
Section 2. CPU
C
PU

2

HIGHLIGHTS

This section of the manual contains the following topics:

2.1 Introduction..2-2
2.2 Architecture Overview ... 2-3
2.3 PIC32 CPU Details .. 2-6
2.4 Special Considerations When Writing to CP0 Registers ... 2-11
2.5 Architecture Release 2 Details .. 2-12
2.6 Split CPU bus .. 2-12
2.7 Internal System Busses... 2-13
2.8 Set/Clear/Invert.. 2-13
2.9 ALU Status Bits.. 2-14
2.10 Interrupt and Exception Mechanism .. 2-14
2.11 Programming Model .. 2-15
2.12 Coprocessor 0 (CP0) Registers... 2-22
2.13 MIPS16e® Execution (M4K® Only).. 2-72
2.15 MCU™ ASE EXTENSION (M14K™ only) ... 2-72
2.16 Memory Model ... 2-74
2.17 CPU Instructions, Grouped By Function.. 2-75
2.18 CPU Initialization ... 2-79
2.19 Effects of a Reset .. 2-80
2.20 Related Application Notes ... 2-81
2.21 Revision History... 2-82
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-1

PIC32 Family Reference Manual
2.1 INTRODUCTION
Depending on the device, the PIC32 CPU is a complex system-on-a-chip that is based on either
the M4K® or M14K™ Microprocessor core from MIPS® Technologies. The M4K® and M14K™
Microprocessor cores are state-of-the-art, 32-bit, low-power, RISC processor cores with the
enhanced MIPS32® Release 2 Instruction Set Architecture (ISA).

This chapter provides an overview of the CPU features and system architecture of the PIC32
family of microcontrollers.

2.1.1 Key Features
• Up to 1.5 DMIPS/MHz of performance
• Programmable prefetch cache memory to enhance execution from Flash memory
• 16-bit Instruction mode (MIPS16e® or microMIPS™) for compact code
• Vectored interrupt controller with up to 256 priority levels
• Programmable User and Kernel modes of operation
• Atomic read-modify-write memory-to-memory instructions (M14K™ only)
• Atomic bit manipulations on peripheral registers (Single cycle)
• Multiply-Divide unit with a maximum issue rate of one 32 x 16 multiply per clock
• High-speed Microchip ICD port with hardware-based non-intrusive data monitoring and

application data streaming functions
• EJTAG debug port allows extensive third party debug, programming and test tools support
• Instruction controlled power management modes
• Five-stage pipelined instruction execution
• Internal code protection to help protect intellectual property

2.1.2 Related MIPS® Documentation
• MIPS32® M4K® Processor Core Software User’s Manual – MD00249-2B-M4K-SUM
• MIPS32® M14K™ Processor Core Software User’s Manual – MD00668-2B-M14K-SUM
• MIPS® Instruction Set – MD00086-2B-MIPS32BIS-AFP
• microMIPS32 Instruction Set – MD00582-2B-microMIPS-AFP
• MIPS16e® – MD00076-2B-MIPS1632-AFP
• MIPS32® Privileged Resource Architecture – MD00090-2B-MIPS32PRA-AFP
• MCU Application Specific Extension to the MIPS32® and microMIPS32™ Architectures –

MD00641-1C-MUCON-AFP

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all PIC32 devices.

Please consult the note at the beginning of the “CPU” chapter in the current device
data sheet to check whether this document supports the device you are using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com
DS61113D-page 2-2 © 2007-2011 Microchip Technology Inc.

http://www.microchip.com

Section 2. CPU
C

PU

2

2.2 ARCHITECTURE OVERVIEW
The PIC32 family of devices are complex systems-on-a-chip that contain many features.
Included in all processors of the PIC32 family is a high-performance RISC CPU, which can be
programmed in 32-bit and 16-bit modes, and even mixed modes. PIC32 devices contain a
high-performance interrupt controller, DMA controller, USB controller, in-circuit debugger,
high-performance switching matrix for high-speed data accesses to the peripherals, and on-chip
data RAM memory that holds data and programs. The unique prefetch cache and prefetch buffer
for the Flash memory, which hides the latency of the Flash, provides zero Wait state equivalent
performance.

Figure 2-1: PIC32 Block Diagram

JTAG/BSCAN
Priority Interrupt

Controller LDO VREG

DMAC ICDPIC32 CPU

IS DS

EJTAG INT

Bus Matrix

Prefetch Cache Data RAM
Peripheral

Flash Memory

Fl
as

h
C

on
tro

lle
r

Clock Control/
 Generation Reset Generation

PMP/PSP

PORTS

ADC

RTCC

Timers

Input Capture

PWM/Output
Compare

Dual Compare

SSP/SPI

I2C™

UART

128-bit

USB

Bridge

CAN(1)

Motor Control
PWM(1)

DAC(1)

CTMU(1)

Note 1: This peripheral is not available on all devices. Refer to the specific device data sheet for
availability.

ETH(1)
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-3

PIC32 Family Reference Manual
There are two internal busses in PIC32 devices for connection to all peripherals. The main
peripheral bus connects most of the peripheral units to the bus matrix through a peripheral
bridge. Depending on the device variant, there is also a high-speed peripheral bridge that
connects the Interrupt, DMA, CAN, and Ethernet controllers, the in-circuit debugger, and USB
peripherals.

Depending on the device variant, the Central Processing Unit (CPU) for a PIC32 device is either
the M4K® or M14K™ Microprocessor core from MIPS Technologies. The CPU performs
operations under program control. Instructions are fetched by the CPU, decoded and executed
synchronously. Instructions exist in either Program Flash memory or Data RAM memory.

The PIC32 CPU is based on a load/store architecture and performs most operations on a set of
internal registers. Specific load and store instructions are used to move data between these
internal registers and the outside world.

Figure 2-2: M4K® and M14K™ Microprocessor Core Block Diagram

2.2.1 Busses
There are two separate busses on PIC32 devices. One bus is responsible for the fetching of
instructions to the CPU, and the other is the data path for load and store instructions. Both the
instruction, or I-side bus, and the data, or D-side bus, are connected to the bus matrix unit. The
bus matrix is a switch that allows multiple accesses to occur concurrently in a system. The bus
matrix allows simultaneous accesses between different bus masters that are not attempting
accesses to the same target. The bus matrix serializes accesses between different masters to
the same target through an arbitration algorithm.

Since the CPU has two different data paths to the bus matrix, the CPU is effectively two different
bus masters to the system. When running from Flash memory, load and store operations to
SRAM and the internal peripherals will occur in parallel to instruction fetches from Flash memory.

In addition to the CPU, and depending on the device variant, there are other bus masters in
PIC32 devices:

• DMA controller
• In-Circuit-Debugger Unit
• USB controller
• CAN controller
• Ethernet controller

System
Co-processor

MDU

FMT

MMU

TAP

EJTAG

 Power
Management

 Off-Chip
Debug I/F

 Execution
Core

(RF/ALU/Shift)

O
n-

C
hi

p
M

em
or

y

Trace

 Off-Chip
Trace I/F

Memory
Interface Dual Memory

I/F
DS61113D-page 2-4 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.2.2 Introduction to the Programming Model
The PIC32 processor has the following features:

• 5-stage pipeline
• 32-bit Address and Data Paths
• DSP-like Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)
• Targeted multiply instruction (MUL)
• Zero and One detect instructions (CLZ, CLO)
• Wait instruction (WAIT)
• Conditional move instructions (MOVZ, MOVN)
• Implements MIPS32® Enhanced Architecture (Release 2)
• Vectored interrupts
• Programmable exception vector base
• Atomic interrupt enable/disable
• General Purpose Register (GPR) shadow sets
• Bit field manipulation instructions
• MIPS16e® Application Specific Extension improves code density (M4K® only)
• Special PC-relative instructions for efficient loading of addresses and constants (M4K®

only)
• microMIPS™ Instruction-Set Architecture to minimize the code footprint (M14K™ only)
• Data type conversion instructions (ZEB, SEB, ZEH, SEH)
• Compact jumps (MIPS16e® or microMIPS™)
• Stack frame set-up and tear-down SAVE and RESTORE macro instructions (MIPS16e® only)
• Microcontroller Application-Specific Extension (MCU™ ASE) for fast interrupt handling and

atomic data manipulation (M14K™ only)
• Memory Management Unit with simple Fixed Mapping Translation (FMT)
• Processor to/from Coprocessor register data transfers
• Direct memory to/from Coprocessor register data transfers
• Performance-optimized Multiply-Divide Unit (High-performance build-time option)
• Maximum issue rate of one 32 x 16 multiply per clock
• Maximum issue rate of one 32 x 32 multiply every other clock
• Early-in divide control – 11 to 34 clock latency
• Performance counters to aid in program analysis, debug, or profiling (M14K™ only)
• Low-Power mode (triggered by WAIT instruction)
• Software breakpoints via the SDBBP instruction

2.2.3 Core Timer
The PIC32 architecture includes a core timer that is available to application programs. This timer
is implemented in the form of two co-processor registers: the Count register, and the Compare
register. The Count register is incremented every two system clock (SYSCLK) cycles. The incre-
menting of Count can be optionally suspended during Debug mode. The Compare register is
used to cause a timer interrupt if desired. An interrupt is generated when the Compare register
matches the Count register. An interrupt is taken only if it is enabled in the interrupt controller.

For more information on the core timer, see 2.12 “Coprocessor 0 (CP0) Registers” and
Section 8. “Interrupts.” (DS61108) in the “PIC32 Family Reference Manual”.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-5

PIC32 Family Reference Manual
2.3 PIC32 CPU DETAILS

2.3.1 Pipeline Stages
The pipeline consists of five stages:

• Instruction (I) Stage
• Execution (E) Stage
• Memory (M) Stage
• Align (A) Stage
• Writeback (W) Stage

2.3.1.1 I STAGE – INSTRUCTION FETCH

During I stage:

• An instruction is fetched from the instruction SRAM
• MIPS16e® instructions are converted into instructions that are similar to MIPS32®

instructions (M4K® only)
• microMIPS™ instructions are converted into instructions that are similar to MIPS32®

instructions (M14K only)

2.3.1.2 E STAGE – EXECUTION

During E stage:

• Operands are fetched from the register file
• Operands from the M and A stage are bypassed to this stage
• The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for

register-to-register instructions
• The ALU calculates the data virtual address for load and store instructions and the MMU

performs the fixed virtual-to-physical address translation
• The ALU determines whether the branch condition is true and calculates the virtual branch

target address for branch instructions
• Instruction logic selects an instruction address and the MMU performs the fixed

virtual-to-physical address translation
• All multiply divide operations begin in this stage

2.3.1.3 M STAGE – MEMORY FETCH

During M stage:

• The arithmetic or logic ALU operation completes
• The data SRAM access is performed for load and store instructions
• A 16 x 16 or 32 x 16 MUL operation completes in the array and stalls for one clock in the M

stage to complete the carry-propagate-add in the M stage
• A 32 x 32 MUL operation stalls for two clocks in the M stage to complete the second cycle

of the array and the carry-propagate-add in the M stage
• Multiply and divide calculations proceed in the MDU. If the calculation completes before the

IU moves the instruction past the M stage, then the MDU holds the result in a temporary
register until the IU moves the instructions to the A stage (and it is consequently known that
it won’t be killed).

2.3.1.4 A STAGE – ALIGN

During A stage:

• A separate aligner aligns loaded data with its word boundary
• A MUL operation makes the result available for writeback. The actual register writeback is

performed in the W stage
• From this stage, load data or a result from the MDU are available in the E stage for

bypassing
DS61113D-page 2-6 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.3.1.5 W STAGE – WRITEBACK

During W stage:

For register-to-register or load instructions, the result is written back to the register file.

The M4K® and M14K™ Microprocessor cores implement a “Bypass” mechanism that allows the
result of an operation to be sent directly to the instruction that needs it without having to write the
result to the register, and then read it back.

Figure 2-3: Simplified PIC32 CPU Pipeline

The results of using instruction pipelining in the PIC32 core is a fast, single-cycle instruction
execution environment.

Figure 2-4: Single-Cycle Execution Throughput

I Stage E Stage M Stage

A to E Bypass
M to E Bypass

A Stage W Stage

Load Data, HI/LO Data
or CP0 Data

ALU
MStage

ALU

EStage

Bypass
Multiplexers

Rt Read
Rd Write

Reg File

Rt Address

Rs Read

Rs Address

Instruction

EI M A W

EI M A W

EI M A W

EI M A W

EI M A W

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-7

PIC32 Family Reference Manual
2.3.2 Execution Unit
The PIC32 Execution Unit is responsible for carrying out the processing of most of the instruc-
tions of the MIPS instruction set. The Execution Unit provides single-cycle throughput for most
instructions by means of pipelined execution. Pipelined execution, sometimes referred to as
“pipelining”, is where complex operations are broken into smaller pieces called stages. Operation
stages are executed over multiple clock cycles.

The Execution Unit contains the following features:

• 32-bit adder used for calculating the data address
• Address unit for calculating the next instruction address
• Logic for branch determination and branch target address calculation
• Load aligner
• Bypass multiplexers used to avoid stalls when executing instructions streams where data

producing instructions are followed closely by consumers of their results
• Leading Zero/One detect unit for implementing the CLZ and CLO instructions
• Arithmetic Logic Unit (ALU) for performing bit-wise logical operations
• Shifter and Store Aligner

2.3.3 MDU
The Multiply/Divide unit performs multiply and divide operations. The MDU consists of a 32 x 16
multiplier, result-accumulation registers (HI and LO), multiply and divide state machines, and all
multiplexers and control logic required to perform these functions. The high-performance, pipe-
lined MDU supports execution of a 16 x 16 or 32 x 16 multiply operation every clock cycle;
32 × 32 multiply operations can be issued every other clock cycle. Appropriate interlocks are
implemented to stall the issue of back-to-back 32 x 32 multiply operations. Divide operations are
implemented with a simple 1 bit per clock iterative algorithm and require 35 clock cycles in worst
case to complete. Early-in to the algorithm detects sign extension of the dividend, if it is actual
size is 24, 16 or 8 bit. the divider will skip 7, 15, or 23 of the 32 iterations. An attempt to issue a
subsequent MDU instruction while a divide is still active causes a pipeline stall until the divide
operation is completed.

The M4K® and M14K™ Microprocessor cores implement an additional multiply instruction, MUL,
which specifies that lower 32-bits of the multiply result be placed in the register file instead of the
HI/LO register pair. By avoiding the explicit move from LO (MFLO) instruction, required when
using the LO register, and by supporting multiple destination registers, the throughput of multi-
ply-intensive operations is increased. Two instructions, multiply-add (MADD/MADDU) and multi-
ply-subtract (MSUB/MSUBU), are used to perform the multiply-add and multiply-subtract
operations. The MADD instruction multiplies two numbers and then adds the product to the current
contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and
then subtracts the product from the HI and LO registers. The MADD/MADDU and MSUB/MSUBU
operations are commonly used in Digital Signal Processor (DSP) algorithms.

2.3.4 Shadow Register Sets
The PIC32 processor implements a copy of the General Purpose Registers (GPR) for use by
high-priority interrupts. This extra bank of registers is known as a shadow register set. When a
high-priority interrupt occurs the processor automatically switches to the shadow register set
without software intervention. This reduces overhead in the interrupt handler and reduces
effective latency.

The shadow register set is controlled by registers located in the System Coprocessor (CP0) as
well as the interrupt controller hardware located outside of the CPU core.

For more information on shadow register sets, see Section 8. “Interrupts” (DS61108).
DS61113D-page 2-8 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.3.5 Pipeline Interlock Handling
Smooth pipeline flow is interrupted when an instruction in a pipeline stage can not advance due
to a data dependency or a similar external condition. Pipeline interruptions are handled entirely
in hardware. These dependencies, are referred to as “interlocks”. At each cycle, interlock
conditions are checked for all active instructions. An instruction that depends on the result of a
previous instruction is an example of an interlock condition.

In general, MIPS processors support two types of hardware interlocks:

• Stalls – These interlocks are resolved by halting the entire pipeline. All instructions currently
executing in each pipeline stage are affected by a stall

• Slips – These interlocks allow one part of the pipeline to advance while another part of the
pipeline is held static

In the PIC32 processor core, all interlocks are handled as slips. These slips are minimized by
grabbing results from other pipeline stages by using a method called register bypassing, which
is described below.

As shown in Figure 2-5, the sub instruction has a source operand dependency on register r3 with
the previous add instruction. The sub instruction slips by two clocks waiting until the result of the
add is written back to register r3. This slipping does not occur on the PIC32 family of processors.

Figure 2-5: Pipeline Slip (If Bypassing Was Not Implemented)

Note: To illustrate the concept of a pipeline slip, the following example is what would
happen if the PIC32 core did not implement register bypassing.

EI M W

ESLIPI M A WE

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

A

ESLIP

Add r3, r2, r1
(r3 = r2 + r1)

Sub r4, r3, r7
(r4 = r3 – r7)
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-9

PIC32 Family Reference Manual
2.3.6 Register Bypassing
As mentioned previously, the PIC32 processor implements a mechanism called register bypass-
ing that helps reduce pipeline slips during execution. When an instruction is in the E stage of the
pipeline, the operands must be available for that instruction to continue. If an instruction has a
source operand that is computed from another instruction in the execution pipeline, register
bypassing allows a shortcut to get the source operands directly from the pipeline. An instruction
in the E stage can retrieve a source operand from another instruction that is executing in either
the M stage or the A stage of the pipeline. As seen in Figure 2-6, a sequence of three instructions
with interdependencies does not slip at all during execution. This example uses both A to E, and
M to E register bypassing. Figure 2-7 shows the operation of a load instruction utilizing A to E
bypassing. Since the result of load instructions are not available until the A pipeline stage, M to
E bypassing is not needed.

The performance benefit of register bypassing is that instruction throughput is increased to the
rate of one instruction per clock for ALU operations, even in the presence of register
dependencies.

