
Section 4. Program Memory
Program
 M

em
ory

4

HIGHLIGHTS
This section of the manual contains the following topics:

4.1 Program Memory Address Map ... 4-2
4.2 Control Register ... 4-4
4.3 Program Counter ... 4-6
4.4 Program Memory Access Using Table Instructions ... 4-7
4.5 Program Space Visibility from Data Space... 4-12
4.6 Register Maps.. 4-17
4.7 Program Memory Writes .. 4-18
4.8 Related Application Notes.. 4-19
4.9 Revision History ... 4-20
© 2008 Microchip Technology Inc. DS70238B-page 4-1

PIC24H Family Reference Manual
4.1 PROGRAM MEMORY ADDRESS MAP
Figure 4-1 shows that the PIC24H devices have a 4M x 24-bit program memory address space.
Three methods are available for accessing program space:

• Through the 23-bit (Program Counter) PC
• Through table read (TBLRD) and table write (TBLWT) instructions
• By mapping a 32-Kbyte segment of program memory into the data memory address space

The program memory map is divided into the user program space and the user configuration
space. The user program space contains the Reset vector, interrupt vector tables, and program
memory. The user configuration space contains nonvolatile configuration bits for setting device
options and the device ID locations.

Note: If the RETURN instruction is placed at the end of the program memory, the Illegal
Address Error Trap will be generated by the device during the run-time, which is due
to the prefetch operation, which will try to preload the next two instructions from the
memory location, which in this case, do not exist. The solution is to leave 2 extra
instruction words available after the RETURN instruction so that the compiler can
place NOP and RESET instructions at the end of the program memory.
DS70238B-page 4-2 © 2008 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Figure 4-1: Example Program Memory Map

Reset Address
0x000000

0x0000FE

0x000002

0x000100

Device Configuration

User Program
Flash Memory

0x02AC00
0x02ABFE

(88K instructions)

0x800000

0xF80000
Registers 0xF80017

0xF80018

DEVID (2)
0xFEFFFE
0xFF0000
0xFFFFFE

0xF7FFFE

Unimplemented
(Read ‘0’s)

GOTO Instruction
0x000004

Reserved

0x7FFFFE

Reserved

0x000200
0x0001FE
0x000104Alternate Vector Table

Reserved
Interrupt Vector Table

C
on

fig
ur

at
io

n
M

em
or

y
Sp

ac
e

U
se

r M
em

or
y

Sp
ac

e

Note: The address boundaries for user Flash program memory will depend on the dsPIC33F device
variant selected. For further details, refer to the appropriate device data sheet.
© 2008 Microchip Technology Inc. DS70238B-page 4-3

PIC24H Family Reference Manual
4.2 CONTROL REGISTER

Register 4-1: CORCON: Core Control Register

U-0 U-0 U-0 R/W-0 R/W-0 R-0 R-0 R-0
— — — US EDT DL<1:0>

bit 15 bit 8

R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0
SATA SATB SATDW ACCSAT IPL3 PSV RND IF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-3 Not used by the Program Memory
For full descriptions of the CORCON bits, refer to Section 2. “CPU” (DS70245).

bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space

bit 1-0 Not used by the Program Memory
For full descriptions of the CORCON bits, refer to Section 2. “CPU” (DS70245).

Register 4-2: PSVPAG: PSV Page Register

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PSV Address Page bits

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as ‘0’
bit 7-0 PSV Address Page bits

The 8-bit PSV Address Page bits are concatenated with the 15 Least Significant bits (LSb) of the W
register, to form a 23-bit effective program memory address.
DS70238B-page 4-4 © 2008 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Register 4-3: TBLPAG: Table Page Register

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
Table Address Page bits

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as ‘0’
bit 7-0 Table Address Page bits

The 8-bit Table Address Page bits are concatenated with the W register, to form a 23-bit effective
program memory address plus a byte select bit.
© 2008 Microchip Technology Inc. DS70238B-page 4-5

PIC24H Family Reference Manual
4.3 PROGRAM COUNTER
The Program Counter (PC) increments by two with the Least Significant bit (LSb) set to ‘0’ to
provide compatibility with data space addressing. Sequential instruction words are addressed in
the 4M program memory space by PC<22:1>. Each instruction word is 24 bits wide.

