
Section 24. Inter-Integrated Circuit
I 2C
™

24
HIGHLIGHTS
This section of the manual contains the following topics:

24.1 Overview.. 24-2
24.2 Control and Status Registers ... 24-4
24.3 I2C™ Bus Characteristics .. 24-26
24.4 Enabling I2C™ Operation .. 24-30
24.5 Communicating as a Master in a Single Master Environment 24-33
24.6 Communicating as a Master in a Multi-Master Environment 24-47
24.7 Communicating as a Slave.. 24-50
24.8 Connection Considerations for I2C Bus... 24-67
24.9 I2C™ Operation in Power-Save Modes and DEBUG modes 24-69
24.10 Effects of a Reset .. 24-70
24.11 Pin Configuration In I2C Mode... 24-70
24.12 Design Tips.. 24-71
24.13 Related Application Notes ... 24-72
24.14 Revision History... 24-73
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-1

PIC32MX Family Reference Manual
24.1 OVERVIEW
The Inter-Integrated Circuit (I2C™) module is a serial interface useful for communicating with
other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs,
display drivers, A/D converters, etc.

The I2C module can operate in any of the following I2C systems:

• As a slave device
• As a master device in a single master system (slave may also be active)
• As a master/slave device in a multi-master system (bus collision detection and arbitration

available)

The I2C module contains independent I2C master logic and I2C slave logic, each generating
interrupts based on their events. In multi-master systems, the software is simply partitioned into
master controller and slave controller.

When the I2C master logic is active, the slave logic also remains active, detecting the state of the
bus and potentially receiving messages from itself in a single master system or from other mas-
ters in a multi-master system. No messages are lost during multi-master bus arbitration.

In a multi-master system, bus collision conflicts with other masters in the system are detected
and reported to the application (BCOL Interrupt). The software can terminate, and then restart
the message transmission.

The I2C module contains a Baud Rate Generator (BRG). The I2C Baud Rate Generator does not
consume other timer resources in the device.

Key features of the I2C module include the following:

• Independent master and slave logic
• Multi-master support which prevents message losses in arbitration
• Detects 7-bit and 10-bit device addresses with configurable address masking in Slave

mode
• Detects general call addresses as defined in the I2C protocol
• Automatic SCLx clock stretching provides delays for the processor to respond to a slave

data request
• Supports 100 kHz and 400 kHz bus specifications
• Supports Strict I2C Reserved Address Rule

Figure 24-1 shows the I2C module block diagram.
DS61116D-page 24-2 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
Figure 24-1: I2C™ Block Diagram

I2CRSR

I2CxRCV

Internal
data bus

SCK

SDA

Shift

Match detect

I2CxADD

Start and
Stop bit detect

clock

Addr_Match

Clock
Stretching

I2CxTRN
LSB

Shift
clock

Write

Read

BRG Down Counter I2CxBRG

Reload
Control

PBCLK

Start, Restart,
Stop bit generate

Write

Read

Acknowledge
Generation

Collision
Detect

Write

Read

Write

ReadI2
C

xC
O

N

Write

ReadI2
C

xS
TA

T

co
nt

ro
l l

og
ic

Read

LSB

I2CADRMASK
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-3

PIC32MX Family Reference Manual
24.2 CONTROL AND STATUS REGISTERS

The PIC32MX I2C module consists of the following Special Function Registers (SFRs):

• I2CxCON: Control Register for the I2C Module

I2CxCONCLR, I2CxCONSET, I2CxCONINV: Atomic Bit Manipulation Write-only Registers for
I2CxCON

• I2CxSTAT: Status Register for the I2C Module

I2CxSTATCLR, I2CxSTATSET, I2CxSTATINV: Atomic Bit Manipulation Write-only Registers
for I2CxSTAT

• I2CxMSK: Address Mask Register (designates which bit positions in I2CxADD can be
ignored, which allows for multiple address support)

I2CxMSKCLR, I2CxMSKSET, I2CxMSKINV: Atomic Bit Manipulation Write-only Registers for
I2CxMSK

• I2CxRCV: Receive Buffer Register (read-only)
• I2CxTRN: Transmit Register (read/write)
• I2CxTRNCLR, I2CxTRNSET, I2CxTRNINV: Atomic Bit Manipulation Write-only Registers

for I2CxTRN
• I2CxADD: Address Register (holds the slave device address)
• I2CxADDCLR, I2CxADDSET, I2CxADDINV: Atomic Bit Manipulation Write-only Registers

for I2CxADD
• I2CxBRG: Baud Rate Generator Reload Register (holds the Baud Rate Generator reload

value for the I2C module Baud Rate Generator)
• I2CxBRGCLR, I2CxBRGSET, I2CxBRGINV: Atomic Bit Manipulation Write-only Registers

for I2CxBRG

Each I2C module also has the following associated bits for interrupt control:

• I2CxMIF: Master Interrupt Flag Status Bits – in IFC0, IFC1 INT Registers
• I2CxSIF: Slave Interrupt Flag Status Bits – in IFS0, IFS1 INT Registers
• I2CxBIF: Bus Collision Interrupt Flag Status Bits – in IFS0, IFS1 INT Registers
• I2CxMIE: Master Interrupt Enable Control Bits – in IEC0, IEC1 INT Registers
• I2CxSIE: Slave Interrupt Enable Control Bits – in IEC0, IEC1 INT Registers
• I2CxBIE: Bus Collision Interrupt Enable Control Bits – in IEC0, IEC1 INT Registers
• I2CxIP<2:0>: Interrupt Priority Control Bits – in IPC6, IPC8 INT Registers
• I2CxIS<1:0>: Interrupt Sub-Priority Control Bits – in IPC6, IPC8 INT Registers

Note: Each PIC32MX device variant may have one or more I2C modules. An ‘x’ used in
the names of pins, control/Status bits, and registers denotes the particular module.
Refer to the specific device data sheets for more details.
DS61116D-page 24-4 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
The following table summarizes all I2C-module-related registers. Corresponding registers
appear after the summary, followed by a detailed description of each register.

I2C™ SFR Summary

Name Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

I2CxCON 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN

7:0 GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN

I2CxCONCLR 31:0 Writes clear selected bits of I2CxCON, reads yield undefined value

I2CxCONSET 31:0 Writes set selected bits of I2CxCON, reads yield undefined value

I2CxCONINV 31:0 Writes invert selected bits of I2CxCON, reads yield undefined value

I2CxSTAT 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10

7:0 IWCOL I2COV D/A P S R/W RBF TBF

I2CxSTATCLR 31:0 Writes clear selected bits of I2CxSTAT, reads yield undefined value

I2CxSTATSET 31:0 Writes set selected bits of I2CxSTAT, reads yield undefined value

I2CxSTATINV 31:0 Writes invert selected bits of I2CxSTAT, reads yield undefined value

I2CxADD 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 — — — — — — ADD<9:8>

7:0 ADD<7:0>

I2CxADDCLR 31:0 Writes clear selected bits of I2CxADD, reads yield undefined value

I2CxADDSET 31:0 Writes set selected bits of I2CxADD, reads yield undefined value

I2CxADDINV 31:0 Writes invert selected bits of I2CxADD, reads yield undefined value

I2CxMSK 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 — — — — — — MSK<9:8>

7:0 MSK<7:0>

I2CxMSKCLR 31:0 Writes clear selected bits of I2CxMSK, reads yield undefined value

I2CxMSKSET 31:0 Writes set selected bits of I2CxMSK, reads yield undefined value

I2CxMSKINV 31:0 Writes invert selected bits of I2CxMSK, reads yield undefined value

I2CxBRG 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 — — — — I2CxBRG<11:8>

7:0 I2CxBRG<7:0>

I2CxBRGCLR 31:0 Writes clear selected bits of I2CxBRG, reads yield undefined value

I2CxBRGSET 31:0 Writes set selected bits of I2CxBRG, reads yield undefined value

I2CxBRGINV 31:0 Writes invert selected bits of I2CxBRG, reads yield undefined value

I2CxTRN 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 — — — — — — — —

7:0 I2CTxDATA<7:0>

I2CxTRNCLR 31:0 Writes clear selected bits of I2CxTRN, reads yield undefined value

I2CxTRNSET 31:0 Writes set selected bits of I2CxTRN, reads yield undefined value

I2CxTRNINV 31:0 Writes invert selected bits of I2CxTRN, reads yield undefined value
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-5

PIC32MX Family Reference Manual
I2CxRCV 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 — — — — — — — —

7:0 I2CRXDATA<7:0>

IFS0 31:24 I2C1MIF I2C1SIF I2C1BIF U1TXIF U1RXIF U1EIF SPI1RXIF SPI1TXIF

23:16 SPI1EIF OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF

15:8 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF

7:0 INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF

IFS1 31:24 — — — — — — USBIF FCEIF

23:16 — — — — DMA3IF DMA2IF DMA1IF DMA0IF

15:8 RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF U2TXIF U2RXIF U2EIF

7:0 SPI2RXIF SPI2TXIF SPI2EIF CMP2IF CMP1IF PMPIF AD1IF CNIF

IEC0 31:24 I2C1MIE I2C1SIE I2C1BIE U1TXIE U1RXIE U1EIE SPI1RXIE SPI1TXIE

23:16 SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE

15:8 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE

7:0 INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE

IEC1 31:24 — — — — — — USBIE FCEIE

23:16 — — — — DMA3IE DMA2IE DMA1IE DMA0IE

15:8 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE U2TXIE U2RXIE U2EIE

7:0 SPI2RXIE SPI2TXIE SPI2EIE CMP2IE CMP1IE PMPIE AD1IE CNIE

IPC6 31:24 — — — AD1IP<2:0> AD1IS<1:0>

23:16 — — — CNIP<2:0> CNIS<1:0>

15:8 — — — I2C1IP<2:0> I2C1IS<1:0>

7:0 — — — U1IP<2:0> U1IS<1:0>

IPC8 31:24 — — — RTCCIP<2:0> RTCCIS<1:0>

23:16 — — — FSCMIP<2:0> FSCMIS<1:0>

15:8 — — — I2C2IP<2:0> I2C2IS<1:0>

7:0 — — — U2IP<2:0> U2IS<1:0>

I2C™ SFR Summary (Continued)

Name Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0
DS61116D-page 24-6 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
Register 24-1: I2CXCON: I2C Control Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0
ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16 Reserved: Write ‘0’; ignore read
bit 15 ON: I2C Enable bit

1 = Enables the I2C module and configures the SDA and SCL pins as serial port pins
0 = Disables I2C module; all I2C pins are controlled by PORT functions

Note: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s
SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s
ON bit.

bit 14 FRZ: Freeze in DEBUG Mode Control bit (Read/Write only in DEBUG mode; otherwise read as ‘0’)
1 = Freeze module operation when in DEBUG mode
0 = Do not freeze module operation when in DEBUG mode

Note: FRZ is writable in Debug Exception mode only, it is forced to ‘0’ in normal mode.
bit 13 SIDL: Stop in IDLE Mode bit

1 = Discontinue module operation when device enters IDLE mode
0 = Continue module operation in IDLE mode

bit 12 SCLREL: SCL Release Control bit
In I2C Slave mode only
Module Reset and (ON = 0) sets SCLREL = 1
If STREN = 0:

1 = Release clock
0 = Force clock low (clock stretch)

Note: Automatically cleared to ‘0’ at beginning of slave transmission.

If STREN = 1:
1 = Release clock
0 = Holds clock low (clock stretch). User may program this bit to ‘0’ to force a clock stretch at the

next SCL low.

Note: Automatically cleared to ‘0’ at beginning of slave transmission; automatically cleared to ‘0’
at end of slave reception.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-7

PIC32MX Family Reference Manual
bit 11 STRICT: Strict I2C Reserved Address Rule Enable bit
1 = Strict reserved addressing is enforced. Device doesn’t respond to reserved address space or

generate addresses in reserved address space.
0 = Strict I2C Reserved Address Rule not enabled

bit 10 A10M: 10-bit Slave Address Flag bit
1 = I2CxADD is a 10-bit slave address
0 = I2CADD is a 7-bit slave address

bit 9 DISSLW: Slew Rate Control Disable bit
1 = Slew rate control disabled for Standard Speed mode (100 kHz); also disabled for 1 MHz mode
0 = Slew rate control enabled for High Speed mode (400 kHz)

bit 8 SMEN: SMBus Input Levels Disable bit
1 = Enable input logic so that thresholds are compliant with SMBus specification
0 = Disable SMBus specific inputs

bit 7 GCEN: General Call Enable bit
In I2C Slave mode only
1 = Enable interrupt when a general call address is received in I2CSR. Module is enabled for

reception.
0 = General call address disabled.

bit 6 STREN: SCL Clock Stretch Enable bit
In I2C Slave mode only; used in conjunction with SCLREL bit.
1 = Enable clock stretching
0 = Disable clock stretching

bit 5 ACKDT: Acknowledge Data bit
In I2C Master mode only; applicable during master receive. Value that will be transmitted when the
user initiates an Acknowledge sequence at the end of a receive.
1 = A NACK is sent
0 = ACK is sent

bit 4 ACKEN: Acknowledge Sequence Enable bit
In I2C Master mode only; applicable during master receive
1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit; cleared by

module
0 = Acknowledge sequence idle

bit 3 RCEN: Receive Enable bit
In I2C Master mode only
1 = Enables Receive mode for I2C, automatically cleared by module at end of 8-bit receive data byte
0 = Receive sequence not in progress

bit 2 PEN: Stop Condition Enable bit
In I2C Master mode only
1 = Initiate Stop condition on SDA and SCL pins; cleared by module
0 = Stop condition idle

bit 1 RSEN: Restart Condition Enable bit
In I2C Master mode only
1 = Initiate Restart condition on SDA and SCL pins; cleared by module
0 = Restart condition idle

bit 0 SEN: Start Condition Enable bit
In I2C Master mode only
1 = Initiate Start condition on SDA and SCL pins; cleared by module
0 = Start condition idle

Register 24-1: I2CXCON: I2C Control Register (Continued)
DS61116D-page 24-8 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24

Register 24-2: I2CxCONCLR: I2C ‘x’ Control Clear Register

Write clears selected bits in I2CxCON, read yields undefined value
bit 31 bit 0

bit 31-0 Clears selected bits in I2CxCON
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in I2CxCON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxCONCLR = 0x00008001 will clear bits 15 and 0 in I2CxCON register.

Register 24-3: I2CxCONSET: I2C ‘x’ Control Set Register

Write sets selected bits in I2CxCON, read yields undefined value
bit 31 bit 0

bit 31-0 Sets selected bits in I2CxCON
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in I2CxCON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxCONSET = 0x00008001 will set bits 15 and 0 in I2CxCON register.

Register 24-4: I2CxCONINV: I2C ‘x’ Control Invert Register

Write inverts selected bits in I2CxCON, read yields undefined value
bit 31 bit 0

bit 31-0 Inverts selected bits in I2CxCON
A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in I2CxCON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxCONINV = 0x00008001 will invert bits 15 and 0 in I2CxCON register.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-9

PIC32MX Family Reference Manual
Register 24-5: I2CXSTAT: I2C Status Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

R-0 R-0 r-x r-x r-x R/W-0 R-0 R-0
ACKSTAT TRSTAT — — — BCL GCSTAT ADD10

bit 15 bit 8

R/W-0 R/W-0 R-0 R/W-0 R/W-0 R-0 R-0 R-0
IWCOL I2COV D/A P S R/W RBF TBF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16 Reserved: Write ‘0’; ignore read
bit 15 ACKSTAT: Acknowledge Status bit

In both I2C Master and Slave modes; applicable to both transmit and receive.
1 = Acknowledge was not received
0 = Acknowledge was received

bit 14 TRSTAT: Transmit Status bit
In I2C Master mode only; applicable to Master Transmit mode.
1 = Master transmit is in progress (8 bits + ACK)
0 = Master transmit is not in progress

bit 13-11 Reserved: Write ‘0’; ignore read
bit 10 BCL: Master Bus Collision Detect bit

Cleared when the I2C module is disabled (ON = 0).
1 = A bus collision has been detected during a master operation
0 = No collision has been detected

bit 9 GCSTAT: General Call Status bit
Cleared after Stop detection.
1 = General call address was received
0 = General call address was not received

bit 8 ADD10: 10-bit Address Status bit
Cleared after Stop detection.
1 = 10-bit address was matched
0 = 10-bit address was not matched

bit 7 IWCOL: Write Collision Detect bit
1 = An attempt to write the I2CxTRN register collided because the I2C module is busy.