Figure 2-6: IU Pipeline M to E Bypass

Figure 2-7: IU Pipeline A to E Data Bypass

EI M W

EI WA

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

A

M

Add1
r3 = r2 + r1

Sub2
r4 = r3 – r7

Add3
r5 = r3 + r4 EI AM

M to E Bypass A to E Bypass

M to E Bypass

EI M W

EI WA

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

A

M

Load Instruction

Consumer of Load Data Instruction EI AM

Data Bypass from A to E

One Clock
Load Delay
DS61113D-page 2-10 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.4 SPECIAL CONSIDERATIONS WHEN WRITING TO CP0 REGISTERS
In general, the PIC32 core ensures that instructions are executed following a fully sequential pro-
gram model. Each instruction in the program sees the results of the previous instruction. There
are some deviations to this model. These deviations are referred to as “hazards”.

In privileged software, there are two different types of hazards:

• Execution Hazards
• Instruction Hazards

2.4.0.1 EXECUTION HAZARDS

Execution hazards are those created by the execution of one instruction, and seen by the
execution of another instruction. Table 2-1 lists execution hazards.

Table 2-1: Execution Hazards

2.4.0.2 INSTRUCTION HAZARDS

Instruction hazards are those created by the execution of one instruction, and seen by the
instruction fetch of another instruction. Table 2-2 lists the instruction hazard.

Table 2-2: Instruction Hazards

Producer = Consumer Hazard On Spacing
(Instructions)

MTC0 = Coprocessor instruction
execution depends on the
new value of the CU0 bit (Sta-
tus<28>)

CU0 bit (Status<28>) 1

MTC0 = ERET EPC, DEPC, ErrorEPC 1
MTC0 = ERET Status 0
MTC0, EI, DI = Interrupted Instruction IE bit (Status<0>) 1
MTC0 = Interrupted Instruction IP1 and IP0 bits

(Cause<1> and <0>)
3

MTC0 = RDPGPR, WRPGPR PSS<3:0> bits
(SRSCtl<9:6>)

1

MTC0 = Instruction is not seeing a
Core Timer interrupt

Compare update that clears
Core Timer Interrupt

4

MTC0 = Instruction affected by change Any other CP0 register 2

Producer = Consumer Hazard On

MTC0 = Instruction fetch seeing the new value (including a
change to ERL followed by an instruction fetch from the
useg segment)

Status
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-11

PIC32 Family Reference Manual
2.5 ARCHITECTURE RELEASE 2 DETAILS
The PIC32 CPU utilizes Release 2 of the MIPS® 32-bit processer architecture, and implements
the following Release 2 features:

• Vectored interrupts using and external-to-core interrupt controller

Provide the ability to vector interrupts directly to a handler for that interrupt.

• Programmable exception vector base

Allows the base address of the exception vectors to be moved for exceptions that occur
when StatusBEV is ‘0’. This allows any system to place the exception vectors in memory that
is appropriate to the system environment.

• Atomic interrupt enable/disable

Two instructions have been added to atomically enable or disable interrupts, and return the
previous value of the Status register.

• The ability to disable the Count register for highly power-sensitive applications
• GPR shadow registers

Provides the addition of GPR shadow registers and the ability to bind these registers to a
vectored interrupt or exception.

• Field, Rotate and Shuffle instructions

Add additional capability in processing bit fields in registers.

• Explicit hazard management

Provides a set of instructions to explicitly manage hazards, in place of the cycle-based
SSNOP method of dealing with hazards.

2.6 SPLIT CPU BUS
The PIC32 CPU core has two distinct busses to help improve system performance over a sin-
gle-bus system. This improvement is achieved through parallelism. Load and store operations
occur at the same time as instruction fetches. The two busses are known as the I-side bus which
is used for feeding instructions into the CPU, and the D-side bus used for data transfers.

The CPU fetches instructions during the I pipeline stage. A fetch is issued to the I-side bus and
is handled by the bus matrix unit. Depending on the address, the BMX will do one of the following:

• Forward the fetch request to the Prefetch Cache Unit
• Forward the fetch request to the DRM unit or
• Cause an exception

Instruction fetches always use the I-side bus independent of the addresses being fetched. The
BMX decides what action to perform for each fetch request based on the address and the values
in the BMX registers. See 3.5 “Bus Matrix” in Section 3. “Memory Organization” (DS61115).

The D-side bus processes all load and store operations executed by the CPU. When a load or
store instruction is executed the request is routed to the BMX by the D-side bus. This operation
occurs during the M pipeline stage and is routed to one of several targets devices:

• Data Ram
• Prefetch Cache/Flash Memory
• Fast Peripheral Bus (Interrupt controller, DMA, Debug unit, USB, Ethernet, GPIO Ports)
• General Peripheral Bus (UART, SPI, Flash Controller, EPMP/EPSP, TRCC Timers, Input

Capture, PWM/Output Compare, ADC, Dual Compare, I2C, Clock SIB, and Reset SIB)
DS61113D-page 2-12 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.7 INTERNAL SYSTEM BUSSES
The internal busses of the PIC32 processor connect the peripherals to the bus matrix unit. The
bus matrix routes bus accesses from different initiators to a set of targets utilizing several data
paths throughout the device to help eliminate performance bottlenecks.

Some of the paths that the bus matrix uses serve a dedicated purpose, while others are shared
between several targets.

The data RAM and Flash memory read paths are dedicated paths, allowing low-latency access
to the memory resources without being delayed by peripheral bus activity. The high-bandwidth
peripherals are placed on a high-speed bus. These include the Interrupt controller, debug unit,
DMA engine, the USB host/peripheral unit, and other high-bandwidth peripherals (i.e., CAN,
Ethernet engines).

Peripherals that do not require high-bandwidth are located on a separate peripheral bus to save
power.

2.8 SET/CLEAR/INVERT
To provide single-cycle bit operations on peripherals, the registers in the peripheral units can be
accessed in three different ways depending on peripheral addresses. Each register has four dif-
ferent addresses. Although the four different addresses appear as different registers, they are
really just four different methods to address the same physical register.

Figure 2-8: Four Addresses for a Single Physical Register

The base register address provides normal Read/Write access, while the other three provide
special write-only functions.

• Normal access
• Set bit atomic RMW access
• Clear bit atomic RMW access
• Invert bit atomic RMW access

Peripheral reads must occur from the base address of each peripheral register. Reading from a
Set/Clear/Invert address has an undefined meaning, and may be different for each peripheral.

Writing to the base address writes an entire value to the peripheral register. All bits are written.
For example, assume a register contains 0xAAAA5555 before a write of 0x000000FF. After the
write, the register will contain 0x000000FF (assuming that all bits are R/W bits).

Writing to the Set address for any peripheral register causes only the bits written as ‘1’s to be set
in the destination register. For example, assume that a register contains 0xAAAA5555 before a
write of 0x000000FFF to the set register address. After the write to the Set register address, the
value of the peripheral register will contain 0xAAAA55FF.

Writing to the Clear address for any peripheral register causes only the bits written as ‘1’s to be
cleared to ‘0’s in the destination register. For example, assume that a register contains
0xAAAA5555 before a write of 0x000000FF to the Clear register address. After the write to the
Clear register address, the value of the peripheral register will contain 0xAAAA5500.

Writing to the Invert address for any peripheral register causes only the bits written as ‘1’s to be
inverted, or toggled, in the destination register. For example, assume that a register contains
0xAAAA5555 before a write of 0x000000FF to the invert register address. After the write to the
Invert register, the value of the peripheral register will contain 0xAAAA55AA.

Peripheral RegisterRegister Address

Register Address + 4

Register Address + 8

Register Address + 12

Clear Bits

Set Bits

Invert Bits
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-13

PIC32 Family Reference Manual
2.9 ALU STATUS BITS
Unlike most other PIC® microcontrollers, the PIC32 processor does not use Status register flags.
Condition flags are used on many processors to help perform decision making operations during
program execution. Flags are set based on the results of comparison operations or some arith-
metic operations. Conditional branch instructions on these machines then make decisions based
on the values of the single set of condition codes.

Instead, the PIC32 processor uses instructions that perform a comparison and stores a flag or
value into a General Purpose Register. A conditional branch is then executed with this general
purpose register used as an operand.

2.10 INTERRUPT AND EXCEPTION MECHANISM
The PIC32 family of processors implement an efficient and flexible interrupt and exception han-
dling mechanism. Interrupts and exceptions both behave similarly in that the current instruction
flow is changed temporarily to execute special procedures to handle an interrupt or exception.
The difference between the two is that interrupts are usually a result of normal operation, and
exceptions are a result of error conditions such as bus errors.

When an interrupt or exception occurs, the processor does the following:

1. The PC of the next instruction to execute after the handler returns is saved into a
co-processor register.

2. Cause register is updated to reflect the reason for exception or interrupt.
3. Status register EXL or ERL bit is set to cause Kernel mode execution.
4. Handler PC is calculated from Ebase and SPACING values (M4K® only).

• Handler PC is calculated from Ebase and OFFSET values (M14K™ only)
• Automated Interrupt Epilogue can save some of the COP0 state in the stack and

automatically update some of the COP0 registers in preparation for interrupt handling
(M14K™ only)

5. Processor starts execution from new PC.

This is a simplified overview of the interrupt and exception mechanism. See Section 8.
“Interrupts” (DS61108) for more information regarding interrupt and exception handling.
DS61113D-page 2-14 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.11 PROGRAMMING MODEL
The PIC32 family of processors is designed to be used with a high-level language such as the C
programming language. It supports several data types and uses simple but flexible addressing
modes needed for a high-level language. There are 32 General Purpose Registers and two
special registers for multiplying and dividing.

There are three different formats for the machine language instructions on the PIC32 processor:

• Immediate or I-type CPU instructions
• Jump or J-type CPU instructions and
• Registered or R-type CPU instructions

Most operations are performed in registers. The register type CPU instructions have three
operands; two source operands and a destination operand.

Having three operands and a large register set allows assembly language programmers and
compilers to use the CPU resources efficiently. This creates faster and smaller programs by
allowing intermediate results to stay in registers rather than constantly moving data to and from
memory.

The immediate format instructions have an immediate operand, a source operand and a desti-
nation operand. The jump instructions have a 26-bit relative instruction offset field that is used to
calculate the jump destination.

2.11.1 CPU Instruction Formats
A CPU instruction is a single 32-bit aligned word. The CPU instruction formats are:

• Immediate (see Figure 2-9)
• Jump (see Figure 2-10)
• Register (see Figure 2-11)

Table 2-3 describes the fields used in these instructions.

Table 2-3: CPU Instruction Format Fields

Field Description

opcode 6-bit primary operation code.
rd 5-bit specifier for the destination register.
rs 5-bit specifier for the source register.
rt 5-bit specifier for the target (source/destination) register or used to specify

functions within the primary opcode REGIMM.
immediate 16-bit signed immediate used for logical operands, arithmetic signed operands,

load/store address byte offsets, and PC-relative branch signed instruction
displacement.

instr_index 26-bit index shifted left two bits to supply the low-order 28 bits of the jump
target address.

sa 5-bit shift amount.
function 6-bit function field used to specify functions within the primary opcode

SPECIAL.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-15

PIC32 Family Reference Manual
Figure 2-9: Immediate (I-Type) CPU Instruction Format

Figure 2-10: Jump (J-Type) CPU Instruction Format

Figure 2-11: Register (R-Type) CPU Instruction Format

2.11.2 CPU Registers
The PIC32 architecture defines the following CPU registers:

• Thirty-two 32-bit General Purpose Registers (GPRs)
• Two special purpose registers to hold the results of integer multiply, divide, and

multiply-accumulate operations (HI and LO)
• A special purpose program counter (PC), which is affected only indirectly by certain

instructions; it is not an architecturally visible register.

2.11.2.1 CPU GENERAL PURPOSE REGISTERS

Two of the CPU General Purpose Registers have assigned functions:

• r0 – This register is hard-wired to a value of ‘0’, and can be used as the target register for
any instruction the result of which will be discarded. r0 can also be used as a source when
a ‘0’ value is needed

• r31 – This is the destination register used by JAL, BLTZAL, BLTZALL, BGEZAL, and
BGEZALL, without being explicitly specified in the instruction word; otherwise, r31 is used
as a normal register

The remaining registers are available for general purpose use.

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

31 26 25 21 20 16 15 11 10 6 5 0

opcode instr_index

6 26

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd sa function

6 5 5 5 5 6
DS61113D-page 2-16 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.11.2.2 REGISTER CONVENTIONS

Although most of the registers in the PIC32 architecture are designated as General Purpose
Registers, as shown in Table 2-4, there are some recommended uses of the registers for correct
software operation with high-level languages such as the Microchip C compiler.

Table 2-4: Register Conventions

2.11.2.3 CPU SPECIAL PURPOSE REGISTERS

The CPU contains three special purpose registers:

• PC – Program Counter register
• HI – Multiply and Divide register higher result
• LO – Multiply and Divide register lower result:

- During a multiply operation, the HI and LO registers store the product of integer
multiply

- During a multiply-add or multiply-subtract operation, the HI and LO registers store the
result of the integer multiply-add or multiply-subtract

- During a division, the HI and LO registers store the quotient (in LO) and remainder (in
HI) of integer divide

- During a multiply-accumulate, the HI and LO registers store the accumulated result of
the operation

CPU
Register

Symbolic
Register Usage

r0 zero Always 0(1)

r1 at Assembler Temporary
r2 - r3 v0-v1 Function Return Values
r4 - r7 a0-a3 Function Arguments
r8 - r15 t0-t7 Temporary – Caller does not need to preserve contents
r16 - r23 s0-s7 Saved Temporary – Caller must preserve contents
r24 - r25 t8-t9 Temporary – Caller does not need to preserve contents
r26 - r27 k0-k1 Kernel temporary – Used for interrupt and exception handling
r28 gp Global Pointer – Used for fast-access common data
r29 sp Stack Pointer – Software stack
r30 s8 or fp Saved Temporary – Caller must preserve contents OR

Frame Pointer – Pointer to procedure frame on stack
r31 ra Return Address(1)

Note 1: Hardware enforced, not just convention.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-17

PIC32 Family Reference Manual
Figure 2-12 shows the layout of the CPU registers.

Figure 2-12: CPU Registers

31 0 31 0
r0 (zero) HI
r1 (at) LO
r2 (v0)
r3 (v1)
r4 (a0)
r5 (a1)
r6 (a2)
r7 (a3)
r8 (t0)
r9 (t1)

r10 (t2)
r11 (t3)
r12 (t4)
r13 (t5)
r14 (t6)
r15 (t7)
r16 (s0)
r17 (s1)
r18 (s2)
r19 (s3)
r20 (s4)
r21 (s5)
r22 (s6)
r23 (s7)
r24 (t8)
r25 (t9)
r26 (k0)
r27 (k1)
r28 (gp)
r29 (sp)

r30 (s8 or fp) 31 0
r31 (ra) PC

General Purpose Registers Special Purpose Registers
DS61113D-page 2-18 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

Table 2-5: MIPS16e® Register Usage (M4K® Only)

Table 2-6: microMIPS™ 16-bit Instruction Register Usage (M14K™ Only)

Table 2-7: MIPS16e® and microMIPS™ Special Registers

MIPS16e®
Register
Encoding

32-bit MIPS
Register
Encoding

 Symbolic
Name Description

0 16 s0 General Purpose Register
1 17 s1 General Purpose Register
2 2 v0 General Purpose Register
3 3 v1 General Purpose Register
4 4 a0 General Purpose Register
5 5 a1 General Purpose Register
6 6 a2 General Purpose Register
7 7 a3 General Purpose Register

N/A 24 t8 MIPS16e® Condition Code register; implicitly
referenced by the BTEQZ, BTNEZ, CMP, CMPI, SLT,
SLTU, SLTI, and SLTIU instructions

N/A 29 sp Stack Pointer register
N/A 31 ra Return Address register

16-bit
Register

Encoding

32-bit MIPS
Register

Encoding

Symbolic
Name Description

0 16/0 s0/zero General-purpose register
1 17 s1 General-purpose register
2 2 v0 General-purpose register
3 3 v1 General-purpose register
4 4 a0 General-purpose register
5 5 a1 General-purpose register
6 6 a2 General-purpose register
7 7 a3 General-purpose register

N/A 28 gp microMIPS implicitly referenced
General- pointer register

N/A 29 sp microMIPS implicitly referenced Stack
pointer register

N/A 31 ra microMIPS implicitly referenced Return
address register

Symbolic
Name Purpose

PC Program counter. The PC-relative instructions can access this register as an
operand.

HI Contains high-order word of multiply or divide result.
LO Contains low-order word of multiply or divide result.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-19

PIC32 Family Reference Manual
2.11.3 How to Implement Stack/MIPS Calling Conventions
The PIC32 CPU does not have hardware stacks. Instead, the processor relies on software to pro-
vide this functionality. Since the hardware does not perform stack operations itself, a convention
must exist for all software within a system to use the same mechanism. For example, a stack can
grow either toward lower address, or grow toward higher addresses. If one piece of software
assumes that the stack grows toward lower address, and calls a routine that assumes that the
stack grows toward higher address, the stack would become corrupted.

Using a system-wide calling convention prevents this problem from occurring. The Microchip C
compiler assumes the stack grows toward lower addresses.

2.11.4 Processor Modes
There are two operational modes and one special mode of execution in the PIC32 family CPUs;
User mode, Kernel mode and Debug mode. The processor starts execution in Kernel mode, and
if desired, can stay in Kernel mode for normal operation. User mode is an optional mode that
allows a system designer to partition code between privileged and unprivileged software. Debug
mode is normally only used by a debugger or monitor.

One of the main differences between the modes of operation is the memory addresses that soft-
ware is allowed to access. Peripherals are not accessible in User mode. Figure 2-13 shows the
different memory maps for each mode. For more information on the processor’s memory map,
see Section 3. “Memory Organization” (DS61115).

