be given as the directory. Changed in version 2.7: All the files that
match data_files will be added to the MANIFEST file if no template is provided. See Specifying the files to
distribute.

2.8 Additional meta-data

The setup script may include additional meta-data beyond the name and version. This information includes:

2.7. Installing Additional Files 13

Distributing Python Modules, Release 2.7.2

Meta-Data Description Value Notes
name name of the package short string (1)
version version of this release short string (1)(2)
author package author’s name short string (3)
author_email email address of the package author email address (3)
maintainer package maintainer’s name short string (3)
maintainer_email email address of the package maintainer email address (3)
url home page for the package URL (1)
description short, summary description of the package short string
long_description longer description of the package long string (5)
download_url location where the package may be downloaded URL (4)
classifiers a list of classifiers list of strings (4)
platforms a list of platforms list of strings
license license for the package short string (6)

Notes:

1. These fields are required.

2. It is recommended that versions take the form major.minor[.patch[.sub]].

3. Either the author or the maintainer must be identified.

4. These fields should not be used if your package is to be compatible with Python versions prior to 2.2.3 or
2.3. The list is available from the PyPI website.

5. The long_description field is used by PyPI when you are registering a package, to build its home
page.

6. The license field is a text indicating the license covering the package where the license is not a selec-
tion from the “License” Trove classifiers. See the Classifier field. Notice that there’s a licence
distribution option which is deprecated but still acts as an alias for license.

‘short string’ A single line of text, not more than 200 characters.

‘long string’ Multiple lines of plain text in reStructuredText format (see http://docutils.sf.net/).

‘list of strings’ See below.

None of the string values may be Unicode.

Encoding the version information is an art in itself. Python packages generally adhere to the version format ma-
jor.minor[.patch][sub]. The major number is 0 for initial, experimental releases of software. It is incremented for
releases that represent major milestones in a package. The minor number is incremented when important new fea-
tures are added to the package. The patch number increments when bug-fix releases are made. Additional trailing
version information is sometimes used to indicate sub-releases. These are “a1,a2,...,aN” (for alpha releases, where
functionality and API may change), “b1,b2,...,bN” (for beta releases, which only fix bugs) and “pr1,pr2,...,prN”
(for final pre-release release testing). Some examples:

0.1.0 the first, experimental release of a package

1.0.1a2 the second alpha release of the first patch version of 1.0

classifiers are specified in a Python list:

setup(...,
classifiers=[

’Development Status :: 4 - Beta’,
’Environment :: Console’,
’Environment :: Web Environment’,
’Intended Audience :: End Users/Desktop’,
’Intended Audience :: Developers’,
’Intended Audience :: System Administrators’,
’License :: OSI Approved :: Python Software Foundation License’,
’Operating System :: MacOS :: MacOS X’,
’Operating System :: Microsoft :: Windows’,

14 Chapter 2. Writing the Setup Script

http://pypi.python.org/pypi
http://docutils.sf.net/

Distributing Python Modules, Release 2.7.2

’Operating System :: POSIX’,
’Programming Language :: Python’,
’Topic :: Communications :: Email’,
’Topic :: Office/Business’,
’Topic :: Software Development :: Bug Tracking’,
],

)

If you wish to include classifiers in your setup.py file and also wish to remain backwards-compatible with
Python releases prior to 2.2.3, then you can include the following code fragment in your setup.py before the
setup() call.

patch distutils if it can’t cope with the "classifiers" or
"download_url" keywords
from sys import version
if version < ’2.2.3’:

from distutils.dist import DistributionMetadata
DistributionMetadata.classifiers = None
DistributionMetadata.download_url = None

2.9 Debugging the setup script

Sometimes things go wrong, and the setup script doesn’t do what the developer wants.

Distutils catches any exceptions when running the setup script, and print a simple error message before the script
is terminated. The motivation for this behaviour is to not confuse administrators who don’t know much about
Python and are trying to install a package. If they get a big long traceback from deep inside the guts of Distutils,
they may think the package or the Python installation is broken because they don’t read all the way down to the
bottom and see that it’s a permission problem.

On the other hand, this doesn’t help the developer to find the cause of the failure. For this purpose, the DISTU-
TILS_DEBUG environment variable can be set to anything except an empty string, and distutils will now print
detailed information what it is doing, and prints the full traceback in case an exception occurs.

2.9. Debugging the setup script 15

Distributing Python Modules, Release 2.7.2

16 Chapter 2. Writing the Setup Script

CHAPTER

THREE

WRITING THE SETUP
CONFIGURATION FILE

Often, it’s not possible to write down everything needed to build a distribution a priori: you may need to get some
information from the user, or from the user’s system, in order to proceed. As long as that information is fairly
simple—a list of directories to search for C header files or libraries, for example—then providing a configuration
file, setup.cfg, for users to edit is a cheap and easy way to solicit it. Configuration files also let you provide
default values for any command option, which the installer can then override either on the command-line or by
editing the config file.

The setup configuration file is a useful middle-ground between the setup script —which, ideally, would be opaque
to installers 1—and the command-line to the setup script, which is outside of your control and entirely up to the in-
staller. In fact, setup.cfg (and any other Distutils configuration files present on the target system) are processed
after the contents of the setup script, but before the command-line. This has several useful consequences:

• installers can override some of what you put in setup.py by editing setup.cfg

• you can provide non-standard defaults for options that are not easily set in setup.py

• installers can override anything in setup.cfg using the command-line options to setup.py

The basic syntax of the configuration file is simple:

[command]
option=value
...

where command is one of the Distutils commands (e.g. build_py, install), and option is one of the options that
command supports. Any number of options can be supplied for each command, and any number of command
sections can be included in the file. Blank lines are ignored, as are comments, which run from a ’#’ character
until the end of the line. Long option values can be split across multiple lines simply by indenting the continuation
lines.

You can find out the list of options supported by a particular command with the universal --help option, e.g.

> python setup.py --help build_ext
[...]
Options for ’build_ext’ command:

--build-lib (-b) directory for compiled extension modules
--build-temp (-t) directory for temporary files (build by-products)
--inplace (-i) ignore build-lib and put compiled extensions into the

source directory alongside your pure Python modules
--include-dirs (-I) list of directories to search for header files
--define (-D) C preprocessor macros to define
--undef (-U) C preprocessor macros to undefine
--swig-opts list of SWIG command line options

[...]

1 This ideal probably won’t be achieved until auto-configuration is fully supported by the Distutils.

17

Distributing Python Modules, Release 2.7.2

Note that an option spelled --foo-bar on the command-line is spelled foo_bar in configuration files.

For example, say you want your extensions to be built “in-place”—that is, you have an extension pkg.ext, and
you want the compiled extension file (ext.so on Unix, say) to be put in the same source directory as your pure
Python modules pkg.mod1 and pkg.mod2. You can always use the --inplace option on the command-line
to ensure this:

python setup.py build_ext --inplace

But this requires that you always specify the build_ext command explicitly, and remember to provide
--inplace. An easier way is to “set and forget” this option, by encoding it in setup.cfg, the configura-
tion file for this distribution:

[build_ext]
inplace=1

This will affect all builds of this module distribution, whether or not you explicitly specify build_ext. If you
include setup.cfg in your source distribution, it will also affect end-user builds—which is probably a bad idea
for this option, since always building extensions in-place would break installation of the module distribution. In
certain peculiar cases, though, modules are built right in their installation directory, so this is conceivably a useful
ability. (Distributing extensions that expect to be built in their installation directory is almost always a bad idea,
though.)

Another example: certain commands take a lot of options that don’t change from run to run; for example,
bdist_rpm needs to know everything required to generate a “spec” file for creating an RPM distribution. Some of
this information comes from the setup script, and some is automatically generated by the Distutils (such as the list
of files installed). But some of it has to be supplied as options to bdist_rpm, which would be very tedious to do
on the command-line for every run. Hence, here is a snippet from the Distutils’ own setup.cfg:

[bdist_rpm]
release = 1
packager = Greg Ward <gward@python.net>
doc_files = CHANGES.txt

README.txt
USAGE.txt
doc/
examples/

Note that the doc_files option is simply a whitespace-separated string split across multiple lines for readability.

See Also:

Syntax of config files (in Installing Python Modules) in “Installing Python Modules” More information on
the configuration files is available in the manual for system administrators.

18 Chapter 3. Writing the Setup Configuration File

CHAPTER

FOUR

CREATING A SOURCE DISTRIBUTION

As shown in section A Simple Example, you use the sdist command to create a source distribution. In the simplest
case,

python setup.py sdist

(assuming you haven’t specified any sdist options in the setup script or config file), sdist creates the archive of the
default format for the current platform. The default format is a gzip’ed tar file (.tar.gz) on Unix, and ZIP file
on Windows.

You can specify as many formats as you like using the --formats option, for example:

python setup.py sdist --formats=gztar,zip

to create a gzipped tarball and a zip file. The available formats are:

Format Description Notes
zip zip file (.zip) (1),(3)
gztar gzip’ed tar file (.tar.gz) (2)
bztar bzip2’ed tar file (.tar.bz2)
ztar compressed tar file (.tar.Z) (4)
tar tar file (.tar)

Notes:

1. default on Windows

2. default on Unix

3. requires either external zip utility or zipfile module (part of the standard Python library since Python
1.6)

4. requires the compress program. Notice that this format is now pending for deprecation and will be removed
in the future versions of Python.

When using any tar format (gztar, bztar, ztar or tar) under Unix, you can specify the owner and group
names that will be set for each member of the archive.

For example, if you want all files of the archive to be owned by root:

python setup.py sdist --owner=root --group=root

4.1 Specifying the files to distribute

If you don’t supply an explicit list of files (or instructions on how to generate one), the sdist command puts a
minimal default set into the source distribution:

• all Python source files implied by the py_modules and packages options

• all C source files mentioned in the ext_modules or libraries options

• scripts identified by the scripts option See Installing Scripts.

19

Distributing Python Modules, Release 2.7.2

• anything that looks like a test script: test/test*.py (currently, the Distutils don’t do anything with
test scripts except include them in source distributions, but in the future there will be a standard for testing
Python module distributions)

• README.txt (or README), setup.py (or whatever you called your setup script), and setup.cfg

• all files that matches the package_data metadata. See Installing Package Data.

• all files that matches the data_files metadata. See Installing Additional Files.

Sometimes this is enough, but usually you will want to specify additional files to distribute. The typical way to
do this is to write a manifest template, called MANIFEST.in by default. The manifest template is just a list of
instructions for how to generate your manifest file, MANIFEST, which is the exact list of files to include in your
source distribution. The sdist command processes this template and generates a manifest based on its instructions
and what it finds in the filesystem.

If you prefer to roll your own manifest file, the format is simple: one filename per line, regular files (or symlinks to
them) only. If you do supply your own MANIFEST, you must specify everything: the default set of files described
above does not apply in this case. Changed in version 2.7: An existing generated MANIFEST will be regenerated
without sdist comparing its modification time to the one of MANIFEST.in or setup.py.Changed in version
2.7.1: MANIFEST files start with a comment indicating they are generated. Files without this comment are not
overwritten or removed.Changed in version 2.7.3: sdist will read a MANIFEST file if no MANIFEST.in exists,
like it did before 2.7. See The MANIFEST.in template section for a syntax reference.

4.2 Manifest-related options

The normal course of operations for the sdist command is as follows:

• if the manifest file (MANIFEST by default) exists and the first line does not have a comment indicating it is
generated from MANIFEST.in, then it is used as is, unaltered

• if the manifest file doesn’t exist or has been previously automatically generated, read MANIFEST.in and
create the manifest

• if neither MANIFEST nor MANIFEST.in exist, create a manifest with just the default file set

• use the list of files now in MANIFEST (either just generated or read in) to create the source distribution
archive(s)

There are a couple of options that modify this behaviour. First, use the --no-defaults and --no-prune to
disable the standard “include” and “exclude” sets.

Second, you might just want to (re)generate the manifest, but not create a source distribution:

python setup.py sdist --manifest-only

-o is a shortcut for --manifest-only.

4.3 The MANIFEST.in template

A MANIFEST.in file can be added in a project to define the list of files to include in the distribution built by the
sdist command.

When sdist is run, it will look for the MANIFEST.in file and interpret it to generate the MANIFEST file that
contains the list of files that will be included in the package.

This mechanism can be used when the default list of files is not enough. (See Specifying the files to distribute).

20 Chapter 4. Creating a Source Distribution

Distributing Python Modules, Release 2.7.2

4.3.1 Principle

The manifest template has one command per line, where each command specifies a set of files to include or
exclude from the source distribution. For an example, let’s look at the Distutils’ own manifest template:

include *.txt
recursive-include examples *.txt *.py
prune examples/sample?/build

The meanings should be fairly clear: include all files in the distribution root matching *.txt, all files
anywhere under the examples directory matching *.txt or *.py, and exclude all directories matching
examples/sample?/build. All of this is done after the standard include set, so you can exclude files
from the standard set with explicit instructions in the manifest template. (Or, you can use the --no-defaults
option to disable the standard set entirely.)

The order of commands in the manifest template matters: initially, we have the list of default files as described
above, and each command in the template adds to or removes from that list of files. Once we have fully processed
the manifest template, we remove files that should not be included in the source distribution:

• all files in the Distutils “build” tree (default build/)

• all files in directories named RCS, CVS, .svn, .hg, .git, .bzr or _darcs

Now we have our complete list of files, which is written to the manifest for future reference, and then used to build
the source distribution archive(s).

You can disable the default set of included files with the --no-defaults option, and you can disable the
standard exclude set with --no-prune.

Following the Distutils’ own manifest template, let’s trace how the sdist command builds the list of files to include
in the Distutils source distribution:

1. include all Python source files in the distutils and distutils/command subdirectories (because
packages corresponding to those two directories were mentioned in the packages option in the setup
script—see section Writing the Setup Script)

2. include README.txt, setup.py, and setup.cfg (standard files)

3. include test/test*.py (standard files)

4. include *.txt in the distribution root (this will find README.txt a second time, but such redundancies
are weeded out later)

5. include anything matching *.txt or *.py in the sub-tree under examples,

6. exclude all files in the sub-trees starting at directories matching examples/sample?/build—this may
exclude files included by the previous two steps, so it’s important that the prune command in the manifest
template comes after the recursive-include command

7. exclude the entire build tree, and any RCS, CVS, .svn, .hg, .git, .bzr and _darcs directories

Just like in the setup script, file and directory names in the manifest template should always be slash-separated; the
Distutils will take care of converting them to the standard representation on your platform. That way, the manifest
template is portable across operating systems.