Must be cleared in software.
0 = No collision
DS61116D-page 24-10 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
bit 6 I2COV: I2C Receive Overflow Status bit
1 = A byte is received while the I2CxRCV register is still holding the previous byte.

I2COV is a “don’t care” in Transmit mode. Must be cleared in software.
0 = No overflow

bit 5 D/A: Data/Address bit
Valid only for Slave mode operation.
1 = Indicates that the last byte received or transmitted was data
0 = Indicates that the last byte received or transmitted was address

bit 4 P: Stop bit
Updated when Start, Reset or Stop detected; cleared when the I2C module is disabled (ON = 0).
1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last

bit 3 S: Start bit
Updated when Start, Reset or Stop detected; cleared when the I2C module is disabled (ON = 0).
1 = Indicates that a start (or restart) bit has been detected last
0 = Start bit was not detected last

bit 2 R/W: Read/Write Information bit
Valid only for Slave mode operation.
1 = Read – indicates data transfer is output from slave
0 = Write – indicates data transfer is input to slave

bit 1 RBF: Receive Buffer Full Status bit
1 = Receive complete; I2CxRCV is full
0 = Receive not complete; I2CxRCV is empty

bit 0 TBF: Transmit Buffer Full Status bit
1 = Transmit in progress; I2CxTRN is full (8-bits of data)
0 = Transmit complete; I2CxTRN is empty

Register 24-5: I2CXSTAT: I2C Status Register (Continued)
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-11

PIC32MX Family Reference Manual

Register 24-6: I2CxSTATCLR: I2C ‘x’ Status Clear Register

Write clears selected bits in I2CxSTAT, read yields undefined value
bit 31 bit 0

bit 31-0 Clears selected bits in I2CxSTAT
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in I2CxSTAT register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxSTATCLR = 0x00008001 will clear bits 15 and 0 in I2CxSTAT register.

Register 24-7: I2CxSTATSET: I2C ‘x’ Status Set Register

Write sets selected bits in I2CxSTAT, read yields undefined value
bit 31 bit 0

bit 31-0 Sets selected bits in I2CxSTAT
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in I2CxSTAT register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxSTATSET = 0x00008001 will set bits 15 and 0 in I2CxSTAT register.

Register 24-8: I2CxSTATINV: I2C ‘x’ Status Invert Register

Write inverts selected bits in I2CxSTAT, read yields undefined value
bit 31 bit 0

bit 31-0 Inverts selected bits in I2CxSTAT
A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in I2CxSTAT register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxSTATINV = 0x00008001 will invert bits 15 and 0 in I2CxSTAT register.
DS61116D-page 24-12 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
Register 24-9: I2CXADD: I2C Slave Address Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

r-x r-x r-x r-x r-x r-x R/W-0 R/W-0
— — — — — — ADD<9:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ADD<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-10 Reserved: Write ‘0’; ignore read
bit 9-0 ADD<9:0>: I2C Slave Device Address bits

Either Master or Slave mode
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-13

PIC32MX Family Reference Manual

Register 24-10: I2CxADDCLR: I2C ‘x’ Slave Address Clear Register

Write clears selected bits in I2CxADD, read yields undefined value
bit 31 bit 0

bit 31-0 Clears selected bits in I2CxADD
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in I2CxADD register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxADDCLR = 0x00008001 will clear bits 15 and 0 in I2CxADD register.

Register 24-11: I2CxADDSET: I2C ‘x’ Slave Address Set Register

Write sets selected bits in I2CxADD, read yields undefined value
bit 31 bit 0

bit 31-0 Sets selected bits in I2CxADD
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in I2CxADD register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxADDSET = 0x00008001 will set bits 15 and 0 in I2CxADD register.

Register 24-12: I2CxADDINV: I2C ‘x’ Slave Address Invert Register

Write inverts selected bits in I2CxADD, read yields undefined value
bit 31 bit 0

bit 31-0 Inverts selected bits in I2CxADD
A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in I2CxADD register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxADDINV = 0x00008001 will invert bits 15 and 0 in I2CxADD register.
DS61116D-page 24-14 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
Register 24-13: I2CXMSK: I2C Address Mask Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

r-x r-x r-x r-x r-x r-x R/W-0 R/W-0
— — — — — — MSK<9:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
MSK<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-10 Reserved: Write ‘0’; ignore read
bit 9-0 MSK<9:0>: I2C Address Mask bits

1 = Forces a “don’t care” in the particular bit position on the incoming address match sequence.
0 = Address bit position must match the incoming I2C address match sequence.

Note: MSK<9:8> and MSK<0> are only used in I2C 10-bit mode.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-15

PIC32MX Family Reference Manual

Register 24-14: I2CxMSKCLR: I2C ‘x’ Address Mask Clear Register

Write clears selected bits in I2CxMSK, read yields undefined value
bit 31 bit 0

bit 31-0 Clears selected bits in I2CxMSK
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in I2CxMSK register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxMSKCLR = 0x00008001 will clear bits 15 and 0 in I2CxMSK register.

Register 24-15: I2CxMSKSET: I2C ‘x’ Address Mask Set Register

Write sets selected bits in I2CxMSK, read yields undefined value
bit 31 bit 0

bit 31-0 Sets selected bits in I2CxMSK
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in I2CxMSK register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxMSKSET = 0x00008001 will set bits 15 and 0 in I2CxMSK register.

Register 24-16: I2CxMSKINV: I2C ‘x’ Address Mask Invert Register

Write inverts selected bits in I2CxMSK, read yields undefined value
bit 31 bit 0

bit 31-0 Inverts selected bits in I2CxMSK
A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in I2CxMSK register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxMSKINV = 0x00008001 will invert bits 15 and 0 in I2CxMSK register.
DS61116D-page 24-16 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
Register 24-17: I2CXBRG: I2C Baud Rate Generator Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

r-x r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0
— — — — I2CxBRG<11:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
I2CxBRG<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-12 Reserved: Write ‘0’; ignore read
bit 11-0 I2CxBRG<11:0>: I2C Baud Rate Generator Value bits

A divider function of the Peripheral Clock.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-17

PIC32MX Family Reference Manual

Register 24-18: I2CxBRGCLR: I2C ‘x’ Baud Rate Generator Clear Register

Write clears selected bits in I2CxBRG, read yields undefined value
bit 31 bit 0

bit 31-0 Clears selected bits in I2CxBRG
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in I2CxBRG register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxBRGCLR = 0x00008001 will clear bits 15 and 0 in I2CxBRG register.

Register 24-19: I2CxBRGSET: I2C ‘x’ Baud Rate Generator Set Register

Write sets selected bits in I2CxBRG, read yields undefined value
bit 31 bit 0

bit 31-0 Sets selected bits in I2CxBRG
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in I2CxBRG register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxBRGSET = 0x00008001 will set bits 15 and 0 in I2CxBRG register.

Register 24-20: I2CxBRGINV: I2C ‘x’ Baud Rate Generator Invert Register

Write inverts selected bits in I2CxBRG, read yields undefined value
bit 31 bit 0

bit 31-0 Inverts selected bits in I2CxBRG
A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in I2CxBRG register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxBRGINV = 0x00008001 will invert bits 15 and 0 in I2CxBRG register.
DS61116D-page 24-18 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
Register 24-21: I2CXTRN: I2C Transmit Data Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
I2CTXDATA<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-8 Reserved: Write ‘0’; ignore read
bit 7-0 I2CTXDATA<7:0>: I2C Transmit Data Buffer bits
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-19

PIC32MX Family Reference Manual

Register 24-22: I2CxTRNCLR: I2C ‘x’ Transmit Data Clear Register

Write clears selected bits in I2CxTRN, read yields undefined value
bit 31 bit 0

bit 31-0 Clears selected bits in I2CxTRN
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in I2CxTRN register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxTRNCLR = 0x00008001 will clear bits 15 and 0 in I2CxTRN register.

Register 24-23: I2CxTRNSET: I2C ‘x’ Transmit Data Set Register

Write sets selected bits in I2CxTRN, read yields undefined value
bit 31 bit 0

bit 31-0 Sets selected bits in I2CxTRN
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in I2CxTRN register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxTRNSET = 0x00008001 will set bits 15 and 0 in I2CxTRN register.

Register 24-24: I2CxTRNINV: I2C ‘x’ Transmit Data Invert Register

Write inverts selected bits in I2CxTRN, read yields undefined value
bit 31 bit 0

bit 31-0 Inverts selected bits in I2CxTRN
A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in I2CxTRN register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: I2CxTRNINV = 0x00008001 will invert bits 15 and 0 in I2CxTRN register.
DS61116D-page 24-20 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
Register 24-25: I2CxRCV: I2C Receive Data Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
I2CRXDATA<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-8 Reserved: Write ‘0’; ignore read
bit 7-0 I2CRXDATA<7:0>: I2C Receive Data Buffer bits
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-21

PIC32MX Family Reference Manual

Register 24-26: IFS0: Interrupt Flag Status Register 0(1)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
I2C1MIF I2C1SIF I2C1BIF U1TXIF U1RXIF U1EIF SPI1RXIF SPI1TXIF

bit 31 bit 24

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SPI1EIF OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RW-0 RW-0 RW-0
INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31 I2C1MIF: I2C Master Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = No interrupt request has a occurred

bit 30 I2C1SIF: I2C Slave Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = No interrupt request has a occurred

bit 29 I2C1BIF: I2C Bus Collision Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = No interrupt request has a occurred

Note 1: Shaded bit names in this Interrupt register control other PIC32MX peripherals and are not related to the
I2C™.
DS61116D-page 24-22 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
Register 24-27: IEC0: Interrupt Enable Control Register 0(1)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
I2C1MIE I2C1SIE I2C1BIE U1TXIE U1RXIE U1EIE SPI1RXIE SPI1TXIE

bit 31 bit 24

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31 I2C1MIE: I2C Master Interrupt Enable Control bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 30 I2C1SIE: I2C Slave Interrupt Enable Control bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 29 I2C1BIE: I2C Bus Collision Interrupt Enable Control bit
1 = Interrupt is enabled
0 = Interrupt is disabled

Note 1: Shaded bit names in this Interrupt register control other PIC32MX peripherals and are not related to the
I2C™.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-23

PIC32MX Family Reference Manual
Register 24-28: IPC6: Interrupt Priority Control Register 6(1)

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — AD1IP<2:0> AD1IS<1:0>

bit 31 bit 24

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — CNIP<2:0> CNIS<1:0>

bit 23 bit 16

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — I2C1IP<2:0> I2C1IS<1:0>

bit 15 bit 8

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — U1IP<2:0> U1IS<1:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 12-10 I2C1IP<2:0>: I2C 1 Interrupt Priority bits
111 = Interrupt Priority is 7
110 = Interrupt Priority is 6
101 = Interrupt Priority is 5
100 = Interrupt Priority is 4
011 = Interrupt Priority is 3
010 = Interrupt Priority is 2
001 = Interrupt Priority is 1
000 = Interrupt is disabled.

bit 9-8 I2C1IS<1:0>: I2C 1 Subpriority bits
11 = Interrupt Subpriority is 3
10 = Interrupt Subpriority is 2
01 = Interrupt Subpriority is 1
00 = Interrupt Subpriority is 0

Note 1: Shaded bit names in this Interrupt register control other PIC32MX peripherals and are not related to the
I2C™.
DS61116D-page 24-24 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
Register 24-29: IPC8: Interrupt Priority Control Register 8(1)

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — RTCCIP<2:0> RTCCIS<1:0>

bit 31 bit 24

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — FCSMIP<2:0> FCSMIS<1:0>

bit 23 bit 16

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — I2C2IP<2:0> I2C2IS<1:0>

bit 15 bit 8

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — U2IP<2:0> U2IS<1:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 12-10 I2C2IP<2:0>: I2C 2 Interrupt Priority bits
111 = Interrupt Priority is 7
110 = Interrupt Priority is 6
101 = Interrupt Priority is 5
100 = Interrupt Priority is 4
011 = Interrupt Priority is 3
010 = Interrupt Priority is 2
001 = Interrupt Priority is 1
000 = Interrupt is disabled

bit 9-8 I2C2IS<1:0>: I2C 2 Subpriority bits
11 = Interrupt Subpriority is 3
10 = Interrupt Subpriority is 2
01 = Interrupt Subpriority is 1
00 = Interrupt Subpriority is 0

Note 1: Shaded bit names in this Interrupt register control other PIC32MX peripherals and are not related to the
I2C™.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-25

PIC32MX Family Reference Manual
24.3 I2C™ BUS CHARACTERISTICS
The I2C bus is a two-wire serial interface. Figure 24-2 shows a schematic of an I2C connection
between a PIC32MX device and a 24LC256 I2C serial EEPROM, which is a typical example for
any I2C interface.

The interface employs a comprehensive protocol to ensure reliable transmission and reception
of data. When communicating, one device is the “master” which initiates transfer on the bus and
generates the clock signals to permit that transfer, while the other device(s) acts as the “slave”
responding to the transfer. The clock line, SCLx, is output from the master and input to the slave,
although occasionally the slave drives the SCLx line. The data line, SDAx, may be output and
input from both the master and slave.

Because the SDAx and SCLx lines are bidirectional, the output stages of the devices driving the
SDAx and SCLx lines must have an open drain in order to perform the wired AND function of the
bus. External pull-up resistors are used to ensure a high level when no device is pulling the line
down.

In the I2C interface protocol, each device has an address. When a master wishes to initiate a
data transfer, it first transmits the address of the device that it wishes to “talk” to. All devices “lis-
ten” to see if this is their address. Within this address, bit 0 specifies if the master wishes to read
from or write to the slave device. The master and slave are always in opposite modes of opera-
tion (transmitter/receiver) during a data transfer. That is, they can be thought of as operating in
either of the following two relations:

• Master-Transmitter and Slave-Receiver
• Slave-Transmitter and Master-Receiver

In both cases, the master originates the SCLx clock signal.

The following modes and features specified in the V2.1 I2C specifications are not supported:

• HS mode and switching between F/S modes and HS mode
• Start Byte
• CBUS Compatibility
• 2nd byte of General Call Address

Figure 24-2: Typical I2C Interconnection Block Diagram

SCLX

SDAX

PIC32MX

SDA

SCL

VDD VDD

2.4 kΩ 24LC256
(typical)

I2C™ Slave
Device
DS61116D-page 24-26 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.3.1 Bus Protocol
The following I2C bus protocol has been defined:

• Data transfer may be initiated only when the bus is not busy.
• During data transfer, the data line must remain stable whenever the SCLx clock line is high.

Changes in the data line while the SCLx clock line is high will be interpreted as a Start or
Stop condition.

Accordingly, the following bus conditions have been defined and are shown in Figure 24-3.

24.3.1.1 Start Data Transfer (S)

After a bus Idle state, a high-to-low transition of the SDAx line while the clock (SCLx) is high
determines a Start condition. All data transfers must be preceded by a Start condition.

24.3.1.2 Stop Data Transfer (P)

A low-to-high transition of the SDAx line while the clock (SCLx) is high determines a Stop
condition. All data transfers must end with a Stop condition.