The LSb of the program memory address (PC<0>) is reserved as a byte select bit for program
memory accesses from data space that use Program Space Visibility or table instructions. For
instruction fetches via the PC, the byte select bit is not required. Therefore, PC<0> is always set
to ‘0’.

Figure 4-2 shows an instruction fetch example. Note that incrementing PC<22:1> by one is
equivalent to adding 2 to PC<22:0>.

Figure 4-2: Instruction Fetch Example

22 0

Program Counter 0

0x000000

0x7FFFFE

24-bits

In
st

ru
ct

io
n

Instruction
23

+1(1)
2423 User

Space

La
tc

h

Note 1: Increment of PC<22:1> is equivalent to PC<22:0>+2.
DS70238B-page 4-6 © 2008 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

4.4 PROGRAM MEMORY ACCESS USING TABLE INSTRUCTIONS
The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the least
significant word (lsw) of any address within program space without going through data space,
which is preferable for some applications. The TBLRDH and TBLWTH instructions are the only
method whereby the upper 8 bits of a program word can be accessed as data.

4.4.1 Table Instruction Summary
A set of table instructions is provided to move byte- or word-sized data between program space
and data space. The table read instructions are used to read from the program memory space
into data memory space. The table write instructions allow data memory to be written to the
program memory space.

The four available table instructions are:

• TBLRDL: Table Read Low
• TBLWTL: Table Write Low
• TBLRDH: Table Read High
• TBLWTH: Table Write High

For table instructions, program memory can be regarded as two 16-bit, word-wide address
spaces residing side by side, each with the same address range as shown in Figure 4-3. This
allows program space to be accessed as byte or aligned word addressable, 16-bit wide, 64-Kbyte
pages (i.e., same as data space).

TBLRDL and TBLWTL access the least significant data word of the program memory, and TBLRDH
and TBLWTH access the upper word. As program memory is only 24 bits wide, the upper byte
from this latter space does not exist, although it is addressable. It is, therefore, termed the
“phantom” byte.

Figure 4-3: High and Low Address Regions for Table Operations

Note: Detailed code examples using table instructions are found in Section 5. “Flash
Programming” (DS70228).

0816PC Address

0x000100
0x000102
0x000104
0x000106

23
00000000
00000000

00000000
00000000

Program Memory
‘Phantom’ Byte
(Read as ‘0’)

‘HIGH’ Table Address Range ‘LOW’ Table Address Range
© 2008 Microchip Technology Inc. DS70238B-page 4-7

PIC24H Family Reference Manual
4.4.2 Table Address Generation
Figure 4-4 shows how for all table instructions, a W register address value is concatenated with
the 8-bit Data Table Page (TBLPAG) register, to form a 23-bit effective program space address
plus a byte select bit. As there are 15 bits of program space address provided from the
W register, the data table page size in program memory is, therefore, 32K words.

Figure 4-4: Address Generation for Table Operations

4.4.3 Program Memory Low Word Access
The TBLRDL and TBLWTL instructions are used to access the lower 16 bits of program memory
data. The LSb of the W register address is ignored for word-wide table accesses. For byte-wide
accesses, the LSb of the W register address determines which byte is read. Figure 4-5
demonstrates the program memory data regions accessed by the TBLRDL and TBLWTL
instructions.

