
Section 2. CPU
C
PU

2

HIGHLIGHTS

This section of the manual contains the following topics:

2.1 Introduction .. 2-2
2.2 Programmer’s Model.. 2-5
2.3 Software Stack Pointer... 2-9
2.4 CPU Register Descriptions .. 2-13
2.5 Arithmetic Logic Unit (ALU).. 2-19
2.6 DSP Engine ... 2-20
2.7 Divide Support ... 2-30
2.8 Instruction Flow Types ... 2-31
2.9 Loop Constructs... 2-34
2.10 Address Register Dependencies ... 2-39
2.11 Data Space Arbiter Stalls ... 2-41
2.12 Register Map.. 2-42
2.13 Related Application Notes.. 2-44
2.14 Revision History ...2-45

Worldwide Sales and Service .. 2-48
© 2010 Microchip Technology Inc. DS70359B-page 2-1

dsPIC33E/PIC24E Family Reference Manual
2.1 INTRODUCTION

The dsPIC33E/PIC24E CPU has a 16-bit (data) modified Harvard architecture with an enhanced
instruction set, including significant support for digital signal processing. The CPU has a 24-bit
instruction word, with a variable length opcode field. The Program Counter (PC) is 24 bits wide
and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable
execution. Most instructions execute in a single-cycle effective execution rate, with the exception
of instructions that change the program flow, like the double-word Move (MOV.D) instruction, PSV
accesses and the table instructions. Overhead free program loop constructs are supported using
the DO and REPEAT instructions, both of which are interruptible at any point.

2.1.1 Registers
The dsPIC33E/PIC24E devices have sixteen 16-bit working registers in the programmer’s
model. Each of the working registers can act as a data, address or address offset register. The
16th working register (W15) operates as a software stack pointer for interrupts and calls.

2.1.2 Instruction Set
The dsPIC33E/PIC24E instruction set has two classes of instructions:

• MCU class of instructions
• DSP class of instructions

These two instruction classes are seamlessly integrated into the architecture and execute from
a single execution unit. The instruction set includes many Addressing modes and was designed
for optimum C compiler efficiency.

2.1.3 Data Space Addressing
The base data space can be addressed as 32K words or 64 Kbytes and is split into two blocks,
as X and Y data memory. Each memory block has its own independent Address Generation Unit
(AGU). The MCU class of instructions operate solely through the X memory AGU, which
accesses the entire memory map as one linear data space. Certain DSP instructions operate
through the X and Y AGUs to support dual operand reads, which splits the data address space
into two parts. The X and Y data space boundary is device specific.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program
space at any 16K program word boundary. The program-to-data-space mapping feature known
as Program Space Visibility (PSV), allows any instruction access program space as if it were data
space. Moreover, the Base Data Space address is used in conjunction with a read or write page
register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can
be addressed as 8M words or 16 Mbytes. Refer to Section 3. “Data Memory” (DS70595) for
more details on EDS, PSV and table accesses.

In dsPIC33E devices, overhead-free circular buffers (modulo addressing) are supported in both
X and Y address spaces. The modulo addressing removes the software boundary-checking
overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU
class of instructions. The X AGU also supports bit-reverse addressing to greatly simplify input or
output data reordering for radix-2 FFT algorithms.

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply
to all dsPIC33E/PIC24E devices.

Please consult the note at the beginning of the “CPU” chapter in the current
device data sheet to check whether this document supports the device you are
using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com
DS70359B-page 2-2 © 2010 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 2. CPU
C

PU

2

2.1.4 Addressing Modes
The CPU supports the following addressing modes:

• Inherent (no operand)
• Relative
• Literal
• Memory Direct
• Register Direct
• Register Indirect

Each instruction is associated with a predefined Addressing mode group, depending upon its
functional requirements. As many as six Addressing modes are supported for each instruction.

For most instructions, the dsPIC33E/PIC24E can execute the following functions in a single
instruction cycle:

• Data memory read
• Working register (data) read
• Data memory write
• Program (instruction) memory read

As a result, three operand instructions can be supported, allowing A+B=C operations to be
executed in a single cycle.

2.1.5 DSP Engine and Instructions (dsPIC33E Devices Only)
The DSP engine features:

• A high speed 17-bit by 17-bit multiplier
• A 40-bit ALU
• Two 40-bit saturating accumulators
• A 40-bit bidirectional barrel shifter, capable of shifting a 40-bit value up to 16 bits right, or up

to 16 bits left, in a single cycle

The DSP instructions operate seamlessly with all other instructions and are designed for optimal
real-time performance. The MAC instruction and other associated instructions can concurrently
fetch two data operands from memory while multiplying two W registers. This requires that the
data space be split for these instructions and linear for all others. This is achieved in a transparent
and flexible manner by assigning certain working registers to each address space.

2.1.6 Exception Processing
The dsPIC33E/PIC24E has a vectored exception scheme with up to eight possible sources of
non-maskable traps and up to 246 possible interrupt sources. Each interrupt source can be
assigned to one of seven priority levels. The user can select between fixed and variable interrupt
latency depending on the application requirements. For more information on interrupt latency,
refer to Section 6. “Interrupts” (DS70600). Figure 2-1 illustrates dsPIC33E/PIC24E CPU block
diagram.
© 2010 Microchip Technology Inc. DS70359B-page 2-3

dsPIC33E/PIC24E Family Reference Manual
Figure 2-1: dsPIC33E/PIC24E CPU Block Diagram

Power-up
Timer

Oscillator
Start-up Timer

Instruction
Decode and

Control

OSC1/CLKI

MCLR

VDD, VSS

Timing
Generation

16
PCH PCL

16

Program Counter

16-bit ALU

24

24

24

24

X Data Bus

 I
R

PCU

16

16 16

 16 x 16
W Reg Array

Divide
Support

Engine
DSP

R
O

M
 L

at
ch

16

Y Data Bus

EA MUX

X RAGU
X WAGU

Y AGU

AVDD, AVSS

16

24

16

16

16

16

16

16

16

8

Interrupt
Controller PSV and Table

Data Access
Control Block

Stack
Control

Logic

Loop
Control
Logic

Data LatchData Latch
Y Data
RAM

X Data
RAM

Address
Latch

Address
Latch

Control Signals
to Various Blocks

16

Data Latch

I/O Ports

16

16

16

X Address Bus

Y
 A

dd
re

ss
 B

us

24

Li
te

ra
l D

at
a

Program Memory

Watchdog
Timer

Reset
POR/BOR

Address Latch

Peripheral
Modules
DS70359B-page 2-4 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.2 PROGRAMMER’S MODEL
The programmer’s model for the dsPIC33E/PIC24E is shown in Figure 2-2. All registers in the
programmer’s model are memory mapped and can be manipulated directly by instructions.
Table 2-1 provides a description of each register in the programmer’s model.

In addition to the registers contained in the programmer’s model, the dsPIC33E/PIC24E contains
control registers for modulo addressing, bit-reversed addressing and interrupts. These registers
are described in subsequent sections of this document.

All registers associated with the programmer’s model are memory mapped, as shown in
Table 2-8.