Figure 2-13: CPU Modes

useg kuseg kuseg

kseg0

kseg1

kseg2

kseg3

kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF
0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFF1F_FFFF

0xFF3F_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xFF20_0000

0xFF40_0000

0x0000_0000
DS61113D-page 2-20 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.11.4.1 KERNEL MODE

In order to access many of the hardware resources, the processor must be operating in Kernel
mode. Kernel mode gives software access to the entire address space of the processor as well
as access to privileged instructions.

The processor operates in Kernel mode when the DM bit in the Debug register is ‘0’ and the Sta-
tus register contains one, or more, of the following values:

• UM = 0
• ERL = 1
• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter
Kernel mode. At the end of the exception handler routine, an Exception Return (ERET) instruction
is generally executed. The ERET instruction jumps to the Exception PC (EPC or ErrorPC
depending on the exception), clears ERL, and clears EXL if ERL= 0.

If UM = 1 the processor will return to User mode after returning from the exception when ERL
and EXL are cleared back to ‘0’.

2.11.4.2 USER MODE

When executing in User mode, software is restricted to use a subset of the processor’s
resources. In many cases it is desirable to keep application-level code running in User mode
where if an error occurs it can be contained and not be allowed to affect the Kernel mode code.

Applications can access Kernel mode functions through controlled interfaces such as the
SYSCALL mechanism.

As seen in Figure 2-13, User mode software has access to the USEG memory area.

To operate in User mode, the Status register must contain each the following bit values:

• UM = 1
• EXL = 0
• ERL = 0

2.11.4.3 DEBUG MODE

Debug mode is a special mode of the processor normally only used by debuggers and system
monitors. Debug mode is entered through a debug exception and has access to all the Kernel
mode resources as well as special hardware resources used to debug applications.

The processor is in Debug mode when the DM bit in the Debug register is ‘1’.

Debug mode is normally exited by executing a DERET instruction from the debug handler.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-21

PIC32 Family Reference Manual
2.12 COPROCESSOR 0 (CP0) REGISTERS
The PIC32 uses a special register interface to communicate status and control information
between system software and the CPU. This interface is called Coprocessor 0, or CP0. The
features of the CPU that are visible through Coprocessor 0 are:

• Core timer
• Interrupt and exception control
• Virtual memory configuration
• Shadow register set control
• Processor identification
• Debugger control
• Performance counters

System software accesses the registers in CP0 using coprocessor instructions such as MFC0
and MTC0. Table 2-8 describes the CP0 registers found on PIC32 devices.

Table 2-8: CP0 Registers

Register
Number Register Name Function

0-3 Reserved Reserved in the M4K® and M14K™ Microprocessor cores.
4 USERLOCAL User information that can be written by privileged software

and read via the RDHWR instruction.
5-6 Reserved Reserved in the M4K® and M14K™ Microprocessor cores.
7 HWREna Enables access via the RDHWR instruction to selected

hardware registers in Non-privileged mode.
8 BadVAddr Reports the address for the most recent address-related

exception.
9 Count Processor cycle count.

10 Reserved Reserved in the PIC32 core.
11 Compare Core timer interrupt control.
12 Status Processor status and control.

IntCtl Interrupt control of vector spacing.
SRSCtl Shadow register set control.
SRSMap Shadow register mapping control.
View_IPL Allows the Priority Level to be read/written without

extracting or inserting that bit from/to the Status register.
SRSMAP2 Contains two 4-bit fields that provide the mapping from a

vector number to the shadow set number to use when
servicing such an interrupt.

13 Cause Describes the cause of the last exception.
View_RIPL Enables read access to the RIPL bit that is available in the

Cause register.
14 EPC Program counter at last exception.
15 PRID Processor identification and revision

Ebase Exception base address of exception vectors.
16 Config Configuration register.

Config1 Configuration register 1.
Config2 Configuration register 2.
Config3 Configuration register 3.
Config7 Configuration register 7.

17-22 Reserved Reserved in the M4K® and M14K™ Microprocessor cores.
DS61113D-page 2-22 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

23 Debug Debug control/exception status.
TraceControl EJTAG trace control.
TraceControl2 EJTAG trace control 2.
UserTraceData User format type trace record trigger.
TraceBPC Control tracing using an EJTAG Hardware breakpoint.
Debug2 Debug control/exception status 1.

24 DEPC Program counter at last debug exception.
25 PerfCtl0 Performance counter 0 control.

PerfCnt0 Performance counter 0.
PerfCtl1 Performance counter 1 control.
PerfCnt1 Performance counter 1.

26-29 Reserved Reserved in the M4K® and M14K™ Microprocessor cores.
30 ErrorEPC Program counter at last error.
31 DeSAVE Debug handler scratchpad register.

Table 2-8: CP0 Registers (Continued)

Register
Number Register Name Function
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-23

PIC32 Family Reference Manual
2.12.1 USERLOCAL Register (CP0 Register 4, Select 2) (M14K™ Only)
The USERLOCAL register is a read-write register that is not interpreted by hardware and is
conditionally readable via the RDHWR instruction.

Privileged software may write this register with arbitrary information and make it accessible to
unprivileged software via register 29 (ULR) of the RDHWR instruction. To do so, the URL bit
(HWREna<29>) rmust be set to a ‘1’ to enable unprivileged access to the register.

In some operating environments, the USERLOCAL register contains a pointer to a
thread-specific storage block that is obtained via the RDHWR register.

Register 2-1: USERLOCAL; CP0 Register 4, Select 2
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

USERLOCAL<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

USERLOCAL<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

USERLOCAL<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

USERLOCAL<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 USERLOCAL<31:0>: User Local bits
DS61113D-page 2-24 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.2 HWREna Register (CP0 Register 7, Select 0)
The HWREna register contains a bit mask that determines which hardware registers are
accessible via the RDHWR instruction.

Register 2-2: HWREna: Hardware Accessibility Register; CP0 Register 7, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — ULR(1) — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0

— — — — MASK<3:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as ‘0’

bit 29 ULR: User Local Register bit(1)

1 = Enable unprivileged access to USERLOCAL register
0 = Disable unprivileged access to USERLOCAL register
This bit provides read access to the Coprocessor 0 USERLOCAL register.

bit 28-4 Unimplemented: Read as ‘0’

bit 3-0 MASK<3:0>: Bit Mask bits
1 = Access is enabled to corresponding hardware register
0 = Access is disabled
Each of these bits enables access by the RDHWR instruction to a particular hardware register (which may not
be an actual register). See the RDHWR instruction for a list of valid hardware registers.

Note 1: This bit is only available on devices with the M14K™ Microprocessor core. Refer to the specific device
data sheet for availability.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-25

PIC32 Family Reference Manual
2.12.3 BadVAddr Register (CP0 Register 8, Select 0)
BadVAddr is a read-only register that captures the most recent virtual address that caused an
address error exception. Address errors are caused by executing load, store, or fetch operations
from unaligned addresses, and also by trying to access Kernel mode addresses from User mode.

BadVAddr does not capture address information for bus errors, because they are not addressing
errors.

Register 2-3: BadVAddr: Bad Virtual Address Register; CP0 Register 8, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R-x R-x R-x R-x R-x R-x R-x R-x

BadVAddr<31:24>

23:16
R-x R-x R-x R-x R-x R-x R-x R-x

BadVAddr<23:16>

15:8
R-x R-x R-x R-x R-x R-x R-x R-x

BadVAddr<15:8>

7:0
R-x R-x R-x R-x R-x R-x R-x R-x

BadVAddr<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 BadVAddr<31:0>: Bad Virtual Address bits
Captures the virtual address that caused the most recent address error exception.
DS61113D-page 2-26 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.4 Count Register (CP0 Register 9, Select 0)
The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction
is executed, retired, or any forward progress is made through the pipeline. The counter
increments every other clock, if the DC bit in the Cause register is ‘0’.

Count can be written for functional or diagnostic purposes, including at Reset or to synchronize
processors.

By writing the COUNTDM bit in the Debug register, it is possible to control whether Count
continues to increment while the processor is in Debug mode.

Register 2-4: Count: Interval Counter Register; CP0 Register 9, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNT<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNT<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNT<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNT<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 COUNT<31:0>: Interval Counter bits
This value is incremented every other clock cycle.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-27

PIC32 Family Reference Manual
2.12.5 Compare Register (CP0 Register 11, Select 0)
The Compare register acts in conjunction with the Count register to implement a timer and timer
interrupt function. Compare maintains a stable value and does not change on its own.

When the value of Count equals the value of Compare, the CPU asserts an interrupt signal to the
system interrupt controller. This signal will remain asserted until Compare is written.

Register 2-5: Compare: Interval Count Compare Register; CP0 Register 11, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COMPARE<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COMPARE<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COMPARE<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COMPARE<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 COMPARE<31:0>: Interval Count Compare Value bits
DS61113D-page 2-28 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.6 Status Register (CP0 Register 12, Select 0)
The read/write Status register contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. The bits of this register combine to create operating modes for the pro-
cessor.

2.12.6.1 INTERRUPT ENABLE

Interrupts are enabled when all of the following conditions are true:

• IE = 1
• EXL = 0
• ERL = 0
• DM = 0

If these conditions are met, the settings of the IPL bits enable the interrupts.

2.12.6.2 OPERATING MODES

If the DM bit in the Debug register is ‘1’, the processor is in Debug mode; otherwise, the
processor is in either Kernel mode or User mode.

The CPU Status register bit settings shown in table determine User or Kernel mode:

Table 2-9: CPU Status Register Bits That Determine Processor Mode

Mode Bit/Setting

User (requires all of the following bits and values) UM = 1 EXL = 0 ERL = 0
Kernal (requires one or more of the following bit values) UM = 0 EXL = 1 ERL = 1

Note: The Status register CU0 bit (Status<28>) control coprocessor accessibility. If any
coprocessor is unusable, an instruction that accesses it generates an exception.

Register 2-6: Status: Status Register; CP0 Register 12, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
U-0 U-0 U-0 R/W-x R/W-0(1) U-0 R/W-x U-0

— — — CU0 RP — RE —

23:16
U-0 R/W-1 U-0 R/W-1 R/W-0 U-0 U-0 U-0

— BEV — SR NMI — — —

15:8
U-0 U-0 U-0 R/W-x R/W-x R/W-x U-0 U-0

— — — IPL<2:0> — —

7:0
U-0 U-0 U-0 R/W-x U-0 R/W-x R/W-x R/W-x

— — — UM — ERL EXL IE

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as ‘0’
bit 28 CU0: Coprocessor 0 Usable bit

Controls access to Coprocessor 0
1 = Access allowed
0 = Access not allowed
Coprocessor 0 is always usable when the processor is running in Kernel mode, independent of the state of
the CU0 bit.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-29

PIC32 Family Reference Manual
bit 27 RP: Reduced Power bit
1 = Enables Reduced Power mode
0 = Disables Reduced Power mode
Enables reduced power mode.

bit 26 Unimplemented: Read as ‘0’
bit 25 RE: Reverse-endian Memory Reference Enable bit

Used to enable reverse-endian memory references while the processor is running in User mode
1 = User mode uses reversed endianness
0 = User mode uses configured endianness
Debug, Kernel, or Supervisor mode references are not affected by the state of this bit.

bit 24-23 Unimplemented: Read as ‘0’
bit 22 BEV: Bootstrap Exception Vector Control bit

Controls the location of exception vectors.
1 = Bootstrap
0 = Normal

bit 21 Unimplemented: Read as ‘0’
bit 20 SR: Soft Reset bit

Indicates that the entry through the Reset exception vector was due to a Soft Reset.
1 = Soft Reset; this bit is always set for any type of reset on the PIC32 core
0 = Not used on PIC32
Software can only write a ‘0’ to this bit to clear it and cannot force a ‘0’ to ‘1’ transition.

bit 19 NMI: Non-Maskable Interrupt bit
Indicates that the entry through the reset exception vector was due to a NMI.
1 = NMI
0 = Not NMI (Soft Reset or Reset)
Software can only write a ‘0’ to this bit to clear it and cannot force a ‘0’ to ‘1’ transition.

bit 18-13 Unimplemented: Read as ‘0’
bit 12-10 IPL<2:0>: Interrupt Priority Level bits

This bit is the encoded (0-7) value of the current IPL. An interrupt will be signaled only if the requested IPL
is higher than this value.

bit 9-5 Unimplemented: Read as ‘0’
bit 4 UM: User Mode bit

This bit denotes the base operating mode of the processor. On the encoding of this bit is:
1 = Base mode is User mode
0 = Base mode in Kernal mode
The processor can also be in Kernel mode if ERL or EXL is set, regardless of the state of the UM bit.

bit 3 Unimplemented: Read as ‘0’
bit 2 ERL: Error Level bit

Set by the processor when a Reset, Soft Reset, NMI or Cache Error exception are taken.
1 = Error level
0 = Normal level

When ERL is set:
• Processor is running in Kernel mode
• Interrupts are disabled
• ERET instruction will use the return address held in the ErrorEPC register instead of the EPC register
• Lower 229 bytes of kuseg are treated as an unmapped and uncached region. This allows main mem-

ory to be accessed in the presence of cache errors. The operation of the processor is undefined if the
ERL bit is set while the processor is executing instructions from kuseg.

Register 2-6: Status: Status Register; CP0 Register 12, Select 0 (Continued)
DS61113D-page 2-30 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

bit 1 EXL: Exception Level bit
Set by the processor when any exception other than Reset, Soft Reset, or NMI exceptions is taken.
1 = Exception level
0 = Normal level

When EXL is set:
• Processor is running in Kernel Mode
• Interrupts are disabled
EPC, BD, and SRSCtl will not be updated if another exception is taken.

bit 0 IE: Interrupt Enable bit
Acts as the master enable for software and hardware interrupts:
1 = Interrupts are enabled
0 = Interrupts are disabled
This bit may be modified separately via the DI and EI instructions

Register 2-6: Status: Status Register; CP0 Register 12, Select 0 (Continued)
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-31

PIC32 Family Reference Manual
2.12.7 IntCtl: Interrupt Control Register (CP0 Register 12, Select 1)
The IntCtl register controls the vector spacing of the PIC32 architecture.

Register 2-7: IntCtl: Interrupt Control Register; CP0 Register 12, Select 1
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U=0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— PF(1) ICE(1) STKDEC<4:0>(1)

15:8
R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0

CLREXL(1) APE(1) USESTK(1) — — — VS<4:4>

7:0
R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0

VS<2:0> — — — — —

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-23 Unimplemented: Read as ‘0’
bit 22 PF: Vector Prefetching Enable bit(1)

1 = Vector Prefetching Enabled
0 = Vector Prefetching Disabled

bit 21 ICE: Interrupt Chaining Enable bit(1)

1 = Interrupt chaining Enabled
0 = Interrupt chaining Disabled

bit 20-16 STKDEC<4:0>: Stack Pointer Decrement bits(1)

For the Auto-Prologue feature, this is the number of 4-byte words that are decremented from the stack
pointer value.
31-4 = Specifies the number of words to be decremented
3-0 = Decrement 3 words (12 bytes)

bit 15 CLREXL: Clear KSU/ERL/EXL bit(1)

For the Auto-Prologue feature and IRET instruction, this bit, if set, during Auto-Prologue and IRET interrupt
chaining, clears the KSU/ERL/EXL bits.
1 = Bits are cleared by these operations
0 = Bits are not cleared by these operations

bit 14 APE: Auto-Prologue Enable bit(1)

1 = Auto-Prologue enabled
0 = Auto-Prologue disabled

bit 13 USEKSTK: Stack Use bit(1)

Chooses which Stack to use during Interrupt Auto-Prologue.
1 = Use r29 of the Current SRS at the beginning of IAP
Used for environments where there are separate User-mode and Kernel mode stacks. In this case, r29 of
the SRS used during IAP must be preinitialized by software to hold the Kernel mode stack pointer.
0 = Copy r29 of the Previous SRS to the Current SRS at the beginning of IAP
Used for Bare-Iron environments with only one stack.

bit 12-10 Unimplemented: Read as ‘0’

Note 1: This bit is only available on PIC32 devices with the M14K™ Microprocessor core. Refer to the specific
device data sheet for availability.
DS61113D-page 2-32 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

bit 9-5 VS<4:0>: Vector Spacing bits
These bits specify the spacing between each interrupt vector.

All other values are reserved. The operation of the processor is undefined if a reserved value is written to
these bits.

bit 4-0 Unimplemented: Read as ‘0’

Register 2-7: IntCtl: Interrupt Control Register; CP0 Register 12, Select 1 (Continued)

Note 1: This bit is only available on PIC32 devices with the M14K™ Microprocessor core. Refer to the specific
device data sheet for availability.

Encoding Spacing Between Vectors
(hex)

Spacing Between Vectors
(decimal)

0x00 0x000 0x 0
0x01 0x020 32
0x02 0x040 64
0x04 0x080 128
0x08 0x100 256
0x10 0x200 512
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-33

PIC32 Family Reference Manual
2.12.8 SRSCtl Register (CP0 Register 12, Select 2)
The SRSCtl register controls the operation of GPR shadow sets in the processor.

Table 2-10: Sources for New CSS on an Exception or Interrupt

Exception Type Bit Source Condition Comment

Exception ESS All —

Non-Vectored Interrupt ESS IV bit = 0 (Cause<23>) Treat as exception

Vectored EIC Interrupt EICSS IV bit = 1 (Cause<23>) and,
VEIC bit = 1 (Config3<6>)

Source is external interrupt controller.