4.3.2 Commands

The manifest template commands are:

4.3. The MANIFEST.in template 21

Distributing Python Modules, Release 2.7.2

Command Description
include pat1 pat2 ... include all files matching any of the listed patterns
exclude pat1 pat2 ... exclude all files matching any of the listed patterns
recursive-include dir pat1
pat2 ...

include all files under dir matching any of the listed patterns

recursive-exclude dir pat1
pat2 ...

exclude all files under dir matching any of the listed patterns

global-include pat1 pat2 ... include all files anywhere in the source tree matching — & any of the
listed patterns

global-exclude pat1 pat2 ... exclude all files anywhere in the source tree matching — & any of the
listed patterns

prune dir exclude all files under dir
graft dir include all files under dir

The patterns here are Unix-style “glob” patterns: * matches any sequence of regular filename characters, ?
matches any single regular filename character, and [range] matches any of the characters in range (e.g., a-z,
a-zA-Z, a-f0-9_.). The definition of “regular filename character” is platform-specific: on Unix it is anything
except slash; on Windows anything except backslash or colon.

22 Chapter 4. Creating a Source Distribution

CHAPTER

FIVE

CREATING BUILT DISTRIBUTIONS

A “built distribution” is what you’re probably used to thinking of either as a “binary package” or an “installer”
(depending on your background). It’s not necessarily binary, though, because it might contain only Python source
code and/or byte-code; and we don’t call it a package, because that word is already spoken for in Python. (And
“installer” is a term specific to the world of mainstream desktop systems.)

A built distribution is how you make life as easy as possible for installers of your module distribution: for users of
RPM-based Linux systems, it’s a binary RPM; for Windows users, it’s an executable installer; for Debian-based
Linux users, it’s a Debian package; and so forth. Obviously, no one person will be able to create built distributions
for every platform under the sun, so the Distutils are designed to enable module developers to concentrate on
their specialty—writing code and creating source distributions—while an intermediary species called packagers
springs up to turn source distributions into built distributions for as many platforms as there are packagers.

Of course, the module developer could be his own packager; or the packager could be a volunteer “out there”
somewhere who has access to a platform which the original developer does not; or it could be software periodically
grabbing new source distributions and turning them into built distributions for as many platforms as the software
has access to. Regardless of who they are, a packager uses the setup script and the bdist command family to
generate built distributions.

As a simple example, if I run the following command in the Distutils source tree:

python setup.py bdist

then the Distutils builds my module distribution (the Distutils itself in this case), does a “fake” installation (also
in the build directory), and creates the default type of built distribution for my platform. The default format for
built distributions is a “dumb” tar file on Unix, and a simple executable installer on Windows. (That tar file is
considered “dumb” because it has to be unpacked in a specific location to work.)

Thus, the above command on a Unix system creates Distutils-1.0.plat.tar.gz; unpacking this tarball
from the right place installs the Distutils just as though you had downloaded the source distribution and run
python setup.py install. (The “right place” is either the root of the filesystem or Python’s prefix
directory, depending on the options given to the bdist_dumb command; the default is to make dumb distributions
relative to prefix.)

Obviously, for pure Python distributions, this isn’t any simpler than just running python setup.py
install—but for non-pure distributions, which include extensions that would need to be compiled, it can mean
the difference between someone being able to use your extensions or not. And creating “smart” built distributions,
such as an RPM package or an executable installer for Windows, is far more convenient for users even if your
distribution doesn’t include any extensions.

The bdist command has a --formats option, similar to the sdist command, which you can use to select the
types of built distribution to generate: for example,

python setup.py bdist --format=zip

would, when run on a Unix system, create Distutils-1.0.plat.zip—again, this archive would be un-
packed from the root directory to install the Distutils.

The available formats for built distributions are:

23

Distributing Python Modules, Release 2.7.2

Format Description Notes
gztar gzipped tar file (.tar.gz) (1),(3)
ztar compressed tar file (.tar.Z) (3)
tar tar file (.tar) (3)
zip zip file (.zip) (2),(4)
rpm RPM (5)
pkgtool Solaris pkgtool
sdux HP-UX swinstall
wininst self-extracting ZIP file for Windows (4)
msi Microsoft Installer.

Notes:

1. default on Unix

2. default on Windows

3. requires external utilities: tar and possibly one of gzip, bzip2, or compress

4. requires either external zip utility or zipfile module (part of the standard Python library since Python
1.6)

5. requires external rpm utility, version 3.0.4 or better (use rpm --version to find out which version you
have)

You don’t have to use the bdist command with the --formats option; you can also use the command that
directly implements the format you’re interested in. Some of these bdist “sub-commands” actually generate
several similar formats; for instance, the bdist_dumb command generates all the “dumb” archive formats (tar,
ztar, gztar, and zip), and bdist_rpm generates both binary and source RPMs. The bdist sub-commands,
and the formats generated by each, are:

Command Formats
bdist_dumb tar, ztar, gztar, zip
bdist_rpm rpm, srpm
bdist_wininst wininst
bdist_msi msi

The following sections give details on the individual bdist_* commands.

5.1 Creating dumb built distributions

5.2 Creating RPM packages

The RPM format is used by many popular Linux distributions, including Red Hat, SuSE, and Mandrake. If one
of these (or any of the other RPM-based Linux distributions) is your usual environment, creating RPM packages
for other users of that same distribution is trivial. Depending on the complexity of your module distribution and
differences between Linux distributions, you may also be able to create RPMs that work on different RPM-based
distributions.

The usual way to create an RPM of your module distribution is to run the bdist_rpm command:

python setup.py bdist_rpm

or the bdist command with the --format option:

python setup.py bdist --formats=rpm

The former allows you to specify RPM-specific options; the latter allows you to easily specify multiple formats in
one run. If you need to do both, you can explicitly specify multiple bdist_* commands and their options:

python setup.py bdist_rpm --packager="John Doe <jdoe@example.org>" \
bdist_wininst --target-version="2.0"

24 Chapter 5. Creating Built Distributions

Distributing Python Modules, Release 2.7.2

Creating RPM packages is driven by a .spec file, much as using the Distutils is driven by the setup script.
To make your life easier, the bdist_rpm command normally creates a .spec file based on the information you
supply in the setup script, on the command line, and in any Distutils configuration files. Various options and
sections in the .spec file are derived from options in the setup script as follows:

RPM .spec file option or
section

Distutils setup script option

Name name
Summary (in preamble) description
Version version
Vendor author and author_email, or — & maintainer and

maintainer_email
Copyright license
Url url
%description (section) long_description

Additionally, there are many options in .spec files that don’t have corresponding options in the setup script.
Most of these are handled through options to the bdist_rpm command as follows:

RPM .spec file option or section bdist_rpm option default value
Release release “1”
Group group “Development/Libraries”
Vendor vendor (see above)
Packager packager (none)
Provides provides (none)
Requires requires (none)
Conflicts conflicts (none)
Obsoletes obsoletes (none)
Distribution distribution_name (none)
BuildRequires build_requires (none)
Icon icon (none)

Obviously, supplying even a few of these options on the command-line would be tedious and error-prone, so it’s
usually best to put them in the setup configuration file, setup.cfg—see section Writing the Setup Configuration
File. If you distribute or package many Python module distributions, you might want to put options that apply to
all of them in your personal Distutils configuration file (~/.pydistutils.cfg). If you want to temporarily
disable this file, you can pass the –no-user-cfg option to setup.py.

There are three steps to building a binary RPM package, all of which are handled automatically by the Distutils:

1. create a .spec file, which describes the package (analogous to the Distutils setup script; in fact, much of
the information in the setup script winds up in the .spec file)

2. create the source RPM

3. create the “binary” RPM (which may or may not contain binary code, depending on whether your module
distribution contains Python extensions)

Normally, RPM bundles the last two steps together; when you use the Distutils, all three steps are typically bundled
together.

If you wish, you can separate these three steps. You can use the --spec-only option to make bdist_rpm
just create the .spec file and exit; in this case, the .spec file will be written to the “distribution directory”—
normally dist/, but customizable with the --dist-dir option. (Normally, the .spec file winds up deep in
the “build tree,” in a temporary directory created by bdist_rpm.)

5.3 Creating Windows Installers

Executable installers are the natural format for binary distributions on Windows. They display a nice graphical
user interface, display some information about the module distribution to be installed taken from the metadata in
the setup script, let the user select a few options, and start or cancel the installation.

5.3. Creating Windows Installers 25

Distributing Python Modules, Release 2.7.2

Since the metadata is taken from the setup script, creating Windows installers is usually as easy as running:

python setup.py bdist_wininst

or the bdist command with the --formats option:

python setup.py bdist --formats=wininst

If you have a pure module distribution (only containing pure Python modules and packages), the resulting installer
will be version independent and have a name like foo-1.0.win32.exe. These installers can even be created
on Unix platforms or Mac OS X.

If you have a non-pure distribution, the extensions can only be created on a Windows platform, and will be Python
version dependent. The installer filename will reflect this and now has the form foo-1.0.win32-py2.0.exe.
You have to create a separate installer for every Python version you want to support.

The installer will try to compile pure modules into bytecode after installation on the target system in normal and
optimizing mode. If you don’t want this to happen for some reason, you can run the bdist_wininst command with
the --no-target-compile and/or the --no-target-optimize option.

By default the installer will display the cool “Python Powered” logo when it is run, but you can also supply your
own 152x261 bitmap which must be a Windows .bmp file with the --bitmap option.

The installer will also display a large title on the desktop background window when it is run, which is constructed
from the name of your distribution and the version number. This can be changed to another text by using the
--title option.

The installer file will be written to the “distribution directory” — normally dist/, but customizable with the
--dist-dir option.

5.4 Cross-compiling on Windows

Starting with Python 2.6, distutils is capable of cross-compiling between Windows platforms. In practice, this
means that with the correct tools installed, you can use a 32bit version of Windows to create 64bit extensions and
vice-versa.

To build for an alternate platform, specify the --plat-name option to the build command. Valid values are
currently ‘win32’, ‘win-amd64’ and ‘win-ia64’. For example, on a 32bit version of Windows, you could execute:

python setup.py build --plat-name=win-amd64

to build a 64bit version of your extension. The Windows Installers also support this option, so the command:

python setup.py build --plat-name=win-amd64 bdist_wininst

would create a 64bit installation executable on your 32bit version of Windows.

To cross-compile, you must download the Python source code and cross-compile Python itself for the platform
you are targetting - it is not possible from a binary installation of Python (as the .lib etc file for other platforms are
not included.) In practice, this means the user of a 32 bit operating system will need to use Visual Studio 2008 to
open the PCBuild/PCbuild.sln solution in the Python source tree and build the “x64” configuration of the
‘pythoncore’ project before cross-compiling extensions is possible.

Note that by default, Visual Studio 2008 does not install 64bit compilers or tools. You may need to reexecute the
Visual Studio setup process and select these tools (using Control Panel->[Add/Remove] Programs is a convenient
way to check or modify your existing install.)

5.4.1 The Postinstallation script

Starting with Python 2.3, a postinstallation script can be specified with the --install-script option. The
basename of the script must be specified, and the script filename must also be listed in the scripts argument to the
setup function.

26 Chapter 5. Creating Built Distributions

Distributing Python Modules, Release 2.7.2

This script will be run at installation time on the target system after all the files have been copied, with argv[1]
set to -install, and again at uninstallation time before the files are removed with argv[1] set to -remove.

The installation script runs embedded in the windows installer, every output (sys.stdout, sys.stderr) is
redirected into a buffer and will be displayed in the GUI after the script has finished.

Some functions especially useful in this context are available as additional built-in functions in the installation
script.

directory_created(path)
file_created(path)

These functions should be called when a directory or file is created by the postinstall script at installation
time. It will register path with the uninstaller, so that it will be removed when the distribution is uninstalled.
To be safe, directories are only removed if they are empty.

get_special_folder_path(csidl_string)
This function can be used to retrieve special folder locations on Windows like the Start Menu or the Desktop.
It returns the full path to the folder. csidl_string must be one of the following strings:

"CSIDL_APPDATA"

"CSIDL_COMMON_STARTMENU"
"CSIDL_STARTMENU"

"CSIDL_COMMON_DESKTOPDIRECTORY"
"CSIDL_DESKTOPDIRECTORY"

"CSIDL_COMMON_STARTUP"
"CSIDL_STARTUP"

"CSIDL_COMMON_PROGRAMS"
"CSIDL_PROGRAMS"

"CSIDL_FONTS"

If the folder cannot be retrieved, OSError is raised.

Which folders are available depends on the exact Windows version, and probably also the configuration.
For details refer to Microsoft’s documentation of the SHGetSpecialFolderPath() function.

create_shortcut(target, description, filename, [arguments, [workdir, [iconpath, [iconindex]]]])
This function creates a shortcut. target is the path to the program to be started by the shortcut. description is
the description of the shortcut. filename is the title of the shortcut that the user will see. arguments specifies
the command line arguments, if any. workdir is the working directory for the program. iconpath is the file
containing the icon for the shortcut, and iconindex is the index of the icon in the file iconpath. Again, for
details consult the Microsoft documentation for the IShellLink interface.

5.5 Vista User Access Control (UAC)

Starting with Python 2.6, bdist_wininst supports a --user-access-control option. The default is ‘none’
(meaning no UAC handling is done), and other valid values are ‘auto’ (meaning prompt for UAC elevation if
Python was installed for all users) and ‘force’ (meaning always prompt for elevation).

5.5. Vista User Access Control (UAC) 27

Distributing Python Modules, Release 2.7.2

28 Chapter 5. Creating Built Distributions

CHAPTER

SIX

REGISTERING WITH THE PACKAGE
INDEX

The Python Package Index (PyPI) holds meta-data describing distributions packaged with distutils. The distutils
command register is used to submit your distribution’s meta-data to the index. It is invoked as follows:

python setup.py register

Distutils will respond with the following prompt:

running register
We need to know who you are, so please choose either:

1. use your existing login,
2. register as a new user,
3. have the server generate a new password for you (and email it to you), or
4. quit

Your selection [default 1]:

Note: if your username and password are saved locally, you will not see this menu.

If you have not registered with PyPI, then you will need to do so now. You should choose option 2, and enter your
details as required. Soon after submitting your details, you will receive an email which will be used to confirm
your registration.

Once you are registered, you may choose option 1 from the menu. You will be prompted for your PyPI username
and password, and register will then submit your meta-data to the index.

You may submit any number of versions of your distribution to the index. If you alter the meta-data for a particular
version, you may submit it again and the index will be updated.

PyPI holds a record for each (name, version) combination submitted. The first user to submit information for a
given name is designated the Owner of that name. They may submit changes through the register command or
through the web interface. They may also designate other users as Owners or Maintainers. Maintainers may edit
the package information, but not designate other Owners or Maintainers.

By default PyPI will list all versions of a given package. To hide certain versions, the Hidden property should be
set to yes. This must be edited through the web interface.

6.1 The .pypirc file

The format of the .pypirc file is as follows:

[distutils]
index-servers =

pypi

[pypi]
repository: <repository-url>

29

Distributing Python Modules, Release 2.7.2

username: <username>
password: <password>

The distutils section defines a index-servers variable that lists the name of all sections describing a repository.