24.3.1.3 Repeated Start (R)

After a wait state, a high-to-low transition of the SDAx line while the clock (SCLx) is high deter-
mines a Repeated Start condition. Repeated Starts allow a master to change bus direction of
addressed slave device without relinquishing control of the bus.

24.3.1.4 Data Valid (D)

The state of the SDAx line represents valid data when, after a Start condition, the SDAx line is
stable for the duration of the high period of the clock signal. There is one bit of data per SCLx
clock.

24.3.1.5 Acknowledge (A) or Not Acknowledge (N)

All data byte transmissions must be Acknowledged (ACK) or Not Acknowledged (NACK) by the
receiver. The receiver will pull the SDAx line low for an ACK or release the SDAx line for a NACK.
The Acknowledge is a one-bit period using one SCLx clock.

24.3.1.6 Wait/Data Invalid (Q)

The data on the line must be changed during the low period of the clock signal. Devices may also
stretch the clock low time by asserting a low on the SCLx line, causing a wait on the bus.

24.3.1.7 Bus Idle (I)

Both data and clock lines remain high at those times after a Stop condition and before a Start
condition.

Figure 24-3: I2C Bus Protocol States

Address
Valid

Data
Allowed

to Change

Stop
Condition

Start
Condition

SCLx

SDAx

(I) (S) (D) (A) or (N) (P) (I)

Data or

(Q)

ACK/NACK
Valid

NACK

ACK
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-27

PIC32MX Family Reference Manual
24.3.2 Message Protocol
A typical I2C message is shown in Figure 24-4. In this example, the message will read a specified
byte from a 24LC256 I2C serial EEPROM. The PIC32MX device will act as the master and the
24LC256 device will act as the slave.

Figure 24-4 indicates the data as driven by the master device and the data as driven by the slave
device, taking into account that the combined SDAx line is a wired AND of the master and slave
data. The master device controls and sequences the protocol. The slave device will only drive
the bus at specifically determined times.

Figure 24-4: A Typical I2C Message: Read of Serial EEPROM (Random Address Mode)

24.3.2.1 Start Message

Each message is initiated with a “Start” condition and terminated with a “Stop” condition. The
number of data bytes transferred between the Start and Stop conditions is determined by the
master device. As defined by the system protocol, the bytes of the message may have special
meaning, such as “device address byte” or “data byte”.

24.3.2.2 Address Slave

In Figure 24-4, the first byte is the device address byte, that must be the first part of any I2C mes-
sage. It contains a device address and a R/W bit. For additional information on address byte for-
mats, refer to Appendix A (check the Microchip web site, www.microchip.com, for availability).
Note that R/W = 0 for this first address byte, indicating that the master will be a transmitter and
the slave will be a receiver.

24.3.2.3 Slave Acknowledge

The receiving device is obliged to generate an Acknowledge signal, ACK, after the reception of
each byte. The master device must generate an extra SCLx clock which is associated with this
Acknowledge bit.

24.3.2.4 Master Transmit

The next two bytes, sent by the master to the slave, are data bytes containing the location of the
requested EEPROM data byte. The slave must Acknowledge each of the data bytes.

24.3.2.5 Repeated Start

At this point, the slave EEPROM has the address information necessary to return the requested
data byte to the master. However, the R/W bit from the first device address byte specified master
transmission and slave reception. The bus must be turned in the other direction for the slave to
send data to the master.

To perform this function without ending the message, the master sends a “Repeated Start”. The
Repeated Start is followed with a device address byte containing the same device address as
before and with the R/W = 1 to indicate slave transmission and master reception.

X

Bus

Master
SDAx

St
ar

t Address
Byte

EEPROM Address
High Byte

EEPROM Address
Low Byte

Address
Byte

Data
Byte

S 1 0 1 0 A A A 02 1 0 R 1 0 1 0 A A A 12 1 0 P

Slave
SDAx

Activity

N

AAAA

Output

Output

Id
le

R
/W

AC
K

AC
K

AC
K

R
es

ta
rt

R
/W

AC
K

N
AC

K
St

op
Id

le
DS61116D-page 24-28 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.3.2.6 Slave Reply

Now the slave transmits the data byte by driving the SDAx line, while the master continues to
originate clocks but releases its SDAx drive.

24.3.2.7 Master Acknowledge

During reads, a master must terminate data requests to the slave by Not Acknowledging (gener-
ating a “NACK”) on the last byte of the message. Data is acked for each byte, except for the last
byte.

24.3.2.8 Stop Message

The master sends a Stop to terminate the message and return the bus to an Idle state.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-29

PIC32MX Family Reference Manual
24.4 ENABLING I2C™ OPERATION
The module is enabled by setting the ON (I2CxCON<15>) bit.

The I2C module fully implements all master and slave functions. When the module is enabled,
the master and slave functions are active simultaneously and will respond according to the
software or bus events.

When initially enabled, the module will release the SDAx and SCLx pins, putting the bus into the
Idle state. The master functions will remain in the Idle state unless software sets a control bit to
initiate a master event. The slave functions will begin to monitor the bus. If the slave logic detects
a Start event and a valid address on the bus, the slave logic will begin a slave transaction.

24.4.1 Enabling I2C I/O
Two pins are used for bus operation. These are the SCLx pin, which is the clock, and the SDAx
pin, which is the data. When the module is enabled, assuming no other module with higher pri-
ority has control, the module will assume control of the SDAx and SCLx pins. The module soft-
ware need not be concerned with the state of the port I/O of the pins, the module overrides, the
port state and direction. At initialization, the pins are tri-state (released).

24.4.2 I2C Interrupts
The I2C module generates three interrupt signals: slave interrupt (I2CxSIF), master interrupt
(I2CxMIF) and bus collision interrupt (I2CxBIF). The slave interrupt, master interrupt and bus
collision interrupt signals are pulsed high for at least one PBCLK on the falling edge of the 9th
clock pulse of the SCL clock. These interrupts will set the corresponding interrupt flag bit and
will interrupt the CPU if the corresponding interrupt enable bit is set and the corresponding
interrupt priority is high enough.

Master mode operations that generate a master interrupt (I2CxMIF) are as follows:

1. Start Condition
- 1 BRG (Baud Rate Generator) time after falling edge of SDA

2. Repeated Start Sequence
- 1 BRG time after falling edge of SDA

3. Stop Condition
- 1 BRG time after the rising edge of SDA

4. Data transfer byte received
- 8th falling edge of SCL
(After receiving eight bits of data from slave)

5. During SEND ACK sequence
- 9th falling edge of SCL
(After sending ACK or NACK to slave)

6. Data transfer byte transmitted
- 9th falling edge of SCL
(Regardless of receiving ACK from slave)

7. During a slave-detected Stop
- When slave sets P bit
DS61116D-page 24-30 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
Slave mode operations that generate a slave interrupt (I2CxSIF) are as follows:

1. Detection of a valid device address (including general call)
- 9th falling edge of SCL
(After sending ACK to master. Address must match unless STRICT = 1 or GCEN = 1)

2. Reception of data
- 9th falling edge of SCL
(After sending the ACK to master)

3. Request to transmit data
- 9th falling edge of SCL
(Regardless of receiving ACK from master)

Bus Collision events that generate an interrupt (I2CxBIF) are as follows:

1. During Start sequence
- SDA sampled before start condition

2. During Start sequence
- SCL = 0 before SDA = 0

3. During Start sequence
- SDA = 0 before BRG time out

4. During a Repeated Start sequence
- If SDA is sampled 0 when SCL goes high

5. During a Repeated Start sequence
- If SCL goes low before SDA goes low

6. During a Stop sequence
- If SDA is sampled low after allowing it to float

7. During a Stop sequence
- If SCL goes low before SDA goes high

24.4.3 I2C Transmit and Receive Registers
I2CxTRN is the register to which transmit data is written. This register is used when the module
operates as a master transmitting data to the slave, or as a slave sending reply data to the mas-
ter. As the message progresses, the I2CxTRN register shifts out the individual bits. As a result,
the I2CxTRN may not be written to unless the bus is Idle.

Data being received by either the master or the slave is shifted into a non-accessible shift regis-
ter, I2CxRSR. When a complete byte is received, the byte transfers to the I2CxRCV register. In
receive operations, the I2CxRSR and I2CxRCV create a double-buffered receiver. This allows
reception of the next byte to begin before the current byte of received data is read.

If the module receives another complete byte before the software reads the previous byte from
the I2CxRCV register, a receiver overflow occurs and sets the I2COV bit (I2CxSTAT<6>). The
byte in the I2CxRSR is lost.

The I2CxADD register holds the slave device address. In 10-Bit Addressing mode, all bits are
relevant. In 7-Bit Addressing mode, only I2CxADD<6:0> are relevant. The A10M bit
(I2CxCON<10>) specifies the expected mode of the slave address. By using the I2CxMSK reg-
ister with the I2CxADD register in either Slave Addressing mode, one or more bit positions can
be removed from exact address matching, allowing the module in Slave mode to respond to
multiple addresses.

24.4.4 I2C Baud Rate Generator
The Baud Rate Generator used for I2C Master mode operation is used to set the SCL clock
frequency for 100 kHz, 400 kHz and 1 MHz. The Baud Rate Generator re-load value is contained
in the I2CxBRG register. The Baud Rate Generator will automatically begin counting on a write
to the I2CxTRN. Once the given operation is complete (i.e., transmission of the last data bit is
followed by ACK) the internal clock will automatically stop counting and the SCL pin will remain
in its last state.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-31

PIC32MX Family Reference Manual
24.4.5 Baud Rate Generator in I2C Master Mode
In I2C Master mode, the reload value for the BRG is located in the I2CxBRG register. When the
BRG is loaded with this value, the BRG counts down to zero and stops until another reload has
taken place. In I2C Master mode, the BRG is not reloaded automatically. If Clock Arbitration is
taking place, for instance, the BRG will be reloaded when the SCL pin is sampled high (see
Figure 24-6). Table 24-1 shows device frequency vs. I2CxBRG setting for standard baud rates.

To compute the Baud Rate Generator reload value, use the following equation:

Equation 24-1: Baud Rate Generator Reload Value Calculation

Figure 24-5: Baud Rate Generator Block Diagram

Figure 24-6: Baud Rate Generator Timing With Clock Arbitration

Note: I2CxBRG values of 0x0 and 0x1 are expressly forbidden. The user should never
program the I2CxBRG with a value of 0x0 or 0x1, as indeterminate results may
occur.

FSCK = (PBCLK) / ((I2CxBRG+2) * 2)

I2CBRG = (PBCLK / (2 *FSCK)) - 2

Table 24-1: I2C Clock Rate w/BRG
PBCLK I2CxBRG Approx. Fsck (2 roll-overs of BRG)

50 MHz 0x03C 400 kHz
50 MHz 0x0F8 100 kHz
40 MHz 0x030 400 kHz
40 MHz 0x0C6 100 kHz
30 MHz 0x023 400 kHz
30 MHz 0x094 100 kHz
20 MHz 0x017 400 kHz
20 MHz 0x062 100 kHz
10 MHz 0x00A 400 kHz
10 MHz 0x030 100 kHz

BRG Down CounterSCL_OUT

I2CxBRG<11:0>

SCL

Reload
Control

Reload

PBCLK

SDA

SCL

SCL de-asserted but slave holds

DX-1DX

BRG

SCL is sampled high, reload takes
place, and BRG starts its count.

03 02 01 00 (hold off) 03 02

Reload

BRG
Value

SCL low (clock arbitration)
SCL allowed to transition high

BRG counts
down

BRG counts
down

BRG counts
down

Tosc/2
DS61116D-page 24-32 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.5 COMMUNICATING AS A MASTER IN A SINGLE MASTER ENVIRONMENT
The I2C module’s typical operation in a system is using the I2C to communicate with an I2C
peripheral, such as an I2C serial memory. In an I2C system, the master controls the sequence of
all data communication on the bus. In this example, the PIC32MX and its I2C module have the
role of the single master in the system. As the single master, it is responsible for generating the
SCLx clock and controlling the message protocol.

In the I2C module, the module controls individual portions of the I2C message protocol; however,
sequencing of the components of the protocol to construct a complete message is a software
task.

For example, a typical operation in a single master environment may be to read a byte from an
I2C serial EEPROM. This example message is depicted in Figure 24-7.

To accomplish this message, the software will sequence through the following steps.

1. Turn on the module by setting ON bit (I2CxCON<15>) to ‘1’.
1. Assert a Start condition on SDAx and SCLx.
2. Send the I2C device address byte to the slave with a write indication.
3. Wait for and verify an Acknowledge from the slave.
4. Send the serial memory address high byte to the slave.
5. Wait for and verify an Acknowledge from the slave.
6. Send the serial memory address low byte to the slave.
7. Wait for and verify an Acknowledge from the slave.
8. Assert a Repeated Start condition on SDAx and SCLx.
9. Send the device address byte to the slave with a read indication.
10. Wait for and verify an Acknowledge from the slave.
11. Enable master reception to receive serial memory data.
12. Generate an ACK or NACK condition at the end of a received byte of data.
13. Generate a Stop condition on SDAx and SCLx.

Figure 24-7: Typical I2C Message: Read of Serial EEPROM (Random Address Mode)

The I2C module supports Master mode communication with the inclusion of Start and Stop
generators, data byte transmission, data byte reception, an Acknowledge generator and a Baud
Rate Generator. Generally, the software will write to a control register to start a particular step,
then wait for an interrupt or poll status to wait for completion.

Subsequent sections detail each of these operations.

Bus

Master
SDAx

St
ar

t Address
Byte

EEPROM Address
High Byte

EEPROM Address
Low Byte

Address
Byte

Data
Byte

S A A A 02 1 0 R 1 P

Slave
SDAx

Activity

N

AAAA

Output

Output

Id
le

R
/W

AC
K

AC
K

AC
K

R
es

ta
rt

R
/W

AC
K

N
AC

K
St

op
Id

le

A
3

A
4

A
5

A
6

A A A
2 1 0

A
3

A
4

A
5

A
6

Note: The I2C module does not allow queueing of events. For instance, the software is not
allowed to initiate a Start condition and then immediately write the I2CxTRN register
to initiate transmission before the Start condition is complete. In this case, the
I2CxTRN will not be written to and the IWCOL bit will be set, indicating that this write
to the I2CxTRN did not occur.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-33

PIC32MX Family Reference Manual
24.5.1 Generating Start Bus Event
To initiate a Start event, the software sets the Start Enable bit, SEN (I2CxCON<0>). Prior to set-
ting the Start bit, the software can check the P Status bit (I2CxSTAT<4>) to ensure that the bus
is in an Idle state.

Figure 24-8 shows the timing of the Start condition.

• Slave logic detects the Start condition, sets the S bit (I2CxSTAT<3>) and clears the P bit
(I2CxSTAT<4>).

• The SEN bit is automatically cleared at completion of the Start condition.
• I2CxMIF interrupt is generated at completion of the Start condition.
• After the Start condition, the SDAx line and SCLx line are left low (Q state).

24.5.1.1 IWCOL Status Flag

If the software writes the I2CxTRN when a Start sequence is in progress, then IWCOL is set and
the contents of the transmit buffer are unchanged (the write doesn’t occur).

Figure 24-8: Master Start Timing Diagram

Note: Because queueing of events is not allowed, writing to the lower 5 bits of I2CxCON
is disabled until the Start condition is complete.