Figure 4-5: Program Data Table Access (lsw)

TBLPAG

8 bits from TBLPAG

EA

EA<0> Selects Byte

24-bit EA

TBLPAG<7> Selects
User/Configuration
Space

01507

16 bits from Wn

0816PC Address

0x000100
0x000102
0x000104
0x000106

23
00000000
00000000

00000000
00000000

Program Memory
Phantom Byte
(Read as ‘0’)

TBLRDL.W

TBLRDL.B (Wn<0> = 1)

TBLRDL.B (Wn<0> = 0)
DS70238B-page 4-8 © 2008 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

4.4.4 Program Memory High Word Access
The TBLRDH and TBLWTH instructions are used to access the upper 8 bits of the program
memory data. Figure 4-6 shows how these instructions also support Word or Byte Access modes
for orthogonality, but the high byte of the program memory data will always return ‘0’.

Figure 4-6: Program Data Table Access (MS Byte)

4.4.5 Data Storage in Program Memory
It is assumed that for most applications, the high byte (PC<23:16>) is not used for data, making
the program memory appear 16 bits wide for data storage. It is recommended that the upper byte
of program data be programmed either as a NOP instruction, or as an illegal opcode value, to
protect the device from accidental execution of stored data. The TBLRDH and TBLWTH
instructions are primarily provided for array program/verification purposes and for applications
that require compressed data storage.

4.4.6 Program Memory Access Using Table Instructions Example
Example 4-1 uses table instructions to erase the program memory page starting at the address
0x12000, and programs the values 0x123456 and 0x789ABC into addresses 0x12000 and
0x12002, respectively.

0816PC Address

0x000100
0x000102
0x000104
0x000106

23
00000000
00000000

00000000
00000000

Program Memory
Phantom Byte
(Read as ‘0’)

TBLRDH.W

TBLRDH.B (Wn<0> = 1)

TBLRDH.B (Wn<0> = 0)

Note: For more information on the unlocking sequence, refer to Section 5. “Flash
Programming” (DS70228).
© 2008 Microchip Technology Inc. DS70238B-page 4-9

PIC24H Family Reference Manual
Example 4-1: Using Table Instructions to Access Program Memory
#define PM_ROW_ERASE 0x4042
#define PM_ROW_WRITE 0x4001
#define CONFIG_WORD_WRITE 0x4000

unsigned long Data;

/* Erase 512 instructions starting at address 0x12000 */
MemWriteLatch(0x1, 0x2000,0x0,0x0);
MemCommand(PM_ROW_ERASE);

/* Write 0x12345 into program address 0x12000 */
MemWriteLatch(0x1, 0x2000,0x0012,0x3456);
MemCommand(PM_ROW_WRITE);

/* Write 0x789ABC into program address 0x12002 */
MemWriteLatch(0x1, 0x2002,0x0078,0x9ABC);
MemCommand(PM_ROW_WRITE);

/* Read program addresses 0x12000 and 0x12002 */
Data = ReadLatch(0x1, 0x2000);
Data = ReadLatch(0x1, 0x2002);

;***
;_MemWriteLatch:
;
;W0 = TBLPAG
;W1 = Wn
;W2 = WordHi
;W3 = WordLo
;no return values

_MemWriteLatch:
mov W0, TBLPAG
tblwtl W3, [W1]
tblwth W2, [W1]

return

;***
; _MemReadLatch:
;
;W0 = TBLPAG
;W1 = Wn
;return: data in W1:W0

_MemReadLatch:
mov W0,TBLPAG
tblrdl [W1],W0
tblrdh [W1],W1

return

;**
; _MemCommand:
;
;W0 = NVMCON
;no return values

_WriteCommand:
mov W0,NVMCON
mov #0x55,W0;Unlock sequence
mov W0,NVMKEY
mov #0xAA,W0
mov W0,NVMKEY
bset NVMCON,#WR
nop ;Required
nop

Loop:btsc NVMCON,#WR;Wait for write end
bra Loop

return
DS70238B-page 4-10 © 2008 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Example 4-2 uses the space(prog) attribute to allocate the buffer in program memory. The
MPLAB® C30 built-in functions, such as builtin_tblpage and builtin_tbloffset, can
be used to access the buffer.