Each section describing a repository defines three variables:

• repository, that defines the url of the PyPI server. Defaults to http://www.python.org/pypi.

• username, which is the registered username on the PyPI server.

• password, that will be used to authenticate. If omitted the user will be prompt to type it when needed.

If you want to define another server a new section can be created and listed in the index-servers variable:

[distutils]
index-servers =

pypi
other

[pypi]
repository: <repository-url>
username: <username>
password: <password>

[other]
repository: http://example.com/pypi
username: <username>
password: <password>

register can then be called with the -r option to point the repository to work with:

python setup.py register -r http://example.com/pypi

For convenience, the name of the section that describes the repository may also be used:

python setup.py register -r other

30 Chapter 6. Registering with the Package Index

CHAPTER

SEVEN

UPLOADING PACKAGES TO THE
PACKAGE INDEX

New in version 2.5. The Python Package Index (PyPI) not only stores the package info, but also the package data
if the author of the package wishes to. The distutils command upload pushes the distribution files to PyPI.

The command is invoked immediately after building one or more distribution files. For example, the command

python setup.py sdist bdist_wininst upload

will cause the source distribution and the Windows installer to be uploaded to PyPI. Note that these will be
uploaded even if they are built using an earlier invocation of setup.py, but that only distributions named on the
command line for the invocation including the upload command are uploaded.

The upload command uses the username, password, and repository URL from the $HOME/.pypirc file (see
section The .pypirc file for more on this file). If a register command was previously called in the same command,
and if the password was entered in the prompt, upload will reuse the entered password. This is useful if you do
not want to store a clear text password in the $HOME/.pypirc file.

You can specify another PyPI server with the --repository=*url* option:

python setup.py sdist bdist_wininst upload -r http://example.com/pypi

See section The .pypirc file for more on defining several servers.

You can use the --sign option to tell upload to sign each uploaded file using GPG (GNU Privacy Guard). The
gpg program must be available for execution on the system PATH. You can also specify which key to use for
signing using the --identity=*name* option.

Other upload options include --repository= or --repository= where url is the url of the server and
section the name of the section in $HOME/.pypirc, and --show-response (which displays the full response
text from the PyPI server for help in debugging upload problems).

7.1 PyPI package display

The long_description field plays a special role at PyPI. It is used by the server to display a home page for
the registered package.

If you use the reStructuredText syntax for this field, PyPI will parse it and display an HTML output for the package
home page.

The long_description field can be attached to a text file located in the package:

from distutils.core import setup

with open(’README.txt’) as file:
long_description = file.read()

31

http://docutils.sourceforge.net/rst.html

Distributing Python Modules, Release 2.7.2

setup(name=’Distutils’,
long_description=long_description)

In that case, README.txt is a regular reStructuredText text file located in the root of the package besides
setup.py.

To prevent registering broken reStructuredText content, you can use the rst2html program that is provided by the
docutils package and check the long_description from the command line:

$ python setup.py --long-description | rst2html.py > output.html

docutils will display a warning if there’s something wrong with your syntax.

32 Chapter 7. Uploading Packages to the Package Index

CHAPTER

EIGHT

EXAMPLES

This chapter provides a number of basic examples to help get started with distutils. Additional information about
using distutils can be found in the Distutils Cookbook.

See Also:

Distutils Cookbook Collection of recipes showing how to achieve more control over distutils.

8.1 Pure Python distribution (by module)

If you’re just distributing a couple of modules, especially if they don’t live in a particular package, you can specify
them individually using the py_modules option in the setup script.

In the simplest case, you’ll have two files to worry about: a setup script and the single module you’re distributing,
foo.py in this example:

<root>/
setup.py
foo.py

(In all diagrams in this section, <root> will refer to the distribution root directory.) A minimal setup script to
describe this situation would be:

from distutils.core import setup
setup(name=’foo’,

version=’1.0’,
py_modules=[’foo’],
)

Note that the name of the distribution is specified independently with the name option, and there’s no rule that
says it has to be the same as the name of the sole module in the distribution (although that’s probably a good
convention to follow). However, the distribution name is used to generate filenames, so you should stick to letters,
digits, underscores, and hyphens.

Since py_modules is a list, you can of course specify multiple modules, eg. if you’re distributing modules foo
and bar, your setup might look like this:

<root>/
setup.py
foo.py
bar.py

and the setup script might be

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
py_modules=[’foo’, ’bar’],
)

33

http://wiki.python.org/moin/Distutils/Cookbook

Distributing Python Modules, Release 2.7.2

You can put module source files into another directory, but if you have enough modules to do that, it’s probably
easier to specify modules by package rather than listing them individually.

8.2 Pure Python distribution (by package)

If you have more than a couple of modules to distribute, especially if they are in multiple packages, it’s probably
easier to specify whole packages rather than individual modules. This works even if your modules are not in a
package; you can just tell the Distutils to process modules from the root package, and that works the same as any
other package (except that you don’t have to have an __init__.py file).

The setup script from the last example could also be written as

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
packages=[’’],
)

(The empty string stands for the root package.)

If those two files are moved into a subdirectory, but remain in the root package, e.g.:

<root>/
setup.py
src/ foo.py

bar.py

then you would still specify the root package, but you have to tell the Distutils where source files in the root
package live:

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
package_dir={’’: ’src’},
packages=[’’],
)

More typically, though, you will want to distribute multiple modules in the same package (or in sub-packages).
For example, if the foo and bar modules belong in package foobar, one way to layout your source tree is

<root>/
setup.py
foobar/

__init__.py
foo.py
bar.py

This is in fact the default layout expected by the Distutils, and the one that requires the least work to describe in
your setup script:

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
packages=[’foobar’],
)

If you want to put modules in directories not named for their package, then you need to use the package_dir
option again. For example, if the src directory holds modules in the foobar package:

<root>/
setup.py
src/

__init__.py

34 Chapter 8. Examples

Distributing Python Modules, Release 2.7.2

foo.py
bar.py

an appropriate setup script would be

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
package_dir={’foobar’: ’src’},
packages=[’foobar’],
)

Or, you might put modules from your main package right in the distribution root:

<root>/
setup.py
__init__.py
foo.py
bar.py

in which case your setup script would be

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
package_dir={’foobar’: ’’},
packages=[’foobar’],
)

(The empty string also stands for the current directory.)

If you have sub-packages, they must be explicitly listed in packages, but any entries in package_dir auto-
matically extend to sub-packages. (In other words, the Distutils does not scan your source tree, trying to figure
out which directories correspond to Python packages by looking for __init__.py files.) Thus, if the default
layout grows a sub-package:

<root>/
setup.py
foobar/

__init__.py
foo.py
bar.py
subfoo/

__init__.py
blah.py

then the corresponding setup script would be

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
packages=[’foobar’, ’foobar.subfoo’],
)

(Again, the empty string in package_dir stands for the current directory.)

8.3 Single extension module

Extension modules are specified using the ext_modules option. package_dir has no effect on where ex-
tension source files are found; it only affects the source for pure Python modules. The simplest case, a single
extension module in a single C source file, is:

8.3. Single extension module 35

Distributing Python Modules, Release 2.7.2

<root>/
setup.py
foo.c

If the foo extension belongs in the root package, the setup script for this could be

from distutils.core import setup
from distutils.extension import Extension
setup(name=’foobar’,

version=’1.0’,
ext_modules=[Extension(’foo’, [’foo.c’])],
)

If the extension actually belongs in a package, say foopkg, then

With exactly the same source tree layout, this extension can be put in the foopkg package simply by changing
the name of the extension:

from distutils.core import setup
from distutils.extension import Extension
setup(name=’foobar’,

version=’1.0’,
ext_modules=[Extension(’foopkg.foo’, [’foo.c’])],
)

36 Chapter 8. Examples

CHAPTER

NINE

EXTENDING DISTUTILS

Distutils can be extended in various ways. Most extensions take the form of new commands or replacements
for existing commands. New commands may be written to support new types of platform-specific packaging, for
example, while replacements for existing commands may be made to modify details of how the command operates
on a package.

Most extensions of the distutils are made within setup.py scripts that want to modify existing commands; many
simply add a few file extensions that should be copied into packages in addition to .py files as a convenience.

Most distutils command implementations are subclasses of the distutils.cmd.Command class. New com-
mands may directly inherit from Command, while replacements often derive from Command indirectly, directly
subclassing the command they are replacing. Commands are required to derive from Command.

9.1 Integrating new commands

There are different ways to integrate new command implementations into distutils. The most difficult is to lobby
for the inclusion of the new features in distutils itself, and wait for (and require) a version of Python that provides
that support. This is really hard for many reasons.

The most common, and possibly the most reasonable for most needs, is to include the new implementations with
your setup.py script, and cause the distutils.core.setup() function use them:

from distutils.command.build_py import build_py as _build_py
from distutils.core import setup

class build_py(_build_py):
"""Specialized Python source builder."""

implement whatever needs to be different...

setup(cmdclass={’build_py’: build_py},
...)

This approach is most valuable if the new implementations must be used to use a particular package, as everyone
interested in the package will need to have the new command implementation.

Beginning with Python 2.4, a third option is available, intended to allow new commands to be added which can
support existing setup.py scripts without requiring modifications to the Python installation. This is expected to
allow third-party extensions to provide support for additional packaging systems, but the commands can be used
for anything distutils commands can be used for. A new configuration option, command_packages (command-
line option --command-packages), can be used to specify additional packages to be searched for modules
implementing commands. Like all distutils options, this can be specified on the command line or in a configuration
file. This option can only be set in the [global] section of a configuration file, or before any commands on the
command line. If set in a configuration file, it can be overridden from the command line; setting it to an empty
string on the command line causes the default to be used. This should never be set in a configuration file provided
with a package.

37

Distributing Python Modules, Release 2.7.2

This new option can be used to add any number of packages to the list of packages searched for com-
mand implementations; multiple package names should be separated by commas. When not specified, the
search is only performed in the distutils.command package. When setup.py is run with the op-
tion --command-packages distcmds,buildcmds, however, the packages distutils.command,
distcmds, and buildcmds will be searched in that order. New commands are expected to be im-
plemented in modules of the same name as the command by classes sharing the same name. Given the
example command line option above, the command bdist_openpkg could be implemented by the class
distcmds.bdist_openpkg.bdist_openpkg or buildcmds.bdist_openpkg.bdist_openpkg.

9.2 Adding new distribution types

Commands that create distributions (files in the dist/ directory) need to add (command, filename) pairs
to self.distribution.dist_files so that upload can upload it to PyPI. The filename in the pair contains
no path information, only the name of the file itself. In dry-run mode, pairs should still be added to represent what
would have been created.

38 Chapter 9. Extending Distutils

CHAPTER

TEN

COMMAND REFERENCE

10.1 Installing modules: the install command family

The install command ensures that the build commands have been run and then runs the subcommands install_lib,
install_data and install_scripts.

10.1.1 install_data

This command installs all data files provided with the distribution.

10.1.2 install_scripts

This command installs all (Python) scripts in the distribution.

39

Distributing Python Modules, Release 2.7.2

40 Chapter 10. Command Reference

CHAPTER

ELEVEN

API REFERENCE

11.1 distutils.core — Core Distutils functionality

The distutils.core module is the only module that needs to be installed to use the Distutils. It provides the
setup() (which is called from the setup script). Indirectly provides the distutils.dist.Distribution
and distutils.cmd.Command class.

setup(arguments)
The basic do-everything function that does most everything you could ever ask for from a Distutils method.

The setup function takes a large number of arguments. These are laid out in the following table.

41

Distributing Python Modules, Release 2.7.2

argument
name

value type

name The name of the package a string
version The version number of the package; see

distutils.version
a string

description A single line describing the package a string
long_descriptionLonger description of the package a string
author The name of the package author a string
au-
thor_email

The email address of the package author a string

maintainer The name of the current maintainer, if different
from the author

a string

main-
tainer_email

The email address of the current maintainer, if
different from the author

a string

url A URL for the package (homepage) a string
down-
load_url

A URL to download the package a string

packages A list of Python packages that distutils will
manipulate

a list of strings

py_modules A list of Python modules that distutils will
manipulate

a list of strings

scripts A list of standalone script files to be built and
installed

a list of strings

ext_modules A list of Python extensions to be built a list of instances of
distutils.core.Extension

classifiers A list of categories for the package a list of strings; valid classifiers are
listed on PyPI.

distclass the Distribution class to use a subclass of
distutils.core.Distribution

script_name The name of the setup.py script - defaults to
sys.argv[0]

a string

script_args Arguments to supply to the setup script a list of strings
options default options for the setup script a dictionary
license The license for the package a string
keywords Descriptive meta-data, see PEP 314 a list of strings or a comma-separated

string
platforms a list of strings or a comma-separated

string
cmdclass A mapping of command names to Command

subclasses
a dictionary

data_files A list of data files to install a list
package_dir A mapping of package to directory names a dictionary

run_setup(script_name, [script_args=None, stop_after=’run’])
Run a setup script in a somewhat controlled environment, and return the
distutils.dist.Distribution instance that drives things. This is useful if you need to
find out the distribution meta-data (passed as keyword args from script to setup()), or the contents of the
config files or command-line.

script_name is a file that will be run with execfile() sys.argv[0] will be replaced with script for
the duration of the call. script_args is a list of strings; if supplied, sys.argv[1:] will be replaced by
script_args for the duration of the call.

stop_after tells setup() when to stop processing; possible values:

42 Chapter 11. API Reference

http://pypi.python.org/pypi?:action=list_classifiers
http://www.python.org/dev/peps/pep-0314

Distributing Python Modules, Release 2.7.2

value description
init Stop after the Distribution instance has been created and populated with the keyword

arguments to setup()
config Stop after config files have been parsed (and their data stored in the Distribution instance)
comman-
dline

Stop after the command-line (sys.argv[1:] or script_args) have been parsed (and the data
stored in the Distribution instance.)

run Stop after all commands have been run (the same as if setup() had been called in the usual
way). This is the default value.

In addition, the distutils.core module exposed a number of classes that live elsewhere.