SCLx (Master)

SDAx (Master)

S

SEN

I2CxMIF Interrupt

TBRG

1 2 3 4

1

TBRG
2

3

4

I2C™ Bus State (I) (Q)

P

(S)

Writing SEN = 1 initiates a master Start event.
Baud Rate Generator starts.
Baud Rate Generator times out. Master module drives SDAx low.
Baud Rate Generator restarts.
Slave module detects Start and sets S = 1 and P = 0.
Baud Rate Generator times out. Master module drives SCLx low,
generates interrupt and clears SEN.
DS61116D-page 24-34 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.5.2 Sending Data to a Slave Device
Figure 24-9 shows the timing diagram of master to slave transmission. Transmission of a data
byte, a 7-bit device address byte or the second byte of a 10-bit address is accomplished by
simply writing the appropriate value to the I2CxTRN register. Loading this register will start the
following process:

• The software loads the I2CxTRN with the data byte to transmit.
• Writing I2CxTRN sets the buffer full flag bit, TBF (I2CxSTAT<0>).
• The data byte is shifted out the SDAx pin until all 8 bits are transmitted. Each bit of

address/data will be shifted out onto the SDAx pin after the falling edge of SCLx.
• On the ninth SCLx clock, the module shifts in the ACK bit from the slave device and writes

its value into the ACKSTAT bit (I2CxSTAT<15>).
• The module generates the I2CxMIF interrupt at the end of the ninth SCLx clock cycle.

Note that the module does not generate or validate the data bytes. The contents and usage of
the bytes are dependent on the state of the message protocol maintained by the software.

24.5.2.1 Sending a 7-Bit Address to the Slave

Sending a 7-bit device address involves sending one byte to the slave. A 7-bit address byte must
contain the 7 bits of the I2C device address and a R/W bit that defines if the message will be a
write to the slave (master transmission and slave reception) or a read from the slave (slave trans-
mission and master reception).

24.5.2.2 Sending a 10-Bit Address to the Slave

Sending a 10-bit device address involves sending 2 bytes to the slave. The first byte contains
5 bits of the I2C device address reserved for 10-Bit Addressing modes and 2 bits of the 10-bit
address. Because the next byte, which contains the remaining 8 bits of the 10-bit address, must
be received by the slave, the R/W bit in the first byte must be ‘0’, indicating master transmission
and slave reception. If the message data is also directed toward the slave, the master can con-
tinue sending the data. However, if the master expects a reply from the slave, a Repeated Start
sequence with the R/W bit at ‘1’ will change the R/W state of the message to a read of the slave.

24.5.2.3 Receiving Acknowledge From the Slave

On the falling edge of the eighth SCLx clock, the TBF bit is cleared and the master will deassert
the SDAx pin, allowing the slave to respond with an Acknowledge. The master will then generate
a ninth SCLx clock.

This allows the slave device being addressed to respond with an ACK bit during the ninth bit time
if an address match occurs or data was received properly. A slave sends an Acknowledge when
it has recognized its device address (including a general call) or when the slave has properly
received its data.

The status of ACK is written into the Acknowledge Status bit, ACKSTAT (I2CxSTAT<15>), on the
falling edge of the ninth SCLx clock. After the ninth SCLx clock, the module generates the
I2CxMIF interrupt and enters an Idle state until the next data byte is loaded into I2CxTRN.

24.5.2.4 ACKSTAT Status Flag

The ACKSTAT bit (I2CxSTAT<15>) is updated in both Master and Slave modes on the 9th SCL
clock irrespective of Transmit or Receive modes. ACKSTAT is cleared when acknowledged
(ACK = 0 i.e.,SDA is 0 on the 9th clock pulse), and is set when not acknowledged (ACK = 1, i.e.,
SDA is 1 on the 9th clock pulse) by the peer.

24.5.2.5 TBF Status Flag

When transmitting, the TBF bit (I2CxSTAT<0>) is set when the CPU writes to I2CXTRN and is
cleared when all 8 bits are shifted out.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-35

PIC32MX Family Reference Manual
24.5.2.6 IWCOL Status Flag

If the software writes the I2CxTRN when a transmit is already in progress (i.e., the module is still
shifting out a data byte), then IWCOL is set and the contents of the buffer are unchanged (the
write doesn’t occur). IWCOL must be cleared in software.

Figure 24-9: Master Transmission Timing Diagram

Note: Because queueing of events is not allowed, writing to the lower 5 bits of I2CxCON
is disabled until the transmit condition is complete.

D7 D6 D5 D4 D3 D2 D1 D0

SCLx (Master)

SCLx (Slave)

SDAx (Master)

SDAx (Slave)

TBF

I2CxTRN

I2CxMIF Interrupt

TBRG TBRG

5 6 7 81 2 3 4

Writing the I2CxTRN register will start a master transmission event. TBF bit is set.1

Baud Rate Generator starts. The MSB of the I2CxTRN drives SDAx. SCLx remains low. TRSTAT bit is set.2

Baud Rate Generator times out. SCLx released. Baud Rate Generator restarts.3

Baud Rate Generator times out. SCLx driven low. After SCLx detected low, the next bit of I2CxTRN drives SDAx.4

While SCLx is low, the slave can also pull SCLx low to initiate a wait (clock stretch).5

Master has already released SCLx and slave can release to end wait. Baud Rate Generator restarts.6

At falling edge of 8th SCLx clock, master releases SDAx. TBF bit is cleared. Slave drives ACK/NACK.7

At falling edge of 9th SCLx clock, master generates interrupt. SCLx remains low until next event. 8
Slave releases SDAx. TRSTAT bit is clear.

I2C™ Bus State (Q) (D) (Q) (A) (Q)(D) (Q)

TRSTAT

ACKSTAT ACK = 0 ACK = 0
DS61116D-page 24-36 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.5.3 Receiving Data from a Slave Device
Figure 24-10 shows the timing diagram of master reception. The master can receive data from a
slave device after the master has transmitted the slave address with an R/W bit value of ‘1’. This
is enabled by setting the Receive Enable bit, RCEN (I2CxCON<3>). The master logic begins to
generate clocks, and before each falling edge of the SCLx, the SDAx line is sampled and data is
shifted into the I2CxRSR.

After the falling edge of the eighth SCLx clock, the following events occur:

• The RCEN bit is automatically cleared.
• The contents of the I2CxRSR transfer into the I2CxRCV.
• The RBF flag bit is set.
• The module generates the I2CxMIF interrupt.

When the CPU reads the buffer, the RBF flag bit is automatically cleared. The software can
process the data and then do an Acknowledge sequence.

24.5.3.1 RBF Status Flag

When receiving data, the RBF bit is set when a device address or data byte is loaded into
I2CxRCV from I2CxRSR. It is cleared when software reads the I2CxRCV register.

24.5.3.2 I2COV Status Flag

If another byte is received in the I2CxRSR while the RBF bit remains set and the previous byte
remains in the I2CxRCV register, the I2COV bit is set and the data in the I2CxRSR is lost.

Leaving I2COV set does not inhibit further reception. If RBF is cleared by reading the I2CxRCV
and the I2CxRSR receives another byte, that byte will be transferred to the I2CxRCV.

24.5.3.3 IWCOL Status Flag

If the software writes the I2CxTRN when a receive is already in progress (i.e., I2CxRSR is still
shifting in a data byte), then the IWCOL bit is set and the contents of the buffer are unchanged
(the write doesn’t occur).

Note: The lower 5 bits of I2CxCON must be ‘0’ before attempting to set the RCEN bit. This
ensures the master logic is inactive.

Note: Since queueing of events is not allowed, writing to the lower 5 bits of I2CxCON is
disabled until the data reception condition is complete.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-37

PIC32MX Family Reference Manual
Figure 24-10: Master Reception Timing Diagram

D7 D6 D5 D4 D3 D2 D1 D0

SCLx (Master)

SCLx (Slave)

SDAx (Slave)

SDAx (Master)

RBF

I2C™ Bus State

I2CxMIF Interrupt

TBRG

5 62 3 4

Writing the RCEN bit will start a master reception event. The Baud Rate Generator starts. SCLx remains low.2

Baud Rate Generator times out. Master attempts to release SCLx. 3

When slave releases SCLx, Baud Rate Generator restarts.4

Baud Rate Generator times out. MSB of response shifted to I2CxRSR. SCLx driven low for next baud interval. 5

At falling edge of 8th SCLx clock, I2CxRSR transferred to I2CxRCV. Module clears RCEN bit. 6

TBRG

RCEN

(D) (Q) (Q)(D)(Q)

I2CxRCV

RBF bit is set. Master generates interrupt.

(Q)

1

Typically, the slave can pull SCLx low (clock stretch) to request a wait to prepare data response. 1
The slave will drive the MSB of the data response on SDAx when ready.

(Q)
DS61116D-page 24-38 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.5.4 Acknowledge Generation
Setting the Acknowledge Enable bit, ACKEN (I2CxCON<4>), enables generation of a master
Acknowledge sequence.

Figure 24-11 shows an ACK sequence and Figure 24-12 shows a NACK sequence. The Acknowl-
edge Data bit, ACKDT (I2CxCON<5>), specifies ACK or NACK.

After two baud periods, the ACKEN bit is automatically cleared and the module generates the
I2CxMIF interrupt.

24.5.4.1 IWCOL Status Flag

If the software writes the I2CxTRN when an Acknowledge sequence is in progress, then IWCOL
is set and the contents of the buffer are unchanged (the write doesn’t occur).

Figure 24-11: Master Acknowledge (ACK) Timing Diagram

Figure 24-12: Master Not Acknowledge (NACK) Timing Diagram

Note: The lower 5 bits of I2CxCON must be ‘0’ (master logic inactive) before attempting to
set the ACKEN bit.

Note: Because queueing of events is not allowed, writing to the lower 5 bits of I2CxCON
is disabled until the Acknowledge condition is complete.

SCLx (Master)

SDAx (Master)

ACKEN

I2CxMIF Interrupt

TBRG

1 2 3

 Writing ACKEN = 1 initiates a master Acknowledge event.
1

TBRG

Writing ACKDT = 0 specifies sending an ACK.

When SCLx detected low, module drives SDAx low. 2

Baud Rate Generator times out. Module releases SCLx.3

Baud Rate Generator times out. 4

I2C™ Bus State (A) (Q)(Q)

4

Baud Rate Generator restarts.

Baud Rate Generator starts. SCLx remains low.

Module drives SCLx low, then releases SDAx.
Module clears ACKEN. Master generates interrupt.

(Q)

ACKDT = 0

SCLx (Master)

SDAx (Master)

ACKEN

I2CxMIF Interrupt

TBRG

1 2 3

Writing ACKEN = 1 initiates a master Acknowledge event.
1

TBRG

Writing ACKDT = 1 specifies sending a NACK.

When SCLx detected low, module releases SDAx.2

Baud Rate Generator times out. Module releases SCLx.3

Baud Rate Generator times out. 4

I2C™ Bus State (A) (I)(Q)

4

Baud Rate Generator restarts.

Baud Rate Generator starts.

Module drives SCLx low, then releases SDAx.
Module clears ACKEN. Master generates interrupt.

ACKDT = 1
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-39

PIC32MX Family Reference Manual
24.5.5 Generating Stop Bus Event
Setting the Stop Enable bit, PEN (I2CxCON<2>), enables generation of a master Stop sequence.

When the PEN bit is set, the master generates the Stop sequence as shown in Figure 24-13.

• The slave detects the Stop condition, sets the P bit (I2CxSTAT<4>) and clears the S bit
(I2CxSTAT<3>).

• The PEN bit is automatically cleared.
• The module generates the I2CxMIF interrupt.

24.5.5.1 IWCOL Status Flag

If the software writes the I2CxTRN when a Stop sequence is in progress, then the IWCOL bit is
set and the contents of the buffer are unchanged (the write doesn’t occur).

Figure 24-13: Master Stop Timing Diagram

Note: The lower 5 bits of I2CxCON must be ‘0’ (master logic inactive) before attempting to
set the PEN bit.

Note: Because queueing of events is not allowed, writing to the lower 5 bits of I2CxCON
is disabled until the Stop condition is complete.

SCLx (Master)

SDAx (Master)

S

PEN

I2CxMIF Interrupt

TBRG

1 2 3 5

Writing PEN = 1 initiates a master Stop event. 1

TBRG

Baud Rate Generator starts. Module drives SDAx low.

Baud Rate Generator times out. Module releases SCLx. 2
Baud Rate Generator restarts.

Baud Rate Generator times out. Module releases SDAx.3

Slave logic detects Stop. Module sets P = 1, S = 0.4

I2C™ Bus State (I)

P

TBRG

(Q)

4

Baud Rate Generator restarts.

The Baud Rate Generator times out. Module clears PEN. 5
Master generates interrupt.

(Q) (P)
DS61116D-page 24-40 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.5.6 Generating Repeated Start Bus Event
Setting the Repeated Start Enable bit, RSEN (I2CxCON<1>), enables generation of a master
Repeated Start sequence (see Figure 24-14).

To generate a Repeated Start condition, software sets the RSEN bit (I2CxCON<1>). The module
asserts the SCLx pin low. When the module samples the SCLx pin low, the module releases the
SDAx pin for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out
and the module samples SDAx high, the module deasserts the SCLx pin. When the module sam-
ples the SCLx pin high, the Baud Rate Generator reloads and begins counting. SDAx and SCLx
must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin
low for one TBRG while SCLx is high.

The following is the Repeated Start sequence:

• The slave detects the Start condition, sets the S bit (I2CxSTAT<3>) and clears the P bit
(I2CxSTAT<4>).

• The RSEN bit is automatically cleared.
• The module generates the I2CxMIF interrupt.

24.5.6.1 IWCOL Status Flag

If the software writes the I2CxTRN when a Repeated Start sequence is in progress, then IWCOL
is set and the contents of the buffer are unchanged (the write doesn’t occur).

Figure 24-14: Master Repeated Start Timing Diagram

Note: The lower 5 bits of I2CxCON must be ‘0’ (master logic inactive) before attempting to
set the RSEN bit.

Note: Because queueing of events is not allowed, writing of the lower 5 bits of I2CxCON
is disabled until the Repeated Start condition is complete.

SCLx (Master)

SDAx (Master)

S

RSEN

I2CxMIF Interrupt

TBRG

1 2 3 5

Writing RSEN = 1 initiates a master Repeated Start event. 1

TBRG

Baud Rate Generator starts. Module drives SCLx low and

Baud Rate Generator times out. Module releases SCLx. 2
Baud Rate Generator restarts.

Baud Rate Generator times out. Module drives SDAx low.3

Slave logic detects Start. Module sets S = 1 and P = 0.4

I2C™ Bus State (Q)

P

TBRG

(Q)

4

Baud Rate Generator restarts.

The Baud Rate Generator times out. Module drives SCLx low.5
Module clears RSEN. Master generates interrupt.

(Q) releases SDAx.(S)
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-41

PIC32MX Family Reference Manual
24.5.7 Building Complete Master Messages
As described at the beginning of Section 24.5 “Communicating as a Master in a Single
Master Environment”, the software is responsible for constructing messages with the correct
message protocol. The module controls individual portions of the I2C message protocol; how-
ever, sequencing of the components of the protocol to construct a complete message is a soft-
ware task.

The software can use polling or interrupt methods while using the module. The examples shown
use interrupts.

The software can use the SEN, RSEN, PEN, RCEN and ACKEN bits (Least Significant 5 bits of
the I2CxCON register) and the TRSTAT bit as “state” flags when progressing through a message.
For example, Table 24-2 shows some example state numbers associated with bus states.

The software will begin a message by issuing a START command. The software will record the
state number corresponding to the Start.

As each event completes and generates an interrupt, the interrupt handler may check the state
number. So, for a Start state, the interrupt handler will confirm execution of the Start sequence
and then start a master transmission event to send the I2C device address, changing the state
number to correspond to the master transmission.

On the next interrupt, the interrupt handler will again check the state, determining that a master
transmission just completed. The interrupt handler will confirm successful transmission of the
data, then move on to the next event, depending on the contents of the message. In this manner,
on each interrupt, the interrupt handler will progress through the message protocol until the
complete message is sent.