Register 2-8: SRSCtl: Shadow Register Set Register; CP0 Register 12, Select 2
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
U-0 U-0 R-0 R-0 R-0 R-1 U-0 U-0

— — HSS<3:0> — —

23:16
U-0 U-0 R-x R-x R-x R-x U-0 U-0

— — EICSS<3:0> — —

15:8
R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0

ESS<3:0> — — PSS<3:2>

7:0
R/W-0 R/W-0 U-0 U-0 R-0 R-0 R-0 R-0

PSS<1:0> — — CSS<3:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as ‘0’

bit 29-26 HSS<3:0>: High Shadow Set bits
This bit contains the highest shadow set number that is implemented by this processor. A value of ‘0000’ in
these bits indicates that only the normal GPRs are implemented.
1111 = Reserved
•
•
•
0100 = Reserved
0011 = Four shadow sets are present
0010 = Reserved
0001 = Two shadow sets are present
0000 = One shadow set (normal GPR set) is present

The value in this bit also represents the highest value that can be written to the ESS<3:0>, EICSS<3:0>,
PSS<3:0>, and CSS<3:0> bits of this register, or to any of the bits of the SRSMap register. The operation
of the processor is undefined if a value larger than the one in this bit is written to any of these other bits.

bit 25-22 Unimplemented: Read as ‘0’

bit 21-18 EICSS<3:0>: External Interrupt Controller Shadow Set bits
EIC Interrupt mode shadow set. This bit is loaded from the external interrupt controller for each interrupt
request and is used in place of the SRSMap register to select the current shadow set for the interrupt.

bit 17-16 Unimplemented: Read as ‘0’
DS61113D-page 2-34 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

bit 15-12 ESS<3:0>: Exception Shadow Set bits
This bit specifies the shadow set to use on entry to Kernel mode caused by any exception other than a vec-
tored interrupt. The operation of the processor is undefined if software writes a value into this bit that is
greater than the value in the HSS<3:0> bits.

bit 11-10 Unimplemented: Read as ‘0’

bit 9-6 PSS<3:0>: Previous Shadow Set bits
Since GPR shadow registers are implemented, this bit is copied from the CSS bit when an exception or
interrupt occurs. An ERET instruction copies this value back into the CSS bit if the BEV bit (Status<22>) = 0.

This bit is not updated on any exception which sets the ERL bit (Status<2>) to ‘1’ (i.e., Reset, Soft Reset,
NMI, cache error), an entry into EJTAG Debug mode, or any exception or interrupt that occurs with the EXL
bit (Status<1>) = 1, or BEV = 1. This bit is not updated on an exception that occurs while ERL = 1.

The operation of the processor is undefined if software writes a value into this bit that is greater than the
value in the HSS<3:0> bits.

bit 5-4 Unimplemented: Read as ‘0’

bit 3-0 CSS<3:0>: Current Shadow Set bits

Since GPR shadow registers are implemented, this bit is the number of the current GPR set. This bit is
updated with a new value on any interrupt or exception, and restored from the PSS bit on an ERET.

Table 2-10 describes the various sources from which the CSS<3:0> bits are updated on an exception or
interrupt.

This bit is not updated on any exception which sets the ERL bit (Status<2>) to ‘1’ (i.e., Reset, Soft Reset,
NMI, cache error), an entry into EJTAG Debug mode, or any exception or interrupt that occurs with EXL bit
(Status<1>) = 1, or BEV = 1. Neither is it updated on an ERET with ERL = 1 or BEV = 1. This bit is not
updated on an exception that occurs while ERL = 1.

The value of the CSS<3:0> bits can be changed directly by software only by writing the PSS<3:0> bits and
executing an ERET instruction.

Register 2-8: SRSCtl: Shadow Register Set Register; CP0 Register 12, Select 2 (Continued)
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-35

PIC32 Family Reference Manual
2.12.9 SRSMap: Register (CP0 Register 12, Select 3)
The SRSMap register contains eight 4-bit bits that provide the mapping from an vector number
to the shadow set number to use when servicing such an interrupt. The values from this register
are not used for a non-interrupt exception, or a non-vectored interrupt (IV bit = 0, Cause<23> or
VS<4:0> bit = 0, IntCtl<9:5>). In such cases, the shadow set number comes from the ESS<3:0>
bits (SRSCtl<15:12>).

If the HSS<3:0> bits (SRSCTL29:26) are ‘0’, the results of a software read or write of this register
are unpredictable.

The operation of the processor is undefined if a value is written to any bit in this register that is
greater than the value of the HSS<3:0> bits.

The SRSMap register contains the shadow register set numbers for vector numbers 7-0. The
same shadow set number can be established for multiple interrupt vectors, creating a
many-to-one mapping from a vector to a single shadow register set number.

Register 2-9: SRSMap: Shadow Register Set Map Register; CP0 Register 12, Select 3
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SSV7<3:0> SSV6<3:0>

23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SSV5<3:0> SSV4<3:0>

15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SSV3<3:0> SSV2<3:0>

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SSV1<3:0> SSV0<3:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-28 SSV7<3:0>: Shadow Set Vector 7 bits
Shadow register set number for Vector Number 7

bit 27-24 SSV6<3:0>: Shadow Set Vector 6 bits
Shadow register set number for Vector Number 6

bit 23-20 SSV5<3:0>: Shadow Set Vector 5 bits
Shadow register set number for Vector Number 5

bit 19-16 SSV4<3:0>: Shadow Set Vector 4 bits
Shadow register set number for Vector Number 4

bit 15-12 SSV3<3:0>: Shadow Set Vector 3 bits
Shadow register set number for Vector Number 3

bit 11-8 SSV2<3:0>: Shadow Set Vector 2 bits
Shadow register set number for Vector Number 2

bit 7-4 SSV1<3:0>: Shadow Set Vector 1 bits
Shadow register set number for Vector Number 1

bit 3-0 SSV0<3:0>: Shadow Set Vector 0 bit
Shadow register set number for Vector Number 0
DS61113D-page 2-36 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.10 View_IPL Register (CP0 Register 12, Select 4) (M14K™ Only)
This register gives read and write access to the IPL bit that is also available in the Status register.
The use of this register allows the Priority Level to be read/written without extracting/inserting that
bit from/to the Status register.

The IPL bit might be located in non-contiguous bits within the Status register. All of the IPL bits
are presented as a contiguous bit within this register.

Register 2-10: View_IPL: View Interrupt Priority Level Register; CP0 Register 12, Select 4

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 U-0 U-0

— — — IPL<2:0> — —

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-5 Unimplemented: Read as ‘0’
bit 4-2 IPL<2:0>: This bit is the encoded (0...7) value of the current IPL.
bit 1-0 Unimplemented: Read as ‘0’
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-37

PIC32 Family Reference Manual
2.12.11 SRSMAP2 Register (CP0 Register 12, Select 5) (M14K™ Only)
The SRSMAP2 register contains two 4-bit bits that provide the mapping from an vector number
to the shadow set number to use when servicing such an interrupt. The values from this register
are not used for a non-interrupt exception, or a non-vectored interrupt (IV bit (Cause<23>) = 0
or the VS<4:0> bits (IntCtl<9:5>) = 0). In such cases, the shadow set number comes from the
ESS<3:0> bits (SRSCtl<15:12>).

If the HSS<3:0> bits (SRSCtl<9:6>) are ‘0’, the results of a software read or write of this register
are unpredictable.

The operation of the processor is undefined if a value is written to any bit in this register that is
greater than the value of the HSS<3:0> bits.
The SRSMAP2 register contains the shadow register set numbers for vector numbers 9:8. The
same shadow set number can be established for multiple interrupt vectors, creating a
many-to-one mapping from a vector to a single shadow register set number.

Register 2-11: SRSMAP2: Shadow Register Set Map 2 Register; CP0 Register 12, Select 5

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

SSV9<3:0> SSV8<3:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as ‘0’
bit 7-4 SSV9<3:0>: Shadow Set Vector 9 bits

Shadow register set number for Vector Number 1.
bit 3-0 SSV8<3:0>: Shadow Set Vector 8 bits

Shadow register set number for Vector Number 8.
DS61113D-page 2-38 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.12 Cause Register (CP0 Register 13, Select 0)
The Cause register primarily describes the cause of the most recent exception. In addition, bits
also control software interrupt requests and the vector through which interrupts are dispatched.
With the exception of the IP1, IP0, DC, and IV bits, all bits in the Cause register are read-only.

Table 2-11: Cause Register EXCCODE<4:0> Bits

Exception Code Value
Mnemonic Description

Decimal Hex
0 0x00 Int Interrupt
4 0x04 AdEL Address error exception (load or instruction fetch)
5 0x05 AdES Address error exception (store)
6 0x06 IBE Bus error exception (instruction fetch)
7 0x07 DBE Bus error exception (data reference: load or store)
8 0x08 Sys Syscall exception
9 0x09 Bp Breakpoint exception

10 0x0a RI Reserved instruction exception
11 0x0b CPU Coprocessor Unusable exception
12 0x0c Ov Arithmetic Overflow exception
13 0x0d Tr Trap exception

14-18 0x0e-0x12 — Reserved

Register 2-12: Cause: Exception Cause Register; CP0 Register 13, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R-x R-x R-x R-x R/W-0 R-0 R-0 R-0

BD TI CE<1:0> DC PCI(1) IC(1) AP(1)

23:16
R/W-x U-0 U-0 U-0 U-0 U-0 U-0 U-0

IV — — — — — — —

15:8
U-0 U-0 U-0 R-x R-x R-x R/W-x R/W-x

— — — RIPL<2:0> IP1 IP0

7:0
U-0 R-x R-x R-x R-x R-x U-0 U-0

— EXCCODE<4:0> — —

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 BD: Branch Delay bit
Indicates whether the last exception taken occurred in a branch delay slot:
1 = In delay slot
0 = Not in delay slot
The processor updates BD only if the EXL bit (Status<1>) was ‘0’ when the exception occurred.

bit 30 TI: Timer Interrupt bit
Timer Interrupt. This bit denotes whether a timer interrupt is pending (analogous to the IP bits for other inter-
rupt types):
1 = Timer interrupt is pending
0 = No timer interrupt is pending

Note 1: This bit is only available on PIC32 devices with the M14K™ Microprocessor core. Refer to the specific
device data sheet for availability.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-39

PIC32 Family Reference Manual
bit 29-28 CE<1:0>: Coprocessor Exception bits
Coprocessor unit number referenced when a Coprocessor Unusable exception is taken. This bit is loaded
by hardware on every exception, but is unpredictable for all exceptions except for Coprocessor Unusable.

bit 27 DC: Disable Count Register bit
In some power-sensitive applications, the Count register is not used and can be stopped to avoid
unnecessary toggling.
1 = Disable counting of Count register
0 = Enable counting of Count register

bit 26 PCI: Performance Counter Interrupt bit(1)

1 = Performance counter interrupt is pending
0 = No performance counter interrupt is pending

bit 25 IC: Interrupt Chaining bit
Indicates if Interrupt chaining occurred on the last IRET instruction.
1 = Interrupt Chaining occurred during last IRET instruction
0 = Interrupt Chaining did not happen on last IRET instruction

bit 24 AP: Interrupt Auto-Prologue Exception bit
Indicates whether an exception occurred during Interrupt Auto-Prologue.
1 = Exception occurred during Auto-Prologue operation
0 = Exception did not occur during Auto-Prologue operation

bit 23 IV: Interrupt Vector bit
Indicates whether an interrupt exception uses the general exception vector or a special interrupt vector
1 = Use the special interrupt vector (0x200)
0 = Use the general exception vector (0x180)
If the IV bit (Cause<23>) is ‘1’ and the BEV bit (Status<22>) is ‘0’, the special interrupt vector represents
the base of the vectored interrupt table.

bit 22-13 Unimplemented: Read as ‘0’
bit 12-10 RIPL<2:0>: Requested Interrupt Priority Level bits

This bit is the encoded (7-0) value of the requested interrupt. A value of ‘0’ indicates that no interrupt is
requested.

bit 9-8 IP<1:0>: Software Interrupt Request Control bits
Controls the request for software interrupts
1 = Request software interrupt
0 = No interrupt requested
These bits are exported to the system interrupt controller for prioritization in EIC interrupt mode with other
interrupt sources

bit 7 Unimplemented: Read as ‘0’
bit 6-2 EXCCODE<4:0>: Exception Code bits

See Table 2-11 for the list of Exception codes.
bit 1-0 Unimplemented: Read as ‘0’

Register 2-12: Cause: Exception Cause Register; CP0 Register 13, Select 0 (Continued)

Note 1: This bit is only available on PIC32 devices with the M14K™ Microprocessor core. Refer to the specific
device data sheet for availability.
DS61113D-page 2-40 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.13 View_RIPL Register (CP0 Register 13, Select 4) (M14K™ Only)
This register gives read access to the RIPL bit that is also available in the Cause register. The
use of this register allows the Requested Priority Level to be read without extracting that bit from
the Cause register.

Register 2-13: View_RIPL: View Requested Priority Level Register; CP0 Register 13, Select 4

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 R-0 R-0 R-0 R/W-0 R/W-0

— — — RIPL<2:0> IP<1:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-5 Unimplemented: Read as ‘0’
bit 4-2 RIPL<2:0>: Requested Interrupt Priority Level bits

If EIC interrupt mode is enabled, this bit indicates the encoded (0...7) value of the current Requested Priority
Level of the pending interrupt.

bit 1-0 IP<1:0>: Software Interrupt Pending bits
If EIC interrupt mode is not enabled, controls which SW interrupts are pending.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-41

PIC32 Family Reference Manual
2.12.14 EPC Register (CP0 Register 14, Select 0)
The Exception Program Counter (EPC) is a read/write register that contains the address at which
processing resumes after an exception has been serviced. All bits of the EPC register are
significant and are writable.

For synchronous (precise) exceptions, the EPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception
• The virtual address of the immediately preceding BRANCH or JUMP instruction, when the

exception causing instruction is in a branch delay slot and the Branch Delay bit in the
Cause register is set

On new exceptions, the processor does not write to the EPC register when the EXL bit in the
Status register is set, however, the register can still be written via the MTC0 instruction.

Since the PIC32 family implements MIPS16e® or microMIPS™ ASE, a read of the EPC register
(via MFC0) returns the following value in the destination GPR:

GPR[rt] ← ExceptionPC31..1 || ISAMode0
That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISA<1:0>
bits (Config3<15:14>) and are written to the GPR.

Similarly, a write to the EPC register (via MTC0) takes the value from the GPR and distributes
that value to the exception PC and the ISA<1:0> bits (Config3<15:14>), as follows:

ExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the
lower bit of the exception PC is cleared. The upper bit of the ISA<1:0> bits (Config3<15:14>) is
cleared and the lower bit is loaded from the lower bit of the GPR.

Register 2-14: EPC: Exception Program Counter Register; CP0 Register 14, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EPC<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EPC<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EPC<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EPC<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 EPC<31:0>: Exception Program Counter bits
DS61113D-page 2-42 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.15 PRID Register (CP0 Register 15, Select 0)
The Processor Identification (PRID) register is a 32-bit read-only register that contains informa-
tion identifying the manufacturer, manufacturer options, processor identification, and revision
level of the processor.

Register 2-15: PRID: Processor Identification Register; CP0 Register 15, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
U-0 U-0 R-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-1

COMPANYID<23:16>

15:8
R-x R-x R-x R-x R-x R-x R-x R-x

PROCESSORID<15:8>(1,2)

7:0
R-x R-x R-x R-x R-x R-x R-x R-x

MAJORREV<2:0> MINORREV<2:0> PATCHREV<1:0>

Legend: Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit

U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-24 Unimplemented: Read as ‘0’

bit 23-16 COMPANYID<7:0>: Company Identification bits
In PIC32 devices, these bits contain a value of ‘1’ to indicate MIPS Technologies, Inc. as the processor man-
ufacturer/designer.

bit 15-8 PROCESSORID<7:0>: Processor Identification bits(1,2)

These bits allow software to distinguish between the various types of MIPS Technologies processors.

bit 7-5 MAJORREV<2:0>: Processor Major Revision Identification bits
These bits allow software to distinguish between one revision and another of the same processor type. This
number is increased on major revisions of the processor core.

bit 4-2 MINORREV<2:0>: Processor Minor Revision Identification bits
This number is increased on each incremental revision of the processor and reset on each new major
revision.

bit 1-0 PATCHREV<1:0>: Processor Patch Level Identification bits
If a patch is made to modify an older revision of the processor, the value of these bits will be incremented.

Note 1: For devices with the M4K® Microprocessor core, this value is 0x87. Refer to the specific device data sheet
for details.

2: For devices with the M14K™ Microprocessor core, this value is 0x9B. Refer to the specific device data
sheet for details.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-43

PIC32 Family Reference Manual
2.12.16 Ebase Register (CP0 Register 15, Select 1)
The Ebase register is a read/write register containing the base address of the exception vectors
used when the BEV bit (Status<22>) equals ‘0’, and a read-only CPU number value that may be
used by software to distinguish different processors in a multi-processor system.

The Ebase register provides the ability for software to identify the specific processor within a
multi-processor system, and allows the exception vectors for each processor to be different,
especially in systems composed of heterogeneous processors. Bits 31-12 of the Ebase register
are concatenated with zeros to form the base of the exception vectors when the BEV bit is ‘0’.
The exception vector base address comes from the fixed defaults when the BEV bit is ‘1’, or for
any EJTAG Debug exception. The Reset state of bits 31-12 of the Ebase register initialize the
exception base register to 0x80000000.

Bits 31 and 30 of the Ebase Register are fixed with the value 2#10 to force the exception base
address to be in the kseg0 or kseg1 unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with the BEV bit
equal to ‘1’. The operation of the processor is undefined if the Ebase<17:0> bits are written with
a different value when the BEV bit (Status<22>) is ‘0’.

Combining bits 31-20 of the Ebase register allows the base address of the exception vectors to
be placed at any 4 KB page boundary.