• Extension from distutils.extension

• Command from distutils.cmd

• Distribution from distutils.dist

A short description of each of these follows, but see the relevant module for the full reference.

class Extension()
The Extension class describes a single C or C++extension module in a setup script. It accepts the following
keyword arguments in its constructor

11.1. distutils.core — Core Distutils functionality 43

Distributing Python Modules, Release 2.7.2

argu-
ment
name

value type

name the full name of the extension, including any packages — ie. not a filename or
pathname, but Python dotted name

a string

sources list of source filenames, relative to the distribution root (where the setup script lives),
in Unix form (slash- separated) for portability. Source files may be C, C++, SWIG
(.i), platform-specific resource files, or whatever else is recognized by the build_ext
command as source for a Python extension.

a list of
strings

in-
clude_dirs

list of directories to search for C/C++ header files (in Unix form for portability) a list of
strings

de-
fine_macros

list of macros to define; each macro is defined using a 2-tuple (name, value),
where value is either the string to define it to or None to define it without a particular
value (equivalent of #define FOO in source or -DFOO on Unix C compiler
command line)

a list of
tuples

un-
def_macros

list of macros to undefine explicitly a list of
strings

li-
brary_dirs

list of directories to search for C/C++ libraries at link time a list of
strings

libraries list of library names (not filenames or paths) to link against a list of
strings

run-
time_library_dirs

list of directories to search for C/C++ libraries at run time (for shared extensions, this
is when the extension is loaded)

a list of
strings

ex-
tra_objects

list of extra files to link with (eg. object files not implied by ‘sources’, static library
that must be explicitly specified, binary resource files, etc.)

a list of
strings

ex-
tra_compile_args

any extra platform- and compiler-specific information to use when compiling the
source files in ‘sources’. For platforms and compilers where a command line makes
sense, this is typically a list of command-line arguments, but for other platforms it
could be anything.

a list of
strings

ex-
tra_link_args

any extra platform- and compiler-specific information to use when linking object files
together to create the extension (or to create a new static Python interpreter). Similar
interpretation as for ‘extra_compile_args’.

a list of
strings

ex-
port_symbols

list of symbols to be exported from a shared extension. Not used on all platforms, and
not generally necessary for Python extensions, which typically export exactly one
symbol: init + extension_name.

a list of
strings

depends list of files that the extension depends on a list of
strings

language extension language (i.e. ’c’, ’c++’, ’objc’). Will be detected from the source
extensions if not provided.

a string

optional specifies that a build failure in the extension should not abort the build process, but
simply skip the extension.

a
boolean

class Distribution()
A Distribution describes how to build, install and package up a Python software package.

See the setup() function for a list of keyword arguments accepted by the Distribution constructor.
setup() creates a Distribution instance.

class Command()
A Command class (or rather, an instance of one of its subclasses) implement a single distutils command.

11.2 distutils.ccompiler — CCompiler base class

This module provides the abstract base class for the CCompiler classes. A CCompiler instance can be used
for all the compile and link steps needed to build a single project. Methods are provided to set options for the
compiler — macro definitions, include directories, link path, libraries and the like.

This module provides the following functions.

44 Chapter 11. API Reference

Distributing Python Modules, Release 2.7.2

gen_lib_options(compiler, library_dirs, runtime_library_dirs, libraries)
Generate linker options for searching library directories and linking with specific libraries. libraries and
library_dirs are, respectively, lists of library names (not filenames!) and search directories. Returns a list of
command-line options suitable for use with some compiler (depending on the two format strings passed in).

gen_preprocess_options(macros, include_dirs)
Generate C pre-processor options (-D, -U, -I) as used by at least two types of compilers: the typical Unix
compiler and Visual C++. macros is the usual thing, a list of 1- or 2-tuples, where (name,)means undefine
(-U) macro name, and (name, value) means define (-D) macro name to value. include_dirs is just a
list of directory names to be added to the header file search path (-I). Returns a list of command-line
options suitable for either Unix compilers or Visual C++.

get_default_compiler(osname, platform)
Determine the default compiler to use for the given platform.

osname should be one of the standard Python OS names (i.e. the ones returned by os.name) and platform
the common value returned by sys.platform for the platform in question.

The default values are os.name and sys.platform in case the parameters are not given.

new_compiler(plat=None, compiler=None, verbose=0, dry_run=0, force=0)
Factory function to generate an instance of some CCompiler subclass for the supplied platform/compiler
combination. plat defaults to os.name (eg. ’posix’, ’nt’), and compiler defaults to the default
compiler for that platform. Currently only ’posix’ and ’nt’ are supported, and the default compilers
are “traditional Unix interface” (UnixCCompiler class) and Visual C++ (MSVCCompiler class). Note
that it’s perfectly possible to ask for a Unix compiler object under Windows, and a Microsoft compiler
object under Unix—if you supply a value for compiler, plat is ignored.

show_compilers()
Print list of available compilers (used by the --help-compiler options to build, build_ext, build_clib).

class CCompiler([verbose=0, dry_run=0, force=0])
The abstract base class CCompiler defines the interface that must be implemented by real compiler
classes. The class also has some utility methods used by several compiler classes.

The basic idea behind a compiler abstraction class is that each instance can be used for all the compile/link
steps in building a single project. Thus, attributes common to all of those compile and link steps — include
directories, macros to define, libraries to link against, etc. — are attributes of the compiler instance. To allow
for variability in how individual files are treated, most of those attributes may be varied on a per-compilation
or per-link basis.

The constructor for each subclass creates an instance of the Compiler object. Flags are verbose (show ver-
bose output), dry_run (don’t actually execute the steps) and force (rebuild everything, regardless of depen-
dencies). All of these flags default to 0 (off). Note that you probably don’t want to instantiate CCompiler
or one of its subclasses directly - use the distutils.CCompiler.new_compiler() factory func-
tion instead.

The following methods allow you to manually alter compiler options for the instance of the Compiler class.

add_include_dir(dir)
Add dir to the list of directories that will be searched for header files. The compiler is in-
structed to search directories in the order in which they are supplied by successive calls to
add_include_dir().

set_include_dirs(dirs)
Set the list of directories that will be searched to dirs (a list of strings). Overrides any preceding
calls to add_include_dir(); subsequent calls to add_include_dir() add to the list passed
to set_include_dirs(). This does not affect any list of standard include directories that the
compiler may search by default.

add_library(libname)
Add libname to the list of libraries that will be included in all links driven by this compiler object.
Note that libname should *not* be the name of a file containing a library, but the name of the library

11.2. distutils.ccompiler — CCompiler base class 45

Distributing Python Modules, Release 2.7.2

itself: the actual filename will be inferred by the linker, the compiler, or the compiler class (depending
on the platform).

The linker will be instructed to link against libraries in the order they were supplied to
add_library() and/or set_libraries(). It is perfectly valid to duplicate library names;
the linker will be instructed to link against libraries as many times as they are mentioned.

set_libraries(libnames)
Set the list of libraries to be included in all links driven by this compiler object to libnames (a list of
strings). This does not affect any standard system libraries that the linker may include by default.

add_library_dir(dir)
Add dir to the list of directories that will be searched for libraries specified to add_library()
and set_libraries(). The linker will be instructed to search for libraries in the order they are
supplied to add_library_dir() and/or set_library_dirs().

set_library_dirs(dirs)
Set the list of library search directories to dirs (a list of strings). This does not affect any standard
library search path that the linker may search by default.

add_runtime_library_dir(dir)
Add dir to the list of directories that will be searched for shared libraries at runtime.

set_runtime_library_dirs(dirs)
Set the list of directories to search for shared libraries at runtime to dirs (a list of strings). This does
not affect any standard search path that the runtime linker may search by default.

define_macro(name, [value=None])
Define a preprocessor macro for all compilations driven by this compiler object. The optional param-
eter value should be a string; if it is not supplied, then the macro will be defined without an explicit
value and the exact outcome depends on the compiler used (XXX true? does ANSI say anything about
this?)

undefine_macro(name)
Undefine a preprocessor macro for all compilations driven by this compiler object. If the same macro
is defined by define_macro() and undefined by undefine_macro() the last call takes prece-
dence (including multiple redefinitions or undefinitions). If the macro is redefined/undefined on a
per-compilation basis (ie. in the call to compile()), then that takes precedence.

add_link_object(object)
Add object to the list of object files (or analogues, such as explicitly named library files or the output
of “resource compilers”) to be included in every link driven by this compiler object.

set_link_objects(objects)
Set the list of object files (or analogues) to be included in every link to objects. This does not affect
any standard object files that the linker may include by default (such as system libraries).

The following methods implement methods for autodetection of compiler options, providing some func-
tionality similar to GNU autoconf.

detect_language(sources)
Detect the language of a given file, or list of files. Uses the instance attributes language_map (a
dictionary), and language_order (a list) to do the job.

find_library_file(dirs, lib, [debug=0])
Search the specified list of directories for a static or shared library file lib and return the full path to
that file. If debug is true, look for a debugging version (if that makes sense on the current platform).
Return None if lib wasn’t found in any of the specified directories.

has_function(funcname, [includes=None, include_dirs=None, libraries=None, library_dirs=None])
Return a boolean indicating whether funcname is supported on the current platform. The optional
arguments can be used to augment the compilation environment by providing additional include files
and paths and libraries and paths.

library_dir_option(dir)
Return the compiler option to add dir to the list of directories searched for libraries.

46 Chapter 11. API Reference

Distributing Python Modules, Release 2.7.2

library_option(lib)
Return the compiler option to add dir to the list of libraries linked into the shared library or executable.

runtime_library_dir_option(dir)
Return the compiler option to add dir to the list of directories searched for runtime libraries.

set_executables(**args)
Define the executables (and options for them) that will be run to perform the various stages of compi-
lation. The exact set of executables that may be specified here depends on the compiler class (via the
‘executables’ class attribute), but most will have:

attribute description
compiler the C/C++ compiler
linker_so linker used to create shared objects and libraries
linker_exe linker used to create binary executables
archiver static library creator

On platforms with a command-line (Unix, DOS/Windows), each of these is a string that will be split
into executable name and (optional) list of arguments. (Splitting the string is done similarly to how
Unix shells operate: words are delimited by spaces, but quotes and backslashes can override this. See
distutils.util.split_quoted().)

The following methods invoke stages in the build process.

compile(sources, [output_dir=None, macros=None, include_dirs=None, debug=0, extra_preargs=None, ex-
tra_postargs=None, depends=None])

Compile one or more source files. Generates object files (e.g. transforms a .c file to a .o file.)

sources must be a list of filenames, most likely C/C++ files, but in reality anything that can be han-
dled by a particular compiler and compiler class (eg. MSVCCompiler can handle resource files in
sources). Return a list of object filenames, one per source filename in sources. Depending on the im-
plementation, not all source files will necessarily be compiled, but all corresponding object filenames
will be returned.

If output_dir is given, object files will be put under it, while retaining their original path component.
That is, foo/bar.c normally compiles to foo/bar.o (for a Unix implementation); if output_dir
is build, then it would compile to build/foo/bar.o.

macros, if given, must be a list of macro definitions. A macro definition is either a (name,
value) 2-tuple or a (name,) 1-tuple. The former defines a macro; if the value is None, the
macro is defined without an explicit value. The 1-tuple case undefines a macro. Later defini-
tions/redefinitions/undefinitions take precedence.

include_dirs, if given, must be a list of strings, the directories to add to the default include file search
path for this compilation only.

debug is a boolean; if true, the compiler will be instructed to output debug symbols in (or alongside)
the object file(s).

extra_preargs and extra_postargs are implementation-dependent. On platforms that have the notion
of a command-line (e.g. Unix, DOS/Windows), they are most likely lists of strings: extra command-
line arguments to prepend/append to the compiler command line. On other platforms, consult the
implementation class documentation. In any event, they are intended as an escape hatch for those
occasions when the abstract compiler framework doesn’t cut the mustard.

depends, if given, is a list of filenames that all targets depend on. If a source file is older than any file
in depends, then the source file will be recompiled. This supports dependency tracking, but only at a
coarse granularity.

Raises CompileError on failure.

create_static_lib(objects, output_libname, [output_dir=None, debug=0, target_lang=None])
Link a bunch of stuff together to create a static library file. The “bunch of stuff” consists of the list
of object files supplied as objects, the extra object files supplied to add_link_object()
and/or set_link_objects(), the libraries supplied to add_library() and/or
set_libraries(), and the libraries supplied as libraries (if any).

11.2. distutils.ccompiler — CCompiler base class 47

Distributing Python Modules, Release 2.7.2

output_libname should be a library name, not a filename; the filename will be inferred from the library
name. output_dir is the directory where the library file will be put. XXX defaults to what?

debug is a boolean; if true, debugging information will be included in the library (note that on most
platforms, it is the compile step where this matters: the debug flag is included here just for consis-
tency).

target_lang is the target language for which the given objects are being compiled. This allows specific
linkage time treatment of certain languages.

Raises LibError on failure.

link(target_desc, objects, output_filename, [output_dir=None, libraries=None, library_dirs=None, run-
time_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None,
build_temp=None, target_lang=None])

Link a bunch of stuff together to create an executable or shared library file.

The “bunch of stuff” consists of the list of object files supplied as objects. output_filename should be
a filename. If output_dir is supplied, output_filename is relative to it (i.e. output_filename can provide
directory components if needed).

libraries is a list of libraries to link against. These are library names, not filenames, since they’re trans-
lated into filenames in a platform-specific way (eg. foo becomes libfoo.a on Unix and foo.lib
on DOS/Windows). However, they can include a directory component, which means the linker will
look in that specific directory rather than searching all the normal locations.

library_dirs, if supplied, should be a list of directories to search for libraries that were specified as
bare library names (ie. no directory component). These are on top of the system default and those
supplied to add_library_dir() and/or set_library_dirs(). runtime_library_dirs is a list
of directories that will be embedded into the shared library and used to search for other shared libraries
that *it* depends on at run-time. (This may only be relevant on Unix.)

export_symbols is a list of symbols that the shared library will export. (This appears to be relevant
only on Windows.)

debug is as for compile() and create_static_lib(), with the slight distinction that it actu-
ally matters on most platforms (as opposed to create_static_lib(), which includes a debug
flag mostly for form’s sake).

extra_preargs and extra_postargs are as for compile() (except of course that they supply command-
line arguments for the particular linker being used).

target_lang is the target language for which the given objects are being compiled. This allows specific
linkage time treatment of certain languages.

Raises LinkError on failure.

link_executable(objects, output_progname, [output_dir=None, libraries=None, library_dirs=None, run-
time_library_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, tar-
get_lang=None])

Link an executable. output_progname is the name of the file executable, while objects are a list of
object filenames to link in. Other arguments are as for the link() method.

link_shared_lib(objects, output_libname, [output_dir=None, libraries=None, library_dirs=None, run-
time_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, ex-
tra_postargs=None, build_temp=None, target_lang=None])

Link a shared library. output_libname is the name of the output library, while objects is a list of object
filenames to link in. Other arguments are as for the link() method.

link_shared_object(objects, output_filename, [output_dir=None, libraries=None, library_dirs=None,
runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None,
extra_postargs=None, build_temp=None, target_lang=None])

Link a shared object. output_filename is the name of the shared object that will be created, while
objects is a list of object filenames to link in. Other arguments are as for the link() method.