Figure 24-15 provides a more detailed examination of the same message sequence shown in
Figure 24-7. Figure 24-16 shows some simple examples of messages using 7-bit addressing
format. Figure 24-17 shows an example of a 10-bit addressing format message sending data
to a slave. Figure 24-18 shows an example of a 10-bit addressing format message receiving
data from a slave.

Table 24-2: Master Message Protocol States
Example

State Number I2CxCON<4:0> TRSTAT
(I2CxSTAT<14>) State

0 00000 0 Bus Idle or Wait
1 00001 N/A Sending Start Event
2 00000 1 Master Transmitting
3 00010 N/A Sending Repeated Start Event
4 00100 N/A Sending Stop Event
5 01000 N/A Master Reception
6 10000 N/A Master Acknowledgement

Note: Example state numbers are for reference only. User software may assign state
numbers as desired.
DS61116D-page 24-42 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated C
ircuits

©
 2008 M

icrochip Technology Inc.
Prelim

inary
D

S
61116D

-page 24-43

Fig

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

9

N

8 9

ster transmission. The data is a re-send of

eption. On interrupt, the software reads

ledge event. ACKDT = 0 to send NACK.

 event.

, but with R/W bit set, indicating a read.

RBF flag.
I2C™

24

ure 24-15: Master Message (Typical I2C Message: Read of Serial EEPROM)

1 Setting the SEN bit starts a Start event.

ACKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

I2CxMIF

ACKSTAT

1 2 3 4 5 6 7 8

A1 A0

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

A1
1

A1
0

A9 A8

1 2 3 4 5 6 7 8 9

W1 1

RSEN

1 2 3 4 5 6 7 8 9

1 32

9

AAA

4 5 7

2 Writing the I2CxTRN register starts a master transmission. The data is the serial

3 Writing the I2CxTRN register starts a master transmission. The data is the first

4 -

5

Writing the I2CxTRN register starts a ma6

Setting the RCEN bit starts a master rec7

9

Setting the ACKEN bit starts an Acknow

Setting the PEN bit starts a master Stop

EEPROM device address byte, with R/W clear, indicating a write.

byte of the EEPROM data address.

the serial EEPROM device address byte

the I2CxRCV register, which clears the

0 0 A2 A7 A6 A5 A4 A2 A1 A0 A1 A0 R1 10 0 A20 0 0 0

6

Writing the I2CxTRN register starts a master transmission. The data is the second
byte of the EEPROM data address.

8

Setting the RSEN bit starts a Repeated Start event.

(Master)

(Master)

(Slave)

(Slave)

A3

I2CxMIF cleared by user software.

PIC
32M

X Fam
ily R

eference M
anual

D
S

61116D
-page 24-44

Prelim
inary

©
 2008 M

icrochip Technology Inc.

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

9

N

97 8

 master transmission. The data is the

 reception.

nowledge event. ACKDT = 0 to send NACK.

top event.
Figure 24-16: Master Message (7-Bit Address: Transmission And Reception)

1 Setting the SEN bit starts a Start event.

ACKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

I2CxMIF

ACKSTAT

1 2 3 4 5 6 7 8

A2 A1

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D7 D6 D5 D4 D3 D2 D1 D0

1 2 3 4 5 6 7 8 9

W

RSEN

1 32

9

A

4 5 6

2 Writing the I2CxTRN register starts a master transmission. The data is the

3 Writing the I2CxTRN register starts a master transmission. The data is the

4 Setting the PEN bit starts a master Stop event.

5 Setting the SEN bit starts a Start event.

6 Writing the I2CxTRN register starts a

7 Setting the RCEN bit starts a master

8 Setting the ACKEN bit starts an Ack

Setting the PEN bit starts a master S

address byte with R/W bit clear.

message byte.

A7 A6 A5 A4 A3

A

A2 A1 RA7 A6 A5 A4 A3

address byte with R/W bit set.

9

(Master)

(Master)

(Slave)

(Slave)

I2CxMIF cleared by user software.

Section 24. Inter-Integrated C
ircuits

©
 2008 M

icrochip Technology Inc.
Prelim

inary
D

S
61116D

-page 24-45

Fig

2 3 4 5 6 7 8 9

7

 event.

D3 D2 D1 D07 D6 D5 D4

A

aster transmission. The data is the second

aster transmission. The data is the third
I2C™

24

ure 24-17: Master Message (10-Bit Transmission)

1 Setting the SEN bit starts a Start event.

ACKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

I2CxMIF

ACKSTAT

1 2 3 4 5 6 7 8

A9 A8

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4A7 A6 A5 A4 A3 A2 A1 A0

1 2 3 4 5 6 7 8 9

W01 1 1 1

RSEN

1 2 3 4 5 6 7 8 9

1 32

9

A

1

AA

4 5 6

2 Writing the I2CxTRN register starts a master transmission. The data is the first

3 Writing the I2CxTRN register starts a master transmission. The data is the second

4 Writing the I2CxTRN register starts a master transmission. The data is the first

Setting the PEN bit starts a master Stop

byte of the address.

byte of the address.

byte of the message data.

DD3 D2 D1 D0D7 D6 D5 D4

5 Writing the I2CxTRN register starts a m
byte of the message data.

6 Writing the I2CxTRN register starts a m
byte of the message data.

7

(Master)

(Master)

(Slave)

(Slave)

I2CxMIF cleared by user software.

PIC
32M

X Fam
ily R

eference M
anual

D
S

61116D
-page 24-46

Prelim
inary

©
 2008 M

icrochip Technology Inc.

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

9

N

8 9 10

 reception. On interrupt, the software reads

nowledge event. ACKDT = 1 to send ACK.

 reception.

nowledge event. ACKDT = 0 to send NACK.

top event.

he RBF flag.
Figure 24-18: Master Message (10-Bit Reception)

1 Setting the SEN bit starts a Start event.

ACKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

I2CxMIF

ACKSTAT

1 2 3 4 5 6 7 8

A9 A8

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

A7 A6 A5 A4 A3 A2 A1 A0

1 2 3 4 5 6 7 8 9

W01 1 1 1

RSEN

A9 A801 1 1 1 R

1 2 3 4 5 6 7 8 9

1 32

9

A

AA

4 5 6 7

2 Writing the I2CxTRN register starts a master transmission. The data is the first

3 Writing the I2CxTRN register starts a master transmission. The data is the second

4 Setting the RSEN bit starts a master Restart event.
5 Writing the I2CxTRN register starts a master transmission. The data is a re-send

6 Setting the RCEN bit starts a master

7 Setting the ACKEN bit starts an Ack

8 Setting the RCEN bit starts a master

9 Setting the ACKEN bit starts an Ack

Setting the PEN bit starts a master S

byte of the address with the R/W bit cleared.

byte of the address.

of the first byte with the R/W bit set.

the I2CxRCV register, which clears t

(Slave)

(Slave)

(Master)

(Master)

I2CxMIF cleared in user software.

10

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.6 COMMUNICATING AS A MASTER IN A MULTI-MASTER ENVIRONMENT
The I2C protocol allows for more than one master to be attached to a system bus. Taking into
account that a master can initiate message transactions and generate clocks for the bus, the pro-
tocol has methods to account for situations where more than one master is attempting to control
the bus. Clock synchronization ensures that multiple nodes can synchronize their SCLx clocks
to result in one common clock on the SCLx line. Bus arbitration ensures that if more than one
node attempts a message transaction, one node, and only one node, will be successful in com-
pleting the message. The other nodes will lose bus arbitration and be left with a bus collision.

24.6.1 Multi-Master Operation
The master module has no special settings to enable multi-master operation. The module per-
forms clock synchronization and bus arbitration at all times. If the module is used in a single mas-
ter environment, clock synchronization will only occur between the master and slaves, and bus
arbitration will not occur.

24.6.2 Master Clock Synchronization
In a multi-master system, different masters may have different baud rates. Clock synchronization
will ensure that when these masters are attempting to arbitrate the bus, their clocks will be coor-
dinated.

Clock synchronization occurs when the master deasserts the SCLx pin (SCLx intended to float
high). When the SCLx pin is released, the BRG is suspended from counting until the SCLx pin is
actually sampled high. When the SCLx pin is sampled high, the BRG is reloaded with the con-
tents of I2CxBR<11:0> and begins counting. This ensures that the SCLx high time will always be
at least one BRG rollover count in the event that the clock is held low by an external device, as
shown in Figure 24-19.

Figure 24-19: Baud Rate Generator Timing with Clock Synchronization

SCLx (Slave)

The baud counter decrements twice per TCY. On rollover, the master SCLx will transition.1

1

000 003001002003

SCLx (Master)

001002003000Baud Counter

SDAx (Master)

3 4 6

The slave has pulled SCLx low to initiate a wait.2

At what would be the master baud counter rollover, detecting SCLx low holds counter.3

Logic samples SCLx once per TCY. Logic detects SCLx high.4

2

The baud counter rollover occurs on next cycle.5

5

On next rollover, the master SCLx will transition.6

TBRG TBRG

TCY

000
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-47

PIC32MX Family Reference Manual
24.6.3 Bus Arbitration and Bus Collision
Bus arbitration supports multi-master system operation.

The wired AND nature of the SDAx line permits arbitration. Arbitration takes place when the first
master outputs a ‘1’ on SDAx by letting SDAx float high and simultaneously, the second master
outputs a ‘0’ on SDAx by pulling SDAx low. The SDAx signal will go low. In this case, the second
master has won bus arbitration. The first master has lost bus arbitration and thus, has a bus
collision.

For the first master, the expected data on SDAx is a ‘1’, yet the data sampled on SDAx is a ‘0’.
This is the definition of a bus collision.

The first master will set the Bus Collision bit, BCL (I2CxSTAT<10>), and generate a bus collision
interrupt. The master module will reset the I2C port to its Idle state.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level
is the expected output level. This check is performed by the master module, with the result placed
in the BCL bit.

The states where arbitration can be lost are:

• A Start condition
• A Repeated Start condition
• Address, Data or Acknowledge bit
• A Stop condition

24.6.4 Detecting Bus Collisions and Re-sending Messages
When a bus collision occurs, the module sets the BCL bit and generates a bus collision interrupt.
If bus collision occurs during a byte transmission, the transmission is halted, the TBF flag is
cleared and the SDAx and SCLx pins are deasserted. If bus collision occurs during a Start,
Repeated Start, Stop or Acknowledge condition, the condition is aborted, the respective control
bits in the I2CxCON register are cleared and the SDAx and SCLx lines are deasserted.

The software is expecting an interrupt at the completion of the master event. The software can
check the BCL bit to determine if the master event completed successfully or a collision occurred.
If a collision occurs, the software must abort sending the rest of the pending message and pre-
pare to re-send the entire message sequence, beginning with the Start condition, after the bus
returns to an Idle state. The software can monitor the S and P bits to wait for an Idle bus. When
the software services the bus collision Interrupt Service Routine and the I2C bus is free, the
software can resume communication by asserting a Start condition.

24.6.5 Bus Collision During a Start Condition
Before issuing a Start command, the software should verify an Idle state of the bus using the S
and P Status bits. Two masters may attempt to initiate a message at a similar point in time. Typ-
ically, the masters will synchronize clocks and continue arbitration into the message until one
loses arbitration. However, certain conditions can cause a bus collision to occur during a Start.
In this case, the master that loses arbitration during the Start bit generates a bus collision
interrupt.

24.6.6 Bus Collision During a Repeated Start Condition
Should two masters not collide throughout an address byte, a bus collision may occur when one
master attempts to assert a Repeated Start while another transmits data. In this case, the master
generating the Repeated Start will lose arbitration and generate a bus collision interrupt.
DS61116D-page 24-48 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.6.7 Bus Collision During Message Bit Transmission
The most typical case of data collision occurs while the master is attempting to transmit the
device address byte, a data byte or an Acknowledge bit.

If the software is properly checking the bus state, it is unlikely that a bus collision will occur on a
Start condition. However, because another master can, at a very similar time, check the bus and
initiate its own Start condition, it is likely that SDAx arbitration will occur and synchronize the Start
of two masters. In this condition, both masters will begin and continue to transmit their messages
until one master loses arbitration on a message bit. Remember that the SCLx clock synchroni-
zation will keep the two masters synchronized until one loses arbitration. Figure 24-20 shows an
example of message bit arbitration.

Figure 24-20: Bus Collision During Message Bit Transmission

24.6.8 Bus Collision During a Stop Condition
If the master software loses track of the state of the I2C bus, there are conditions which cause a
bus collision during a Stop condition. In this case, the master generating the Stop condition will
lose arbitration and generate a bus collision interrupt.

SCLx (Master)

SDAx (Master)

TBF

TBRG

1 2 3

Master transmits bit value of ‘1’ in next SCLx clock.1
TBRG

Module releases SDAx.

Another master on bus transmits bit value of ‘0’ 2
in next SCLx clock. Another master pulls SDAx low.

Baud Rate Generator times out. Module attempts to verify3

I2C™ Bus State

BCL

(D)

SCLx (Bus)

SDAx (Bus)

SDAx high. Bus collision detected.
Module releases SDAx, SCLx. Module sets BCL bit and
clears TBF bit. Master generates interrupt.

(D)(Q)(Q) (Q)

I2CxMIF Interrupt
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-49

PIC32MX Family Reference Manual
24.7 COMMUNICATING AS A SLAVE
In some systems, particularly where multiple processors communicate with each other, the
PIC32MX device may communicate as a slave (see Figure 24-21). When the module is enabled,
the slave module is active. The slave may not initiate a message, it can only respond to a mes-
sage sequence initiated by a master. The master requests a response from a particular slave as
defined by the device address byte in the I2C protocol. The slave module replies to the master
at the appropriate times as defined by the protocol.

As with the master module, sequencing the components of the protocol for the reply is a software
task. However, the slave module detects when the device address matches the address
specified by the software for that slave.

Figure 24-21: A Typical Slave I2C Message: Multiprocessor Command/Status

After a Start condition, the slave module will receive and check the device address. The slave
may specify either a 7-bit address or a 10-bit address. When a device address is matched, the
module will generate an interrupt to notify the software that its device is selected. Based on the
R/W bit sent by the master, the slave will either receive or transmit data. If the slave is to receive
data, the slave module automatically generates the Acknowledge (ACK), loads the I2CxRCV
register with the received value currently in the I2CxRSR register and notifies the software
through an interrupt. If the slave is to transmit data, the software must load the I2CxTRN register.

24.7.1 Sampling Receive Data
All incoming bits are sampled with the rising edge of the clock (SCLx) line.

24.7.2 Detecting Start and Stop Conditions
The slave module will detect Start and Stop conditions on the bus and indicate that status on the
S bit (I2CxSTAT<3>) and P bit (I2CxSTAT<4>). The Start (S) and Stop (P) bits are cleared when
a Reset occurs or when the module is disabled. After detection of a Start or Repeated Start event,
the S bit is set and the P bit is cleared. After detection of a Stop event, the P bit is set and the S
bit is clear.

24.7.3 Detecting the Address
Once the module has been enabled, the slave module waits for a Start condition to occur. After
a Start, depending on the A10M bit (I2CxCON<10>), the slave will attempt to detect a 7-bit or
10-bit address. The slave module will compare one received byte for a 7-bit address or two
received bytes for a 10-bit address. A 7-bit address also contains an R/W bit that specifies the
direction of data transfer after the address. If R/W = 0, a write is specified and the slave will
receive data from the master. If R/W = 1, a read is specified and the slave will send data to the
master. The 10-bit address contains an R/W bit; however, by definition, it is always R/W = 0
because the slave must receive the second byte of the 10-bit address.