Table 2-1: Programmer’s Model Register Descriptions

Register(s) Name Description

W0 through W15 Working register array
ACCA, ACCB(1) 40-bit DSP Accumulators
PC 23-bit Program Counter
SR ALU and DSP Engine Status register
SPLIM Stack Pointer Limit Value register
TBLPAG Table Memory Page Address register
DSRPAG Extended Data Space (EDS) Read Page register
DSWPAG Extended Data Space (EDS) Write Page register
RCOUNT REPEAT Loop Count register
DCOUNT(1) DO Loop Count register
DOSTARTH, DOSTARTL(1) DO Loop Start Address register (High and Low)
DOENDH, DOENDL(1) DO Loop End Address register (High and Low)
CORCON Contains DSP Engine and DO Loop control bits
Note 1: These registers are only present in dsPIC33E devices. Please refer to the specific

device data sheet for availability.
© 2010 Microchip Technology Inc. DS70359B-page 2-5

dsPIC33E/PIC24E Family Reference Manual
Figure 2-2: Programmer’s Model

RCOUNT

15 0
REPEAT Loop Counter

15 0
DO Loop Counter DCOUNT

DOSTART
24 0

DO Loop Start Address

15 0
CPU Core Control Register CORCON

DO Loop End AddressDOEND

24 0

00

00

015

Working Registers

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

W14/Frame Pointer

W15/Stack Pointer

SPLIM Stack Pointer Limit Register

W0/WREG
DIV and MUL
Result Registers

Legend

Nested DO

39 031

DSP
Accumulators

ACCA

ACCB

15

MAC Operand
Registers

MAC Address
Registers

Status Register
ZOA OB SA SB IPL2 IPL1

SRL

OAB SAB DA DC RA N CIPL0 OV

SRH

Stack

PUSH.S and
POP.S Shadow
Registers

TABPAG

22 0

7 0

Program Counter

Data Table Page Address

PSVPAG
9 0

X Data Space Read Page Address

TBLPAG

DSRPAG

0

PSVPAG
8 0

X Data Space Write Page AddressDSWPAG
DS70359B-page 2-6 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.2.1 Working Register Array
The 16 Working (W) registers can function as data, address or address offset registers. The
function of a W register is determined by the Addressing mode of the instruction that accesses it.

The dsPIC33E/PIC24E instruction set can be divided into two instruction types:

• Register instructions
• File register instructions

2.2.1.1 REGISTER INSTRUCTIONS

Register instructions can use each W register as a data value or an address offset value.
Example 2-1 shows Register instructions.

Example 2-1:

2.2.1.2 FILE REGISTER INSTRUCTIONS

File register instructions operate on a specific memory address contained in the instruction
opcode and register W0. W0 is a special working register used in file register instructions.
Working registers W1-W15 cannot be specified as target registers in file register instructions.

The file register instructions provide backward compatibility with existing PIC® MCU devices,
which have only one W register. The label ‘WREG’ is used in the assembler syntax to denote W0
in a file register instruction. Example 2-2 shows File register instructions.

Example 2-2:

2.2.1.3 W REGISTER MEMORY MAPPING

The W registers are memory mapped, and thus it is possible to access a W register in a file
register instruction, as shown in the Example 2-3.

Example 2-3:

Further, it is also possible to execute an instruction that uses a W register as both an address
pointer and operand destination, as shown in Example 2-4.

Example 2-4:

Note: For a complete description of Addressing modes and instruction syntax, refer to the
“16-bit MCU and DSC Programmer’s Reference Manual” (DS70157).

MOV W0,W1 ; move contents of W0 to W1

MOV W0,[W1] ; move W0 to address contained in W1

ADD W0,[W4],W5 ; add contents of W0 to contents pointed

 ; to by W4. Place result in W5.

MOV WREG,0x0100 ; move contents of W0 to address 0x0100

ADD 0x0100,WREG ; add W0 to address 0x0100, store in W0

 MOV 0x0004, W10 ; equivalent to MOV W2, W10

where:
 0x0004 = memory addresses of W2

MOV W1,[W2++]

where:
W1 = 0x1234

 W2 = 0x0004 ;[W2] addresses W2
© 2010 Microchip Technology Inc. DS70359B-page 2-7

dsPIC33E/PIC24E Family Reference Manual
In the example above, the contents of W2 are 0x0004. Since W2 is used as an address pointer,
it points to location 0x0004 in memory. W2 is also mapped to this address in memory. Even
though this is an unlikely event, it is impossible to detect until run time. The dsPIC33E/PIC24E
ensures that the data write dominates, resulting in W2 = 0x1234 in the example above.

2.2.1.4 W REGISTERS AND BYTE MODE INSTRUCTIONS

Byte instructions that target the W register array affect only the Least Significant Byte (LSB) of
the target register. Since the working registers are memory mapped, the LSB and the Most
Significant Byte (MSB) can be manipulated through byte-wide data memory space accesses.

2.2.2 Shadow Registers
Many of the registers in the programmer’s model have an associated shadow register, as shown
in Figure 2-2. None of the shadow registers are accessible directly.

The PUSH.S and POP.S instructions are useful for fast context save/restore during a function call
or Interrupt Service Routine (ISR). The PUSH.S instruction transfers the following register values
into their respective shadow registers:

• W0...W3
• SR (N, OV, Z, C, DC bits only)

The POP.S instruction restores the values from the shadow registers into these register
locations.Example 2-5 shows code example using the PUSH.S and POP.S instructions.

Example 2-5:

The PUSH.S instruction overwrites the contents previously saved in the shadow registers. The
shadow registers are only one level in depth, so care must be taken if the shadow registers are
to be used for multiple software tasks.

The user application must ensure that any task using the shadow registers are not interrupted by
a higher-priority task that also uses the shadow registers. If the higher-priority task is allowed to
interrupt the lower priority task, the contents of the shadow registers saved in the lower priority
task are overwritten by the higher priority task.

2.2.3 Uninitialized W Register Reset
The W register array (with the exception of W15) is cleared during all Resets and is considered
uninitialized until written to. An attempt to use an uninitialized register as an address pointer will
reset the device.

A word write must be performed to initialize a W register. A byte write will not affect the
initialization detection logic.

MyFunction:
PUSH.S ; Save W registers, MCU status
MOV #0x03,W0 ; load a literal value into W0
ADD RAM100 ; add W0 to contents of RAM100
BTSC SR,#Z ; is the result 0?
BSET Flags,#IsZero ; Yes, set a flag
POP.S ; Restore W regs, MCU status

 RETURN
DS70359B-page 2-8 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.3 SOFTWARE STACK POINTER
The W15 register serves as a dedicated software stack pointer and is automatically modified by
exception processing, subroutine calls and returns; however, W15 can be referenced by any
instruction in the same manner as all other W registers. This simplifies reading, writing and
manipulating of the stack pointer (for example, creating stack frames).

W15 is initialized to 0x1000 during all Resets. This address ensures that the Stack Pointer (SP)
points to valid RAM in all dsPIC33E/PIC24E devices and permits stack availability for
non-maskable trap exceptions. These can occur before the SP is initialized by the user software.
You can reprogram the SP during initialization to any location within data space.

The stack pointer always points to the first available free word and fills the software stack,
working from lower toward higher addresses. Figure 2-3 illustrates how it pre-decrements for a
stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> is pushed onto the first available stack word,
then PC<22:16> is pushed into the second available stack location. For a PC push during any
CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 2-3.
During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU
status register, SR. This allows the contents of SRL to be preserved automatically during
interrupt processing.

Figure 2-3: Stack Operation for a CALL Instruction

2.3.1 Software Stack Examples
The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction with W15 as the destination pointer. For
example, the contents of W0 can be pushed onto the stack by:

PUSH W0

This syntax is equivalent to:
MOV W0,[W15++]

The contents of the top-of-stack can be returned to W0 by:
POP W0

This syntax is equivalent to:
MOV [--W15],W0

Note: To protect against misaligned stack accesses, W15<0> is fixed to ‘0’ by the
hardware.