Example 4-2: Using MPLAB® C30 Built-in Functions to Access Program Memory
include <p24hxxxx.h>

prog_data[10] __attribute__ ((space(prog))) = {0x0000, 0x1111, 0x2222,
0x3333, 0x4444, 0x5555, 0x6666, 0x7777, 0x8888,
0x9999};

main (){
unsigned int lowWord, highWord;
unsigned int tbloffset;

TBLPAG = __builtin_tblpage(&prog_data[3]);
tbloffset = __builtin_tbloffset(&prog_data[3]);
lowWord=__builtin_tblrd1(tbloffset);
highWord=__builtin_tblrdh(tbloffset);

/* do something */

}

© 2008 Microchip Technology Inc. DS70238B-page 4-11

PIC24H Family Reference Manual
4.5 PROGRAM SPACE VISIBILITY FROM DATA SPACE
The upper 32 Kbytes of the PIC24H data memory address space can optionally be mapped into
any 16K word program space page. This mode of operation, called Program Space Visibility
(PSV), provides transparent access of stored constant data from X data space without the need
to use special instructions (i.e., TBLRD, TBLWT instructions).

4.5.1 PSV Configuration
Program Space Visibility is enabled by setting the PSV bit in the Core Control (CORCON<2>)
register. A description of the CORCON register is found in Section 2. “CPU” (DS70245).

When PSV is enabled, each data space address in the upper half of the data memory map will
map directly into a program address (see Figure 4-7). The PSV window allows access to the
lower 16 bits of the 24-bit program word. The upper 8 bits of the program memory data should
be programmed to force an illegal instruction, or a NOP instruction, to maintain machine
robustness. Table instructions provide the only method of reading the upper 8 bits of each
program memory word.

Figure 4-8 shows how the PSV address is generated. The 15 LSb of the PSV address are
provided by the W register that contains the effective address. The Most Significant bit (MSb) of
the W register is not used to form the address. Instead, the MSb specifies whether to perform a
PSV access from program space or a normal access from data memory space. If a W register
effective address of 0x8000 or greater is used, the data access will occur from program memory
space when PSV is enabled. All data access occurs from data memory when the W register
effective address is less than 0x8000.

Figure 4-8 shows how the remaining address bits are provided by the Program Space Visibility
Page Address (PSVPAG<7:0>) register. The PSVPAG bits are concatenated with the 15 LSb of
the W register, holding the effective address to form a 23-bit program memory address. PSV can
only be used to access values in program memory space. Table instructions must be used to
access values in the user configuration space.

The LSb of the W register value is used as a byte select bit, which allows instructions using PSV
to operate in Byte or Word mode.
DS70238B-page 4-12 © 2008 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Figure 4-7: Program Space Visibility Operation

Figure 4-8: Program Space Visibility Address Generation

23 15 0

PSVPAG

EA<15> = 1

Data Space

Program Space

8

15 23

0x0000

0x8000

0xFFFF

0x01

0x008000

Data Read

Upper 8 bits of Program
Memory Data cannot be
read using Program Space
Visibility.

0x000100

0x017FFF

23 bits

1

PSVPAG Reg

8 bits

Wn

15 bits

Select

23-bit EA

 Wn<0> is Byte Select
© 2008 Microchip Technology Inc. DS70238B-page 4-13

PIC24H Family Reference Manual
4.5.2 PSV Timing
Instructions that use PSV requires two extra instruction cycles to complete execution, except for
the following instructions that require only one extra cycle to complete execution:

• All MOV instructions including the MOV.D instruction

The additional instruction cycles are used to fetch the PSV data on the program memory bus.