Bus

Master
SDAx

St
ar

t

First
Address Address

Byte

S 1 1 1 0 A A 09 8 R P

Slave
SDAx

Activity

N

AAAA

Output

Output

R
/W

AC
K

AC
K

AC
K

R
es

ta
rt

R
/W

AC
K

N
AC

K
St

op

1

Byte

Second
Address

Byte

A A
7 6

A A
5 4

A A
3 2

A A
1 0

Command
Data
Byte

1 1 1 0 A A 19 81

Status
Data
Byte

10-Bit
Address

R

DS61116D-page 24-50 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.7.3.1 Slave Address Masking

The I2CxMSK register masks address bit positions, designating them as “don’t care” bits for both
10-Bit and 7-Bit Addressing modes. When a bit in the I2CxMSK register is set (= 1), it means
“don’t care”. The slave module will respond when the bit in the corresponding location of the
address is a ‘0’ or ‘1’. For example, in 7-Bit Slave mode with I2CxMSK = 0110000, the module
will Acknowledge addresses ‘0010000’ and ‘0100000’ as valid.

24.7.3.2 Limitations of Address Mask

By default, the device will respond or generate addresses in the reserved address space with
the address mask enabled (see Table 24-3 for the reserved address spaces). When using the
address mask and the STRICT (I2CxCON<11>) bit is cleared, reserved addresses may be
acknowledged. If the user wants to enforce the reserved address space, the STRICT bit must
be set to a ‘1’. Once the bit is set, the device will not acknowledge reserved addresses regard-
less of the address mask settings.

24.7.3.3 7-BIT ADDRESS and SLAVE WRITE

Following the Start condition, the module shifts 8 bits into the I2CxRSR register (see
Figure 24-22). The value of register I2CxRSR<7:1> is evaluated against that of the
I2CxADD<6:0> and I2CxMSK<6:0> registers on the falling edge of the eighth clock (SCLx). If the
address is valid (i.e., an exact match between unmasked bit positions), the following events
occur:

1. An ACK is generated.
2. The D/A and R/W bits are cleared.
3. The module generates the I2CxSIF interrupt on the falling edge of the ninth SCLx clock.
4. The module will wait for the master to send data.

Figure 24-22: Slave Write 7-Bit Address Detection Timing Diagram

24.7.3.4 7-Bit Address and Slave Read

When a slave read is specified by having R/W = 1 in a 7-bit address byte, the process of detecting
the device address is similar to that for a slave write (see Figure 24-23). If the addresses match,
the following events occur:

1. An ACK is generated.
2. The D/A bit is cleared and the R/W bit is set.
3. The module generates the I2CxSIF interrupt on the falling edge of the ninth SCLx clock.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

I2CxSIF Interrupt

3 41 2

Detecting Start bit enables1

I2C™ Bus State (D) (D) (A)(D)

A5A6A7 A4 A3 A2 A1

D/A

ADD10

SCLREL

R/W

address detection.

R/W = 0 indicates that slave 2
receives data bytes.

Valid address of first byte clears 3
D/A bit. Slave generates ACK.

R/W bit cleared. Slave generates 4
interrupt.

5

Bus waiting. Slave ready to 5
receive data.

R/W = 0

(S) (Q)
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-51

PIC32MX Family Reference Manual
Since the slave module is expected to reply with data at this point, it is necessary to suspend the
operation of the I2C bus to allow the software to prepare a response. This is done automatically
when the module clears the SCLREL bit. With SCLREL low, the slave module will pull down the
SCLx clock line, causing a wait on the I2C bus. The slave module and the I2C bus will remain in
this state until the software writes the I2CxTRN register with the response data and sets the
SCLREL bit.

Figure 24-23: Slave Read 7-Bit Address Detection Timing Diagram

Note: SCLREL will automatically clear after detection of a slave read address, regardless
of the state of the STREN bit.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

I2CxSIF Interrupt

3 41 2

Detecting Start bit enables1

I2C™ Bus State (D) (D) (A)(D)

A5A6A7 A4 A3 A2 A1

D/A

ADD10

SCLREL

R/W

address detection.

R/W = 1 indicates that slave 2
sends data bytes.

Valid address of first byte clears 3
D/A bit. Slave generates ACK.

R/W bit set. Slave generates 4
interrupt. SCLREL cleared.

5

Bus waiting. Slave prepares to 5
send data.

SCLx (Slave)

Slave pulls SCLx low while
SCLREL = 0.

(S) (Q)

R/W = 1
DS61116D-page 24-52 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.7.3.5 10-bit Addressing Mode

Figure 24-24 shows the sequence of address bytes on the bus in 10-bit Address mode. In this
mode, the slave must receive two device address bytes (see Figure 24-25). The five Most
Significant bits (MSbs) of the first address byte specify a 10-bit address. The R/W bit of the
address must specify a write, causing the slave device to receive the second address byte. For
a 10-bit address, the first byte would equal ‘11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two
MSbs of the address.

The I2CxMSK register can mask any bit position in a 10-bit address. The two MSbs of I2CxMSK
are used to mask the MSbs of the incoming address received in the first byte. The remaining byte
of the register is then used to mask the lower byte of the address received in the second byte.

Following the Start condition, the module shifts eight bits into the I2CxRSR register. The value of
the I2CxRSR<2:1> bits are evaluated against the value of the I2CxADD<9:8> and
I2CxMSK<9:8> bits, while the value of the I2CxRSR<7:3> bits are compared to ‘11110’.
Address evaluation occurs on the falling edge of the eighth clock (SCLx). For the address to be
valid, I2CxRSR<7:3> must equal ‘11110’, while I2CxRSR<2:1> must exactly match any
unmasked bits in I2CxADD<9:8>. (If both bits are masked, a match is not needed.) If the address
is valid, the following events occur:

1. An ACK is generated.
2. The D/A and R/W bits are cleared.
3. The module generates the I2CxSIF interrupt on the falling edge of the ninth SCLx clock.

The module does generate an interrupt after the reception of the first byte of a 10-bit address;
however, this interrupt is of little use.

The module will continue to receive the second byte into I2CxRSR. This time, the I2CxRSR<7:0>
bits are evaluated against the I2CADD<7:0> and I2CxMSK<7:0> bits. If the lower byte of the
address is valid as previously described, the following events occur:

1. An ACK is generated.
2. The ADD10 bit is set.
3. The module generates the I2CxSIF interrupt on the falling edge of the ninth SCLx clock.
4. The module will wait for the master to send data or initiate a Repeated Start condition.

Figure 24-24: 10-bit Address Sequence

Note: Following a Repeated Start condition in 10-Bit Addressing mode, the slave module
only matches the first 7-bit address, ‘11110 A9 A8 0’.

s 1 1 1 1 0 A9 A8 R/WACKA7 A6 A5 A4 A3 A2 A1 A0 ACK

= 0 for write
sent by slave
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-53

PIC32MX Family Reference Manual
Figure 24-25: 10-Bit Address Detection Timing Diagram

SCLx (Master)

SDAx (Master)

SDAx (Slave)

I2CxSIF Interrupt

2 4 51 3

Detecting Start bit enables address detection.1

Address match of first byte clears D/A bit and causes slave logic to generate ACK.2

Reception of first byte clears R/W bit. Slave logic generates interrupt.3

Address match of first and second byte sets ADD10 and causes slave logic to generate ACK.4

Reception of second byte completes 10-bit address. Slave logic generates interrupt.5

I2C™ Bus State (D) (D) (A)(D)

111 1 0 A9 A8
R/W = 0

D/A

ADD10

SCLREL

A5A6A7 A4 A3 A2 A1 A0

R/W

(D) (D) (A)(D)

6

Bus waiting. Slave ready to receive data.5

(S) (Q)
DS61116D-page 24-54 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.7.3.6 General Call Operation

The addressing procedure for the I2C bus is such that the first byte (or first two bytes in case of
10-bit Addressing mode) after a Start condition usually determines which slave device the master
is addressing. The exception is the general call address, which can address all devices. When
this address is used, all enabled devices should respond with an Acknowledge. The general call
address is one of eight addresses reserved for specific purposes by the I2C protocol. It consists
of all zeros with R/W = 0. The general call is always a slave write operation.

The general call address is recognized when the General Call Enable bit, GCEN (I2CxCON<7>),
is set (see Figure 24-26). Following a Start bit detect, eight bits are shifted into the I2CxRSR and
the address is compared against the I2CxADD and the general call address.

If the general call address matches, the following events occur:

1. An ACK is generated.
2. Slave module will set the GCSTAT bit (I2CxSTAT<9>).
3. The D/A and R/W bits are cleared.
4. The module generates the I2CxSIF interrupt on the falling edge of the ninth SCLx clock.
5. The I2CxRSR is transferred to the I2CxRCV and the RBF flag bit is set (during the eighth

bit).
6. The module will wait for the master to send data.

When the interrupt is serviced, the cause for the interrupt can be checked by reading the contents
of the GCSTAT bit to determine if the device address was device specific or a general call
address.

Note that general call addresses are 7-bit addresses. If configuring the slave module for 10-bit
addresses and the A10M and GCEN bits are set, the slave module will continue to detect the
7-bit general call address.

Figure 24-26: General Call Address Detection Timing Diagram (GCEN = 1)

SCLx (Master)

SDAx (Master)

SDAx (Slave)

I2CxSIF Interrupt

3 41 2

Detecting Start bit enables1

I2C™ Bus State (D) (D) (A)(D)

000 0 0 0 0

D/A

I2CRCV

RBF

R/W

address detection.

All ‘0’s and R/W = 0 indicates2
general call.

Valid address clears D/A bit3
and sets GCSTAT.

R/W bit cleared. Slave generates 4
interrupt.

5

Bus waiting. Slave ready to 5
receive data.

GCSTAT

Slave generates ACK.
Address loaded into I2CxRCV.

R/W = 0

(S) (Q)
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-55

PIC32MX Family Reference Manual
24.7.3.7 STRICT ADDRESS SUPPORT

When the STRICT (I2CxCON<11>) control bit is set, it enables the module to enforce all reserved
addressing and will not acknowledge any addresses if they fall within the reserved address table.

24.7.3.8 When an Address is Invalid

If a 7-bit address does not match the contents of I2CxADD<6:0>, the slave module will return to
an Idle state and ignore all bus activity until after the Stop condition.

If the first byte of a 10-bit address does not match the contents of I2CxADD<9:8>, the slave mod-
ule will return to an Idle state and ignore all bus activity until after the Stop condition.

If the first byte of a 10-bit address matches the contents of I2CxADD<9:8> but the second byte
of the 10-bit address does not match I2CxADD<7:0>, the slave module will return to an Idle state
and ignore all bus activity until after the Stop condition.

24.7.3.9 Addresses Reserved From Masking

Even when enabled, there are several addresses that are excluded in hardware from masking.
For these addresses, an Acknowledge will not be issued independent of the mask setting. These
addresses are listed in Table .

Table 24-3: Reserved I2C Bus Addresses(1)

7-Bit Address Mode:

Slave Address R/W Bit Description

0000 000 0 General Call Address(1)

0000 000 1 Start Byte
0000 001 x CBUS Address
0000 010 x Reserved
0000 011 x Reserved
0000 1xx x HS Mode Master Code
1111 1xx x Reserved
1111 0xx x 10-Bit Slave Upper Byte(2)

Note 1: Address will be Acknowledged only if GCEN = 1.
2: Match on this address can only occur as the upper byte in the 10-Bit Addressing mode.
DS61116D-page 24-56 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.7.4 Receiving Data From a Master Device
When the R/W bit of the device address byte is zero and an address match occurs, the R/W bit
(I2CxSTAT<2>) is cleared. The slave module enters a state waiting for data to be sent by the
master. After the device address byte, the contents of the data byte are defined by the system
protocol and are only received by the slave module.

The slave module shifts eight bits into the I2CxRSR register. On the falling edge of the eighth
clock (SCLx), the following events occur:

1. The module begins to generate an ACK or NACK.
2. The RBF bit is set to indicate received data.
3. The I2CxRSR byte is transferred to the I2CxRCV register for access by the software.
4. The D/A bit is set.
5. A slave interrupt is generated. Software may check the status of the I2CxSTAT register to

determine the cause of the event and then clear the I2CxSIF flag.
6. The module will wait for the next data byte.

24.7.4.1 Acknowledge Generation

Normally, the slave module will Acknowledge all received bytes by sending an ACK on the ninth
SCLx clock. If the receive buffer is overrun, the slave module does not generate this ACK. Over-
run is indicated if either (or both):

1. The buffer full bit, RBF (I2CxSTAT<1>), was set before the transfer was received.
2. The overflow bit, I2COV (I2CxSTAT<6>), was set before the transfer was received.

Table 24-4 shows what happens when a data transfer byte is received, given the status of the
RBF and I2COV bits. If the RBF bit is already set when the slave module attempts to transfer to
the I2CxRCV, the transfer does not occur but the interrupt is generated and the I2COV bit is set.
If both the RBF and I2COV bits are set, the slave module acts similarly. The shaded cells show
the condition where software did not properly clear the overflow condition.

Reading the I2CxRCV clears the RBF bit. The I2COV is cleared by writing to a ‘0’ through
software.

24.7.4.2 Wait States During Slave Receptions

When the slave module receives a data byte, the master can potentially begin sending the next
byte immediately. This allows the software controlling the slave module nine SCLx clock periods
to process the previously received byte. If this is not enough time, the slave software may want
to generate a bus wait period.

The STREN bit (I2CxCON<6>) enables a bus wait to occur on slave receptions. When STREN = 1
at the falling edge of the 9th SCLx clock of a received byte, the slave module clears the SCLREL
bit. Clearing the SCLREL bit causes the slave module to pull the SCLx line low, initiating a wait.
The SCLx clock of the master and slave will synchronize, as shown in Section 24.6.2 “Master
Clock Synchronization”.

When the software is ready to resume reception, the software sets SCLREL. This causes the
slave module to release the SCLx line, and the master resumes clocking.

Table 24-4: Data Transfer Received Byte Actions
Status Bits as Data

Byte Received Transfer I2CxRSR
to I2CxRCV

Generate
ACK

Generate I2CxSIF
Interrupt (interrupt
occurs if enabled)

Set
RBF

Set
I2COV

RBF I2COV

0 0 Yes Yes Yes Yes No change
1 0 No No Yes No change Yes
1 1 No No Yes No change Yes
0 1 Yes No Yes Yes No change

Legend: Shaded cells show state where the software did not properly clear the overflow condition.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-57

PIC32MX Family Reference Manual
24.7.4.3 Example Messages of Slave Reception

Receiving a slave message is a rather automatic process. The software handling the slave pro-
tocol uses the slave interrupt to synchronize to the events.

When the slave detects the valid address, the associated interrupt will notify the software to
expect a message. On receive data, as each byte transfers to the I2CxRCV register, an interrupt
notifies the software to unload the buffer.

Figure 24-27 shows a simple receive message. Because it is a 7-bit address message, only one
interrupt occurs for the address bytes. Then, interrupts occur for each of four data bytes. At an
interrupt, the software may monitor the RBF, D/A and R/W bits to determine the condition of the
byte received.

Figure 24-28 shows a similar message using a 10-bit address. In this case, two bytes are
required for the address.

Figure 24-29 shows a case where the software does not respond to the received byte and the
buffer overruns. On reception of the second byte, the module will automatically NACK the master
transmission. Generally, this causes the master to re-send the previous byte. The I2COV bit indi-
cates that the buffer has overrun. The I2CxRCV buffer retains the contents of the first byte. On
reception of the third byte, the buffer is still full, and again, the module will NACK the master. After
this, the software finally reads the buffer. Reading the buffer will clear the RBF bit, however, the
I2COV bit remains set. The software must clear the I2COV bit. The next received byte will be
moved to the I2CxRCV buffer and the module will respond with an ACK.