48 Chapter 11. API Reference

Distributing Python Modules, Release 2.7.2

preprocess(source, [output_file=None, macros=None, include_dirs=None, extra_preargs=None, ex-
tra_postargs=None])

Preprocess a single C/C++ source file, named in source. Output will be written to file named out-
put_file, or stdout if output_file not supplied. macros is a list of macro definitions as for compile(),
which will augment the macros set with define_macro() and undefine_macro(). in-
clude_dirs is a list of directory names that will be added to the default list, in the same way as
add_include_dir().

Raises PreprocessError on failure.

The following utility methods are defined by the CCompiler class, for use by the various concrete sub-
classes.

executable_filename(basename, [strip_dir=0, output_dir=”])
Returns the filename of the executable for the given basename. Typically for non-Windows platforms
this is the same as the basename, while Windows will get a .exe added.

library_filename(libname, [lib_type=’static’, strip_dir=0, output_dir=”])
Returns the filename for the given library name on the current platform. On Unix a library with lib_type
of ’static’ will typically be of the form liblibname.a, while a lib_type of ’dynamic’ will
be of the form liblibname.so.

object_filenames(source_filenames, [strip_dir=0, output_dir=”])
Returns the name of the object files for the given source files. source_filenames should be a list of
filenames.

shared_object_filename(basename, [strip_dir=0, output_dir=”])
Returns the name of a shared object file for the given file name basename.

execute(func, args, [msg=None, level=1])
Invokes distutils.util.execute() This method invokes a Python function func with the
given arguments args, after logging and taking into account the dry_run flag. XXX see also.

spawn(cmd)
Invokes distutils.util.spawn(). This invokes an external process to run the given command.
XXX see also.

mkpath(name, [mode=511])
Invokes distutils.dir_util.mkpath(). This creates a directory and any missing ancestor
directories. XXX see also.

move_file(src, dst)
Invokes distutils.file_util.move_file(). Renames src to dst. XXX see also.

announce(msg, [level=1])
Write a message using distutils.log.debug(). XXX see also.

warn(msg)
Write a warning message msg to standard error.

debug_print(msg)
If the debug flag is set on this CCompiler instance, print msg to standard output, otherwise do
nothing.

11.3 distutils.unixccompiler — Unix C Compiler

This module provides the UnixCCompiler class, a subclass of CCompiler that handles the typical Unix-style
command-line C compiler:

• macros defined with -Dname[=value]

• macros undefined with -Uname

• include search directories specified with -Idir

11.3. distutils.unixccompiler — Unix C Compiler 49

Distributing Python Modules, Release 2.7.2

• libraries specified with -llib

• library search directories specified with -Ldir

• compile handled by cc (or similar) executable with -c option: compiles .c to .o

• link static library handled by ar command (possibly with ranlib)

• link shared library handled by cc -shared

11.4 distutils.msvccompiler — Microsoft Compiler

This module provides MSVCCompiler, an implementation of the abstract CCompiler class for Microsoft
Visual Studio. Typically, extension modules need to be compiled with the same compiler that was used to compile
Python. For Python 2.3 and earlier, the compiler was Visual Studio 6. For Python 2.4 and 2.5, the compiler is
Visual Studio .NET 2003. The AMD64 and Itanium binaries are created using the Platform SDK.

MSVCCompiler will normally choose the right compiler, linker etc. on its own. To override this choice, the
environment variables DISTUTILS_USE_SDK and MSSdk must be both set. MSSdk indicates that the current
environment has been setup by the SDK’s SetEnv.Cmd script, or that the environment variables had been reg-
istered when the SDK was installed; DISTUTILS_USE_SDK indicates that the distutils user has made an explicit
choice to override the compiler selection by MSVCCompiler.

11.5 distutils.bcppcompiler — Borland Compiler

This module provides BorlandCCompiler, an subclass of the abstract CCompiler class for the Borland C++
compiler.

11.6 distutils.cygwincompiler — Cygwin Compiler

This module provides the CygwinCCompiler class, a subclass of UnixCCompiler that handles the Cygwin
port of the GNU C compiler to Windows. It also contains the Mingw32CCompiler class which handles the
mingw32 port of GCC (same as cygwin in no-cygwin mode).

11.7 distutils.emxccompiler — OS/2 EMX Compiler

This module provides the EMXCCompiler class, a subclass of UnixCCompiler that handles the EMX port of
the GNU C compiler to OS/2.

11.8 distutils.archive_util — Archiving utilities

This module provides a few functions for creating archive files, such as tarballs or zipfiles.

make_archive(base_name, format, [root_dir=None, base_dir=None, verbose=0, dry_run=0])
Create an archive file (eg. zip or tar). base_name is the name of the file to create, minus any format-
specific extension; format is the archive format: one of zip, tar, ztar, or gztar. root_dir is a directory
that will be the root directory of the archive; ie. we typically chdir into root_dir before creating the
archive. base_dir is the directory where we start archiving from; ie. base_dir will be the common prefix of
all files and directories in the archive. root_dir and base_dir both default to the current directory. Returns
the name of the archive file.

50 Chapter 11. API Reference

Distributing Python Modules, Release 2.7.2

make_tarball(base_name, base_dir, [compress=’gzip’, verbose=0, dry_run=0])
‘Create an (optional compressed) archive as a tar file from all files in and under base_dir. compress must be
’gzip’ (the default), ’compress’, ’bzip2’, or None. Both tar and the compression utility named
by compress must be on the default program search path, so this is probably Unix-specific. The output tar
file will be named base_dir.tar, possibly plus the appropriate compression extension (.gz, .bz2 or
.Z). Return the output filename.

make_zipfile(base_name, base_dir, [verbose=0, dry_run=0])
Create a zip file from all files in and under base_dir. The output zip file will be named base_name + .zip.
Uses either the zipfile Python module (if available) or the InfoZIP zip utility (if installed and found on
the default search path). If neither tool is available, raises DistutilsExecError. Returns the name of
the output zip file.

11.9 distutils.dep_util — Dependency checking

This module provides functions for performing simple, timestamp-based dependency of files and groups of files;
also, functions based entirely on such timestamp dependency analysis.

newer(source, target)
Return true if source exists and is more recently modified than target, or if source exists and target doesn’t.
Return false if both exist and target is the same age or newer than source. Raise DistutilsFileError
if source does not exist.

newer_pairwise(sources, targets)
Walk two filename lists in parallel, testing if each source is newer than its corresponding target. Return a
pair of lists (sources, targets) where source is newer than target, according to the semantics of newer()

newer_group(sources, target, [missing=’error’])
Return true if target is out-of-date with respect to any file listed in sources In other words, if target exists
and is newer than every file in sources, return false; otherwise return true. missing controls what we do when
a source file is missing; the default (’error’) is to blow up with an OSError from inside os.stat();
if it is ’ignore’, we silently drop any missing source files; if it is ’newer’, any missing source files
make us assume that target is out-of-date (this is handy in “dry-run” mode: it’ll make you pretend to carry
out commands that wouldn’t work because inputs are missing, but that doesn’t matter because you’re not
actually going to run the commands).

11.10 distutils.dir_util — Directory tree operations

This module provides functions for operating on directories and trees of directories.

mkpath(name, [mode=0777, verbose=0, dry_run=0])
Create a directory and any missing ancestor directories. If the directory already exists (or if name is
the empty string, which means the current directory, which of course exists), then do nothing. Raise
DistutilsFileError if unable to create some directory along the way (eg. some sub-path exists,
but is a file rather than a directory). If verbose is true, print a one-line summary of each mkdir to stdout.
Return the list of directories actually created.

create_tree(base_dir, files, [mode=0777, verbose=0, dry_run=0])
Create all the empty directories under base_dir needed to put files there. base_dir is just the a name of a
directory which doesn’t necessarily exist yet; files is a list of filenames to be interpreted relative to base_dir.
base_dir + the directory portion of every file in files will be created if it doesn’t already exist. mode, verbose
and dry_run flags are as for mkpath().

copy_tree(src, dst, [preserve_mode=1, preserve_times=1, preserve_symlinks=0, update=0, verbose=0,
dry_run=0])

Copy an entire directory tree src to a new location dst. Both src and dst must be directory names. If src is
not a directory, raise DistutilsFileError. If dst does not exist, it is created with mkpath(). The
end result of the copy is that every file in src is copied to dst, and directories under src are recursively copied

11.9. distutils.dep_util — Dependency checking 51

Distributing Python Modules, Release 2.7.2

to dst. Return the list of files that were copied or might have been copied, using their output name. The
return value is unaffected by update or dry_run: it is simply the list of all files under src, with the names
changed to be under dst.

preserve_mode and preserve_times are the same as for copy_file() in distutils.file_util;
note that they only apply to regular files, not to directories. If preserve_symlinks is true, symlinks will be
copied as symlinks (on platforms that support them!); otherwise (the default), the destination of the symlink
will be copied. update and verbose are the same as for copy_file().

remove_tree(directory, [verbose=0, dry_run=0])
Recursively remove directory and all files and directories underneath it. Any errors are ignored (apart from
being reported to sys.stdout if verbose is true).

11.11 distutils.file_util — Single file operations

This module contains some utility functions for operating on individual files.

copy_file(src, dst, [preserve_mode=1, preserve_times=1, update=0, link=None, verbose=0, dry_run=0])
Copy file src to dst. If dst is a directory, then src is copied there with the same name; otherwise, it must
be a filename. (If the file exists, it will be ruthlessly clobbered.) If preserve_mode is true (the default),
the file’s mode (type and permission bits, or whatever is analogous on the current platform) is copied. If
preserve_times is true (the default), the last-modified and last-access times are copied as well. If update is
true, src will only be copied if dst does not exist, or if dst does exist but is older than src.

link allows you to make hard links (using os.link()) or symbolic links (using os.symlink()) instead
of copying: set it to ’hard’ or ’sym’; if it is None (the default), files are copied. Don’t set link on
systems that don’t support it: copy_file() doesn’t check if hard or symbolic linking is available. It uses
_copy_file_contents() to copy file contents.

Return a tuple (dest_name, copied): dest_name is the actual name of the output file, and copied is
true if the file was copied (or would have been copied, if dry_run true).

move_file(src, dst, [verbose, dry_run])
Move file src to dst. If dst is a directory, the file will be moved into it with the same name; otherwise, src is
just renamed to dst. Returns the new full name of the file.

Warning: Handles cross-device moves on Unix using copy_file(). What about other systems?

write_file(filename, contents)
Create a file called filename and write contents (a sequence of strings without line terminators) to it.

11.12 distutils.util — Miscellaneous other utility functions

This module contains other assorted bits and pieces that don’t fit into any other utility module.

get_platform()
Return a string that identifies the current platform. This is used mainly to distinguish platform-specific
build directories and platform-specific built distributions. Typically includes the OS name and version and
the architecture (as supplied by ‘os.uname()’), although the exact information included depends on the OS;
eg. for IRIX the architecture isn’t particularly important (IRIX only runs on SGI hardware), but for Linux
the kernel version isn’t particularly important.

Examples of returned values:

•linux-i586

•linux-alpha

•solaris-2.6-sun4u

•irix-5.3

52 Chapter 11. API Reference

Distributing Python Modules, Release 2.7.2

•irix64-6.2

For non-POSIX platforms, currently just returns sys.platform.

For Mac OS X systems the OS version reflects the minimal version on which binaries will run (that is, the
value of MACOSX_DEPLOYMENT_TARGET during the build of Python), not the OS version of the current
system.

For universal binary builds on Mac OS X the architecture value reflects the univeral binary status instead of
the architecture of the current processor. For 32-bit universal binaries the architecture is fat, for 64-bit uni-
versal binaries the architecture is fat64, and for 4-way universal binaries the architecture is universal.
Starting from Python 2.7 and Python 3.2 the architecture fat3 is used for a 3-way universal build (ppc,
i386, x86_64) and intel is used for a univeral build with the i386 and x86_64 architectures

Examples of returned values on Mac OS X:

•macosx-10.3-ppc

•macosx-10.3-fat

•macosx-10.5-universal

•macosx-10.6-intel

convert_path(pathname)
Return ‘pathname’ as a name that will work on the native filesystem, i.e. split it on ‘/’ and put it back
together again using the current directory separator. Needed because filenames in the setup script are always
supplied in Unix style, and have to be converted to the local convention before we can actually use them
in the filesystem. Raises ValueError on non-Unix-ish systems if pathname either starts or ends with a
slash.

change_root(new_root, pathname)
Return pathname with new_root prepended. If pathname is relative, this is equivalent to
os.path.join(new_root,pathname) Otherwise, it requires making pathname relative and then
joining the two, which is tricky on DOS/Windows.

check_environ()
Ensure that ‘os.environ’ has all the environment variables we guarantee that users can use in config files,
command-line options, etc. Currently this includes:

•HOME - user’s home directory (Unix only)

•PLAT - description of the current platform, including hardware and OS (see get_platform())

subst_vars(s, local_vars)
Perform shell/Perl-style variable substitution on s. Every occurrence of $ followed by a name is considered
a variable, and variable is substituted by the value found in the local_vars dictionary, or in os.environ
if it’s not in local_vars. os.environ is first checked/augmented to guarantee that it contains certain val-
ues: see check_environ(). Raise ValueError for any variables not found in either local_vars or
os.environ.

Note that this is not a fully-fledged string interpolation function. A valid $variable can consist only of
upper and lower case letters, numbers and an underscore. No { } or () style quoting is available.

grok_environment_error(exc, [prefix=’error: ’])
Generate a useful error message from an EnvironmentError (IOError or OSError) exception ob-
ject. Handles Python 1.5.1 and later styles, and does what it can to deal with exception objects that don’t
have a filename (which happens when the error is due to a two-file operation, such as rename() or
link()). Returns the error message as a string prefixed with prefix.

split_quoted(s)
Split a string up according to Unix shell-like rules for quotes and backslashes. In short: words are delimited
by spaces, as long as those spaces are not escaped by a backslash, or inside a quoted string. Single and
double quotes are equivalent, and the quote characters can be backslash-escaped. The backslash is stripped
from any two-character escape sequence, leaving only the escaped character. The quote characters are
stripped from any quoted string. Returns a list of words.

11.12. distutils.util — Miscellaneous other utility functions 53

Distributing Python Modules, Release 2.7.2

execute(func, args, [msg=None, verbose=0, dry_run=0])
Perform some action that affects the outside world (for instance, writing to the filesystem). Such actions are
special because they are disabled by the dry_run flag. This method takes care of all that bureaucracy for
you; all you have to do is supply the function to call and an argument tuple for it (to embody the “external
action” being performed), and an optional message to print.

strtobool(val)
Convert a string representation of truth to true (1) or false (0).

True values are y, yes, t, true, on and 1; false values are n, no, f, false, off and 0. Raises
ValueError if val is anything else.

byte_compile(py_files, [optimize=0, force=0, prefix=None, base_dir=None, verbose=1, dry_run=0, di-
rect=None])

Byte-compile a collection of Python source files to either .pyc or .pyo files in the same directory. py_files
is a list of files to compile; any files that don’t end in .py are silently skipped. optimize must be one of the
following:

•0 - don’t optimize (generate .pyc)

•1 - normal optimization (like python -O)

•2 - extra optimization (like python -OO)

If force is true, all files are recompiled regardless of timestamps.