Register 2-16: Ebase: Exception Base Register; CP0 Register 15, Select 1
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
U-1 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — EBASE<17:12>

23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

EBASE<11:4>

15:8
R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R-0 R-0

EBASE<3:0> — — CPUNUM<9:8>

7:0
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

CPUNUM<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Unimplemented: Read as ‘1’

bit 30 Unimplemented: Read as ‘0’

bit 29-12 EBASE<17:0>: Exception Vector Base Address bits
In conjunction with bits 31-30, these bits specify the base address of the exception vectors when the BEV
bit (Status<22>) is ‘0’.

bit 11-10 Unimplemented: Read as ‘0’

bit 9-0 CPUNUM<9:0>: CPU Number bits
These bits specify the number of CPUs in a multi-processor system and can be used by software to
distinguish a particular processor from others. In a single processor system, this value is set to ‘0’.
DS61113D-page 2-44 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.17 Config Register (CP0 Register 16, Select 0)
The Config register specifies various configuration and capabilities information. Most of the fields
in the Config register are initialized by hardware during the Reset exception process, or are
constant.

Table 2-12: Cache Coherency Attributes
C(2:0) Value Cache Coherency Attribute

2 Uncached

3 Cacheable

Register 2-17: Config: Configuration Register; CP0 Register 16, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
r-1 R-0 R-1 R-0 R/W-0 R/W-1 R/W-0 U-0

— K23<2:0> KU<2:0> —

23:16
U-0 R-0 R-0 r-0 U-0 U-0 U-0 R-1

— UDI SB — — — — DS

15:8
R-0 R-0 R-0 R-0 R-0 R-1 R-0 R-1

BE AT<1:0> AR<2:0> MT<2:1>

7:0
R-1 U-0 U-0 U-0 U-0 R/W-0 R/W-1 R/W-0

MT<1> — — — — K0<2:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Reserved: This bit is hardwired to ‘1’ to indicate the presence of the Config1 register.
bit 30-28 K23<2:0>: kseg2 and kseg3 bits

These bits control the cacheability of the kseg2 and kseg3 address segments.
Refer to Table 2-12 for the bit encoding.

bit 27-25 KU<2:0>: kuseg and useg bits
These bits control the cacheability of the kuseg and useg address segments.
Refer to Table 2-12 for the bit encoding.

bit 24-23 Unimplemented: Read as ‘0’
bit 22 UDI: User-Defined bit

This bit indicates that CorExtend User-Defined Instructions have been implemented.
1 = User-defined Instructions are implemented
0 = No User-defined Instructions are implemented

bit 21 SB: SimpleBE bit
This bit indicates whether SimpleBE Bus mode is enabled.
1 = Only simple byte enables allowed on internal bus interface
0 = No reserved byte enables on internal bus interface

bit 20 Reserved: This bit is hardwired to ‘0’ to indicate the Fast, High-Performance Multiply/Divide Unit (MDU)
bit 19-17 Unimplemented: Read as ‘0’
bit 16 DS: Dual SRAM bit

1 = Dual instruction/data SRAM internal bus interfaces
0 = Unified instruction/data SRAM internal bus interface
The PIC32 family currently uses Dual SRAM-style interfaces internally.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-45

PIC32 Family Reference Manual
bit 15 BE: Big Endian bit
Indicates the Endian mode in which the processor is running, PIC32 is always little endian.
1 = Big-endian
0 = Little-endian

bit 14-13 AT<1:0>: Architecture Type bits
Architecture type implemented by the processor. This bit is always ‘00’ to indicate the MIPS32®
architecture.

bit 12-10 AR<2:0>: Architecture Revision Level bits
Architecture revision level. This bit is always ‘001’ to indicate MIPS32® Release 2.
111 = Reserved
110 = Reserved
101 = Reserved
100 = Reserved
011 = Reserved
010 = Reserved
001 = Release 2
000 = Release 1

bit 9-7 MT<2:0>: MMU Type bits
111 = Reserved
110 = Reserved
101 = Reserved
100 = Reserved
011 = Fixed mapping
010 = Reserved
001 = Reserved
000 = Reserved

bit 6-3 Unimplemented: Read as ‘0’
bit 2-0 K0<2:0>: Kseg0 bits

Kseg0 coherency algorithm. Refer to Table 2-12 for the bit encoding.

Register 2-17: Config: Configuration Register; CP0 Register 16, Select 0 (Continued)
DS61113D-page 2-46 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.18 Config1 Register (CP0 Register 16, Select 1)
The Config1 register is an adjunct to the Config register and encodes additional information
about capabilities present on the core. All fields in the Config1 register are read-only.

Register 2-18: Config1: Configuration Register 1; CP0 Register 16, Select 1
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
r-1 U-0 U-0 U-0 U-0 U-0 U-0 R-x

— — — — — — — IS<2>

23:16
R-x R-x R-x R-x R-x R-x R-x R-x

IS<1:0>(1) IL<2:0>(1) IA<2:0>(1)

15:8
R-x R-x R-x R-x R-x R-x R-x R-x

DS<2:0>(1) DL<2:0>(1) DA<1:0>(1)

7:0
R-x U-0 U-0 R-0 U-0 R-1 R-x U-0

DA — — PC — CA EP —

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Reserved: This bit is hardwired to a ‘1’ to indicate the presence of the Config2 register.
bit 30-25 Unimplemented: Read as ‘0’
bit 24-22 IS<2:0>: Instruction Cache Sets bits(1)

Contains the number of instruction cache sets per way.
bit 21-19 IL<2:0>: Instruction-Cache Line bits(1)

Contains the instruction cache line size.
bit 18-16 IA<2:0: Instruction-Cache Associativity bits(1)

Contains the level of instruction cache associativity.
bit 15-13 DS<2:0>: Data-Cache Sets bits(1)

Contains the number of data cache sets per way.
bit 12-10 DL<2:0>: Data-Cache Line bits(1)

Contains the data cache line size.
bit 9-7 DA<1:0>: Data-Cache Associativity bits(1)

Contains the type of set associativity for the data cache.
bit 6-5 Unimplemented: Read as ‘0’
bit 4 PC: Performance Counter bit

Performance Counter registers implemented.
1 = The processor core contains Performance Counters (M14K™)
0 = The processor core does not contain Performance Counters (M4K®)

bit 3 Unimplemented: Read as ‘0’
bit 2 CA: Code Compression Implemented bit

1 = MIPS16e® is implemented
0 = No MIPS16e® present

bit 1 EP: EJTAG Present bit
This bit is always set to indicate that the core implements EJTAG.

bit 0 Unimplemented: Read as ‘0’

Note 1: Since the M4K® and M14K™ Microprocessor cores do not include caches, this bit is always read as ‘0’.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-47

PIC32 Family Reference Manual
2.12.19 Config2 (CP0 Register 16, Select 2)
The Config2 register is an adjunct to the Config register and is reserved to encode additional
capabilities information. Config2 is allocated for showing the configuration of level 2/3 caches.
These bits are reset to ‘0’ because L2/L3 caches are not supported by the PIC32 core. All bits in
the Config2 register are read-only.

Register 2-19: Config2: Configuration Register 2; CP0 Register 16, Select 2

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
r-1 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Reserved: This bit is hardwired to a ‘1’ to indicate the presence of the Config3 register.

bit 30-0 Unimplemented: Read as ‘0’
DS61113D-page 2-48 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.20 Config3 Register (CP0 Register 16, Select 3) (M14K™ Only)
The Config3 register encodes additional capabilities. All fields in the Config3 register are
read-only.

Register 2-20: Config3: Configuration Register 3; CP0 Register 16, Select 3
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
r-1 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 R-0 R-0 R-0 R-0 R-0 R-0 R/W-0

— IPLW<1:0> MMAR<2:0> MCU ISAONEXC

15:8
R-0 R-0 R-0 U-0 U-0 U-0 U-0 R-x

ISA<1:0> ULRI — — — — ITL

7:0
U-0 R-1 R-1 U-0 U-0 U-0 U-0 U-0

— VEIC VINT — — — — —

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Reserved: This bit is hardwired to a ‘1’ to indicate the presence of the Config4 register.

bit 30-23 Unimplemented: Read as ‘0’

bit 22-21 IPLW<22:21>: Width of the Status IPL and Cause RIPL bits
1 = IPL and RIPL bits are 8-bits in width
0 = IPL and RIPL bits are 6-bits in width
Others = Reserved
If the IPL bit is 8-bits in width, bits 18 and 16 of Status are used as the most significant bit and second most
significant bit, respectively, of that bit.

If the RIPL bit is 8-bits in width, bits 17 and 16 of Cause are used as the most significant bit and second most
significant bit, respectively, of that bit.

bit 20-18 MMAR<2:0>: microMIPS Architecture Revision level bits
111 = Reserved
110 = Reserved
101 = Reserved
100 = Reserved
011 = Reserved
010 = Reserved
001 = Reserved
000 = Release 1

bit 17 MCU: MIPS MCU ASE implemented.
1 = MCU ASE is implemented
0 = MCU ASE is not implemented

bit 16 ISAONEXC: Reflects the Instruction Set Architecture used when vectoring to an exception. Affects excep-
tions whose vectors are offsets from Ebase.
1 = microMIPS is used on entrance to an exception vector
0 = MIPS32 ISA is used on entrance to an exception vector

bit 15-14 ISA<1:0>: Indicates Instruction Set Availability
11 = Both MIPS32 and microMIPS are implemented; microMIPS is used when coming out of reset
10 = Both MIPS32 and Micro MIPS are implemented; MIPS32 ISA used when coming out of reset
01 = Only microMIPS is implemented
00 = Only MIPS32 is implemented
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-49

PIC32 Family Reference Manual
bit 13 ULRI: USERLOCAL register implemented. This bit indicates whether the USERLOCAL coprocessor 0 reg-
ister is implemented.
1 = USERLOCAL register is implemented
0 = USERLOCAL register is not implemented

bit 12-9 Unimplemented: Read as ‘0’

bit 8 ITL: Indicates that iFlowTrace hardware is present
1 = The iFlowTrace is implemented in the core
0 = The iFlowTrace is not implemented in the core

bit 7 Unimplemented: Read as ‘0’

bit 6 VEIC: External Vector Interrupt Controller bit
Support for an external interrupt controller is implemented.
1 = Support for EIC Interrupt mode is implemented
0 = Support for EIC Interrupt mode is not implemented
PIC32 devices internally implement a MIPS “external interrupt controller”; therefore, this bit reads ‘1’.

bit 5 VINT: Vector Interrupt bit
Vectored interrupts implemented. This bit indicates whether vectored interrupts are implemented.
1 = Vector interrupts are implemented
0 = Vector interrupts are not implemented
On the PIC32 core, this bit is always a ‘1’ since vectored interrupts are implemented.

bit 4-0 Unimplemented: Read as ‘0’

Register 2-20: Config3: Configuration Register 3; CP0 Register 16, Select 3 (Continued)
DS61113D-page 2-50 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.21 Config3 Register (CP0 Register 16, Select 3) (M4K® Only)
The Config3 register encodes additional capabilities. All fields in the Config3 register are
read-only.

Register 2-21: Config3: Configuration Register 3; CP0 Register 16, Select 3
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
r-1 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 R-0

— — — — — — — ITL

7:0
U-0 R-1 R-1 U-0 U-0 U-0 U-0 U-0

— VEIC VINT — — — — —

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 30 Reserved: This bit is hardwired to a ‘1’ to indicate the presence of the Config4 register

bit 31-9 Unimplemented: Read as ‘0’

bit 8 ITL: Indicates that iFlowTrace hardware is present
1 = The iFlowTrace is implemented in the core
0 = The iFlowTrace is not implemented in the core

bit 7 Unimplemented: Read as ‘0’

bit 6 VEIC: Need definition
Support for an external interrupt controller is implemented.
1 = Support for EIC Interrupt mode is implemented
0 = Support for EIC Interrupt mode is not implemented
PIC32 devices internally implement a MIPS “external interrupt controller”; therefore, this bit reads ‘1’.

bit 5 VInt:: Vector Interrupt bit
Vectored interrupts implemented. This bit indicates whether vectored interrupts are implemented.
1 = Vector interrupts are implemented
0 = Vector interrupts are not implemented
On the PIC32 core, this bit is always a ‘1’ since vectored interrupts are implemented.

bit 4-0 Unimplemented: Read as ‘0’
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-51

PIC32 Family Reference Manual
2.12.22 Config7 Register (CP0 Register 16, Select 7) (M14K™ Only)
The Config7 register contains implementation specific configuration information. A number of
these bits are writable to disable certain performance enhancing features within the M14K™
Microprocessor core.

Register 2-22: Config7: Configuration Register 7; CP0 Register 16, Select 7

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R-1 U-0 U-0 U-0 U-0 U-0 U-0 U-0

WII — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 R-0 U-0 U-0

— — — — — HCI — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 WII: Wait IE Ignore bit
Indicates that this processor will allow an interrupt to unblock a WAIT instruction, even if IE is preventing
the interrupt from being taken. This avoids problems using the WAIT instruction for ‘bottom half’ interrupt
servicing. This bit always reads ‘1’ for devices with the M14K™ Microprocessor core.

bit 30-19 Unimplemented: Read as ‘0’

bit 18 HCI: Hardware Cache Initialization bit
Indicates that a cache does not require initialization by software. This bit will most likely only be set on
simulation-only cache models and not on real hardware. This bit always reads ‘0’ for devices with the
M14K™ Microprocessor core.

bit 17-0 Unimplemented: Read as ‘0’
DS61113D-page 2-52 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.23 Debug Register (CP0 Register 23, Select 0)
The Debug register is used to control the debug exception and provide information about the
cause of the debug exception and when re-entering at the debug exception vector due to a
normal exception in Debug mode. The read-only information bits are updated every time the
debug exception is taken or when a normal exception is taken when already in Debug mode.

Only the DM bit and the VER<2:0> bits are valid when read from non-Debug mode; the values
of all other bits and fields are unpredictable. Operation of the processor is undefined if the Debug
register is written from non-Debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in Debug
mode, as shown below:

• DSS, DBP, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on
exceptions in debug modes

• DEXCCODE<4:0> are updated on exceptions in Debug mode, and are undefined after a
debug exception

• HALT and DOZE are updated on a debug exception, and are undefined after an exception
in Debug mode

• DBD is updated on both debug and on exceptions in debug modes

All bits are undefined when read from normal mode, except VER<2:0> and DM.

Register 2-23: Debug: Debug Exception Register; CP0 Register 23, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R-0 R-0 R-0 R/W-0 U-0 U-0 R/W-1 R/W-0

DBD DM NODCR LSNM DOZE HALT COUNTDM IBUSEP

23:16
R-0 R-0 R/W-0 R/W-0 R-0 R-0 R-0 R-1

MCHECKP CACHEEP DBUSEP IEXI DDBSIMPR DDBLIMPR VER<2:1>

15:8
R-0 U-0 U-0 U-0 U-0 U-0 R-0 R/W-0

VER DEXCCODE<4:0> NOSST SST

7:0
U-0 R-x R-x R-x R-x R-x R-x R-x

— DIBIMPR DINT DIB DDBS DDBL DBP DSS

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 DBD: Branch Delay Debug Exception bit
Indicates whether the last debug exception or exception in Debug mode, occurred in a branch delay slot:
1 = In delay slot
0 = Not in delay slot

bit 30 DM: Debug Mode bit
Indicates that the processor is operating in Debug mode:
1 = Processor is operating in Debug mode
0 = Processor is operating in non-Debug mode

bit 29 NODCR: Debug Control Register bit
Indicates whether the dseg memory segment is present and the Debug Control Register is accessible:
1 = No dseg present
0 = dseg is present
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-53

PIC32 Family Reference Manual
bit 28 LSNM: Load Store Access Control bit
Controls access of load/store between dseg and main memory:
1 = Load/stores in dseg address range goes to main memory
0 = Load/stores in dseg address range goes to dseg

bit 27 DOZE: Low-Power Mode Debug Exception bit
Indicates that the processor was in any kind of Low-Power mode when a debug exception occurred.
1 = Processor in Low-Power mode when debug exception occurred
0 = Processor not in Low-Power mode when debug exception occurred

bit 26 HALT: System Bus Clock Stop bit
Indicates that the internal system bus clock was stopped when the debug exception occurred,
1 = Internal system bus clock running
0 = Internal system bus clock stopped

bit 25 COUNTDM: Count Register Behavior bit
Indicates the Count register behavior in Debug mode.
1 = Count register is running in Debug mode
0 = Count register stopped in Debug mode

bit 24 IBUSEP: Instruction Fetch Bus Error Exception Pending bit
Set when an instruction fetch bus error event occurs or if a ‘1’ is written to the bit by software. Cleared when
a Bus Error exception on instruction fetch is taken by the processor, and by Reset. If IBUSEP is set when
IEXI is cleared, a Bus Error exception on instruction fetch is taken by the processor, and IBUSEP is cleared.

bit 23 MCHECKP: Machine Check Exception Pending bit
All Machine Check exceptions are precise on the PIC32 processor so this bit will always read as ‘0’.

bit 22 CACHEEP: Cache Error Pending bit
Cache Errors cannot be taken by the PIC32 core so this bit will always read as ‘0’.

bit 21 DBUSEP: Data Access Bus Error Exception Pending bit
Covers imprecise bus errors on data access, similar to behavior of IBUSEP for imprecise bus errors on an
instruction fetch.

bit 20 IEXI: Imprecise Error Exception Inhibit Control bit
Controls exceptions taken due to imprecise error indications. Set when the processor takes a debug excep-
tion or exception in Debug mode. Cleared by execution of the DERET instruction; otherwise modifiable by
Debug mode software. When IEXI is set, the imprecise error exception from a bus error on an instruction
fetch or data access, cache error, or machine check is inhibited and deferred until the bit is cleared.

bit 19 DDBSIMPR: Debug Data Break Store Exception bit
Indicates that an imprecise Debug Data Break Store exception was taken. All data breaks are precise on
the PIC32 core, so this bit will always read as ‘0’.

bit 18 DDBLIMPR: Debug Data Break Load Exception bit
Indicates that an imprecise Debug Data Break Load exception was taken. All data breaks are precise on the
PIC32 core, so this bit will always read as ‘0’.

bit 17-15 VER<2:0>: EJTAG Version bit
Contains the EJTAG version number.

bit 14-10 DEXCCODE<4:0>: Latest Exception in Debug Mode bit
Indicates the cause of the latest exception in Debug mode. The bit is encoded as the EXCCODE<4:0> bits
in the Cause register for those normal exceptions that may occur in Debug mode. Value is undefined after
a debug exception.

bit 9 NOSST: Singe-step Feature Control bit
Indicates whether the single-step feature controllable by the SST bit is available in this implementation.
1 = No single-step feature available
0 = Single-step feature available

bit 8 SST: Debug Single-step Control bit
Controls if debug single-step exception is enabled.
1 = Debug single step exception enabled
0 = No debug single-step exception enabled

Register 2-23: Debug: Debug Exception Register; CP0 Register 23, Select 0 (Continued)
DS61113D-page 2-54 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

bit 7 Unimplemented: Read as ‘0’

bit 6 DIBImpr: Imprecise Debug Instruction Break Exception bit
Indicates that an imprecise debug instruction break exception occurred (due to a complex breakpoint).
Cleared on exception in Debug mode.

bit 5 DINT: Debug Interrupt Exception bit
Indicates that a debug interrupt exception occurred. Cleared on exception in Debug mode.
1 = Debug interrupt exception
0 = No debug interrupt exception

bit 4 DIB: Debug Instruction Break Exception bit
Indicates that a debug instruction break exception occurred. Cleared on exception in Debug mode.
1 = Debug instruction exception
0 = No debug instruction exception

bit 3 DDBS: Debug Data Break Exception on Store bit
Indicates that a debug data break exception occurred on a store. Cleared on exception in Debug mode.
1 = Debug instruction exception on a store
0 = No debug data exception on a store

bit 2 DDBL: Debug Data Break Exception on Load bit
Indicates that a debug data break exception occurred on a load. Cleared on exception in Debug mode.
1 = Debug instruction exception on a load
0 = No debug data exception on a load

bit 1 DBP: Debug Software Breakpoint Exception bit
Indicates that a debug software breakpoint exception occurred. Cleared on exception in Debug mode.
1 = Debug software breakpoint exception
0 = No debug software breakpoint exception

bit 0 DSS: Debug Single-step Exception bit
Indicates that a debug single-step exception occurred. Cleared on exception in Debug mode.
1 = Debug single-step exception
0 = No debug single-step exception

Register 2-23: Debug: Debug Exception Register; CP0 Register 23, Select 0 (Continued)
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-55

PIC32 Family Reference Manual
2.12.24 TraceControl Register (CP0 Register 23, Select 1)
The TraceControl register enables software trace control and is only implemented on devices
with the EJTAG trace capability.