Figure 24-30 highlights clock stretching while receiving data. Note in the previous examples,
STREN = 0, which disables clock stretching on receive messages. In this example, the software
sets STREN to enable clock stretching. When STREN = 1, the module will automatically clock
stretch after each received data byte, allowing the software more time to move the data from the
buffer. Note that if RBF = 1 at the falling edge of the 9th clock, the module will automatically clear
the SCLREL bit and pull the SCLx bus line low. As shown with the second received data byte, if
the software can read the buffer and clear the RBF before the falling edge of the 9th clock, the
clock stretching will not occur. The software can also suspend the bus at any time. By clearing
the SCLREL bit, the module will pull the SCLx line low after it detects the bus SCLx low. The
SCLx line will remain low, suspending transactions on the bus until the SCLREL bit is set.
DS61116D-page 24-58 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated C
ircuits

©
 2008 M

icrochip Technology Inc.
Prelim

inary
D

S
61116D

-page 24-59

Fig 0)

3 5

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

4 4

D0
I2C™

24

ure 24-27: Slave Message (Write Data to Slave: 7-Bit Address; Address Matches; A10M = 0; GCEN = 0; STRICT =

1 Slave recognizes Start event; S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

I2CxSIF

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

1 32

A

4 3 3

2 Slave receives address byte. Address matches. Slave Acknowledges

3 Next received byte is message data. Byte moved to I2CxRCV register sets RBF.

4 Software reads I2CxRCV register. RBF bit clears.

5 Slave recognizes Stop event; S and P bits set/clear accordingly.

Slave generates interrupt. Slave Acknowledges reception.

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

SCLREL

4

 and generates interrupt. Address byte is moved to I2CxRCV register and must be read by user software to prevent buffer overflow.

D0D0D0W

I2CxSIF cleared by user software.

ACKSTAT

PIC
32M

X Fam
ily R

eference M
anual

D
S

61116D
-page 24-60

Prelim
inary

©
 2008 M

icrochip Technology Inc.

CT = 0)

4 6

yte moved to I2CxRCV register sets RBF.

 bit clears.

 bits set/clear accordingly.

terrupt.

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

5 5

D0
Figure 24-28: Slave Message (Write Data to Slave: 10-Bit Address; Address Matches; A10M = 1; GCEN = 0; STRI

1 Slave recognizes Start event; S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

I2CxSIF

STREN

1 2 3 4 5 6 7 8

A9 A8

9

A

A7 A6 A5 A4 A3 A2 A1

1 2 3 4 5 6 7 8 9

1 32

A

4 4

2 Slave receives address byte. High-order address matches.

3 Slave receives address byte. Low-order address matches.

4 Next received byte is message data. B

5 Software reads I2CxRCV register. RBF

6 Slave recognizes Stop event; S and P

Slave Acknowledges and generates interrupt. Address byte not

Slave Acknowledges and generates in

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

SCLREL

5

1 1 1 1 0

Slave Acknowledges and generates interrupt. Address byte not

moved to I2CxRCV register.

moved to I2CxRCV register.

A0 D0W D0

I2CxSIF cleared by user software.

ACKSTAT

Section 24. Inter-Integrated C
ircuits

©
 2008 M

icrochip Technology Inc.
Prelim

inary
D

S
61116D

-page 24-61

Fig

2

ter. RBF bit clears.

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

5 5

A

6

 I2CxRCV read by software.

n.
Slave generates interrupt.

D0
I2C™

24

ure 24-29: Slave Message (Write Data to Slave: 7-Bit Address; Buffer Overrun; A10M = 0; GCEN = 0; STRICT = 0)

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

I2CxSIF

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

21

A

3 4

1 Slave receives address byte. Address matches. Slave generates interrupt.

2 Next received byte is message data. Byte moved to I2CxRCV register sets RBF.
6 Software reads I2CxRCV regis

7 Software clears I2COV bit.

Address byte not moved to I2CxRCV register.

Slave generates interrupt. Slave Acknowledges reception.

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

N

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

SCLREL

3 Next byte received before I2CxRCV read by software. I2CxRCV register unchanged.
I2COV overflow bit set. Slave generates interrupt. Slave sends NACK for reception.

N

4 Next byte also received before

 Slave sends NACK for receptio
I2CxRCV register unchanged.

D0 D0W D0

I2CxSIF cleared by user software.

ACKSTAT

PIC
32M

X Fam
ily R

eference M
anual

D
S

61116D
-page 24-62

Prelim
inary

©
 2008 M

icrochip Technology Inc.

; STRICT = 0)

8 3

 clock.

use RBF = 0 at this time.

D7 D6 D5 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

9 5

D4

e a clock hold. Module must detect SCLx low

e a clock hold.

D0
Figure 24-30: Slave Message (Write Data to Slave: 7-Bit Address; Clock Stretching Enabled; A10M = 0; GCEN = 0

1 Software sets the STREN bit to enable clock stretching.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxTRN

TBF

I2CRCV

RBF

I2CxSIF

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

32

A

5 3

2 Slave receives address byte.

3 Next received byte is message data. Byte moved to I2CxRCV register sets RBF.

6 Software sets SCLREL bit to release

7 Slave does not clear SCLREL beca

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

SCLREL

54 6 71

4 Because RBF = 1 at 9th clock, automatic clock stretch begins.
Slave clears SCLREL bit. Slave pulls SCLx line low to stretch clock.

5 Software reads I2CxRCV register. RBF bit clears.

8 Software may clear SCLREL to caus

9 Software may set SCLREL to releas

before asserting SCLx low.

D0W D0

ACKSTAT

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.7.5 Sending Data to a Master Device
When the R/W bit of the incoming device address byte is ‘1’ and an address match occurs, the
R/W bit (I2CxSTAT<2>) is set. At this point, the master device is expecting the slave to respond
by sending a byte of data. The contents of the byte are defined by the system protocol and are
only transmitted by the slave module.

When the interrupt from the address detection occurs, the software can write a byte to the
I2CxTRN register to start the data transmission.

The slave module sets the TBF bit. The eight data bits are shifted out on the falling edge of the
SCLx input. This ensures that the SDAx signal is valid during the SCLx high time. When all eight
bits have been shifted out, the TBF bit will be cleared.

The slave module detects the Acknowledge from the master-receiver on the rising edge of the
ninth SCLx clock.

If the SDAx line is low, indicating an Acknowledge (ACK), the master is expecting more data and
the message is not complete. The module generates a slave interrupt to signal more data is
requested.

A slave interrupt is generated on the falling edge of the ninth SCLx clock. Software must check
the status of the I2CxSTAT register and clear the I2CxSIF flag.

If the SDAx line is high, indicating a Not Acknowledge (NACK), then the data transfer is complete.
The slave module resets and does not generate an interrupt. The slave module will wait for
detection of the next Start bit.

24.7.5.1 Wait States During Slave Transmissions

During a slave transmission message, the master expects return data immediately after detec-
tion of the valid address with R/W = 1. Because of this, the slave module will automatically gen-
erate a bus wait whenever the slave returns data.

The automatic wait occurs at the falling edge of the 9th SCLx clock of a valid device address byte
or transmitted byte Acknowledged by the master, indicating expectation of more transmit data.

The slave module clears the SCLREL bit. Clearing the SCLREL bit causes the slave module to
pull the SCLx line low, initiating a wait. The SCLx clock of the master and slave will synchronize
as shown in Section 24.6.2 “Master Clock Synchronization”.

When the software loads the I2CxTRN and is ready to resume transmission, the software sets
SCLREL. This causes the slave module to release the SCLx line and the master resumes clock-
ing.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-63

PIC32MX Family Reference Manual
24.7.5.2 Example Messages of Slave Transmission

Slave transmissions for 7-bit address messages are shown in Figure 24-31. When the address
matches and the R/W bit of the address indicates a slave transmission, the module will automat-
ically initiate clock stretching by clearing the SCLREL bit and generates an interrupt to indicate
a response byte is required. The software will write the response byte into the I2CxTRN register.
As the transmission completes, the master will respond with an Acknowledge. If the master
replies with an ACK, the master expects more data and the module will again clear the SCLREL
bit and generate another interrupt. If the master responds with a NACK, no more data is required
and the module will not stretch the clock nor generate an interrupt.

Slave transmissions for 10-bit address messages require the slave to first recognize a 10-bit
address. Because the master must send two bytes for the address, the R/W bit in the first byte
of the address specifies a write. To change the message to a read, the master will send a
Repeated Start and repeat the first byte of the address with the R/W bit specifying a read. At this
point, the slave transmission begins as shown in Figure 24-32.
DS61116D-page 24-64 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated C
ircuits

©
 2008 M

icrochip Technology Inc.
Prelim

inary
D

S
61116D

-page 24-65

Fig

8

module clears SCLREL to suspend clock.

its set/clear accordingly.

4

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

N

5 7

cating buffer is available for next byte.

, no more data expected. Module does not
rupt.

D0
I2C™

24

ure 24-31: Slave Message (Read Data From Slave: 7-Bit Address)

1 Slave recognizes Start event; S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxTRN

TBF

I2CxRCV

RBF

I2CxSIF

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

R

1 42

A

5 3 5 3

2 Slave receives address byte. Address matches. Slave generates interrupt.

3 Software writes I2CxTRN with response data. TBF = 1 indicates that buffer is full.

6 At end of 9th clock, if master sent ACK,

8 Slave recognizes Stop event; S and P b

Address byte not moved to I2CxRCV register. R/W = 1 to indicate read from slave.

Writing I2CxTRN sets D/A, indicating data byte.

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

SCLREL

4

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

3 6 6

SCLREL = 0 to suspend master clock.

4 Software sets SCLREL to release clock hold. Master resumes clocking and
slave transmits data byte.

5 After last bit, module clears TBF bit, indi

Slave generates interrupt.

7 At end of 9th clock, if master sent NACK
suspend clock and will generate an inter

D0 D0

ACKSTAT

PIC
32M

X Fam
ily R

eference M
anual

D
S

61116D
-page 24-66

Prelim
inary

©
 2008 M

icrochip Technology Inc.

8

K, module clears SCLREL to suspend clock.

 bits set/clear accordingly.

6

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

N

97

ck hold. Master resumes clocking and

CK, no more data expected. Module does not

8 9

A

10

D00
Figure 24-32: Slave Message (Read Data From Slave: 10-Bit Address)

1 Slave recognizes Start event; S and P bits set/clear accordingly.

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxTRN

TBF

I2CxRCV

RBF

I2CxSIF

STREN

1 2 3 4 5 6 7 8 9

A

1 42 7

2 Slave receives first address byte. Write indicated. Slave Acknowledges and

6 Software writes I2CxTRN with response data.

8 At end of 9th clock, if master sent AC

Slave recognizes Stop event; S and P

S

P

ADD10

R/W

D/A

SCLREL

53 6

7 Software sets SCLREL to release clo
slave transmits data byte.

Slave generates interrupt.

9 At end of 9th clock, if master sent NA
suspend clock or generate interrupt.

A7 A6 A5 A4 A3 A2 A1

1 2 3 4 5 6 7 8 9

A

A9 A81 1 1 1 0

1 2 3 4 5 6 7 8 9

A

A9 A81 1 1 1 0

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7

3 Slave receives address byte. Address matches. Slave Acknowledges and

10

4 Master sends a Repeated Start to redirect the message.

5 Slave receives re-send of first address byte. Read indicated. Slave suspends clock.

R

 generates interrupt.

 generates interrupt.

A0W

D

ACKSTAT

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.8 CONNECTION CONSIDERATIONS FOR I2C BUS
Because the I2C bus is a wired AND bus connection, pull-up resistors on the bus are required,
shown as RP in Figure 24-33. Series resistors, shown as RS, are optional and used to improve ESD
susceptibility. The values of resistors, RP and RS, depend on the following parameters:

• Supply voltage
• Bus capacitance
• Number of connected devices (input current + leakage current)
• Input level selection (I2C or SMBus)

To get accurate SCK clock, the rise time should be as small as possible. The limitation factor is
the maximum current sink available on the SCK pad. The following example calculates the Rp
min based on 3.3V supply and 6.6 mA sink current at VOLMAX = 0.4V:

Equation 24-2:

The maximum value for RS is determined by the desired noise margin for the low level. RS cannot
drop enough voltage to make the device VOL plus the voltage across RS more than the maximum
VIL. Mathematically:

Equation 24-3:

The SCLx clock input must have a minimum high and low time for proper operation. The high and
low times of the I2C specification, as well as the requirements of the I2C module, are shown in
the Electrical Characteristics section in the device data sheet (DS61143).

Figure 24-33: Sample Device Configuration for I2C Bus

RPMIN = (VDDMAX – VOLMAX)/IOL = (3.3V – 0.4V)/6.6 mA = 439Ω

RSMAX = (VILMAX – VOLMAX)/IOLMAX = (0.3 VDD – 0.4)/6.6 mA = 89Ω

RPRP

VDD + 10%

SDAx

SCLx

Device

CB = 10-400 pF

RSRS

Note: I2C™ devices with input levels related to VDD must have one common supply line to which the pull-up resistor is also
connected.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-67

PIC32MX Family Reference Manual
24.8.1 Integrated Signal Conditioning and Slope Control
The SCLx and SDAx pins have an input glitch filter. The I2C bus requires this filter in both the
100 kHz and 400 kHz systems.

When operating on a 400 kHz bus, the I2C specification requires a slew rate control of the device
pin output. This slew rate control is integrated into the device. If the DISSLW bit (I2CxCON<9>)
is cleared, the slew rate control is active. For other bus speeds, the I2C specification does not
require slew rate control and DISSLW should be set.

Some system implementations of I2C busses require different input levels for VILMAX and VIHMIN.
In a normal I2C system, VILMAX is 0.3 VDD; VIHMIN is 0.7 VDD. By contrast, in an SMBus (System
Management Bus) system, VILMAX is set at 0.8V, while VIHMIN is set at 2.1V.

The SMEN bit (I2CxCON<8>) controls the input levels. Setting SMEN (= 1) changes the input
levels to SMBus specifications.
DS61116D-page 24-68 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.9 I2C™ OPERATION IN POWER-SAVE MODES AND DEBUG MODES

PIC32MX based devices have two Power-Saving modes:

• IDLE mode: core and selected peripherals are shut down
• SLEEP mode: entire device is shut down

24.9.1 SLEEP in Master Mode Operation
When the device enters SLEEP mode, all clock sources to the module are shut down. The Baud
Rate Generator stops because the clocks stop. It may have to be reset to prevent partial clock
detection.

If SLEEP occurs in the middle of a transmission, and the master state machine is partially into a
transmission as the clocks stop, the Master mode transmission is aborted.

There is no automatic way to prevent SLEEP entry if a transmission or reception is pending.
The user software must synchronize SLEEP entry with I2C operation to avoid aborted transmis-
sions.

Register contents are not affected by going into SLEEP mode or coming out of SLEEP mode.

24.9.2 SLEEP in Slave Mode Operation
The I2C module can still function in Slave mode operation while the device is in SLEEP.

When operating in Slave mode and the device is put into SLEEP, the master-generated clock
will run the slave state machine. This feature provides an interrupt to the device upon reception
of the address match in order to wake up the device.

Register contents are not affected by going into SLEEP mode or coming out of SLEEP mode.

It is an error condition to set SLEEP in the middle of a slave data transmit operation; indetermi-
nate results may occur.

24.9.3 IDLE Mode
When the device enters IDLE mode, all PBCLK clock sources remain functional. If the module
intends to power down, it disables its own clocks.

For the I2C, the I2CxSIDL bit (I2CxCON<13>) selects whether the module will stop on IDLE or
continue on IDLE. If I2CxSIDL = 0, the module will continue operation in IDLE mode. If
I2CxSIDL = 1, the module will stop on IDLE.