4.5.2.1 USING PSV IN A REPEAT LOOP

Instructions that use PSV within a REPEAT loop eliminate the extra instruction cycle(s) required
for the data access from program memory, therefore incurring no overhead in execution time.
However, the following iterations of the REPEAT loop incur an overhead of two instruction cycles
to complete execution:

• The first iteration
• The last iteration
• Instruction execution prior to exiting the loop due to an interrupt
• Instruction execution upon re-entering the loop after an interrupt is serviced

4.5.2.2 PSV AND INSTRUCTION STALLS

For more information about instruction stalls using PSV, refer to Section 2. “CPU” (DS70245).

4.5.3 PSV Code Examples
Example 4-3 illustrates how to create a buffer and access the buffer in the compiler managed,
PSV section. The auto_psv space is the compiler managed PSV section. If the size of this
section exceeds 32K, the linker will give an error. The tool chain will arrange for the PSVPAG to
be correctly set at program start-up. By default, the compiler places all ‘const’ qualified variables
into the auto_psv space.

Example 4-3: Compiler Managed PSV Access
#include "p24hxxxx.h"

int m[5] __attribute__((space(auto_psv))) = { 1, 2, 3, 4, 5};
int x[5] = {10, 20, 30, 40, 50};
int sum;

main()
{
// Compiler Managed PSV

sum=vectordot(m,x);
}

int vectordot(int *m, int *x)
{

int i,sum=0;

for(i=0;i<5;i++)
sum+=*m++ * *x++;

 return(sum);
}

DS70238B-page 4-14 © 2008 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Example 4-4 illustrates buffer placement and access in the user managed PSV section. The psv
space is the user managed PSV section.

Example 4-4: User Managed PSV Access
#include "p24hxxxx.h"

const int m[5] = { 1, 2, 3, 4, 5};
int m1[5] __attribute__((space(psv))) = { 1, 2, 3, 4, 5};
int m2[5] __attribute__((space(psv),address(0xA000))) = { 1, 2, 3, 4, 5};
int x[5] = {10, 20, 30, 40, 50};
int sum, sum1, sum2;

main()
{
int temp;

// User Managed PSV
temp=PSVPAG; // Save auto_psv page

PSVPAG = __builtin_psvpage(&m1);
CORCONbits.PSV = 1;
sum1=vectordot(m1,x);

PSVPAG = __builtin_psvpage(&m2);
sum2=vectordot(m2,x);

PSVPAG=temp; // Restore auto_psv page

// Compiler Managed PSV
sum=vectordot(m,x);

}

int vectordot(int *m, int *x)
{

int i,sum=0;

for(i=0;i<5;i++)
sum+=*m++ * *x++;

 return(sum);
}

© 2008 Microchip Technology Inc. DS70238B-page 4-15

PIC24H Family Reference Manual
Example 4-5 illustrates constant data placement in program memory and performs accessing of
this data through the PSV data window using an assembly program.

Example 4-5: PSV Code Example in Assembly
.include “p24hxxxx.inc”
.section .const,psv

fib_data:
.word 0, 1, 2, 3, 5, 8, 13

;Start of Code section
.text

.global __reset
__reset:

; Enable Program Space Visibility
bset.b CORCONL, #PSV

; Set PSVPAG to the page that contains the fib_data array
mov #psvpag(fib_data), w0
mov w0, __PSVPAG

; Make a pointer to fib_data in the PSV data window
mov #psvoffset(fib_data), w0

; Load the first data value
mov [w0++], w1
DS70238B-page 4-16 © 2008 Microchip Technology Inc.

©
 2008 M

icrochip Technology Inc.
D

S
70238B

-page 4-17

Section 4. Program
 M

em
ory

4.

Ta

it 3 Bit 2 Bit 1 Bit 0 All
Resets

TB inter Register 0000

PS ddress Pointer Register 0000

CO L3 PSV RND IF 0000

Le
Program Memory 4

6 REGISTER MAPS
A summary of the registers associated with Program Memory is provided in Table 4-1.

ble 4-1: Program Memory Registers

SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 B

LPAG 0032 — — — — — — — — Table Page Address Po
VPAG 0034 — — — — — — — — Program Memory Visibility Page A
RCON 0044 — — — US EDT DL<2:0> SATA SATB SATDW ACCSAT IP
gend: — = unimplemented, read as ‘0’. Shaded bits are not used in the operation of Program Memory.