Register 2-24: TraceControl: Trace Control Register

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0

TS UT — — TB IO D(1) E(1)

23:16
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0

K(1) — U(1) — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 U-1 R/W-0 R/W-0 R/W-0 R/W-0

— — — — MODE<2:0> IB

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 TS: Trace Select bit
This bit is used to select between the hardware and the software trace control bits.
1 = Selects the trace control bits
0 = Selects the external hardware trace block signals

bit 30 UT: User Type Select bit
This bit is used to indicate the type of user-triggered trace record.
1 = User type 2
0 = User type 1

bit 29-28 Unimplemented: Read as ‘0’
bit 27 TB: Trace Branch bit

1 = Trace the PC value for all taken branches
0 = Trace the PC value for branch targets with unpredictable static addresses

bit 26 IO: Inhibit Overflow bit
This signal is used to indicate to the core trace logic that slow but complete tracing is desired.
1 = Inhibit FIFO overflow or discard of trace data
0 = Allow FIFO overflow or discard of trace data

bit 25 D: Debug Mode Trace Enable bit(1)

1 = Enable tracing in Debug mode
0 = Disable tracing in Debug mode

bit 24 E: Exception Mode Trace Enable bit(1)

1 = Enable tracing in Exception mode
0 = Disable tracing in Exception mode

bit 23 K: Kernal Mode Trace Enable bit(1)

1 = Enable tracing in Kernal mode
0 = Disable tracing in Kernal mode

bit 22 Unimplemented: Read as ‘0’

Note 1: The ON bit must be set to ‘1’ to enable tracing.
DS61113D-page 2-56 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

bit 21 U: User Mode Trace Enable bit(1)

1 = Enable tracing in User mode
0 = Disable tracing in User mode

bit 20-5 Unimplemented: Read as ‘0’
bit 4 Unimplemented: Read as ‘1’
bit 3-1 MODE<2:0>: Trace Mode Control bits

111 = Trace PC and both load and store address and data
110 = Trace PC and store address and data
101 = Trace PC and load address and data
100 = Trace PC and load data
011 = Trace PC and both load and store addresses
010 = Trace PC and store address
001 = Trace PC and load address
000 = Trace PC

bit 0 ON: Master Trace Enable bit
1 = Tracing is enabled when another trace enable bit is set to ‘1’
0 = Tracing is disabled

Register 2-24: TraceControl: Trace Control Register (Continued)

Note 1: The ON bit must be set to ‘1’ to enable tracing.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-57

PIC32 Family Reference Manual
2.12.25 TraceControl2 Register (CP0 Register 23, Select 2)
The TraceControl2 register provides additional control and status information. Note that some
fields in the TraceControl2 register are read-only, but have a reset state of “Undefined”. This is
because these values are loaded from the Trace Control Block (TCB). As such, these fields in
the TraceControl2 register will not have valid values until the TCB asserts these values.

Register 2-25: TraceControl2: Trace Control Register 2

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 R-1 R-0 R-x R-x R-x R-x R-x

— VALIDMODES<1:0> TBI TBU SYP<2:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-7 Unimplemented: Read as ‘0’
bit 6-5 VALIDMODES<1:0>: Valid Trace Mode Select bits

11 = Reserved
10 = PC, load and store address, and load and store data
01 = PC and load and store address tracing only
00 = PC tracing only

bit 4 TBI: Master Trace Enable bit
1 = On-chip and off-chip trace buffers are implemented by the TCB
0 = Only one trace buffer is implemented

bit 3 TBU: Master Trace Enable bit
1 = Trace data is being sent to an off-chip trace buffer
0 = Trace data is being sent to an on-chip trace buffer

bit 2-0 SYP<2:0>: Synchronization Period bits
The “On-chip” column value is used when the trace data is being written to an on-chip trace buffer (e.g,
TraceControl2TBU = 0). Conversely, the “Off-chip” column is used when the trace data is being written to an
off-chip trace buffer (e.g, TraceControl2TBU = 1).

Bit
Setting On-chip Off-chip

111 = 22 27

110 = 23 28

101 = 24 29

100 = 25 210

011 = 26 211

010 = 27 212

001 = 28 213

000 = 29 214
DS61113D-page 2-58 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.26 UserTraceData Register (CP0 Register 23, Select 3)
A software write to any bits in the UserTraceData register will trigger a trace record to be written
indicating a type 1 or type 2 user format. The type is based on the UT bit in the TraceControl
register. This register cannot be written in consecutive cycles. The trace output data is
unpredictable if this register is written in consecutive cycles.

This register is only implemented on devices with the EJTAG trace capability.

Register 2-26: UserTraceData: User Trace Data Control Register

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<31:24>

23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<23:10>

15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<15:6>

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 DATA: Software Readable/Writable Data bits
When written, this register triggers a user format trace record out of the PDtrace interface that transmits the
Data bit to trace memory.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-59

PIC32 Family Reference Manual
2.12.27 TraceBPC Register (CP0 Register 23, Select 4)
This register is used to control start and stop of tracing using an EJTAG Hardware breakpoint.
The Hardware breakpoint would then be set as a trigger source and optionally also as a Debug
exception breakpoint.

This register is only implemented on devices with both Hardware breakpoints and the EJTAG
trace capability.

Register 2-27: TraceBPC: Trace Breakpoint Control Register

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

DE — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0

— — — — — — DBPO1 DBPO0

15:8
R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

IE — — — — — — —

7:0
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — IBPO5 IBPO4 IBPO3 IBPO2 IBPO1 IBPO0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 DE: EJTAG Data Breakpoint Trigger Select bit
1 = Enable trigger signals from data breakpoints
0 = Disable trigger signals from data breakpoints

bit 15 IE: EJTAG Instruction Breakpoint Select bit
1 = Enable trigger signals from instruction breakpoints
0 = Disable trigger signals from instruction breakpoints

bit 14-6 Unimplemented: Read as ‘0’
bit 5 IBPO5: Instruction Breakpoint 6 bit

1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

bit 4 IBPO4: Instruction Breakpoint 5 bit
1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

bit 3 IBPO3: Instruction Breakpoint 4 bit
1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

bit 2 IBPO2: Instruction Breakpoint 3 bit
1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

bit 1 IBPO1: Instruction Breakpoint 2 bit
1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

bit 0 IBPO0: Instruction Breakpoint 1 bit
1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

Note 1: Refer to the specific device data sheet for the list of available trigger sources.
DS61113D-page 2-60 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.28 Debug2 Register (CP0 Register 23, Select 5)
This register holds additional information about Complex Breakpoint exceptions. This register is
only implemented if complex hardware breakpoints are present.

Register 2-28: Debug2: Debug Breakpoint Exceptions Register; CP0 Register 23, Select 5

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
r-1 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 U-0 R-x R-x R-x R-x

— — — — PRM DQ TUP PACO

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Reserved: Read as ‘1’

bit 30-4 Unimplemented: Read as ‘0’

bit 3 PRM: Primed bit
Indicates whether a complex breakpoint with an active priming condition was seen on the last debug
exception.

bit 2 DQ: Data Qualified bit
Indicates whether a complex breakpoint with an active data qualifier was seen on the last debug exception.

bit 1 TUP: Tuple Breakpoint bit
Indicates whether a tuple breakpoint was seen on the last debug exception.

bit 0 PACO: Pass Counter bit
Indicates whether a complex breakpoint with an active pass counter was seen on the last debug exception.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-61

PIC32 Family Reference Manual
2.12.29 DEPC Register (CP0 Register 24, Select 0)
The Debug Exception Program Counter (DEPC) register is a read/write register that contains the
address at which processing resumes after a debug exception or Debug mode exception has
been serviced.

For synchronous (precise) debug and Debug mode exceptions, the DEPC register contains
either:

• The virtual address of the instruction that was the direct cause of the debug exception, or
• The virtual address of the immediately preceding branch or jump instruction, when the

debug exception causing instruction is in a branch delay slot, and the Debug Branch Delay
(DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt), the DEPC register contains the virtual
address of the instruction where execution should resume after the debug handler code is exe-
cuted.

Since the PIC32 family implements the MIPS16e® or microMIPS™ ASE, a read of the DEPC
register (via MFC0) returns the following value in the destination GPR:

GPR[rt] = DebugExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the
ISA<1:0> bits (Config3<15:14>)and are written to the GPR.

Similarly, a write to the DEPC register (via MTC0) takes the value from the GPR and distributes
that value to the debug exception PC and the ISA<1:0> bits (Config3<15:14>), as follows:

DebugExceptionPC = GPR[rt]31..1 || 0
ISAMode = 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC,
and the lower bit of the debug exception PC is cleared. The upper bit of the ISA<1:0> bits
(Config3<15:14>) is cleared and the lower bit is loaded from the lower bit of the GPR.

Register 2-29: DEPC: Debug Exception Program Counter Register; CP0 Register 24, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DEPC<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DEPC<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DEPC<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DEPC<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 DEPC<31:0>: Debug Exception Program Counter bits
The DEPC register is updated with the virtual address of the instruction that caused the debug exception. If
the instruction is in the branch delay slot, then the virtual address of the immediately preceding branch or jump
instruction is placed in this register.

Execution of the DERET instruction causes a jump to the address in the DEPC register.
DS61113D-page 2-62 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.30 PerfCtlx Register (CP0 Register 25, Select 0-3) (M14K™ Only)
The M14K processor defines two performance counters, PerfCnt0 and PerfCnt1 (see
Register 2-31), and two associated control registers, PerfCtl0 and PerfCtl1, which are mapped
to CP0 register 25. The select bit of the MTC0/MFC0 instructions are used to select the specific
register accessed by the instruction, as shown in Table 2-13.

Table 2-13: Performance Counter Register Selects

Each counter is a 32-bit read/write register and is incremented by one each time the countable
event, specified in its associated control register, occurs. Each counter can independently count
one type of event at a time.

Bit 31 of each of the counters are ANDed with an interrupt enable bit, IE, of their respective
control register to determine if a performance counter interrupt should be signaled. The two
values are then ORed together to create the Performance Counter Interrupt output. This signals
an interrupt to the M14K core. Counting is not affected by the interrupt indication. This output is
cleared when the counter wraps to zero, and may be cleared in software by writing a value with
bit 31 = 0 to the Performance Counter Count registers.

Select<2:0> Register

0 Register 0 Control
1 Register 0 Count
2 Register 1 Control
3 Register 1 Count

Note: The performance counter registers are connected to a clock that is stopped when
the processor is in sleep mode. Most events would not be active during that time,
but others would be, notably the cycle count. This behavior should be considered
when analyzing measurements taken on a system.

Register 2-30: PerfCtlx: Performance Counter Control Register; CP0 Register 25, Select 0/2 (x = 0 or 1)

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
r-1 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x

— — — — EVENT<6:3>

7:0
R/W-x R/W-x R/W-x R/W-0 R-0 U-0 R/W-x R/W-x

EVENT<2:0> IE U — K EXL

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Reserved: Read as ‘1’

bit 30-12 Unimplemented: Read as ‘0’

bit 11-5 EVENT<6:0>:
Counter event enabled for this counter. Possible events are listed in Table x.x2.

bit 4 IE: Counter Interrupt Enable bit
This bit masks bit 31 of the associated count register from the interrupt exception request output.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-63

PIC32 Family Reference Manual
bit 3 U: Count in User Mode bit
When this bit is set, the specified event is counted in User mode.

bit 2 Unimplemented: Read as ‘0’

bit 1 K: Count in Kernal Mode bit
When this bit is set, count the event in Kernel mode when EXL and ERL are both ‘0’.

bit 0 EXL: Count when EXL bit
When this bit is set, count the event when EXL = 1 and ERL = 0.

Register 2-30: PerfCtlx: Performance Counter Control Register; CP0 Register 25, Select 0/2 (Continued)(x =
0 or 1)
DS61113D-page 2-64 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

Table 2-14 describes the events countable with the two performance counters. The mode column
indicates whether the event counting is influenced by the mode bits (U, K, EXL). The operation
of a counter is unpredictable for events that are specified as Reserved.

Performance counters never count in Debug mode or when ERL = 1.

Table 2-14: Performance Countable Events

Event
Number Counter 0 Mode Counter 1 Mode

0 Cycles No Cycles No
1 Instructions completed Yes Instructions completed Yes
2 branch instructions Yes Reserved N/A
3 JR r31 (return) instructions Yes Reserved N/A
4 JR (not r31) instructions Yes Reserved N/A
5 Reserved N/A Reserved N/A
6 Reserved N/A Reserved N/A
7 Reserved N/A Reserved N/A
8 Reserved N/A Reserved N/A
9 Reserved N/A Reserved N/A

10 Reserved N/A Reserved N/A
11 Reserved N/A Reserved N/A
13 Reserved N/A Reserved N/A
14 integer instructions completed Yes Reserved N/A
15 loads completed Yes Stores completed Yes
16 J/JAL completed Yes microMIPS instructions completed Yes
17 no-ops completed Yes Integer multiply/divide completed Yes
18 Stall cycles No Reserved N/A
19 SC instructions completed Yes SC instructions failed Yes
20 Prefetch instructions completed Yes Reserved N/A
21 Reserved N/A Reserved N/A
22 Reserved N/A Reserved N/A
23 Exceptions taken Yes Reserved N/A
24 Reserved N/A Reserved N/A
25 Reserved N/A ALU stall cycles No
26 Reserved N/A Reserved N/A
27 Reserved N/A Reserved N/A
28 Reserved N/A Implementation-specific CP2 event Yes
29 Reserved N/A Reserved N/A
30 Implementation-specific CorExtend

event
Yes Reserved N/A

31 Reserved N/A Reserved N/A
32 Reserved N/A Reserved N/A
33 Reserved N/A Reserved N/A
34 Reserved N/A Reserved N/A
35 Reserved N/A CP2 To/From Instructions completed Yes
36 Reserved N/A N/A N/A
37 Reserved N/A Reserved N/A
38 Reserved N/A Reserved N/A
39 Reserved N/A Reserved N/A
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-65

PIC32 Family Reference Manual
40 Uncached stall cycles Yes Reserved N/A
41 MDU stall cycles Yes Reserved N/A
42 CP2 stall cycles Yes CorExtend stall cycles Yes
43 Reserved N/A Reserved N/A
44 Reserved N/A Reserved N/A
45 Load to Use stall cycles Yes Reserved N/A
46 Other interlock stall cycles Yes Reserved N/A
47 Reserved N/A Reserved N/A
48 Reserved N/A Reserved N/A
49 EJTAG Instruction Triggerpoints Yes EJTAG Data Triggerpoints Yes
50 Reserved N/A Reserved N/A
51 Reserved N/A Reserved N/A
52 Reserved N/A Reserved N/A
53 Reserved N/A Reserved N/A
54 Reserved N/A Reserved N/A
55 Reserved N/A Reserved N/A

56-63 Reserved N/A Reserved NA

Table 2-14: Performance Countable Events (Continued)

Event
Number Counter 0 Mode Counter 1 Mode
DS61113D-page 2-66 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

Table 2-15: Event Description

Event Name Counter Event
Number Description

Cycles 0/1 0 Total number of cycles. The performance counters are clocked
by the top-level gated clock. If the M14K is built with that clock
gate is present, none of the counters will increment while the
clock is stopped (e.g., due to a WAIT instruction).

Instruction Completion
The following events indicate completion of various types of instructions
Instructions 0/1 1 Total number of instructions completed.
Branch instructions 0 2 Counts all branch instructions that completed.
JR R31 (return)
instructions

0 3 Counts all JR R31 instructions that completed.