The I2C module will perform the same procedures for stop on IDLE mode as for SLEEP mode.
The module state machines must be reset.

24.9.4 Operation in DEBUG Mode
The FRZ bit (I2CxCON<14>) determines whether the I2C module will run or stop while the CPU
is executing Debug Exception code (i.e., the application is halted) in DEBUG mode. When FRZ
= 0, the I2C module continues to run even when the application is halted in DEBUG mode. When
FRZ = 1 and the application is halted in DEBUG mode, the module will freeze its operations and
make no changes to the state of the I2C module. The module will resume its operation after the
CPU resumes execution.

Note: In this manual, a distinction is made between a power mode as it is used in a spe-
cific module, and a power mode as it is used by the device, e.g., Sleep mode of the
Comparator and SLEEP mode of the CPU. To indicate which type of power mode
is intended, uppercase and lowercase letters (Sleep, Idle, Debug) signify a module
power mode, and all uppercase letters (SLEEP, IDLE, DEBUG) signify a device
power mode.

Note: The FRZ bit is readable and writable only when the CPU is executing in Debug
Exception mode. In all other modes, the FRZ bit reads as ‘0’. If FRZ bit is changed
during DEBUG mode, the new value does not take effect until the current Debug
Exception mode is exited and re-entered. During the Debug Exception mode, the
FRZ bit reads the state of the peripheral when entering DEBUG mode.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-69

PIC32MX Family Reference Manual
24.10 EFFECTS OF A RESET
A Reset (POR, WDT, etc.) disables the I2C module and terminates any active or pending mes-
sage activity. See the register definitions of I2CxCON and I2CxSTAT for the Reset conditions of
those registers.

24.11 PIN CONFIGURATION IN I2C MODE
In I2C mode, pin SCL is clock and pin SDA is data. The module will override the data direction
bits (TRIS bits) for these pins. The pins that are used for I2C modes are configured as open
drain. Table 24-5 lists the pin usage in different modes.

Table 24-5: Required IO Pin Resources

Note: In this discussion, ‘IDLE’ refers to the CPU power-saving state. The lower case ‘idle’
refers to the time when the I2C module is not transferring data on the bus.

IO Pin Name Master Mode Slave Mode

SDAx Yes Yes
SCLx Yes Yes

Note: “No” indicates the pin is not required and can be used as a general purpose IO pin.
DS61116D-page 24-70 Preliminary © 2008 Microchip Technology Inc.

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.12 DESIGN TIPS

Question 1: I’m operating as a bus master and transmitting data. Why do slave and
receive interrupts keep occurring at the same time?

Answer: The master and slave circuits are independent. The slave module will receive events
from the bus sent by the master.

Question 2: I’m operating as a slave and I write data to the I2CxTRN register. Why isn’t
the data being transmitted?

Answer: The slave enters an automatic wait when preparing to transmit. Ensure that you set
the SCLREL bit to release the I2C clock.

Question 3: How do I tell what state the master module is in?
Answer: Looking at the condition of the SEN, RSEN, PEN, RCEN, ACKEN and TRSTAT bits
will indicate the state of the master module. If all bits are ‘0’, the module is IDLE.

Question 4: Operating as a slave, I receive a byte while STREN = 0. What should the
software do if it cannot process the byte before the next one is received?

Answer: Because STREN was ‘0’, the module did not generate an automatic wait on the
received byte. However, the software may, at any time during the message, set STREN and
then clear SCLREL. This will cause a wait on the next opportunity to synchronize the SCLx
clock.

Question 5: My I2C™ system is a multi-master system. Why are my messages being
corrupted when I attempt to send them?

Answer: In a multi-master system, other masters may cause bus collisions. In the Interrupt
Service Routine for the master, check the BCL bit to ensure that the operation completed with-
out a collision. If a collision is detected, the message must be re-sent from the beginning.

Question 6: My I2C™ system is a multi-master system. How can I tell when it is OK to
begin a message?

Answer: Look at the S bit. If S = 0, the bus is Idle.

Question 7: I tried to send a Start condition on the bus, then transmit a byte by writing
to the I2CxTRN register. The byte did not get transmitted. Why?

Answer: You must wait for each event on the I2C bus to complete before starting the next one.
In this case, you should poll the SEN bit to determine when the Start event completed or wait for
the master I2C interrupt before data is written to I2CxTRN.
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-71

PIC32MX Family Reference Manual
24.13 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These applica-
tion notes may not be written specifically for the PIC32MX device family, but the concepts are
pertinent and could be used with modification and possible limitations. The current application
notes related to the I2C module include the following:

Title Application Note #
Use of the SSP Module in the I 2C™ Multi-Master Environment AN578
Using the PIC® Microcontroller SSP for Slave I2C™ Communication AN734
Using the PIC® Microcontroller MSSP Module for Master I2C™ Communications AN735
An I2C™ Network Protocol for Environmental Monitoring AN736

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC32MX family of devices.
DS61116D-page 24-72 Preliminary © 2008 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Section 24. Inter-Integrated Circuits
I 2C

™

24
24.14 REVISION HISTORY
Revision A (October 2007)
This is the initial released version of this document.

Revision B (October 2007)
Updated document to remove Confidential status.

Revision C (April 2008)
Revised status to Preliminary; Revised U-0 to r-x.

Revision D (July 2008)
Revised Figure 24-1; Section 24.2 (I2CxMIF); Register 24-1, bits 13 and 14; Revised Register
24-26-24-29; Revised Table 24-1, I2CxCON; Change Reserved bits from “Maintain as” to “Write”;
Added Note to ON bit (I2CXCON Register); Delete Section 24.12 (Electrical Characteristics).
© 2008 Microchip Technology Inc. Preliminary DS61116D-page 24-73

PIC32MX Family Reference Manual
NOTES:
DS61116D-page 24-74 Preliminary © 2008 Microchip Technology Inc.

	Section 24. Inter-Integrated Circuit
	HIGHLIGHTS
	24.1 Overview
	Figure 24-1: I2C™ Block Diagram

	24.2 Control and Status Registers
	Register 24-1: I2CxCON: I2C Control Register
	Register 24-2: I2CxCONCLR: I2C ‘x’ Control Clear Register
	Register 24-3: I2CxCONSET: I2C ‘x’ Control Set Register
	Register 24-4: I2CxCONINV: I2C ‘x’ Control Invert Register
	Register 24-5: I2CxSTAT: I2C Status Register
	Register 24-6: I2CxSTATCLR: I2C ‘x’ Status Clear Register
	Register 24-7: I2CxSTATSET: I2C ‘x’ Status Set Register
	Register 24-8: I2CxSTATINV: I2C ‘x’ Status Invert Register
	Register 24-9: I2CxADD: I2C Slave Address Register
	Register 24-10: I2CxADDCLR: I2C ‘x’ Slave Address Clear Register
	Register 24-11: I2CxADDSET: I2C ‘x’ Slave Address Set Register
	Register 24-12: I2CxADDINV: I2C ‘x’ Slave Address Invert Register
	Register 24-13: I2CxMSK: I2C Address Mask Register
	Register 24-14: I2CxMSKCLR: I2C ‘x’ Address Mask Clear Register
	Register 24-15: I2CxMSKSET: I2C ‘x’ Address Mask Set Register
	Register 24-16: I2CxMSKINV: I2C ‘x’ Address Mask Invert Register
	Register 24-17: I2CxBRG: I2C Baud Rate Generator Register
	Register 24-18: I2CxBRGCLR: I2C ‘x’ Baud Rate Generator Clear Register
	Register 24-19: I2CxBRGSET: I2C ‘x’ Baud Rate Generator Set Register
	Register 24-20: I2CxBRGINV: I2C ‘x’ Baud Rate Generator Invert Register
	Register 24-21: I2CxTRN: I2C Transmit Data Register
	Register 24-22: I2CxTRNCLR: I2C ‘x’ Transmit Data Clear Register
	Register 24-23: I2CxTRNSET: I2C ‘x’ Transmit Data Set Register
	Register 24-24: I2CxTRNINV: I2C ‘x’ Transmit Data Invert Register
	Register 24-25: I2CxRCV: I2C Receive Data Register
	Register 24-26: IFS0: Interrupt Flag Status Register 0(1)
	Register 24-27: IEC0: Interrupt Enable Control Register 0(1)
	Register 24-28: IPC6: Interrupt Priority Control Register 6(1)
	Register 24-29: IPC8: Interrupt Priority Control Register 8(1)

	24.3 I2C™ Bus Characteristics
	Figure 24-2: Typical I2C Interconnection Block Diagram
	24.3.1 Bus Protocol
	24.3.1.1 Start Data Transfer (S)
	24.3.1.2 Stop Data Transfer (P)
	24.3.1.3 Repeated Start (R)
	24.3.1.4 Data Valid (D)
	24.3.1.5 Acknowledge (A) or Not Acknowledge (N)
	24.3.1.6 Wait/Data Invalid (Q)
	24.3.1.7 Bus Idle (I)
	Figure 24-3: I2C Bus Protocol States

	24.3.2 Message Protocol
	Figure 24-4: A Typical I2C Message: Read of Serial EEPROM (Random Address Mode)
	24.3.2.1 Start Message
	24.3.2.2 Address Slave
	24.3.2.3 Slave Acknowledge
	24.3.2.4 Master Transmit
	24.3.2.5 Repeated Start
	24.3.2.6 Slave Reply
	24.3.2.7 Master Acknowledge
	24.3.2.8 Stop Message

	24.4 Enabling I2C™ Operation
	24.4.1 Enabling I2C I/O
	24.4.2 I2C Interrupts
	24.4.3 I2C Transmit and Receive Registers
	24.4.4 I2C Baud Rate Generator
	24.4.5 Baud Rate Generator in I2C Master Mode
	Equation 24-1: Baud Rate Generator Reload Value Calculation
	Table 24-1: I2C Clock Rate w/BRG
	Figure 24-5: Baud Rate Generator Block Diagram
	Figure 24-6: Baud Rate Generator Timing With Clock Arbitration

	24.5 Communicating as a Master in a Single Master Environment
	Figure 24-7: Typical I2C Message: Read of Serial EEPROM (Random Address Mode)
	24.5.1 Generating Start Bus Event
	24.5.1.1 IWCOL Status Flag
	Figure 24-8: Master Start Timing Diagram

	24.5.2 Sending Data to a Slave Device
	24.5.2.1 Sending a 7-Bit Address to the Slave
	24.5.2.2 Sending a 10-Bit Address to the Slave
	24.5.2.3 Receiving Acknowledge From the Slave
	24.5.2.4 ACKSTAT Status Flag
	24.5.2.5 TBF Status Flag
	24.5.2.6 IWCOL Status Flag
	Figure 24-9: Master Transmission Timing Diagram

	24.5.3 Receiving Data from a Slave Device
	24.5.3.1 RBF Status Flag
	24.5.3.2 I2COV Status Flag
	24.5.3.3 IWCOL Status Flag
	Figure 24-10: Master Reception Timing Diagram

	24.5.4 Acknowledge Generation
	24.5.4.1 IWCOL Status Flag
	Figure 24-11: Master Acknowledge (ACK) Timing Diagram
	Figure 24-12: Master Not Acknowledge (NACK) Timing Diagram

	24.5.5 Generating Stop Bus Event
	24.5.5.1 IWCOL Status Flag
	Figure 24-13: Master Stop Timing Diagram

	24.5.6 Generating Repeated Start Bus Event
	24.5.6.1 IWCOL Status Flag
	Figure 24-14: Master Repeated Start Timing Diagram

	24.5.7 Building Complete Master Messages
	Table 24-2: Master Message Protocol States
	Figure 24-15: Master Message (Typical I2C Message: Read of Serial EEPROM)
	Figure 24-16: Master Message (7-Bit Address: Transmission And Reception)
	Figure 24-17: Master Message (10-Bit Transmission)
	Figure 24-18: Master Message (10-Bit Reception)

	24.6 Communicating as a Master in a Multi-Master Environment
	24.6.1 Multi-Master Operation
	24.6.2 Master Clock Synchronization
	Figure 24-19: Baud Rate Generator Timing with Clock Synchronization

	24.6.3 Bus Arbitration and Bus Collision
	24.6.4 Detecting Bus Collisions and Re-sending Messages
	24.6.5 Bus Collision During a Start Condition
	24.6.6 Bus Collision During a Repeated Start Condition
	24.6.7 Bus Collision During Message Bit Transmission
	Figure 24-20: Bus Collision During Message Bit Transmission

	24.6.8 Bus Collision During a Stop Condition

	24.7 Communicating as a Slave
	Figure 24-21: A Typical Slave I2C Message: Multiprocessor Command/Status
	24.7.1 Sampling Receive Data
	24.7.2 Detecting Start and Stop Conditions
	24.7.3 Detecting the Address
	24.7.3.1 Slave Address Masking
	24.7.3.2 Limitations of Address Mask
	24.7.3.3 7-BIT ADDRESS and SLAVE WRITE
	Figure 24-22: Slave Write 7-Bit Address Detection Timing Diagram

	24.7.3.4 7-Bit Address and Slave Read
	Figure 24-23: Slave Read 7-Bit Address Detection Timing Diagram

	24.7.3.5 10-bit Addressing Mode
	Figure 24-24: 10-bit Address Sequence
	Figure 24-25: 10-Bit Address Detection Timing Diagram

	24.7.3.6 General Call Operation
	Figure 24-26: General Call Address Detection Timing Diagram (GCEN = 1)

	24.7.3.7 STRICT ADDRESS SUPPORT
	24.7.3.8 When an Address is Invalid
	24.7.3.9 Addresses Reserved From Masking
	Table 24-3: Reserved I2C Bus Addresses(1)

	24.7.4 Receiving Data From a Master Device
	24.7.4.1 Acknowledge Generation
	Table 24-4: Data Transfer Received Byte Actions

	24.7.4.2 Wait States During Slave Receptions
	24.7.4.3 Example Messages of Slave Reception
	Figure 24-27: Slave Message (Write Data to Slave: 7-Bit Address; Address Matches; A10M = 0; GCEN = 0; STRICT = 0)
	Figure 24-28: Slave Message (Write Data to Slave: 10-Bit Address; Address Matches; A10M = 1; GCEN = 0; STRICT = 0)
	Figure 24-29: Slave Message (Write Data to Slave: 7-Bit Address; Buffer Overrun; A10M = 0; GCEN = 0; STRICT = 0)
	Figure 24-30: Slave Message (Write Data to Slave: 7-Bit Address; Clock Stretching Enabled; A10M = 0; GCEN = 0; STRICT = 0)

	24.7.5 Sending Data to a Master Device
	24.7.5.1 Wait States During Slave Transmissions
	24.7.5.2 Example Messages of Slave Transmission
	Figure 24-31: Slave Message (Read Data From Slave: 7-Bit Address)
	Figure 24-32: Slave Message (Read Data From Slave: 10-Bit Address)

	24.8 Connection Considerations for I2C Bus
	Equation 24-2:
	Equation 24-3:
	Figure 24-33: Sample Device Configuration for I2C Bus
	24.8.1 Integrated Signal Conditioning and Slope Control

	24.9 I2C™ Operation in Power-Save Modes and DEBUG modes
	24.9.1 SLEEP in Master Mode Operation
	24.9.2 SLEEP in Slave Mode Operation
	24.9.3 IDLE Mode
	24.9.4 Operation in DEBUG Mode

	24.10 Effects of a Reset
	24.11 Pin Configuration In I2C Mode
	Table 24-5: Required IO Pin Resources

	24.12 Design Tips
	24.13 Related Application Notes
	24.14 Revision History
	Revision A (October 2007)
	Revision B (October 2007)
	Revision C (April 2008)
	Revision D (July 2008)