Note: The Stack Pointer, W15, is never subject to paging; therefore, stack addresses are
restricted to the Base Data Space (0x0000 – 0xFFFF).

<Free Word>

PC<15:1>
PC<22:16>

015

W15 (before CALL)

W15 (after CALL)

St
ac

k
G

ro
w

s
To

w
ar

d
H

ig
he

r A
dd

re
ss

b‘000000000’

CALL SUBR

SFA
© 2010 Microchip Technology Inc. DS70359B-page 2-9

dsPIC33E/PIC24E Family Reference Manual
Figure 2-4 through Figure 2-7 illustrates examples of how the software stack is used. Figure 2-4
illustrates the software stack at device initialization. W15 has been initialized to 0x1000. This
example assumes the values 0x5A5A and 0x3636 have been written to W0 and W1, respectively.
In Figure 2-5, the stack is pushed for the first time and the value contained in W0 is copied to the
stack. W15 is automatically updated to point to the next available stack location (0x1002). In
Figure 2-6, the contents of W1 are pushed onto the stack. Figure 2-7 illustrates how the stack is
popped and the top-of-stack value (previously pushed from W1) is written to W3.

Figure 2-4: Stack Pointer at Device Reset

Figure 2-5: Stack Pointer After the First PUSH Instruction

Figure 2-6: Stack Pointer After the Second PUSH Instruction

Figure 2-7: Stack Pointer After a POP Instruction

0x0000

0xFFFE

0x1000W15

W15 = 0x1000
W0 = 0x5A5A
W1 = 0x3636

0x0000

0xFFFE

0x5A5A

W15 = 0x1002
W0 = 0x5A5A
W1 = 0x3636

0x1000 PUSH W0
0x1002W15

0x0000

0xFFFE

0x5A5A
0x3636

W15 = 0x1004
W0 = 0x5A5A
W1 = 0x3636

0x1000 PUSH W1

0x1002
0x1004W15

0x0000

0xFFFE

0x05A5A
0x03636

0x3636 → W3
W15 = 0x1002

POP W3

0x1002
0x1000

W15
DS70359B-page 2-10 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.3.2 W14 Software Stack Frame Pointer
A frame is a user-defined section of memory in the stack that is used by a single subroutine.
working register, W14, which can be used as a stack frame pointer with the LNK (link) and ULNK
(unlink) instructions. W14 can be used in a normal working register by instructions when it is not
used as a frame pointer.

For software examples that use W14 as a stack frame pointer, refer to the “16-bit MCU and DSC
Programmer’s Reference Manual” (DS70157).

2.3.3 Stack Pointer Overflow
The Stack Pointer Limit register (SPLIM) specifies the size of the stack buffer. SPLIM is a 16-bit
register, but SPLIM<0> is fixed to ‘0’ because all stack operations must be word aligned.

The stack overflow check is not enabled until a word write to SPLIM occurs. After this it can only
be disabled by a device Reset. All effective addresses generated using W15 as a source or
destination are compared against the value in SPLIM. If the contents of the Stack Pointer (W15)
exceed the contents of the SPLIM register by 2 and a push operation is performed, a stack error
trap occurs on a subsequent push operation. For example, if it is desirable to cause a stack error
trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value
0x1FFE.

If stack overflow checking is enabled, a stack error trap also occurs if the W15 effective address
calculation wraps over the end of data space (0xFFFF).

For more information on the stack error trap, refer to Section 6. “Interrupts” (DS70600).

2.3.4 Stack Pointer Underflow
The stack is initialized to 0x1000 during a Reset. A stack error trap is initiated if the stack pointer
address is less than 0x1000.

2.3.5 Stack Frame Active (SFA) Control
W15 is never subject to paging and is therefore restricted to address range 0x000000 to
0x00FFFF. However, the Stack Frame Pointer (W14) for any user software function is only
dedicated to that function when a stack frame addressed by W14 is active (i.e., after a LNK
instruction). Therefore, it is desirable to have the ability to dynamically switch W14 between use
as a general purpose W register, and use as a Stack Frame Pointer. The SFA Status
(CORCON<2>) bit achieves this function without additional S/W overhead.
When SFA is clear, W14 may be used with any page register. When SFA is set, W14 is not
subject to paging and is locked into the same address range as W15 (0x000000 to 0x00FFFF).
Operation of the SFA register lock is as follows:
• The LNK instruction sets SFA (and creates a stack frame).
• The ULNK instruction clears SFA (and deletes the stack frame).

Note: A stack error trap can be caused by any instruction that uses the contents of the
W15 register to generate an Effective Address (EA). Therefore, if the contents of
W15 are greater than the contents of the SPLIM register by a value of 2, and a CALL
instruction is executed, or if an interrupt occurs, a stack error trap is generated.

A Stack error trap is also caused by a LNK instruction when the SFA bit is high or on
a ULNK instruction when the SFA bit is ‘0’.

Note: A write to the SPLIM, should not be followed by an indirect read operation using
W15.

Note: Locations in data space between 0x0000 and 0x0FFF are, in general, reserved for
core and peripheral special function registers.
© 2010 Microchip Technology Inc. DS70359B-page 2-11

dsPIC33E/PIC24E Family Reference Manual
• The CALL, CALLW, CALLWL, RCALL and RCALLW instructions or vectored interrupt also
stack the SFA bit (placing it in the Least Significant bit (LSb) of the stacked PC), and clear
the SFA bit after the stacking operation is complete. The called procedure as well as
interrupt vectoring is now free to either use W14 as a general purpose register, or create
another stack frame using the LNK instruction.

• The RETURN, RETLW and RETFIE instructions all restore the SFA bit from its previously
stacked value.

The SFA bit is a read-only bit. It can only be set by execution of the LNK instruction, and cleared
by the ULNK, CALL, CALLW, CALLWL, RCALL and RCALLW instructions.
DS70359B-page 2-12 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.4 CPU REGISTER DESCRIPTIONS

2.4.1 SR: CPU Status Register
The dsPIC33E/PIC24E CPU has a 16-bit Status Register (SR). A detailed description of the CPU
SR is shown in Register 2-1. The LSB of this register is referred to as the SRL (Status Register,
Low Byte). The MSB is referred to as SRH (Status Register, High Byte).

SRL contains:

• All MCU ALU operation status flags
• The CPU interrupt priority status bits, IPL<2:0>
• The REPEAT loop active status bit, RA (SR<4>)

During exception processing, SRL is concatenated with the MSB of the PC to form a complete
word value, which is then stacked.

SRH contains:

• The DSP Adder/Subtracter status bits
• The DO loop active bit, DA (SR<9>)
• The Digit Carry bit, DC (SR<8>)

The SR bits are readable/writable with the following exceptions:

• The DA bit (SR<8>) is read-only
• The RA bit (SR<4>) is read-only
• The OA, OB (SR<15:14>), OAB (SR<11>), SA, SB (SR<13:12>), and SAB (SR<10>) bits

are readable and writable; however, once set, they remain set until cleared by the user
application, regardless of the results from any subsequent DSP operations.

2.4.2 CORCON: Core Control Register
The Core Control Regsiter (CORCON) has bits that control the operation of the DSP multiplier
and DO loop hardware. The CORCON register also contains the IPL3 status bit, which is
concatenated with IPL<2:0> (SR<7:5>), to form the CPU Interrupt Priority Level.