JR (not R31) 0 4 Counts all JR rxx (not r31) and JALR instructions (indirect
jumps).

Integer instructions 0 14 Non-floating point, non-Coprocessor 2 instructions.
Loads 0 15 Includes both integer and coprocessor loads.
Stores 1 15 Includes both integer and coprocessor stores.
J/JAL 0 16 Direct Jump (And Link) instruction.
microMIPS 1 16 All microMIPS instructions.
no-ops 0 17 This includes all instructions that normally write to a GPR, but

where the destination register was set to r0.
Integer Multiply/Divide 1 17 Counts all Integer Multiply/Divide instructions (MULxx, DIVx,

MADDx, MSUBx).
SC 0 19 Counts conditional stores regardless of whether they succeeded.
PREF 0 20 Note that this only counts PREFs that are actually attempted.

PREFs to uncached addresses or ones with translation errors
are not counted

Cp2 To/From instructions 1 35 Includes move to/from, control to/from, and cop2 loads and
stores.

Instruction Execution Events
SC instructions failed 1 19 SC instruction that did not update memory.

Note: While this event and the SC instruction count event can
be configured to count in specific operating modes, the
timing of the events is much different, and the observed
operating mode could change between them, causing
some inaccuracy in the measured ratio.

Exceptions Taken 0 23 Any type of exception taken.
EJTAG instruction triggers 0 49 Number of times an EJTAG Instruction Trigger Point condition

matched.
EJTAG data triggers 1 49 Number of times an EJTAG Data Trigger Point condition

matched.
General Stalls
ALU stall cycles 1 25 Counts the number of cycles in which the ALU pipeline cannot

advance.
Stall cycles 0 18 Counts the total number of cycles in which no instructions are

issued by SRAM to ALU (the RF stage does not advance). This
includes both of the previous two events. However, this is differ-
ent from the sum of them, because cycles when both stalls are
active will only be counted once.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-67

PIC32 Family Reference Manual
Specific Stalls
These events will count the number of cycles lost due to this. This will include bubbles introduced by replays within
the pipe. If multiple stall sources are active simultaneously, the counters for each of the active events will be
incremented.
Uncached stall cycles 0 40 Cycles in which the processor is stalled on an uncached fetch,

load, or store.
MDU stall cycles 0 41 Counts all cycles in which the integer pipeline waits on MDU

return data.
Cp2 stall cycles 0 42 Counts all cycles in which the integer pipeline waits on CP2

return data.
CorExtend stall cycles 1 42 Counts all cycles in which the integer pipeline waits on

CorExtend return data.
Load to Use stall cycles 0 45 Counts all cycles in which the integer pipeline waits on Load

return data.
Other interlocks stall
cycles

0 46 Counts all cycles in which the integer pipeline waits on return
data from MFC0 and RDHWR instructions.

Implementation of Specific Events
Cp2 1 28 Set to 1 if COP2 is implemented.
CorExtend 0 30 Set to 1 if CorExtend is implemented.

Table 2-15: Event Description (Continued)

Event Name Counter Event
Number Description
DS61113D-page 2-68 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.31 PerfCntx Register (CP0 Register 25, Select 1/3) (M14K™ Only)
The M14K processor defines two performance counters, PerfCnt0 and PerfCnt1, and two
associated control registers, PerfCtl0 and PerfCtl1 (see Register 2-30), which are mapped to
CP0 register 25. The select bit of the MTC0/MFC0 instructions are used to select the specific
register accessed by the instruction, as shown in Table 2-13.

The performance counter resets to a low-power state, in which none of the counters will start
counting events until software has enabled event counting, using an MTC0 instruction to the
Performance Counter Control Registers.

Register 2-31: PerfCntx: Performance Counter Count Register; CP0 Register 25, Select 1/3 (x = 0 or 1)
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNTER<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNTER<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNTER<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNTER <7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 COUNTER<31:0>: Event Counter bits
Counter for events enabled for this counter.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-69

PIC32 Family Reference Manual
2.12.32 ErrorEPC (CP0 Register 30, Select 0)
The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC
is used on error exceptions. All bits of the ErrorEPC register are significant and must be writable.
It is also used to store the program counter on Reset, Soft Reset, and non-maskable interrupt
(NMI) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume
after servicing an error. This address can be:

• The virtual address of the instruction that caused the exception
• The virtual address of the immediately preceding branch or jump instruction when the error

causing instruction is in a branch delay slot

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC
register.

Since the PIC32 family implements the MIPS16e® or microMIPS™ ASE, a read of the ErrorEPC
register (via MFC0) returns the following value in the destination GPR:

GPR[rt] = ErrorExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the
ISA<1:0> bits (Config3<15:14>) and are written to the GPR.

Similarly, a write to the ErrorEPC register (via MTC0) takes the value from the GPR and
distributes that value to the error exception PC and the ISA<1:0> bits (Config3<15:14>), as
follows:

ErrprExceptionPC = GPR[rt]31..1 || 0
ISAMode = 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC,
and the lower bit of the error exception PC is cleared. The upper bit of the ISA<1:0> bits
(Config3<15:14>) is cleared and the lower bit is loaded from the lower bit of the GPR.

Register 2-32: ErrorEPC: Error Exception Program Counter Register; CP0 Register 30, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ErrorEPC<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ErrorEPC<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ErrorEPC<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ErrorEPC<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 ErrorEPC<31:0>: Error Exception Program Counter bits
DS61113D-page 2-70 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.12.33 DeSAVE Register (CP0 Register 31, Select 0)
The DeSAVE register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs that is then used to
save the rest of the context to a predetermined memory area (such as in the EJTAG Probe). This
register allows the safe debugging of exception handlers and other types of code where the
existence of a valid stack for context saving cannot be assumed.

Register 2-33: DeSAVE: Debug Exception Save Register; CP0 Register 31, Select 0
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DESAVE<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DESAVE<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DESAVE<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DESAVE<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 DESAVE<31:0>: Debug Exception Save bits
Scratch Pad register used by Debug Exception code.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-71

PIC32 Family Reference Manual
2.13 MIPS16e® EXECUTION (M4K® ONLY)
When the core is operating in MIPS16e® mode, instruction fetches only require 16-bits of data to
be returned. However, for improved efficiency, the core will fetch 32-bits of instruction data when-
ever the address is word-aligned. Therefore, for sequential MIPS16e® code, fetches only occur
for every other instruction, resulting in better performance and reduced system power.

2.14 microMIPS™ EXECUTION (M14K™ ONLY)
microMIPS™ minimizes the code footprint of applications and therefore reduces the cost of
memory, which is particularly high for embedded memory. Simultaneously, the high performance
of MIPS cores is maintained. Using this technology, best results can be achieved without the
need to spend time to profile the application. The smaller code footprint typically leads to reduced
power consumption per executed task because of the smaller number of memory accesses.

The MIPS32® Release 3.0 Architecture supports both the MIPS32® instruction set and
microMIPS™, the enhanced MIPS32® instruction set.

microMIPS™ is a replacement for the existing MIPS16e® ASE. It is also an alternative to the
MIPS32® instruction encoding and can be implemented in parallel or stand-alone.

Overview of changes versus existing MIPS32ISA:

• The MIPS16 ASE is phased out; microMIPS is a replacement for MIPS16e. Therefore
these two schemes never co-exist within the same processor core.

• 16-bit and 32-bit opcodes
• Optimized opcode/operand field definitions based on statistics
• Branch and jump delay slots kept for maximum compatibility and lowest risk
• Branch likely instructions are phased out in microMIPS™ and are emulated by the

assembler. They remain available in the MIPS32® encoding.

2.15 MCU™ ASE EXTENSION (M14K™ ONLY)
The MCU™ ASE extends the microMIPS®/MIPS32® Architecture with a set of new features
designed for the microcontroller market.

The MCU ASE contains enhancements in several distinct areas: interrupt delivery and interrupt
latency.

2.15.1 Interrupt Delivery
The MCU ASE extends the number of interrupt hardware inputs from 6 to 8 for Vectored Interrupt
(VI) mode, and from 63 to 255 for External Interrupt Controller (EIC) mode.

Separate priority and vector generation. 16-bit vector address is provided.

2.15.2 Interrupt Latency Reduction
The MCU ASE includes a package of extensions to microMIPS™/MIPS32® that decrease the
latency of the processor’s response to a signaled interrupt.

2.15.2.1 INTERRUPT VECTOR PREFETCHING

Normally on MIPS architecture processors, when an interrupt or exception is signaled, execution
pipelines must be flushed before the interrupt/exception handler is fetched. This is necessary to
avoid mixing the contexts of the interrupted/faulting program and the exception handler. The
MCU ASE introduces a hardware mechanism in which the interrupt exception vector is
prefetched whenever the interrupt input signals change. The prefetch memory transaction occurs
in parallel with the pipeline flush and exception prioritization. This decreases the overall latency
of the execution of the interrupt handler’s first instruction.
DS61113D-page 2-72 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.15.2.2 AUTOMATED INTERRUPT PROLOGUE

The use of Shadow Register Sets avoids the software steps of having to save general-purpose
registers before handling an interrupt.

The MCU ASE adds additional hardware logic that automatically saves some of the CP0 state in
the stack and automatically updates some of the CP0 registers in preparation for interrupt
handling.

2.15.2.3 AUTOMATED INTERRUPT EPILOGUE

A mirror to the Automated Prologue, this features automates the restoration of some of the CP0
registers from the stack and the preparation of some of the CP0 registers for returning to
non-exception mode. This feature is implemented within the IRET instruction, which is introduced
in this ASE.

2.15.2.4 INTERRUPT CHAINING

An optional feature of the Automated Interrupt Epilogue, this feature allows handling a second
interrupt after a primary interrupt is handled, without returning to non-exception mode (and the
related pipeline flushes that would normally be necessary).
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-73

PIC32 Family Reference Manual
2.16 MEMORY MODEL
Virtual addresses used by software are converted to physical addresses by the memory
management unit (MMU) before being sent to the CPU busses. The PIC32 CPU uses a fixed
mapping for this conversion.

For more information regarding the system memory model, see Section 3. “Memory
Organization” (DS61115).

Figure 2-14: Address Translation During SRAM Access

2.16.1 Cacheability
The CPU uses the virtual address of an instruction fetch, load or store to determine whether to
access the cache or not. Memory accesses within kseg0, or useg/kuseg can be cached, while
accesses within kseg1 are non-cacheable. The CPU uses the CCA bits in the Config register to
determine the cacheability of a memory segment. A memory access is cacheable if its
corresponding CCA = 0112. For more information on cache operation, see Section 4. “Prefetch
Cache Module” (DS6119).

2.16.1.1 LITTLE ENDIAN BYTE ORDERING

On CPUs that address memory with byte resolution, there is a convention for multi-byte data
items that specify the order of high-order to low-order bytes. Big-endian byte-ordering is where
the lowest address has the MSB. Little-endian ordering is where the lowest address has the LSB
of a multi-byte datum. The PIC32 CPU supports little-endian byte ordering.

Figure 2-15: Big-Endian Byte Ordering

Figure 2-16: Little-Endian Byte Ordering

SRAM
Interface

Instn
SRAM

Data
SRAM

FMT

Instruction
Address

Calculator

Data
Address

Calculator

Virtual
Address

Virtual
Address

Physical
Address

Physical
Address

Higher
Address Word

Address

Lower
Address

Bit #

} 1 word = 4 bytes

12
8
4

0

13
9
5
1

14
10
6
2

15
11
7
3

31 24 23 16 15 8 7 0
12
8

4

0

Higher
Address Word

Address

Lower
Address

Bit #

15
11
7

3

14
10
6
2

13
9
5
1

12
8
4
0

31 24 23 16 15 8 7 0
12
8

4

0

DS61113D-page 2-74 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.17 CPU INSTRUCTIONS, GROUPED BY FUNCTION
CPU instructions are organized into the following functional groups:

• Load and store
• Computational
• Jump and branch
• Miscellaneous
• Coprocessor

Each instruction is 32 bits long.

2.17.1 CPU Load and Store Instructions
MIPS processors use a load/store architecture; all operations are performed on operands held
in processor registers and main memory is accessed only through load and store instructions.

2.17.1.1 TYPES OF LOADS AND STORES

There are several different types of load and store instructions, each designed for a different
purpose:

• Transferring variously-sized fields (for example, LB, SW)
• Trading transferred data as signed or unsigned integers (for example, LHU)
• Accessing unaligned fields (for example, LWR, SWL)
• Atomic memory update (read-modify-write: for instance, LL/SC)

2.17.1.2 LIST OF CPU LOAD AND STORE INSTRUCTIONS

The following data sizes (as defined in the AccessLength field) are transferred by CPU load and
store instructions:

• Byte
• Half-word
• Word

Signed and unsigned integers of different sizes are supported by loads that either sign-extend or
zero-extend the data loaded into the register.

Unaligned words and double words can be loaded or stored in just two instructions by using a
pair of special instructions. For loads a LWL instruction is paired with a LWR instruction. The load
instructions read the left-side or right-side bytes (left or right side of register) from an aligned word
and merge them into the correct bytes of the destination register.

2.17.1.3 LOADS AND STORES USED FOR ATOMIC UPDATES

The paired instructions, Load Linked and Store Conditional, can be used to perform an atomic
read-modify-write of word or double word cached memory locations. These instructions are used
in carefully coded sequences to provide one of several synchronization primitives, including
test-and-set, bit-level locks, semaphores, and sequencers and event counts.

2.17.1.4 COPROCESSOR LOADS AND STORES

If a particular coprocessor is not enabled, loads and stores to that processor cannot execute and
the attempted load or store causes a Coprocessor Unusable exception. Enabling a coprocessor
is a privileged operation provided by the System Control Coprocessor, CP0.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-75

PIC32 Family Reference Manual
2.17.2 Computational Instructions
Two’s complement arithmetic is performed on integers represented in 2s complement notation.
These are signed versions of the following operations:

• Add
• Subtract
• Multiply
• Divide

The add and subtract operations labelled “unsigned” are actually modulo arithmetic without over-
flow detection.

There are also unsigned versions of multiply and divide, as well as a full complement of shift and
logical operations. Logical operations are not sensitive to the width of the register.

MIPS32® provided 32-bit integers and 32-bit arithmetic.

2.17.2.1 SHIFT INSTRUCTIONS

The ISA defines two types of shift instructions:

• Those that take a fixed shift amount from a 5-bit field in the instruction word (for instance,
SLL, SRL)

• Those that take a shift amount from the low-order bits of a general register (for instance,
SRAV, SRLV)

2.17.2.2 MULTIPLY AND DIVIDE INSTRUCTIONS

The multiply instruction performs 32-bit by 32-bit multiplication and creates either 64-bit or 32-bit
results. Divide instructions divide a 64-bit value by a 32-bit value and create 32-bit results. With
one exception, they deliver their results into the HI and LO special registers. The MUL instruction
delivers the lower half of the result directly to a GPR.

• Multiply produces a full-width product twice the width of the input operands; the low half is
loaded into LO and the high half is loaded into HI

• Multiply-Add and Multiply-Subtract produce a full-width product twice the width of the input
operations and adds or subtracts the product from the concatenated value of HI and LO.
The low half of the addition is loaded into LO and the high half is loaded into HI.

• Divide produces a quotient that is loaded into LO and a remainder that is loaded into HI

The results are accessed by instructions that transfer data between HI/LO and the general
registers.
DS61113D-page 2-76 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.17.3 Jump and Branch Instructions

2.17.3.1 TYPES OF JUMP AND BRANCH INSTRUCTIONS DEFINED BY THE ISA

The architecture defines the following jump and branch instructions:

• PC-relative conditional branch
• PC-region unconditional jump
• Absolute (register) unconditional jump
• A set of procedure calls that record a return link address in a general register

2.17.3.2 BRANCH DELAYS AND THE BRANCH DELAY SLOT

All branches have an architectural delay of one instruction. The instruction immediately following
a branch is said to be in the “branch delay slot”. If a branch or jump instruction is placed in the
branch delay slot, the operation of both instructions is undefined.

By convention, if an exception or interrupt prevents the completion of an instruction in the branch
delay slot, the instruction stream is continued by re-executing the branch instruction. To permit
this, branches must be restartable; procedure calls may not use the register in which the return
link is stored (usually GPR 31) to determine the branch target address.

2.17.3.3 BRANCH AND BRANCH LIKELY

There are two versions of conditional branches; they differ in the manner in which they handle
the instruction in the delay slot when the branch is not taken and execution falls through.

• Branch instructions execute the instruction in the delay slot
• Branch likely instructions do not execute the instruction in the delay slot if the branch is not

taken (they are said to nullify the instruction in the delay slot)

Although the Branch Likely instructions are included in this specification, software is strongly
encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

2.17.4 Miscellaneous Instructions

2.17.4.1 INSTRUCTION SERIALIZATION (SYNC AND SYNCI)

In normal operation, the order in which load and store memory accesses appear to a viewer out-
side the executing processor (for instance, in a multiprocessor system) is not specified by the
architecture.

The SYNC instruction can be used to create a point in the executing instruction stream at which
the relative order of some loads and stores can be determined: loads and stores executed before
the SYNC are completed before loads and stores after the SYNC can start.

The SYNCI instruction synchronizes the processor caches with previous writes or other modifi-
cations to the instruction stream.

2.17.4.2 EXCEPTION INSTRUCTIONS

Exception instructions transfer control to a software exception handler in the kernel. There are
two types of exceptions, conditional and unconditional. These are caused by the following
instructions: syscall, trap, and break.

Trap instructions, which cause conditional exceptions based upon the result of a comparison

System call and breakpoint instructions, which cause unconditional exceptions

2.17.4.3 CONDITIONAL MOVE INSTRUCTIONS

MIPS32® includes instructions to conditionally move one CPU general register to another, based
on the value in a third general register.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-77

PIC32 Family Reference Manual
2.17.4.4 NOP INSTRUCTIONS

The NOP instruction is actually encoded as an all-zero instruction. MIPS processors special-case
this encoding as performing no operation, and optimize execution of the instruction. In addition,
SSNOP instruction, takes up one issue cycle on any processor, including super-scalar
implementations of the architecture.