The source filename encoded in each bytecode file defaults to the filenames listed in py_files; you can
modify these with prefix and basedir. prefix is a string that will be stripped off of each source filename, and
base_dir is a directory name that will be prepended (after prefix is stripped). You can supply either or both
(or neither) of prefix and base_dir, as you wish.

If dry_run is true, doesn’t actually do anything that would affect the filesystem.

Byte-compilation is either done directly in this interpreter process with the standard py_compile module,
or indirectly by writing a temporary script and executing it. Normally, you should let byte_compile()
figure out to use direct compilation or not (see the source for details). The direct flag is used by the script
generated in indirect mode; unless you know what you’re doing, leave it set to None.

rfc822_escape(header)
Return a version of header escaped for inclusion in an RFC 822 header, by ensuring there are 8 spaces
space after each newline. Note that it does no other modification of the string.

11.13 distutils.dist — The Distribution class

This module provides the Distribution class, which represents the module distribution being
built/installed/distributed.

11.14 distutils.extension — The Extension class

This module provides the Extension class, used to describe C/C++ extension modules in setup scripts.

11.15 distutils.debug — Distutils debug mode

This module provides the DEBUG flag.

54 Chapter 11. API Reference

http://tools.ietf.org/html/rfc822.html

Distributing Python Modules, Release 2.7.2

11.16 distutils.errors — Distutils exceptions

Provides exceptions used by the Distutils modules. Note that Distutils modules may raise standard exceptions; in
particular, SystemExit is usually raised for errors that are obviously the end-user’s fault (eg. bad command-line
arguments).

This module is safe to use in from ... import * mode; it only exports symbols whose names start with
Distutils and end with Error.

11.17 distutils.fancy_getopt — Wrapper around the standard
getopt module

This module provides a wrapper around the standard getopt module that provides the following additional
features:

• short and long options are tied together

• options have help strings, so fancy_getopt() could potentially create a complete usage summary

• options set attributes of a passed-in object

• boolean options can have “negative aliases” — eg. if --quiet is the “negative alias” of --verbose,
then --quiet on the command line sets verbose to false.

fancy_getopt(options, negative_opt, object, args)
Wrapper function. options is a list of (long_option, short_option, help_string) 3-tuples
as described in the constructor for FancyGetopt. negative_opt should be a dictionary mapping option
names to option names, both the key and value should be in the options list. object is an object which will
be used to store values (see the getopt() method of the FancyGetopt class). args is the argument list.
Will use sys.argv[1:] if you pass None as args.

wrap_text(text, width)
Wraps text to less than width wide.

class FancyGetopt([option_table=None])
The option_table is a list of 3-tuples: (long_option, short_option, help_string)

If an option takes an argument, its long_option should have ’=’ appended; short_option should just be
a single character, no ’:’ in any case. short_option should be None if a long_option doesn’t have a
corresponding short_option. All option tuples must have long options.

The FancyGetopt class provides the following methods:

getopt([args=None, object=None])
Parse command-line options in args. Store as attributes on object.

If args is None or not supplied, uses sys.argv[1:]. If object is None or not supplied, creates a new
OptionDummy instance, stores option values there, and returns a tuple (args, object). If object
is supplied, it is modified in place and getopt() just returns args; in both cases, the returned args is a
modified copy of the passed-in args list, which is left untouched.

get_option_order()
Returns the list of (option, value) tuples processed by the previous run of getopt() Raises
RuntimeError if getopt() hasn’t been called yet.

generate_help([header=None])
Generate help text (a list of strings, one per suggested line of output) from the option table for this
FancyGetopt object.

If supplied, prints the supplied header at the top of the help.

11.16. distutils.errors — Distutils exceptions 55

Distributing Python Modules, Release 2.7.2

11.18 distutils.filelist — The FileList class

This module provides the FileList class, used for poking about the filesystem and building lists of files.

11.19 distutils.log — Simple PEP 282-style logging

11.20 distutils.spawn — Spawn a sub-process

This module provides the spawn() function, a front-end to various platform-specific functions for launching an-
other program in a sub-process. Also provides find_executable() to search the path for a given executable
name.

11.21 distutils.sysconfig — System configuration informa-
tion

The distutils.sysconfig module provides access to Python’s low-level configuration information. The
specific configuration variables available depend heavily on the platform and configuration. The specific variables
depend on the build process for the specific version of Python being run; the variables are those found in the
Makefile and configuration header that are installed with Python on Unix systems. The configuration header is
called pyconfig.h for Python versions starting with 2.2, and config.h for earlier versions of Python.

Some additional functions are provided which perform some useful manipulations for other parts of the
distutils package.

PREFIX
The result of os.path.normpath(sys.prefix).

EXEC_PREFIX
The result of os.path.normpath(sys.exec_prefix).

get_config_var(name)
Return the value of a single variable. This is equivalent to get_config_vars().get(name).

get_config_vars(...)
Return a set of variable definitions. If there are no arguments, this returns a dictionary mapping names of
configuration variables to values. If arguments are provided, they should be strings, and the return value
will be a sequence giving the associated values. If a given name does not have a corresponding value, None
will be included for that variable.

get_config_h_filename()
Return the full path name of the configuration header. For Unix, this will be the header generated by
the configure script; for other platforms the header will have been supplied directly by the Python source
distribution. The file is a platform-specific text file.

get_makefile_filename()
Return the full path name of the Makefile used to build Python. For Unix, this will be a file generated by
the configure script; the meaning for other platforms will vary. The file is a platform-specific text file, if it
exists. This function is only useful on POSIX platforms.

get_python_inc([plat_specific, [prefix]])
Return the directory for either the general or platform-dependent C include files. If plat_specific is true, the
platform-dependent include directory is returned; if false or omitted, the platform-independent directory is
returned. If prefix is given, it is used as either the prefix instead of PREFIX, or as the exec-prefix instead of
EXEC_PREFIX if plat_specific is true.

get_python_lib([plat_specific, [standard_lib, [prefix]]])
Return the directory for either the general or platform-dependent library installation. If plat_specific is true,

56 Chapter 11. API Reference

Distributing Python Modules, Release 2.7.2

the platform-dependent include directory is returned; if false or omitted, the platform-independent directory
is returned. If prefix is given, it is used as either the prefix instead of PREFIX, or as the exec-prefix instead
of EXEC_PREFIX if plat_specific is true. If standard_lib is true, the directory for the standard library is
returned rather than the directory for the installation of third-party extensions.

The following function is only intended for use within the distutils package.

customize_compiler(compiler)
Do any platform-specific customization of a distutils.ccompiler.CCompiler instance.

This function is only needed on Unix at this time, but should be called consistently to support forward-
compatibility. It inserts the information that varies across Unix flavors and is stored in Python’s Makefile.
This information includes the selected compiler, compiler and linker options, and the extension used by the
linker for shared objects.

This function is even more special-purpose, and should only be used from Python’s own build procedures.

set_python_build()
Inform the distutils.sysconfig module that it is being used as part of the build process for Python.
This changes a lot of relative locations for files, allowing them to be located in the build area rather than in
an installed Python.

11.22 distutils.text_file — The TextFile class

This module provides the TextFile class, which gives an interface to text files that (optionally) takes care of
stripping comments, ignoring blank lines, and joining lines with backslashes.

class TextFile([filename=None, file=None, **options])
This class provides a file-like object that takes care of all the things you commonly want to do when process-
ing a text file that has some line-by-line syntax: strip comments (as long as # is your comment character),
skip blank lines, join adjacent lines by escaping the newline (ie. backslash at end of line), strip leading
and/or trailing whitespace. All of these are optional and independently controllable.

The class provides a warn() method so you can generate warning messages that report physical line
number, even if the logical line in question spans multiple physical lines. Also provides unreadline()
for implementing line-at-a-time lookahead.

TextFile instances are create with either filename, file, or both. RuntimeError is raised if both are
None. filename should be a string, and file a file object (or something that provides readline() and
close() methods). It is recommended that you supply at least filename, so that TextFile can include it
in warning messages. If file is not supplied, TextFile creates its own using the open() built-in function.

The options are all boolean, and affect the values returned by readline()

option
name

description de-
fault

strip_commentsstrip from ’#’ to end-of- line, as well as any whitespace leading up to the ’#’—unless it
is escaped by a backslash

true

lstrip_ws strip leading whitespace from each line before returning it false
rstrip_ws strip trailing whitespace (including line terminator!) from each line before returning it. true
skip_blanksskip lines that are empty *after* stripping comments and whitespace. (If both lstrip_ws

and rstrip_ws are false, then some lines may consist of solely whitespace: these will *not*
be skipped, even if skip_blanks is true.)

true

join_lines if a backslash is the last non-newline character on a line after stripping comments and
whitespace, join the following line to it to form one logical line; if N consecutive lines end
with a backslash, then N+1 physical lines will be joined to form one logical line.

false

col-
lapse_join

strip leading whitespace from lines that are joined to their predecessor; only matters if
(join_lines and not lstrip_ws)

false

Note that since rstrip_ws can strip the trailing newline, the semantics of readline() must differ from
those of the built-in file object’s readline() method! In particular, readline() returns None for

11.22. distutils.text_file — The TextFile class 57

Distributing Python Modules, Release 2.7.2

end-of-file: an empty string might just be a blank line (or an all-whitespace line), if rstrip_ws is true but
skip_blanks is not.

open(filename)
Open a new file filename. This overrides any file or filename constructor arguments.

close()
Close the current file and forget everything we know about it (including the filename and the current
line number).

warn(msg, [line=None])
Print (to stderr) a warning message tied to the current logical line in the current file. If the current
logical line in the file spans multiple physical lines, the warning refers to the whole range, such as
"lines 3-5". If line is supplied, it overrides the current line number; it may be a list or tuple to
indicate a range of physical lines, or an integer for a single physical line.

readline()
Read and return a single logical line from the current file (or from an internal buffer if lines have
previously been “unread” with unreadline()). If the join_lines option is true, this may involve
reading multiple physical lines concatenated into a single string. Updates the current line number, so
calling warn() after readline() emits a warning about the physical line(s) just read. Returns
None on end-of-file, since the empty string can occur if rstrip_ws is true but strip_blanks is not.

readlines()
Read and return the list of all logical lines remaining in the current file. This updates the current line
number to the last line of the file.

unreadline(line)
Push line (a string) onto an internal buffer that will be checked by future readline() calls. Handy
for implementing a parser with line-at-a-time lookahead. Note that lines that are “unread” with
unreadline() are not subsequently re-cleansed (whitespace stripped, or whatever) when read with
readline(). If multiple calls are made to unreadline() before a call to readline(), the
lines will be returned most in most recent first order.

11.23 distutils.version — Version number classes

11.24 distutils.cmd — Abstract base class for Distutils com-
mands

This module supplies the abstract base class Command.

class Command(dist)
Abstract base class for defining command classes, the “worker bees” of the Distutils. A useful analogy for
command classes is to think of them as subroutines with local variables called options. The options are de-
clared in initialize_options() and defined (given their final values) in finalize_options(),
both of which must be defined by every command class. The distinction between the two is necessary be-
cause option values might come from the outside world (command line, config file, ...), and any options
dependent on other options must be computed after these outside influences have been processed — hence
finalize_options(). The body of the subroutine, where it does all its work based on the values of its
options, is the run() method, which must also be implemented by every command class.

The class constructor takes a single argument dist, a Distribution instance.

11.25 Creating a new Distutils command

This section outlines the steps to create a new Distutils command.

58 Chapter 11. API Reference

Distributing Python Modules, Release 2.7.2

A new command lives in a module in the distutils.command package. There is a sample template in
that directory called command_template. Copy this file to a new module with the same name as the new
command you’re implementing. This module should implement a class with the same name as the module (and
the command). So, for instance, to create the command peel_banana (so that users can run setup.py
peel_banana), you’d copy command_template to distutils/command/peel_banana.py, then
edit it so that it’s implementing the class peel_banana, a subclass of distutils.cmd.Command.

Subclasses of Command must define the following methods.

initialize_options()
Set default values for all the options that this command supports. Note that these defaults may be overridden
by other commands, by the setup script, by config files, or by the command-line. Thus, this is not the place
to code dependencies between options; generally, initialize_options() implementations are just a
bunch of self.foo = None assignments.

finalize_options()
Set final values for all the options that this command supports. This is always called as late as possible, ie.
after any option assignments from the command-line or from other commands have been done. Thus, this
is the place to to code option dependencies: if foo depends on bar, then it is safe to set foo from bar as long
as foo still has the same value it was assigned in initialize_options().

run()
A command’s raison d’etre: carry out the action it exists to perform, controlled by the options initialized
in initialize_options(), customized by other commands, the setup script, the command-line, and
config files, and finalized in finalize_options(). All terminal output and filesystem interaction
should be done by run().

sub_commands
sub_commands formalizes the notion of a “family” of commands, e.g. install as the parent with sub-
commands install_lib, install_headers, etc. The parent of a family of commands defines
sub_commands as a class attribute; it’s a list of 2-tuples (command_name, predicate), with com-
mand_name a string and predicate a function, a string or None. predicate is a method of the parent com-
mand that determines whether the corresponding command is applicable in the current situation. (E.g.
install_headers is only applicable if we have any C header files to install.) If predicate is None, that
command is always applicable.

sub_commands is usually defined at the end of a class, because predicates can be methods of the class, so
they must already have been defined. The canonical example is the install command.

11.26 distutils.command — Individual Distutils commands

11.27 distutils.command.bdist — Build a binary installer

11.28 distutils.command.bdist_packager — Abstract base
class for packagers

11.29 distutils.command.bdist_dumb — Build a “dumb” in-
staller

11.30 distutils.command.bdist_msi — Build a Microsoft In-
staller binary package

class bdist_msi()
Builds a Windows Installer (.msi) binary package.

11.26. distutils.command — Individual Distutils commands 59

http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx

Distributing Python Modules, Release 2.7.2

In most cases, the bdist_msi installer is a better choice than the bdist_wininst installer, because it
provides better support for Win64 platforms, allows administrators to perform non-interactive installations,
and allows installation through group policies.