PIC24H Family Reference Manual
4.7 PROGRAM MEMORY WRITES
The PIC24H family of devices contains internal program Flash memory for executing user code.
There are two methods by which the user application can program this memory:

• Run-Time Self Programming (RTSP)
• In-Circuit Serial Programming™ (ICSP™)

RTSP is accomplished using TBLWT instructions. ICSP is accomplished using the SPI interface
and integral bootloader software. For further details about RTSP, refer to Section 5. “Flash
Programming”(DS70228). ICSP specifications can be downloaded from the Microchip
Technology web site (www.microchip.com).
DS70238B-page 4-18 © 2008 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 4. Program Memory
Program

 M
em

ory

4

4.8 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC24H device family, but the concepts
are pertinent and could be used with modification and possible limitations. The current
application notes related to the Program Memory module are:

Title Application Note #
No related application notes at this time.

Note: For additional Application Notes and code examples for the PIC24H device family,
visit the Microchip web site (www.microchip.com).
© 2008 Microchip Technology Inc. DS70238B-page 4-19

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

PIC24H Family Reference Manual
4.9 REVISION HISTORY

Revision A (April 2007)
This is the initial released version of this document.

Revision B (July 2008)
This revision incorporates the following updates:

• Rearranged the following sections: (see 4.2 “Control Register”) and (see 4.7 “Program
Memory Writes”)

• Registers:
- PSVPAG: PSV Page Register (see Register 4-2)
- TBLPAG: Table Page Register (see Register 4-3)

• Examples:
- Using MPLAB C30 Built-in Functions to Access Program Memory (see Example 4-2)
- Compiler Managed PSV Access (see Example 4-3)
- User Managed PSV Access (see Example 4-4)
- PSV Code Example in Assembly (see Example 4-5)

• Added Register Maps section (see 4.6 “Register Maps”)
• Additional minor corrections such as language and formatting updates are incorporated in

the entire document.
DS70238B-page 4-20 © 2008 Microchip Technology Inc.

	Section 4. Program Memory
	4.1 Program Memory Address Map
	Figure 4-1: Example Program Memory Map

	4.2 Control Register
	Register 4-1: CORCON: Core Control Register
	Register 4-2: PSVPAG: PSV Page Register
	Register 4-3: TBLPAG: Table Page Register

	4.3 Program Counter
	Figure 4-2: Instruction Fetch Example

	4.4 Program Memory Access Using Table Instructions
	4.4.1 Table Instruction Summary
	Figure 4-3: High and Low Address Regions for Table Operations
	4.4.2 Table Address Generation
	Figure 4-4: Address Generation for Table Operations
	4.4.3 Program Memory Low Word Access
	Figure 4-5: Program Data Table Access (lsw)
	4.4.4 Program Memory High Word Access
	Figure 4-6: Program Data Table Access (MS Byte)
	4.4.5 Data Storage in Program Memory
	4.4.6 Program Memory Access Using Table Instructions Example
	Example 4-1: Using Table Instructions to Access Program Memory
	Example 4-2: Using MPLAB® C30 Built-in Functions to Access Program Memory

	4.5 Program Space Visibility from Data Space
	4.5.1 PSV Configuration
	Figure 4-7: Program Space Visibility Operation
	Figure 4-8: Program Space Visibility Address Generation
	4.5.2 PSV Timing
	4.5.3 PSV Code Examples
	Example 4-3: Compiler Managed PSV Access
	Example 4-4: User Managed PSV Access
	Example 4-5: PSV Code Example in Assembly

	4.6 Register Maps
	Table 4-1: Program Memory Registers

	4.7 Program Memory Writes
	4.8 Related Application Notes
	4.9 Revision History