2.17.5 Coprocessor Instructions

2.17.5.1 WHAT COPROCESSORS DO

Coprocessors are alternate execution units, with register files separate from the CPU. In abstrac-
tion, the MIPS architecture provides for up to four coprocessor units, numbered 0 to 3. Each level
of the ISA defines a number of these coprocessors. Coprocessor 0 is always used for system
control and coprocessor 1 and 3 are used for the floating point unit. Coprocessor 2 is reserved
for implementation-specific use.

A coprocessor may have two different register sets:

• Coprocessor general registers
• Coprocessor control registers

Each set contains up to 32 registers. Coprocessor computational instructions may use the
registers in either set.

2.17.5.2 SYSTEM CONTROL COPROCESSOR 0 (CP0)

The system controller for all MIPS processors is implemented as coprocessor 0 (CP0), the
System Control Coprocessor. It provides the processor control, memory management, and
exception handling functions.

2.17.5.3 COPROCESSOR LOAD AND STORE INSTRUCTIONS

Explicit load and store instructions are not defined for CP0; for CP0 only, the move to and from
coprocessor instructions must be used to write and read the CP0 registers. The loads and stores
for the remaining coprocessors are summarized in 2.17.1.4 “Coprocessor Loads and Stores”.
DS61113D-page 2-78 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.18 CPU INITIALIZATION
Software is required to initialize the following parts of the device after a Reset event.

2.18.1 General Purpose Registers
The CPU register file powers up in an unknown state with the exception of r0 which is always ‘0’.
Initializing the rest of the register file is not required for proper operation in hardware. However,
depending on the software environment, several registers may need to be initialized. Some of
these are:

• sp – Stack pointer
• gp – Global pointer
• fp – Frame pointer

2.18.2 Coprocessor 0 State
Miscellaneous CP0 states need to be initialized prior to leaving the boot code. There are various
exceptions which are blocked by ERL = 1 or EXL = 1 and which are not cleared by Reset. These
can be cleared to avoid taking spurious exceptions when leaving the boot code.

Table 2-16: CPU Initialization

2.18.3 Bus Matrix
The BMX should be initialized before switching to User mode or before executing from DRM. The
values written to the bus matrix are based on the memory layout of the application to be run.

CP0 Register Action

Cause WP (Watch Pending), SW0/1 (Software Interrupts) should be cleared.
Config Typically, the K0, KU and K23 fields should be set to the desired Cache

Coherency Algorithm (CCA) value prior to accessing the corresponding
memory regions.

Count(1) Should be set to a known value if Timer Interrupts are used.
Compare(1) Should be set to a known value if Timer Interrupts are used. The write to

Compare will also clear any pending Timer Interrupts (Thus, Count should
be set before Compare to avoid any unexpected interrupts).

Status Desired state of the device should be set.
Other CP0 state Other registers should be written before they are read. Some registers are

not explicitly writable, and are only updated as a by-product of instruction
execution or a taken exception. Uninitialized bits should be masked off after
reading these registers.

Note 1: When the Count register is equal to the Compare register a timer interrupt is
signaled. There is a mask bit in the interrupt controller to disable passing this
interrupt to the CPU if desired.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-79

PIC32 Family Reference Manual
2.19 EFFECTS OF A RESET

2.19.1 MCLR Reset
The PIC32 core is not fully initialized by hardware Reset. Only a minimal subset of the processor
state is cleared. This is enough to bring the core up while running in unmapped and uncached
code space. All other processor state can then be initialized by software. Power-up Reset brings
the device into a known state. Soft Reset can be forced by asserting the MCLR pin. This distinc-
tion is made for compatibility with other MIPS processors. In practice, both Resets are handled
identically.

2.19.1.1 COPROCESSOR 0 STATE

Much of the hardware initialization occurs in Coprocessor 0, which are described in Table 2-17.

Table 2-17: Bits Cleared or Set by Reset

2.19.1.2 BUS STATE MACHINES

All pending bus transactions are aborted and the state machines in the SRAM interface unit are
reset when a Reset or Soft Reset exception is taken.

2.19.2 Fetch Address
Upon Reset/Soft Reset, unless the EJTAGBOOT option is used, the fetch is directed to VA
0xBFC00000 (PA 0x1FC00000). This address is in KSeg1, which is unmapped and uncached.

2.19.3 WDT Reset
The status of the CPU registers after a WDT event depends on the operational mode of the CPU
prior to the WDT event.

If the device was not in Sleep a WDT event will force registers to a Reset value.

Register Name Bit Name Cleared
or Set Value Cleared or Set By

Status BEV Cleared 1 Reset or Soft Reset
TS Cleared 0 Reset or Soft Reset
SR Set 1 Reset or Soft Reset
NMI Cleared 0 Reset or Soft Reset
ERL Set 1 Reset or Soft Reset
RP Cleared 0 Reset or Soft Reset

All Configuration
Registers:
Config
Config1
Config2
Config3
Config7

Configuration fields
related to static
inputs

Set Input value Reset or Soft Reset

Config K0 Set 010
(uncached)

Reset or Soft Reset

KU Set 010
(uncached)

Reset or Soft Reset

K23 Set 010
(uncached)

Reset or Soft Reset

Debug DM Cleared 0 Reset or Soft Reset(1)

LSNM Cleared 0 Reset or Soft Reset
IBUSEP Cleared 0 Reset or Soft Reset

IEXI Cleared 0 Reset or Soft Reset
SSt Cleared 0 Reset or Soft Reset

Note 1: Unless EJTAGBOOT option is used to boot into Debug mode.
DS61113D-page 2-80 © 2007-2011 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.20 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC32 device family, but the concepts are
pertinent and could be used with modification and possible limitations. The current application
notes related to the PIC32 CPU include the following:

Title Application Note #
No related application notes at this time. N/A

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC32 family of devices.
© 2007-2011 Microchip Technology Inc. DS61113D-page 2-81

http://www.microchip.com
http://www.microchip.com

PIC32 Family Reference Manual
2.21 REVISION HISTORY

Revision A (October 2007)
This is the initial released version of this document.

Revision B (April 2008)
Revised status to Preliminary; Revised Section 2.1 (Key Features); Revised Figure 2-1; Revised
U-0 to r-x.

Revision C (May 2008)
Revise Figure 2-1; Added Section 2.2.3, Core Timer; Change Reserved bits from “Maintain as”
to “Write”.

Revision D (August 2011)
This revision includes the following updates:

The document was updated as follows to reflect the addition of the M14K™ Microprocessor core
to certain variants of the PIC32 device family:

• Sections:
- Updated 2.1.1 “Key Features”
- Updated 2.1.2 “Related MIPS® Documentation”
- Updated 2.2.2 “Introduction to the Programming Model”
- Updated 2.3.1.1 “I Stage – Instruction Fetch”
- Updated 2.10 “Interrupt and Exception Mechanism”
- Added 2.14 “microMIPS™ EXECUTION (M14K™ only)”
- Added 2.15 “MCU™ ASE EXTENSION (M14K™ only)”

• Figures:
- Updated Figure 2-1: PIC32 Block Diagram
- Updated Figure 2-2: M4K® and M14K™ Microprocessor Core Block Diagram

• Tables:
- Added Table 2-6: microMIPS™ 16-bit Instruction Register Usage (M14K™ Only)
- Updated Table 2-8: CP0 Registers
- Added Table 2-14: Performance Countable Events
- Added Table 2-15: Event Description
- Updated Table 2-17: Bits Cleared or Set by Reset

• Registers:
- Added Register 2-1, Register 2-10, Register 2-11, Register 2-13, Register 2-22,

Register 2-24, Register 2-25, Register 2-26, Register 2-27, Register 2-28,
Register 2-30, and Register 2-31

- Updated existing registers to reflect only those bits that are implemented for PIC32
devices with either the M4K® or M14K™ Microprocessor core

• Updates to formatting and minor text updates have been incorporated throughout the
document
DS61113D-page 2-82 © 2007-2011 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2007-2011 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2007-2011, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-61341-452-1
DS61113D-page 2-83

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS61113D-page 2-84 © 2007-2011 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

08/01/11

http://support.microchip.com
http://www.microchip.com

	Section 2. CPU
	2.1 Introduction
	2.1.1 Key Features
	2.1.2 Related MIPS® Documentation

	2.2 Architecture Overview
	Figure 2-1: PIC32 Block Diagram
	Figure 2-2: M4K® and M14K™ Microprocessor Core Block Diagram
	2.2.1 Busses
	2.2.2 Introduction to the Programming Model
	2.2.3 Core Timer

	2.3 PIC32 CPU Details
	2.3.1 Pipeline Stages
	Figure 2-3: Simplified PIC32 CPU Pipeline
	Figure 2-4: Single-Cycle Execution Throughput

	2.3.2 Execution Unit
	2.3.3 MDU
	2.3.4 Shadow Register Sets
	2.3.5 Pipeline Interlock Handling
	Figure 2-5: Pipeline Slip (If Bypassing Was Not Implemented)

	2.3.6 Register Bypassing
	Figure 2-6: IU Pipeline M to E Bypass
	Figure 2-7: IU Pipeline A to E Data Bypass

	2.4 Special Considerations When Writing to CP0 Registers
	Table 2-1: Execution Hazards
	Table 2-2: Instruction Hazards

	2.5 Architecture Release 2 Details
	2.6 Split CPU bus
	2.7 Internal System Busses
	2.8 Set/Clear/Invert
	Figure 2-8: Four Addresses for a Single Physical Register

	2.9 ALU Status Bits
	2.10 Interrupt and Exception Mechanism
	2.11 Programming Model
	2.11.1 CPU Instruction Formats
	Table 2-3: CPU Instruction Format Fields
	Figure 2-9: Immediate (I-Type) CPU Instruction Format
	Figure 2-10: Jump (J-Type) CPU Instruction Format
	Figure 2-11: Register (R-Type) CPU Instruction Format

	2.11.2 CPU Registers
	Table 2-4: Register Conventions
	Figure 2-12: CPU Registers
	Table 2-5: MIPS16e® Register Usage (M4K® Only)
	Table 2-6: microMIPS™ 16-bit Instruction Register Usage (M14K™ Only)
	Table 2-7: MIPS16e® and microMIPS™ Special Registers

	2.11.3 How to Implement Stack/MIPS Calling Conventions
	2.11.4 Processor Modes
	Figure 2-13: CPU Modes

	2.12 Coprocessor 0 (CP0) Registers
	Table 2-8: CP0 Registers (Continued)
	2.12.1 USERLOCAL Register (CP0 Register 4, Select 2) (M14K™ Only)
	Register 2-1: USERLOCAL; CP0 Register 4, Select 2

	2.12.2 HWREna Register (CP0 Register 7, Select 0)
	Register 2-2: HWREna: Hardware Accessibility Register; CP0 Register 7, Select 0

	2.12.3 BadVAddr Register (CP0 Register 8, Select 0)
	Register 2-3: BadVAddr: Bad Virtual Address Register; CP0 Register 8, Select 0

	2.12.4 Count Register (CP0 Register 9, Select 0)
	Register 2-4: Count: Interval Counter Register; CP0 Register 9, Select 0

	2.12.5 Compare Register (CP0 Register 11, Select 0)
	Register 2-5: Compare: Interval Count Compare Register; CP0 Register 11, Select 0

	2.12.6 Status Register (CP0 Register 12, Select 0)
	Table 2-9: CPU Status Register Bits That Determine Processor Mode
	Register 2-6: Status: Status Register; CP0 Register 12, Select 0 (Continued)

	2.12.7 IntCtl: Interrupt Control Register (CP0 Register 12, Select 1)
	Register 2-7: IntCtl: Interrupt Control Register; CP0 Register 12, Select 1 (Continued)

	2.12.8 SRSCtl Register (CP0 Register 12, Select 2)
	Table 2-10: Sources for New CSS on an Exception or Interrupt
	Register 2-8: SRSCtl: Shadow Register Set Register; CP0 Register 12, Select 2 (Continued)

	2.12.9 SRSMap: Register (CP0 Register 12, Select 3)
	Register 2-9: SRSMap: Shadow Register Set Map Register; CP0 Register 12, Select 3

	2.12.10 View_IPL Register (CP0 Register 12, Select 4) (M14K™ Only)
	Register 2-10: View_IPL: View Interrupt Priority Level Register; CP0 Register 12, Select 4

	2.12.11 SRSMAP2 Register (CP0 Register 12, Select 5) (M14K™ Only)
	Register 2-11: SRSMAP2: Shadow Register Set Map 2 Register; CP0 Register 12, Select 5

	2.12.12 Cause Register (CP0 Register 13, Select 0)
	Table 2-11: Cause Register EXCCODE<4:0> Bits
	Register 2-12: Cause: Exception Cause Register; CP0 Register 13, Select 0 (Continued)

	2.12.13 View_RIPL Register (CP0 Register 13, Select 4) (M14K™ Only)
	Register 2-13: View_RIPL: View Requested Priority Level Register; CP0 Register 13, Select 4

	2.12.14 EPC Register (CP0 Register 14, Select 0)
	Register 2-14: EPC: Exception Program Counter Register; CP0 Register 14, Select 0

	2.12.15 PRID Register (CP0 Register 15, Select 0)
	Register 2-15: PRID: Processor Identification Register; CP0 Register 15, Select 0

	2.12.16 Ebase Register (CP0 Register 15, Select 1)
	Register 2-16: Ebase: Exception Base Register; CP0 Register 15, Select 1

	2.12.17 Config Register (CP0 Register 16, Select 0)
	Table 2-12: Cache Coherency Attributes
	Register 2-17: Config: Configuration Register; CP0 Register 16, Select 0 (Continued)

	2.12.18 Config1 Register (CP0 Register 16, Select 1)
	Register 2-18: Config1: Configuration Register 1; CP0 Register 16, Select 1

	2.12.19 Config2 (CP0 Register 16, Select 2)
	Register 2-19: Config2: Configuration Register 2; CP0 Register 16, Select 2

	2.12.20 Config3 Register (CP0 Register 16, Select 3) (M14K™ Only)
	Register 2-20: Config3: Configuration Register 3; CP0 Register 16, Select 3 (Continued)

	2.12.21 Config3 Register (CP0 Register 16, Select 3) (M4K® Only)
	Register 2-21: Config3: Configuration Register 3; CP0 Register 16, Select 3

	2.12.22 Config7 Register (CP0 Register 16, Select 7) (M14K™ Only)
	Register 2-22: Config7: Configuration Register 7; CP0 Register 16, Select 7

	2.12.23 Debug Register (CP0 Register 23, Select 0)
	Register 2-23: Debug: Debug Exception Register; CP0 Register 23, Select 0 (Continued)

	2.12.24 TraceControl Register (CP0 Register 23, Select 1)
	Register 2-24: TraceControl: Trace Control Register (Continued)

	2.12.25 TraceControl2 Register (CP0 Register 23, Select 2)
	Register 2-25: TraceControl2: Trace Control Register 2

	2.12.26 UserTraceData Register (CP0 Register 23, Select 3)
	Register 2-26: UserTraceData: User Trace Data Control Register

	2.12.27 TraceBPC Register (CP0 Register 23, Select 4)
	Register 2-27: TraceBPC: Trace Breakpoint Control Register

	2.12.28 Debug2 Register (CP0 Register 23, Select 5)
	Register 2-28: Debug2: Debug Breakpoint Exceptions Register; CP0 Register 23, Select 5

	2.12.29 DEPC Register (CP0 Register 24, Select 0)
	Register 2-29: DEPC: Debug Exception Program Counter Register; CP0 Register 24, Select 0

	2.12.30 PerfCtlx Register (CP0 Register 25, Select 0-3) (M14K™ Only)
	Table 2-13: Performance Counter Register Selects
	Register 2-30: PerfCtlx: Performance Counter Control Register; CP0 Register 25, Select 0/2 (Continued)(x = 0 or 1)
	Table 2-14: Performance Countable Events (Continued)
	Table 2-15: Event Description (Continued)

	2.12.31 PerfCntx Register (CP0 Register 25, Select 1/3) (M14K™ Only)
	Register 2-31: PerfCntx: Performance Counter Count Register; CP0 Register 25, Select 1/3 (x = 0 or 1)

	2.12.32 ErrorEPC (CP0 Register 30, Select 0)
	Register 2-32: ErrorEPC: Error Exception Program Counter Register; CP0 Register 30, Select 0

	2.12.33 DeSAVE Register (CP0 Register 31, Select 0)
	Register 2-33: DeSAVE: Debug Exception Save Register; CP0 Register 31, Select 0

	2.13 MIPS16e® Execution (M4K® Only)
	2.14 microMIPS™ EXECUTION (M14K™ only)
	2.15 MCU™ ASE EXTENSION (M14K™ only)
	2.15.1 Interrupt Delivery
	2.15.2 Interrupt Latency Reduction

	2.16 Memory Model
	Figure 2-14: Address Translation During SRAM Access
	2.16.1 Cacheability
	Figure 2-15: Big-Endian Byte Ordering
	Figure 2-16: Little-Endian Byte Ordering

	2.17 CPU Instructions, Grouped By Function
	2.17.1 CPU Load and Store Instructions
	2.17.2 Computational Instructions
	2.17.3 Jump and Branch Instructions
	2.17.4 Miscellaneous Instructions
	2.17.5 Coprocessor Instructions

	2.18 CPU Initialization
	2.18.1 General Purpose Registers
	2.18.2 Coprocessor 0 State
	Table 2-16: CPU Initialization

	2.18.3 Bus Matrix

	2.19 Effects of a Reset
	2.19.1 MCLR Reset
	Table 2-17: Bits Cleared or Set by Reset

	2.19.2 Fetch Address
	2.19.3 WDT Reset

	2.20 Related Application Notes
	2.21 Revision History