Note: Clearing the SAB bit also clears both the SA and SB bits. Similarly, clearing the OAB
bit also clears both the OA and OB bits. A description of the Status register bits
affected by each instruction is provided in the “16-bit MCU and DSC Programmer’s
Reference Manual” (DS70157).
© 2010 Microchip Technology Inc. DS70359B-page 2-13

dsPIC33E/PIC24E Family Reference Manual

Register 2-1: SR: CPU Status Register

R/W-0 R/W-0 R/W-0 R/W-0 R/C-0 R/C-0 R -0 R/W-0
OA(2) OB(2) SA(1,2) SB(1,2) OAB(2) SAB(2) DA(2) DC

bit 15 bit 8

R/W-0(3,4) R/W-0(1,2) R/W-0(3,4) R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL<2:0> RA N OV Z C

bit 7 bit 0

Legend: U = Unimplemented bit, read as ‘0’
R = Readable bit W = Writable bit C = Clearable bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 OA: Accumulator A Overflow Status bit(2)

1 = Accumulator A has overflowed
0 = Accumulator A has not overflowed

bit 14 OB: Accumulator B Overflow Status bit(2)

1 = Accumulator B has overflowed
0 = Accumulator B has not overflowed

bit 13 SA: Accumulator A Saturation ‘Sticky’ Status bit(1,2)

1 = Accumulator A is saturated or has been saturated at some time
0 = Accumulator A is not saturated

bit 12 SB: Accumulator B Saturation ‘Sticky’ Status bit(1,2)

1 = Accumulator B is saturated or has been saturated at some time
0 = Accumulator B is not saturated

bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit(2)

1 = Accumulators A or B have overflowed
0 = Neither Accumulators A or B have overflowed

bit 10 SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit(2)

1 = Accumulators A or B are saturated or have been saturated at some time
0 = Neither Accumulator A or B are saturated

bit 9 DA: DO Loop Active bit(2)

1 = DO loop in progress
0 = DO loop not in progress

bit 8 DC: MCU ALU Half Carry/Borrow bit
1 = A carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data)

of the result occurred
0 = No carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized

data) of the result occurred

Note 1: A data write to SR can modify the SA and SB bits by either a data write to SA and SB or by clearing the
SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified
using bit operations.

2: These bits are only present in dsPIC33E devices. Please refer to the specific device data sheet for
availability.

3: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when
IPL<3> = 1.

4: The IPL<2:0> status bits are read only when NSTDIS(INTCON1<15>) = 1 .
DS70359B-page 2-14 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(3,4)

111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled.
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)

bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress

bit 3 N: MCU ALU Negative bit
1 = Result was negative
0 = Result was non-negative (zero or positive)

bit 2 OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude that
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred

bit 1 Z: MCU ALU Zero bit
1 = An operation that affects the Z bit has set it at some time in the past
0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)

bit 0 C: MCU ALU Carry/Borrow bit
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred

Register 2-1: SR: CPU Status Register (Continued)

Note 1: A data write to SR can modify the SA and SB bits by either a data write to SA and SB or by clearing the
SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified
using bit operations.

2: These bits are only present in dsPIC33E devices. Please refer to the specific device data sheet for
availability.

3: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when
IPL<3> = 1.

4: The IPL<2:0> status bits are read only when NSTDIS(INTCON1<15>) = 1 .
© 2010 Microchip Technology Inc. DS70359B-page 2-15

dsPIC33E/PIC24E Family Reference Manual
Register 2-2: CORCON: Core Control Register

U-0 U-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-0
— — US<1:0>(2) EDT(1,2) DL<2:0>(2)

bit 15 bit 8

R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R-0 R/W-0 R/W-0
SATA(2) SATB(2) SATDW(2) ACCSAT(2) IPL3(3) SFA RND(2) IF(2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as ‘0’
bit 13-12 US<1:0>: DSP Multiply Unsigned/Signed Control bits

11 = Reserved
10 = DSP engine multiplies are mixed-sign
01 = DSP engine multiplies are unsigned
00 = DSP engine multiplies are signed

bit 11 EDT: Early DO Loop Termination Control bit(1)

1 = Terminate executing DO loop at end of current loop iteration
0 = No effect

bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits
111 = 7 DO loops active
•
•
•
001 = 1 DO loop active
000 = 0 DO loops active

bit 7 SATA: AccA Saturation Enable bit
1 = Accumulator A saturation enabled
0 = Accumulator A saturation disabled

bit 6 SATB: AccB Saturation Enable bit
1 = Accumulator B saturation enabled
0 = Accumulator B saturation disabled

bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation enabled
0 = Data space write saturation disabled

bit 4 ACCSAT: Accumulator Saturation Mode Select bit
1 = 9.31 saturation (super saturation)
0 = 1.31 saturation (normal saturation)

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3(3)

1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less

Note 1: This bit always reads as ‘0’.

2: These bits are only present in dsPIC33E devices. Please refer to the specific device data sheet for
availability.

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.
DS70359B-page 2-16 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

bit 2 SFA: Stack Frame Active Status bit
1 = Stack frame is active. W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and

DSWPAG values
0 = Stack frame is not active. W14 and W15 address of EDS or Base Data Space

bit 1 RND: Rounding Mode Select bit
1 = Biased (conventional) rounding enabled
0 = Unbiased (convergent) rounding enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit
1 = Integer mode enabled for DSP multiply
0 = Fractional mode enabled for DSP multiply

Register 2-2: CORCON: Core Control Register (Continued)

Note 1: This bit always reads as ‘0’.

2: These bits are only present in dsPIC33E devices. Please refer to the specific device data sheet for
availability.

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.
© 2010 Microchip Technology Inc. DS70359B-page 2-17

dsPIC33E/PIC24E Family Reference Manual
2.4.3 Other dsPIC33E/PIC24E CPU Control Registers
The following registers are associated with the dsPIC33E/PIC24E CPU, but are described in
further detail in other sections of the “dsPIC33E/PIC24E Family Reference Manual”.

• TBLPAG: Table Page Register
The TBLPAG register holds the upper 8 bits of a program memory address during table read
and write operations. Table instructions are used to transfer data between program memory
space and data memory space. For further details, refer to Section 4. “Program Memory”
(DS70613).

• DSRPAG: Extended Data Space Read Page Register
The 10-bit DSRPAG register extends X DS read access address space to a total of
32 Mbytes. DSRPAG page values between 0x001 and 0x1FF provide read access for a
16 Mbyte address space referred to as Extended Data Space (EDS). DSRPAG page values
between 0x200 and 0x2FF provide read access from the 8 Mbyte PSV address space (for
least significant word (lsw) reads only). DSRPAG page values between 0x300 and 0x3FF
duplicate the 8 Mbyte PSV address space but allow user to read the Most Significant upper
byte of each PSV address. For further details on the DSRPAG register, refer to Section
3. “Data Memory” (DS70595).

• DSWPAG: Extended Data Space Write Page Register
The 9-bit DSWPAG register extends DS write access space to 16 Mbytes (writes to PSV
space are not permitted). DSWPAG page values between 0x01 and 0x1FF provide write
access to EDS. For further details on the DSWPAG register, refer to Section 3. “Data
Memory” (DS70595).

• MODCON: Modulo Control Register
The MODCON register enables and configures modulo addressing (circular buffers). For
further details on modulo addressing, refer to Section 3. “Data Memory” (DS70595).

• XMODSRT, XMODEND: X Modulo Start and End Address Registers
The XMODSRT and XMODEND registers hold the start and end addresses for modulo
(circular) buffers implemented in the X data memory address space. For further details on
module addressing, refer to Section 3. “Data Memory” (DS70595).

• YMODSRT, YMODEND: Y Modulo Start and End Address Registers
The YMODSRT and YMODEND registers hold the start and end addresses for modulo
(circular) buffers implemented in the Y data memory address space. For further details on
module addressing, refer to Section 3. “Data Memory” (DS70595).