60 Chapter 11. API Reference

Distributing Python Modules, Release 2.7.2

11.30. distutils.command.bdist_msi — Build a Microsoft Installer binary package 61

Distributing Python Modules, Release 2.7.2

11.31 distutils.command.bdist_rpm — Build a binary distribu-
tion as a Redhat RPM and SRPM

11.32 distutils.command.bdist_wininst — Build a Windows
installer

11.33 distutils.command.sdist — Build a source distribution

11.34 distutils.command.build — Build all files of a package

11.35 distutils.command.build_clib — Build any C libraries
in a package

11.36 distutils.command.build_ext — Build any extensions
in a package

11.37 distutils.command.build_py — Build the .py/.pyc files
of a package

11.38 distutils.command.build_scripts — Build the scripts
of a package

11.39 distutils.command.clean — Clean a package build area

11.40 distutils.command.config — Perform package configu-
ration

11.41 distutils.command.install — Install a package

11.42 distutils.command.install_data — Install data files
from a package

11.43 distutils.command.install_headers — Install C/C++
header files from a package

11.44 distutils.command.install_lib — Install library files
from a package

11.45 distutils.command.install_scripts — Install script
files from a package

11.46 distutils.command.register — Register a module with
the Python Package Index62 Chapter 11. API Reference

Distributing Python Modules, Release 2.7.2

The register command registers the package with the Python Package Index. This is described in more detail
in PEP 301.

11.47 distutils.command.check — Check the meta-data of a
package

The check command performs some tests on the meta-data of a package. For example, it verifies that all required
meta-data are provided as the arguments passed to the setup() function.

11.47. distutils.command.check — Check the meta-data of a package 63

http://www.python.org/dev/peps/pep-0301

Distributing Python Modules, Release 2.7.2

64 Chapter 11. API Reference

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3 - Automated Python 2 to 3 code translation (in The Python Library
Reference).

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattr() would be clumsy or subtly wrong (for example with magic methods
(in The Python Language Reference)). ABCs introduce virtual subclasses, which are classes that don’t
inherit from a class but are still recognized by isinstance() and issubclass(); see the abcmodule
documentation. Python comes with many built-in ABCs for data structures (in the collectionsmodule),
numbers (in the numbers module), and streams (in the io module). You can create your own ABCs with
the abc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-length: * accepts or passes (if in the function definition or call)
several positional arguments in a list, while ** does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in
the CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same
file is faster the second time (recompilation from source to bytecode can be avoided). This “intermediate
language” is said to run on a virtual machine that executes the machine code corresponding to each bytecode.
Do note that bytecodes are not expected to work between different Python virtual machines, nor to be stable
between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module (in The Python Library
Reference).

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes will be
removed in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves
two arguments of the same type. For example, int(3.15) converts the floating point number to the

65

http://www.python.org/~guido/

Distributing Python Modules, Release 2.7.2

integer 3, but in 3+4.5, each argument is of a different type (one int, one float), and both must be
converted to the same type before they can be added or it will raise a TypeError. Coercion between
two operands can be performed with the coerce built-in function; thus, 3+4.5 is equivalent to call-
ing operator.add(*coerce(3, 4.5)) and results in operator.add(3.0, 4.5). Without
coercion, all arguments of even compatible types would have to be normalized to the same value by the
programmer, e.g., float(3)+4.5 rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1), often written i in mathematics or j in engineering. Python has built-in support for complex
numbers, which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j.
To get access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly
advanced mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely
ignore them.

context manager An object which controls the environment seen in a with statement by defining
__enter__() and __exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The
term “CPython” is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions (in The Python Language Reference) and class definitions (in The Python Language Reference)
for more about decorators.

descriptor Any new-style object which defines the methods __get__(), __set__(), or __delete__().
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a,
but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to
a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors (in The Python Language
Reference).

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() function and __eq__() methods. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored
when the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the
enclosing class, function or module. Since it is available via introspection, it is the canonical place for
documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right in-
terface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like
a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code im-
proves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or
isinstance(). (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employs hasattr() tests or EAFP programming.

66 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343
http://python.org

Distributing Python Modules, Release 2.7.2

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of many try and except statements. The technique contrasts with the
LBYL style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There
are also statements which cannot be used as expressions, such as print or if. Assignments are also
statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user
code.

file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or
to another other type of storage or communication device (for example standard input/output, in-memory
buffers, sockets, pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module. It must implement a method named
find_module(). See PEP 302 for details.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division.
Note that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also argument and method.

__future__ A pseudo-module which programmers can use to enable new language features which are not com-
patible with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the
module in which it is executed had enabled true division by executing:

from __future__ import division

the expression 11/4 would evaluate to 2.75. By importing the __future__ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the
default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles.

generator A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series a values usable in a for-loop or that can be retrieved one at a time with
the next() function. Each yield temporarily suspends processing, remembering the location execution
state (including local variables and pending try-statements). When the generator resumes, it picks-up where
it left-off (in contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

67

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0238

Distributing Python Modules, Release 2.7.2

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (in-
cluding critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire
interpreter makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism
afforded by multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released
when doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granular-
ity) have not been successful because performance suffered in the common single-processor case. It is
believed that overcoming this performance issue would make the implementation much more complicated
and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() or __cmp__()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently
evaluates to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing
two integers the outcome will always be another integer (having the floor function applied to it). However,
if one of the operands is another numeric type (such as a float), the result will be coerced (see coercion)
to a common type. For example, an integer divided by a float will result in a float value, possibly with a
decimal fraction. Integer division can be forced by using the // operator instead of the / operator. See also
__future__.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
also interactive.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects
of any classes you define with an __iter__() or __getitem__() method. Iterables can be used in
a for loop and in many other places where a sequence is needed (zip(), map(), ...). When an iterable
object is passed as an argument to the built-in function iter(), it returns an iterator for the object. This
iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call
iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence,
and generator.

68 Appendix A. Glossary

Distributing Python Modules, Release 2.7.2

iterator An object representing a stream of data. Repeated calls to the iterator’s next() method return suc-
cessive items in the stream. When no more data are available a StopIteration exception is raised
instead. At this point, the iterator object is exhausted and any further calls to its next() method just raise
StopIteration again. Iterators are required to have an __iter__() method that returns the iterator
object itself so every iterator is also iterable and may be used in most places where other iterables are ac-
cepted. One notable exception is code which attempts multiple iteration passes. A container object (such
as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a for
loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found in Iterator Types (in The Python Library Reference).

key function A key function or collation function is a callable that returns a value used for sorting or ordering.
For example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort
conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(),
and itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve
as a key function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a
lambda expression such as lambda r: (r[0], r[2]). Also, the operator module provides
three key function constuctors: attrgetter(), itemgetter(), and methodcaller(). See the
Sorting HOW TO (in) for examples of how to create and use key functions.

keyword argument Arguments which are preceded with a variable_name= in the call. The variable name
designates the local name in the function to which the value is assigned. ** is used to accept or pass a
dictionary of keyword arguments. See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition be-
tween “the looking” and “the leaping”. For example, the code, if key in mapping: return
mapping[key] can fail if another thread removes key from mapping after the test, but before the lookup.
This issue can be solved with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with
the results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates
a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If
omitted, all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details.

mapping A container object that supports arbitrary key lookups and implements the methods speci-
fied in the Mapping or MutableMapping abstract base classes (in The Python Library Refer-
ence). Examples include dict, collections.defaultdict, collections.OrderedDict and
collections.Counter.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found in Customizing class creation (in The Python Language Reference).

69

http://www.python.org/dev/peps/pep-0302

Distributing Python Modules, Release 2.7.2

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and
nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order.

MRO See method resolution order.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time.localtime() returns a tuple-like object where the year is accessible either with an
index such as t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically provides extra features such as a
self-documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functions __builtin__.open()
and os.open() are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writing random.seed()
or itertools.izip() makes it clear that those functions are implemented by the random and
itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes by default work only
for reference and not for assignment. Local variables both read and write in the innermost scope. Likewise,
global variables read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Any class which inherits from object. This includes all built-in types like list and dict.
Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, properties,
and __getattribute__().

More information can be found in New-style and classic classes (in The Python Language Reference).

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
any new-style class.

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the call. * is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a function. See argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable using a for statement. Many other languages don’t
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. The sys module defines a getrefcount() function that programmers can
call to return the reference count for a particular object.

70 Appendix A. Glossary

http://www.python.org/download/releases/2.3/mro/

Distributing Python Modules, Release 2.7.2

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is
best reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__()
special method and defines a len() method that returns the length of the sequence. Some built-in se-
quence types are list, str, tuple, and unicode. Note that dict also supports __getitem__()
and __len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation,
[] with colons between numbers when several are given, such as in variable_name[1:3:5]. The
bracket (subscript) notation uses slice objects internally (or in older versions, __getslice__() and
__setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented in Special method names (in The Python Language Reference).

statement A statement is part of a suite (a “block” of code). A statement is either an expression or a one of
several constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple
in that elements can either be accessed either by index or as an attribute. However, they do not have
any of the named tuple methods like _make() or _asdict(). Examples of struct sequences include
sys.float_info and the return value of os.stat().

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type
is accessible as its __class__ attribute or can be retrieved with type(obj).

view The objects returned from dict.viewkeys(), dict.viewvalues(), and dict.viewitems()
are called dictionary views. They are lazy sequences that will see changes in the underlying dictionary. To
force the dictionary view to become a full list use list(dictview). See Dictionary view objects (in
The Python Library Reference).

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emit-
ted by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typing “import this” at the interactive prompt.

71

Distributing Python Modules, Release 2.7.2

72 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically writ-
ten for the Python documentation.

Development of the documentation and its toolchain takes place on the docs@python.org mailing list. We’re
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

See Reporting Bugs for information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete – if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.org), and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver An-
drich, Heidi Annexstad, Jesús Cea Avión, Manuel Balsera, Daniel Barclay, Chris Barker, Don Bashford, Anthony
Baxter, Alexander Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti,
Georg Brandl, Keith Briggs, Ian Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles
Civario, Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell,
L. Peter Deutsch, Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy
Eskilsson, Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Hernán Martínez Foffani, Stefan Franke,
Jim Fulton, Peter Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi,
Jonathan Giddy, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark
Hammond, Harald Hanche-Olsen, Manus Hand, Gerhard Häring, Travis B. Hartwell, Tim Hatch, Janko Hauser,
Ben Hayden, Thomas Heller, Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert
Hofkamp, Gregor Hoffleit, Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall
Hopper, Michael Hudson, Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz
Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Kamil Kisiel, Greg
Kochanski, Guido Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno Kuusela,
Ross Lagerwall, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann, Marc-André
Lemburg, Ross Light, Ulf A. Lindgren, Everett Lipman, Mirko Liss, Martin von Löwis, Fredrik Lundh, Jeff Mac-
Donald, John Machin, Andrew MacIntyre, Vladimir Marangozov, Vincent Marchetti, Westley Martínez, Laura
Matson, Daniel May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross
Moore, Sjoerd Mullender, Dale Nagata, Michal Nowikowski, Steffen Daode Nurpmeso, Ng Pheng Siong, Koray
Oner, Tomas Oppelstrup, Denis S. Otkidach, Zooko O’Whielacronx, Shriphani Palakodety, William Park, Joonas
Paalasmaa, Harri Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris
Phoenix, François Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Terry J. Reedy, Sean Reifschneider,

73

http://docutils.sf.net/rst.html
http://sphinx.pocoo.org/
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

Distributing Python Modules, Release 2.7.2

Bernhard Reiter, Armin Rigo, Wes Rishel, Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace
Rouse II, Mark Russell, Nick Russo, Chris Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil
Schemenauer, Barry Scott, Joakim Sernbrant, Justin Sheehy, Charlie Shepherd, Yue Shuaijie, Michael Simcich,
Ionel Simionescu, Michael Sloan, Gregory P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo,
Frank Stajano, Anthony Starks, Greg Stein, Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson,
Jim Tittsler, David Turner, Sandro Tosi, Ville Vainio, Martijn Vries, Charles G. Waldman, Greg Ward, Barry War-
saw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener,
Timothy Wild, Paul Winkler, Collin Winter, Blake Winton, Dan Wolfe, Adam Woodbeck, Steven Work, Thomas
Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

It is only with the input and contributions of the Python community that Python has such wonderful documentation
– Thank You!

74 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes

Continued on next page

75

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

Distributing Python Modules, Release 2.7.2

Table C.1 – continued from previous page
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes
2.5.1 2.5 2007 PSF yes
2.5.2 2.5.1 2008 PSF yes
2.5.3 2.5.2 2008 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes
2.6.2 2.6.1 2009 PSF yes
2.6.3 2.6.2 2009 PSF yes
2.6.4 2.6.3 2010 PSF yes
2.7 2.6 2010 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.7.2

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.7.2 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.7.2 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2010 Python Software
Foundation; All Rights Reserved” are retained in Python 2.7.2 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.7.2 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.7.2.

4. PSF is making Python 2.7.2 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.7.2 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.2 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.2, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.7.2, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

76 Appendix C. History and License

Distributing Python Modules, Release 2.7.2

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

C.2. Terms and conditions for accessing or otherwise using Python 77

http://www.pythonlabs.com/logos.html
http://hdl.handle.net/1895.22/1013

Distributing Python Modules, Release 2.7.2

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

78 Appendix C. History and License

http://www.math.keio.ac.jp/

Distributing Python Modules, Release 2.7.2

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socketmodule uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

C.3. Licenses and Acknowledgements for Incorporated Software 79

http://www.wide.ad.jp/

Distributing Python Modules, Release 2.7.2

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

80 Appendix C. History and License

Distributing Python Modules, Release 2.7.2

including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS

C.3. Licenses and Acknowledgements for Incorporated Software 81

Distributing Python Modules, Release 2.7.2

OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in

82 Appendix C. History and License

Distributing Python Modules, Release 2.7.2

supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR

C.3. Licenses and Acknowledgements for Incorporated Software 83

Distributing Python Modules, Release 2.7.2

BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

84 Appendix C. History and License

Distributing Python Modules, Release 2.7.2

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to
and from strings, is derived from the file of the same name by David M. Gay, currently available from
http://www.netlib.org/fp/. The original file, as retrieved on March 16, 2009, contains the following copyright
and licensing notice:

/**
*
* The author of this software is David M. Gay.

*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*
***/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows installers for Python include a copy of the OpenSSL libraries,
so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*
* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*

C.3. Licenses and Acknowledgements for Incorporated Software 85

http://www.netlib.org/fp/

Distributing Python Modules, Release 2.7.2

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*
* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

*
* 5. Products derived from this software may not be called "OpenSSL"

* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*
* 6. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

* ==

*
* This product includes cryptographic software written by Eric Young

* (eay@cryptsoft.com). This product includes software written by Tim

* Hudson (tjh@cryptsoft.com).

*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*
* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*
* This library is free for commercial and non-commercial use as long as

* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation

86 Appendix C. History and License

Distributing Python Modules, Release 2.7.2

* included with this distribution is covered by the same copyright terms

* except that the holder is Tim Hudson (tjh@cryptsoft.com).