• XBREV: X Modulo Bit-Reverse Register
The XBREV register sets the buffer size used for bit-reversed addressing. For further details
on bit-reversed addressing, refer to Section 3. “Data Memory” (DS70595).

• DISICNT: Disable Interrupts Count Register
The DISICNT register is used by the DISI instruction to disable interrupts of priority 1-6 for
a specified number of cycles. For further information, refer to Section 6. “Interrupts”
(DS70600).
DS70359B-page 2-18 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.5 ARITHMETIC LOGIC UNIT (ALU)
The dsPIC33E/PIC24E ALU is 16 bits wide and is capable of addition, subtraction, single bit
shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2’s
complement in nature. Depending on the operation, the ALU can affect the values of these bits
in the SR register:

• Carry (C)
• Zero (Z)
• Negative (N)
• Overflow (OV)
• Digit Carry (DC)

The C and DC status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is
used. Data for the ALU operation can come from the W register array or data memory depending
on the Addressing mode of the instruction. Likewise, output data from the ALU can be written to
the W register array or a data memory location.

For information on the SR bits affected by each instruction, Addressing modes, and 8-bit/16-bit
Instruction modes, refer to the “16-bit MCU and DSC Programmer’s Reference Manual”
(DS70157).

2.5.1 Byte to Word Conversion
The dsPIC33E/PIC24E has two instructions that are helpful when mixing 8-bit and 16-bit ALU
operations.

• The Sign-extend (SE) instruction takes a byte value in a W register or data memory and
creates a sign-extended word value that is stored in a W register.

• The Zero-extend (ZE) instruction clears the 8 MSbs of a word value in a W register or data
memory and places the result in a destination W register.

Note 1: Byte operations use the 16-bit ALU and can produce results in excess of 8 bits.
However, to maintain backward compatibility with PIC MCU devices, the ALU result
from all byte operations is written back as a byte (i.e., MSB is not modified), and the
SR register is updated based only upon the state of the LSB of the result.

2: All register instructions performed in Byte mode affect only the LSB of the W
registers. The MSB of any W register can be modified by using file register
instructions that access the memory mapped contents of the W registers.
© 2010 Microchip Technology Inc. DS70359B-page 2-19

dsPIC33E/PIC24E Family Reference Manual
2.6 DSP ENGINE
The DSP engine is a block of hardware that is fed data from the W register array, but contains its
own specialized result registers. The DSP engine is driven from the same instruction decoder
that directs the MCU ALU. In addition, all operand EAs are generated in the W register array.
Concurrent operation with MCU instruction flow is not possible, though both the MCU ALU and
DSP engine resources can be shared by all instructions in the instruction set.

The DSP engine consists of the following components:

• High speed 17-bit by 17-bit multiplier
• Barrel shifter
• 40-bit Adder/Subtracter
• Two target accumulator registers
• Rounding logic with selectable modes
• Saturation logic with selectable modes

Data input to the DSP engine is derived from one of the following sources:

• Directly from the W array (registers W4, W5, W6 or W7) for dual source operand DSP
instructions. Data values for the W4, W5, W6 and W7 registers are prefetched via the X
and Y memory data buses

• From the X memory data bus for all other DSP instructions

Data output from the DSP engine is written to one of the following destinations:

• The target accumulator, as defined by the DSP instruction being executed
• The X memory data bus to any location in the data memory address space

The DSP engine can perform inherent accumulator-to-accumulator operations that require no
additional data.

The MCU shift and multiply instructions use the DSP engine hardware to obtain their results. The
X memory data bus is used for data reads and writes in these operations.

Figure 2-8 illustrates a block diagram of the DSP engine.

Note: For detailed code examples and instruction syntax related to this section, refer to
the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157).
DS70359B-page 2-20 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

Figure 2-8: DSP Engine Block Diagram

Zero Backfill

Sign-Extend

Barrel
Shifter

40-bit Accumulator A
40-bit Accumulator B

R
ou

nd
 L

og
ic

X
 D

at
a

B
us

To/From W Array

Adder

Saturate

Negate

32

32
32

16

16 16

16

40 40

40 40
Y

D
at

a
B

us

40

16

40

Multiplier/Scaler
17-bit x 17-bit

16-bit to 17-bit
Conversion

S
at

ur
at

io
n

Lo
gi

c

© 2010 Microchip Technology Inc. DS70359B-page 2-21

dsPIC33E/PIC24E Family Reference Manual
2.6.1 Data Accumulators (dsPIC33E Devices Only)
Two 40-bit data accumulators, ACCA and ACCB, are the result registers for the DSP instructions
listed in Table 2-3. Each accumulator is memory mapped to these three registers, where ‘x’
denotes the particular accumulator:

• ACCxL: ACCx<15:0>
• ACCxH: ACCx<31:16>
• ACCxU: ACCx<39:32>
For fractional operations that use the accumulators, the radix point is located to the right of
bit 31. The range of fractional values that can be stored in each accumulator is -256.0 to
(256.0 – 2-31).
For integer operations that use the accumulators, the radix point is located to the right of bit 0.
The range of integer values that can be stored in each accumulator is -549,755,813,888 to
549,755,813,887.

2.6.2 Multiplier
The dsPIC33E/PIC24E features a 17-bit-by-17-bit multiplier shared by both the MCU ALU and
the DSP engine. The multiplier is capable of signed, unsigned, or mixed-sign operation and
supports either 1.31 fractional (Q.31) or 32-bit integer results.

The multiplier takes in 16-bit input data and converts the data to 17 bits. Signed operands to the
multiplier are sign-extended. Unsigned input operands are zero-extended. The internal 17-bit
representation of data in the multiplier allows correct execution of mixed-sign and unsigned
16-bit-by-16-bit multiplication operations.

The representation of data in hardware for Integer and Fractional Multiplier modes is as follows:

• Integer data is inherently represented as a signed two’s complement value, where the Most
Significant bit (MSb) is defined as a sign bit. Generally speaking, the range of an N-bit two’s
complement integer is -2N-1 to 2N-1 – 1.

• Fractional data is represented as a two’s complement fraction where the MSb is defined as
a sign bit and the radix point is implied to lie just after the sign bit (Q.X format). The range of
an N-bit two’s complement fraction with this implied radix point is -1.0 to (1 – 21-N).

The range of data in both Integer and Fractional modes is listed in Table 2-2. Figure 2-9 and
Figure 2-10 illustrate how the multiplier hardware interprets data in Integer and Fractional modes.

The Integer or Fractional Multiplier Mode Select (IF) bit (CORCON<0>) determines
integer/fractional operation for the instructions listed in Table 2-3. The IF bit does not affect MCU
multiply instructions listed in Table 2-4, which are always integer operations. The multiplier
scales the result one bit to the left for fractional operation. The LSb of the result is always cleared.
The multiplier defaults to Fractional mode for DSP operations at a device Reset.

Table 2-2: dsPIC33E/PIC24E Data Ranges

Register
Size Integer Range Fraction Range Fraction

Resolution

16-bit -32768 to
 32767

-1.0 to (1.0 – 2-15)
(Q.15 Format)

3.052 x 10-5

32-bit -2,147,483,648 to
 2,147,483,647

-1.0 to (1.0 – 2-31)
(Q.31 Format)

4.657 x 10-10

40-bit -549,755,813,888 to
 549,755,813,887

-256.0 to (256.0 – 2-31)
(Q.31 Format with 8 Guard bits)

4.657 x 10-10
DS70359B-page 2-22 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

Figure 2-9: Integer and Fractional Representation of 0x4001

Figure 2-10: Integer and Fractional Representation of 0xC002

Different Representations of 0x4001

Integer:

 -215 214 213 212

0x4001 = 214 + 20 = 16385

1.15 Fractional:

2-15

0

 2-1 2-2 2-3 -20

20

0x4001 = 2-1 + 2-15 = 0.500030518

Implied Radix Point

.

1 10 0 0 0 0 0 0 0 0 0 0 0 0

0 1 10 0 0 0 0 0 0 0 0 0 0 0 0

Different Representations of 0xC002

Integer:

 -215 214 213 212

0xC002 = -215 + 214 + 20 = -32768 + 16384 + 2 = -16382

1.15 Fractional:

2-15 . 2-1 2-2 2-3-20

20

0xC002 = -20 + 2-1 + 2-14 = -1 + 0.5 + 0.000061035 = -0.499938965

Implied Radix Point

1 1 00 0 0 0 0 0 0 0 0 0 0 0 1

1 1 00 0 0 0 0 0 0 0 0 0 0 0 1
© 2010 Microchip Technology Inc. DS70359B-page 2-23

dsPIC33E/PIC24E Family Reference Manual
2.6.2.1 DSP MULTIPLY INSTRUCTIONS (dsPIC33E DEVICES ONLY)

The DSP instructions that use the multiplier are summarized in Table 2-3.

Table 2-3: DSP Instructions that Use the Multiplier

The DSP Multiplier Unsigned/Signed Control (US) bits (CORCON<13:12>) determine whether
DSP multiply instructions are signed (default), unsigned or mixed-sign. The US bits do not
influence the MCU multiply instructions, which have specific instructions for signed or unsigned
operation. If the US bits are set to ‘01’, the input operands for instructions shown in Table 2-3 are
considered as unsigned values, which are always zero-extended into the 17th bit of the multiplier
value. If the US bits are set to ‘00’, the operands are sign-extended.

If the US bits (CORCON<13:12>) are set to ‘10’, the operands for the instructions listed above,
are considered as signed or unsigned values depending upon the W register source. If the W
register source is odd (W5 or W7), the operand is assumed to be signed. If the W register source
is even, the operand is assumed to be unsigned. The result is sign-extended if one or both of the
operands are signed, otherwise it is zero extended prior to any operation with the accumulator
(which will always effectively be signed).

2.6.2.2 MCU MULTIPLY INSTRUCTIONS

The same multiplier supports the MCU multiply instructions, which include integer 16-bit signed,
unsigned and mixed sign multiplies, as shown in Table 2-4. All multiplications performed by the
MUL instruction produce integer results. The MUL instruction can be directed to use byte or word
sized operands. Byte input operands produce a 16-bit result and word input operands produce
either a 16-bit result or a 32-bit result, either to the specified register(s) in the W array, or to an
Accumulator.

Table 2-4: MCU Instructions that Utilize the Multiplier

DSP Instruction Description Algebraic Equivalent

MAC Multiply and Add to Accumulator or
Square and Add to Accumulator

a = a + b * c
a = a + b2

MSC Multiply and Subtract from Accumulator a = a – b * c
MPY Multiply a = b * c
MPY.N Multiply and Negate Result a = -b * c
ED Partial Euclidean Distance a = (b – c)2

EDAC Add Partial Euclidean Distance to the Accumulator a = a + (b – c)2

Note 1: DSP instructions using the multiplier can operate in Fractional (1.15) or Integer
modes.

MCU Instruction Description

MUL/MUL.UU Multiply two unsigned integers and generate 32-bit results.
MUL.SS Multiply two signed integers and generate 32-bit results.
MUL.SU/MUL.US Multiply a signed integer with an unsigned integer and generate

32-bit results.
MULW.UU Multiply two unsigned integers and generate 16-bit results.
MULW.SS Multiply two signed integers and generate 16-bit results.
MULW.SU/MULW.US Multiply a signed integer with an unsigned integer and generate a

16-bit result.
Note 1: MCU instructions using the multiplier operate only in Integer mode.
DS70359B-page 2-24 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.6.3 Data Accumulator Adder/Subtracter
The data accumulators have a 40-bit Adder/Subtracter with automatic sign extension logic for the
multiplier result (if signed). It can select one of two accumulators (A or B) as its pre-accumulation
source and post-accumulation destination. For the ADD (accumulator) and LAC instructions, the
data to be accumulated or loaded can optionally be scaled via the barrel shifter prior to
accumulation.

The 40-bit Adder/Subtracter can optionally negate one of its operand inputs to change the sign
of the result (without changing the operands). The negate is used during multiply and subtract
(MSC), or multiply and negate (MPY.N) operations.

The 40-bit Adder/Subtracter has an additional saturation block that controls accumulator data
saturation, if enabled.

2.6.3.1 ACCUMULATOR STATUS BITS

Six status register bits that support saturation and overflow are located in the CPU Status register
(SR), and are listed in Table 2-5:

Table 2-5: Accumulator Overflow and Saturation Status Bits

The OA and OB bits are modified each time data passes through the accumulator add/subtract
logic. When set, they indicate that the most recent operation has overflowed into the accumulator
guard bits (bits 32 through 39). This type of overflow is not catastrophic; the guard bits preserve
the accumulator data. The OAB status bit is the logically OR value of OA and OB.
The OA and OB bits, when set, can optionally generate an arithmetic error trap. The trap is
enabled by setting the corresponding Overflow Trap Flag Enable bit (OVATE or OVBTE) in
Interrupt Control Register 1 (INTCON1<10> or <9>) in the Interrupt controller. The trap event
allows the user to take immediate corrective action, if desired.
The SA and SB bits can be set each time data passes through the accumulator saturation logic.
Once set, these bits remain set until cleared by the user application. The SAB status bit indicates
the logical OR value of SA and SB. When set, these bits indicate that the accumulator has
overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and are
saturated (if saturation is enabled).
When saturation is not enabled, the SA and SB bits indicate that a catastrophic overflow has
occurred (the sign of the accumulator has been destroyed). If the Catastrophic Overflow Trap
Enable (COVTE) bit (INTCON1<8>) is set, SA and SB bits will generate an arithmetic error trap
when saturation is disabled. The SA and SB bits can be set in software, enabling efficient context
state switching. For further information on arithmetic warning traps, refer to Section
6. “Interrupts” (DS70600).

Status Bit Location Description

OA SR<15> Accumulator A overflowed into guard bits (ACCA<39:32>)
OB SR<14> Accumulator B overflowed into guard bits (ACCB<39:32>)
SA SR<13> ACCA saturated (bit 31 overflow and saturation)

or
ACCA overflowed into guard bits and saturated
(bit 39 overflow and saturation)

SB SR<12> ACCB saturated (bit 31 overflow and saturation)
or
ACCB overflowed into guard bits and saturated
(bit 39 overflow and saturation)

OAB SR<11> OA logically ORed with OB. Clearing OAB clears both OA
and OB.

SAB SR<10> SA logically ORed with SB. Clearing SAB clears both SA
and SB.

Note: The SA, SB and SAB status bits can have different meanings depending on whether
accumulator saturation is enabled. The Accumulator Saturation mode is controlled
via the CORCON register.
© 2010 Microchip Technology Inc. DS70359B-page 2-25

dsPIC33E/PIC24E Family Reference Manual
2.6.3.2 SATURATION AND OVERFLOW MODES

The dsPIC33E/PIC24E CPU supports three Saturation and Overflow modes.