*
* Copyright remains Eric Young’s, and as such any Copyright notices in

* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution

* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word ’cryptographic’ can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*
* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,

C.3. Licenses and Acknowledgements for Incorporated Software 87

Distributing Python Modules, Release 2.7.2

distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘‘Software’’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is
too old to be used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

88 Appendix C. History and License

Distributing Python Modules, Release 2.7.2

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software 89

Distributing Python Modules, Release 2.7.2

90 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2010 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

91

Distributing Python Modules, Release 2.7.2

92 Appendix D. Copyright

MODULE INDEX

D
distutils.archive_util, 50
distutils.bcppcompiler, 50
distutils.ccompiler, 44
distutils.cmd, 58
distutils.command, 59
distutils.command.bdist, 59
distutils.command.bdist_dumb, 59
distutils.command.bdist_msi, 59
distutils.command.bdist_packager, 59
distutils.command.bdist_rpm, 62
distutils.command.bdist_wininst, 62
distutils.command.build, 62
distutils.command.build_clib, 62
distutils.command.build_ext, 62
distutils.command.build_py, 62
distutils.command.build_scripts, 62
distutils.command.check, 63
distutils.command.clean, 62
distutils.command.config, 62
distutils.command.install, 62
distutils.command.install_data, 62
distutils.command.install_headers, 62
distutils.command.install_lib, 62
distutils.command.install_scripts, 62
distutils.command.register, 62
distutils.command.sdist, 62
distutils.core, 41
distutils.cygwinccompiler, 50
distutils.debug, 54
distutils.dep_util, 51
distutils.dir_util, 51
distutils.dist, 54
distutils.emxccompiler, 50
distutils.errors, 55
distutils.extension, 54
distutils.fancy_getopt, 55
distutils.file_util, 52
distutils.filelist, 56
distutils.log, 56
distutils.msvccompiler, 50
distutils.spawn, 56
distutils.sysconfig, 56
distutils.text_file, 57
distutils.unixccompiler, 49

distutils.util, 52
distutils.version, 58

93

Distributing Python Modules, Release 2.7.2

94 Module Index

INDEX

Symbols
..., 65
__future__, 67
__slots__, 70
>>>, 65
2to3, 65

A
abstract base class, 65
add_include_dir() (distutils.ccompiler.CCompiler

method), 45
add_library() (distutils.ccompiler.CCompiler method),

45
add_library_dir() (distutils.ccompiler.CCompiler

method), 46
add_link_object() (distutils.ccompiler.CCompiler

method), 46
add_runtime_library_dir() (distu-

tils.ccompiler.CCompiler method), 46
announce() (distutils.ccompiler.CCompiler method), 49
argument, 65
attribute, 65

B
BDFL, 65
bdist_msi (class in distutils.command.bdist_msi), 59
byte_compile() (in module distutils.util), 54
bytecode, 65

C
CCompiler (class in distutils.ccompiler), 45
change_root() (in module distutils.util), 53
check_environ() (in module distutils.util), 53
class, 65
classic class, 65
close() (distutils.text_file.TextFile method), 58
coercion, 65
Command (class in distutils.cmd), 58
Command (class in distutils.core), 44
compile() (distutils.ccompiler.CCompiler method), 47
complex number, 66
context manager, 66
convert_path() (in module distutils.util), 53
copy_file() (in module distutils.file_util), 52
copy_tree() (in module distutils.dir_util), 51

CPython, 66
create_shortcut() (built-in function), 27
create_static_lib() (distutils.ccompiler.CCompiler

method), 47
create_tree() (in module distutils.dir_util), 51
customize_compiler() (in module distutils.sysconfig),

57

D
debug_print() (distutils.ccompiler.CCompiler method),

49
decorator, 66
define_macro() (distutils.ccompiler.CCompiler

method), 46
descriptor, 66
detect_language() (distutils.ccompiler.CCompiler

method), 46
dictionary, 66
directory_created() (built-in function), 27
Distribution (class in distutils.core), 44
distutils.archive_util (module), 50
distutils.bcppcompiler (module), 50
distutils.ccompiler (module), 44
distutils.cmd (module), 58
distutils.command (module), 59
distutils.command.bdist (module), 59
distutils.command.bdist_dumb (module), 59
distutils.command.bdist_msi (module), 59
distutils.command.bdist_packager (module), 59
distutils.command.bdist_rpm (module), 62
distutils.command.bdist_wininst (module), 62
distutils.command.build (module), 62
distutils.command.build_clib (module), 62
distutils.command.build_ext (module), 62
distutils.command.build_py (module), 62
distutils.command.build_scripts (module), 62
distutils.command.check (module), 63
distutils.command.clean (module), 62
distutils.command.config (module), 62
distutils.command.install (module), 62
distutils.command.install_data (module), 62
distutils.command.install_headers (module), 62
distutils.command.install_lib (module), 62
distutils.command.install_scripts (module), 62
distutils.command.register (module), 62
distutils.command.sdist (module), 62

95

Distributing Python Modules, Release 2.7.2

distutils.core (module), 41
distutils.cygwinccompiler (module), 50
distutils.debug (module), 54
distutils.dep_util (module), 51
distutils.dir_util (module), 51
distutils.dist (module), 54
distutils.emxccompiler (module), 50
distutils.errors (module), 55
distutils.extension (module), 54
distutils.fancy_getopt (module), 55
distutils.file_util (module), 52
distutils.filelist (module), 56
distutils.log (module), 56
distutils.msvccompiler (module), 50
distutils.spawn (module), 56
distutils.sysconfig (module), 56
distutils.text_file (module), 57
distutils.unixccompiler (module), 49
distutils.util (module), 52
distutils.version (module), 58
docstring, 66
duck-typing, 66

E
EAFP, 66
environment variable

HOME, 53
PATH, 31
PLAT, 53

EXEC_PREFIX (in module distutils.sysconfig), 56
executable_filename() (distutils.ccompiler.CCompiler

method), 49
execute() (distutils.ccompiler.CCompiler method), 49
execute() (in module distutils.util), 53
expression, 67
Extension (class in distutils.core), 43
extension module, 67

F
fancy_getopt() (in module distutils.fancy_getopt), 55
FancyGetopt (class in distutils.fancy_getopt), 55
file object, 67
file-like object, 67
file_created() (built-in function), 27
finalize_options() (distutils.cmd.Command method), 59
find_library_file() (distutils.ccompiler.CCompiler

method), 46
finder, 67
floor division, 67
function, 67

G
garbage collection, 67
gen_lib_options() (in module distutils.ccompiler), 44
gen_preprocess_options() (in module distu-

tils.ccompiler), 45
generate_help() (distutils.fancy_getopt.FancyGetopt

method), 55

generator, 67
generator expression, 67
get_config_h_filename() (in module distu-

tils.sysconfig), 56
get_config_var() (in module distutils.sysconfig), 56
get_config_vars() (in module distutils.sysconfig), 56
get_default_compiler() (in module distutils.ccompiler),

45
get_makefile_filename() (in module distu-

tils.sysconfig), 56
get_option_order() (distutils.fancy_getopt.FancyGetopt

method), 55
get_platform() (in module distutils.util), 52
get_python_inc() (in module distutils.sysconfig), 56
get_python_lib() (in module distutils.sysconfig), 56
get_special_folder_path() (built-in function), 27
getopt() (distutils.fancy_getopt.FancyGetopt method),

55
GIL, 67
global interpreter lock, 67
grok_environment_error() (in module distutils.util), 53

H
has_function() (distutils.ccompiler.CCompiler

method), 46
hashable, 68
HOME, 53

I
IDLE, 68
immutable, 68
importer, 68
initialize_options() (distutils.cmd.Command method),

59
integer division, 68
interactive, 68
interpreted, 68
iterable, 68
iterator, 68

K
key function, 69
keyword argument, 69

L
lambda, 69
LBYL, 69
library_dir_option() (distutils.ccompiler.CCompiler

method), 46
library_filename() (distutils.ccompiler.CCompiler

method), 49
library_option() (distutils.ccompiler.CCompiler

method), 47
link() (distutils.ccompiler.CCompiler method), 48
link_executable() (distutils.ccompiler.CCompiler

method), 48
link_shared_lib() (distutils.ccompiler.CCompiler

method), 48

96 Index

Distributing Python Modules, Release 2.7.2

link_shared_object() (distutils.ccompiler.CCompiler
method), 48

list, 69
list comprehension, 69
loader, 69

M
make_archive() (in module distutils.archive_util), 50
make_tarball() (in module distutils.archive_util), 50
make_zipfile() (in module distutils.archive_util), 51
mapping, 69
metaclass, 69
method, 69
method resolution order, 70
mkpath() (distutils.ccompiler.CCompiler method), 49
mkpath() (in module distutils.dir_util), 51
move_file() (distutils.ccompiler.CCompiler method),

49
move_file() (in module distutils.file_util), 52
MRO, 70
mutable, 70

N
named tuple, 70
namespace, 70
nested scope, 70
new-style class, 70
new_compiler() (in module distutils.ccompiler), 45
newer() (in module distutils.dep_util), 51
newer_group() (in module distutils.dep_util), 51
newer_pairwise() (in module distutils.dep_util), 51

O
object, 70
object_filenames() (distutils.ccompiler.CCompiler

method), 49
open() (distutils.text_file.TextFile method), 58

P
PATH, 31
PLAT, 53
positional argument, 70
PREFIX (in module distutils.sysconfig), 56
preprocess() (distutils.ccompiler.CCompiler method),

48
Python 3000, 70
Python Enhancement Proposals

PEP 238, 67
PEP 301, 63
PEP 302, 67, 69
PEP 314, 42
PEP 343, 66

Pythonic, 70

R
readline() (distutils.text_file.TextFile method), 58
readlines() (distutils.text_file.TextFile method), 58
reference count, 70

remove_tree() (in module distutils.dir_util), 52
RFC

RFC 822, 54
rfc822_escape() (in module distutils.util), 54
run() (distutils.cmd.Command method), 59
run_setup() (in module distutils.core), 42
runtime_library_dir_option() (distu-

tils.ccompiler.CCompiler method), 47

S
sequence, 71
set_executables() (distutils.ccompiler.CCompiler

method), 47
set_include_dirs() (distutils.ccompiler.CCompiler

method), 45
set_libraries() (distutils.ccompiler.CCompiler method),

46
set_library_dirs() (distutils.ccompiler.CCompiler

method), 46
set_link_objects() (distutils.ccompiler.CCompiler

method), 46
set_python_build() (in module distutils.sysconfig), 57
set_runtime_library_dirs() (distu-

tils.ccompiler.CCompiler method), 46
setup() (in module distutils.core), 41
shared_object_filename() (distu-

tils.ccompiler.CCompiler method), 49
show_compilers() (in module distutils.ccompiler), 45
slice, 71
spawn() (distutils.ccompiler.CCompiler method), 49
special method, 71
split_quoted() (in module distutils.util), 53
statement, 71
strtobool() (in module distutils.util), 54
struct sequence, 71
sub_commands (distutils.cmd.Command attribute), 59
subst_vars() (in module distutils.util), 53

T
TextFile (class in distutils.text_file), 57
triple-quoted string, 71
type, 71

U
undefine_macro() (distutils.ccompiler.CCompiler

method), 46
unreadline() (distutils.text_file.TextFile method), 58

V
view, 71
virtual machine, 71

W
warn() (distutils.ccompiler.CCompiler method), 49
warn() (distutils.text_file.TextFile method), 58
wrap_text() (in module distutils.fancy_getopt), 55
write_file() (in module distutils.file_util), 52

Index 97

Distributing Python Modules, Release 2.7.2

Z
Zen of Python, 71

98 Index

	An Introduction to Distutils
	Concepts & Terminology
	A Simple Example
	General Python terminology
	Distutils-specific terminology

	Writing the Setup Script
	Listing whole packages
	Listing individual modules
	Describing extension modules
	Relationships between Distributions and Packages
	Installing Scripts
	Installing Package Data
	Installing Additional Files
	Additional meta-data
	Debugging the setup script

	Writing the Setup Configuration File
	Creating a Source Distribution
	Specifying the files to distribute
	Manifest-related options
	The MANIFEST.in template

	Creating Built Distributions
	Creating dumb built distributions
	Creating RPM packages
	Creating Windows Installers
	Cross-compiling on Windows
	Vista User Access Control (UAC)

	Registering with the Package Index
	The .pypirc file

	Uploading Packages to the Package Index
	PyPI package display

	Examples
	Pure Python distribution (by module)
	Pure Python distribution (by package)
	Single extension module

	Extending Distutils
	Integrating new commands
	Adding new distribution types

	Command Reference
	Installing modules: the install command family

	API Reference
	distutils.core — Core Distutils functionality
	distutils.ccompiler — CCompiler base class
	distutils.unixccompiler — Unix C Compiler
	distutils.msvccompiler — Microsoft Compiler
	distutils.bcppcompiler — Borland Compiler
	distutils.cygwincompiler — Cygwin Compiler
	distutils.emxccompiler — OS/2 EMX Compiler
	distutils.archive_util — Archiving utilities
	distutils.dep_util — Dependency checking
	distutils.dir_util — Directory tree operations
	distutils.file_util — Single file operations
	distutils.util — Miscellaneous other utility functions
	distutils.dist — The Distribution class
	distutils.extension — The Extension class
	distutils.debug — Distutils debug mode
	distutils.errors — Distutils exceptions
	distutils.fancy_getopt — Wrapper around the standard getopt module
	distutils.filelist — The FileList class
	distutils.log — Simple PEP 282-style logging
	distutils.spawn — Spawn a sub-process
	distutils.sysconfig — System configuration information
	distutils.text_file — The TextFile class
	distutils.version — Version number classes
	distutils.cmd — Abstract base class for Distutils commands
	Creating a new Distutils command
	distutils.command — Individual Distutils commands
	distutils.command.bdist — Build a binary installer
	distutils.command.bdist_packager — Abstract base class for packagers
	distutils.command.bdist_dumb — Build a ``dumb'' installer
	distutils.command.bdist_msi — Build a Microsoft Installer binary package
	distutils.command.bdist_rpm — Build a binary distribution as a Redhat RPM and SRPM
	distutils.command.bdist_wininst — Build a Windows installer
	distutils.command.sdist — Build a source distribution
	distutils.command.build — Build all files of a package
	distutils.command.build_clib — Build any C libraries in a package
	distutils.command.build_ext — Build any extensions in a package
	distutils.command.build_py — Build the .py/.pyc files of a package
	distutils.command.build_scripts — Build the scripts of a package
	distutils.command.clean — Clean a package build area
	distutils.command.config — Perform package configuration
	distutils.command.install — Install a package
	distutils.command.install_data — Install data files from a package
	distutils.command.install_headers — Install C/C++ header files from a package
	distutils.command.install_lib — Install library files from a package
	distutils.command.install_scripts — Install script files from a package
	distutils.command.register — Register a module with the Python Package Index
	distutils.command.check — Check the meta-data of a package

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Module Index
	Index