• Accumulator 39-bit Saturation:
In this mode, the saturation logic loads the maximally positive 9.31 value (0x7FFFFFFFFF),
or maximally negative 9.31 value (0x8000000000), into the target accumulator. The SA or
SB bit is set and remains set until cleared by the user application. This Saturation mode is
useful for extending the dynamic range of the accumulator.

To configure for this mode of saturation, set the Accumulator Saturation Mode Select
(ACCSAT) bit (CORCON<4>). Additionally, set the AccA Saturation Enable (SATA) bit
(CORCON<7>, and/or the AccB Saturation Enable (SATB) bit (CORCON< 6>) to enable
accumulator saturation.

• Accumulator 31-bit Saturation:
In this mode, the saturation logic loads the maximally positive 1.31 value (0x007FFFFFFF)
or maximally negative 1.31 value (0xFF80000000) into the target accumulator. The SA or
SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect,
the guard bits 32 through 39 are not used except for sign-extension of the accumulator
value. Consequently, the OA, OB or OAB bits in SR are never set.

To configure for this mode of overflow and saturation, the ACCSAT (CORCON<4>) bit must
be cleared. Additionally, the SATA (CORCON<7>) and/or SATB (CORCON<6>) bits must
be set to enable accumulator saturation.

• Accumulator Catastrophic Overflow:
If the SATA (CORCON<7>) and/or SATB (CORCON<6>) bits are not set, then no saturation
operation is performed on the accumulator, and the accumulator is allowed to overflow all
the way up to bit 39 (destroying its sign). If the Catastrophic Overflow Trap Enable (COVTE)
bit (INTCON1<8> in the Interrupt controller) is set, a catastrophic overflow initiates an
arithmetic error trap.

Accumulator saturation and overflow detection can only result from the execution of a DSP
instruction that modifies one of the two accumulators via the 40-bit DSP ALU. Saturation and
overflow detection do not take place when the accumulators are accessed as memory mapped
registers via MCU class instructions. Furthermore, the accumulator status bits shown in
Table 2-5 are not modified. However, the MCU status bits (Z, N, C, OV, DC) will be modified,
depending on the MCU instruction that accesses the accumulator. For further information on
arithmetic error traps, refer to Section 6. “Interrupts” (DS70600).

2.6.3.3 DATA SPACE WRITE SATURATION

In addition to Adder/Subtracter saturation, writes to data space can be saturated without affecting
the contents of the source accumulator. This feature allows data to be limited, while not
sacrificing the dynamic range of the accumulator during intermediate calculation stages. Data
space write saturation is enabled by setting the Data Space Write from DSP Engine Saturation
Enable (SATDW) control bit (CORCON<5>). Data space write saturation is enabled by default at
a device Reset.

The data space write saturation feature works with the SAC and SAC.R instructions. The value
held in the accumulator is never modified when these instructions are executed. The hardware
takes the following steps to obtain the saturated write result:

1. The read data is scaled based upon the arithmetic shift value specified in the instruction.
2. The scaled data is rounded (SAC.R only).
3. The scaled/rounded value is saturated to a 16-bit result based on the value of the guard

bits. For data values greater than 0x007FFF, the data written to memory is saturated to
the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written
to memory is saturated to the maximum negative 1.15 value, 0x8000.
DS70359B-page 2-26 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.6.3.4 ACCUMULATOR ‘WRITE BACK’

The MAC and MSC instructions can optionally write a rounded version of the accumulator that is
not the target of the current operation into data space memory. The write is performed across the
X bus into combined X and Y address space. This accumulator write-back feature is beneficial
in certain algorithms, such as FFT and LMS filters.

The following Addressing modes are supported by the accumulator write back hardware:

• W13, register direct:

The rounded contents of the non-target accumulator are written into W13 as a 1.15 fractional
result.

• [W13]+ = 2, register indirect with post-increment:

The rounded contents of the non-target accumulator are written into the address pointed to
by W13 as a 1.15 fraction. W13 is then incremented by 2.

2.6.4 Round Logic (dsPIC33E Devices Only)
The round logic can perform a conventional (biased) or convergent (unbiased) round function
during an accumulator write (store). The Round mode is determined by the state of the Rounding
Mode Select (RND) bit (CORCON<1>). It generates a 16-bit, 1.15 data value, which is passed
to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated
1.15 data value is stored.

The two Rounding modes are shown in Figure 2-11. Conventional rounding takes bit 15 of the
accumulator, zero-extends it and adds it to the most significant word (msw), excluding the guard
or overflow bits (bits 16 through 31). If the least significant word (lsw) of the accumulator is
between 0x8000 and 0xFFFF (0x8000 included), the msw is incremented. If the lsw of the
accumulator is between 0x0000 and 0x7FFF, the msw remains unchanged. A consequence of
this algorithm is that over a succession of random rounding operations, the value tends to be
biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding
except when the lsw equals 0x8000. If this is the case, the LSb of the msw (bit 16 of the
accumulator) is examined. If it is ‘1’, the msw is incremented. If it is ‘0’, the msw is not modified.
Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that
may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of
the contents of the target accumulator to data memory via the X-bus (subject to data saturation).
For more information, refer to 2.6.3.3 “Data Space Write Saturation”.

For the MAC class of instructions, the accumulator write-back data path is always subject to
rounding.
© 2010 Microchip Technology Inc. DS70359B-page 2-27

dsPIC33E/PIC24E Family Reference Manual
Figure 2-11: Conventional and Convergent Rounding Modes

2.6.5 Barrel Shifter (dsPIC33E Devices Only)
The Barrel Shifter can perform up to a 16-bit arithmetic right shift, or up to a 16-bit left shift, in a
single cycle. DSP or MSU instructions can use the barrel shifter for multi-bit shifts.

The shifter requires a signed binary value to determine both the magnitude (number of bits) and
direction of the shift operation:

• A positive value shifts the operand right
• A negative value shifts the operand left
• A value of ‘0’ does not modify the operand

The barrel shifter is 40 bits wide to accommodate the width of the accumulators. A 40-bit output
result is provided for DSP shift operations and a 16-bit result is provided for MCU shift operations.

Table 2-6 provides a summary of instructions that use the barrel shifter.

Table 2-6: Instructions that Use the DSP Engine Barrel Shifter

2.6.6 DSP Engine Mode Selection (dsPIC33E Devices Only)
These operational characteristics of the DSP engine discussed in previous sections can be
selected through the CPU Core Configuration register (CORCON):

• Fractional or integer multiply operation
• Conventional or convergent rounding
• Automatic saturation on/off for ACCA
• Automatic saturation on/off for ACCB
• Automatic saturation on/off for writes to data memory
• Accumulator Saturation mode selection

2.6.7 DSP Engine Trap Events (dsPIC33E Devices Only)
Arithmetic error traps that can be generated for handling exceptions in the DSP engine are
selected through the Interrupt Control register (INTCON1). These are:

01516

01516

01516

01516

1000 0000 0000 00001XXX XXXX XXXX XXXX

0XXX XXXX XXXX XXXX 1000 0000 0000 0000

1

0

Conventional (Biased) Convergent (Unbiased)

Round Up (add 1 to msw) when:

Round Down (add nothing) when:

Round Up (add 1 to msw) when:
1. lsw = 0x8000 and bit 16 = 1
2. lsw > 0x8000

lsw >= 0x8000

lsw < 0x8000
Round Down (add nothing) when:
1. lsw = 0x8000 and bit 16 = 0
2. lsw < 0x8000

msw

msw

msw

msw

Instruction Description

ASR Arithmetic multi-bit right shift of data memory location.
LSR Logical multi-bit right shift of data memory location.
SL Multi-bit shift left of data memory location.
SAC Store DSP accumulator with optional shift.
SFTAC Shift DSP accumulator.
DS70359B-page 2-28 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

• Trap on ACCA overflow enable, using OVATE (INTCON1<10>)
• Trap on ACCB overflow enable, using OVBTE (INTCON1<9>)
• Trap on catastrophic ACCA and/or ACCB overflow enable, using COVTE (INTCON1<8>)

Occurrence of the traps is indicated by these error status bits:

• OVAERR (INTCON1<14>)
• OVBERR (INTCON1<13>)
• COVAERR (INTCON1<12>)
• COVBERR (INTCON1<11>)

An arithmetic error trap is also generated when the user application attempts to shift a value
beyond the maximum allowable range (±16 bits) using the SFTAC instruction. This trap source
cannot be disabled, and is indicated by the Shift Accumulator Error Status (SFTACERR) bit
(INTCON1<7> in the Interrupt controller). The instruction will execute, but the results of the shift
are not written to the target accumulator.

For further information on bits in the INTCON1 register and arithmetic error traps, refer to
Section 6. “Interrupts” (DS70600).
© 2010 Microchip Technology Inc. DS70359B-page 2-29

dsPIC33E/PIC24E Family Reference Manual
2.7 DIVIDE SUPPORT
The dsPIC33E/PIC24E supports the following types of division operations:

• DIVF: 16/16 signed fractional divide (dsPIC33E devices only)
• DIV.SD: 32/16 signed divide
• DIV.UD: 32/16 unsigned divide
• DIV.SW: 16/16 signed divide
• DIV.UW: 16/16 unsigned divide

The quotient for all divide instructions is placed in working register W0. The remainder is placed
in W1. The 16-bit divisor can be located in any W register. A 16-bit dividend can be located in
any W register and a 32-bit dividend must be located in an adjacent pair of W registers.

All divide instructions are iterative operations and must be executed 18 times within a REPEAT
loop. The developer is responsible for programming the REPEAT instruction. A complete divide
operation takes 19 instruction cycles to execute.

The divide flow is interruptible, just like any other REPEAT loop. All data is restored into the
respective data registers after each iteration of the loop, so the user application is responsible for
saving the appropriate W registers in the ISR. Although they are important to the divide
hardware, the intermediate values in the W registers have no meaning to the user application.
The divide instructions must be executed 18 times in a REPEAT loop to produce a meaningful
result.

A divide-by-zero error generates a math error trap. This condition is indicated by the Math Error
Status (DIV0ERR) bit (INTCON1<6> in the Interrupt controller).

For more information and programming examples for the divide instructions, refer to the “16-bit
MCU and DSC Programmer’s Reference Manual” (DS70157).
DS70359B-page 2-30 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.8 INSTRUCTION FLOW TYPES
Most instructions in the dsPIC33E/PIC24E architecture occupy a single word of program memory
and execute in a single cycle. An instruction pre-fetch mechanism facilitates single cycle (1 TCY)
execution. However, some instructions take two or more instruction cycles to execute.
Consequently, there are seven different types of instruction flow in the dsPIC® DSC architecture.
These are described in this section.

2.8.1 1 Instruction Word, 1 Instruction Cycle
These instructions take one instruction cycle to execute, as shown in Figure 2-12. Most
instructions are 1-word, 1-cycle instructions.

Figure 2-12: Instruction Flow – 1-Word, 1-Cycle

2.8.2 1 Instruction Word, 2 Instruction Cycles
In these instructions, there is no pre-fetch flush. The only instructions of this type are the MOV.D
instructions (load and store double-word), SFR reads, and SFR bit operations. Two cycles are
required to complete these instructions, as shown in Figure 2-13.

Figure 2-13: Instruction Flow – 1-Word, 2-Cycle (MOV.D Operation)

2.8.3 1 Instruction Word, 2 or 4 Instruction Cycle (Program Flow
Changes)

These instructions include relative call and branch instructions. When an instruction changes the
PC (other than to increment it), the program memory prefetch data must be discarded. This
makes the instruction take four effective cycles to execute, as shown in Figure 2-14.

Figure 2-14: Instruction Flow (Program Flow Changes)

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5 TCY6

1. MOV #0x55AA,W0 Fetch 1 Execute 1

2. MOV W0,PORTA Fetch 2 Execute 2

3. MOV W0,PORTB Fetch 3 Execute 3

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5 TCY6 TCY7 TCY8

1. MOV #0x1234,W2 Fetch1 Execute 1

Fetch 2 Execute 2
R/W Cycle 1

2. MOV.D [W0++],W4 Execute 2
R/W Cycle 2

3. MOV #0x00AA,W1 Fetch 3 No Fetch Execute 3

4. MOV #0x00CC,W0 Fetch 4 No Fetch Execute 4

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5 TCY6 TCY7 TCY8 TCY9

1. ADD.B PORTA Fetch 1 Execute 1

2. BRA SUB_1 Fetch 2 Execute 2

3. ADD.B PORTB Fetch 3 Flush

4. CLR W0 Fetch 4 Flush

5. SUB_1: Instruction
@ address SUB_1

Fetch 5 Execute 5
© 2010 Microchip Technology Inc. DS70359B-page 2-31

dsPIC33E/PIC24E Family Reference Manual
2.8.4 Table Read/Write Instructions
These instructions suspend fetching to insert a read or write cycle to the program memory.
Figure 2-15 illustrates the instruction fetched while executing the table operation is saved for one
cycle and executed in the cycle immediately after the table operation.

Figure 2-15: Instruction Flow (Table Operations)

2.8.5 2 Instruction Words, 4 Instruction Cycles – GOTO or CALL
In these instructions, the fetch after the instruction contains data. This results in a 4-cycle
instruction, as shown in Figure 2-16. The second word of a two-word instruction is encoded so
that it executes as a NOP if it is fetched by the CPU when the CPU did not first fetch the first word
of the instruction. This is important when a two-word instruction is skipped by a skip instruction
(see Figure 2-16).

Figure 2-16: Instruction Flow (GOTO or CALL)

2.8.6 2 Instruction Words, 2 Instruction Cycles – DO
In this instruction, the fetch after the instruction contains an address offset. This address offset
is added to the first instruction address to generate the last loop instruction address.

Figure 2-17: Instruction Flow (DO)

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5 TCY6 TCY7 TCY8 TCY9 TCY10

1. MOV #0x1234,W2 Fetch 1 Execute 1

2. TBLRDL.w [W0++],W1 Fetch 2 Execute 2

3. MOV #0x00AA,W1 Fetch 3 Execute 3

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5 TCY6 TCY7 TCY8 TCY9

1. MOV #0x55AA,W0 Fetch 1 Execute 1

2. GOTO LABEL Fetch 2a Execute 2

Fetch 2b

3. MOV #0x1111,W2 Fetch 3 Flush

4. LABEL: Inst. @ address Fetch 4 Execute 4

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5 TCY6 TCY7 TCY8

1. MOV W0,W1 Fetch 1 Execute 1

2. DO #COUNT, OFFSET Fetch 2a Execute 2

Fetch 2b

3. First Inst. of loop Fetch 3 Execute 3
DS70359B-page 2-32 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.8.7 Address Register Dependencies
These are instructions subjected to a stall due to a data address dependency between the X-data
space read and write operations. An additional cycle is inserted to resolve the resource conflict,
as discussed in 2.10 “Address Register Dependencies”.

Figure 2-18: Instruction Pipeline Flow – 1-Word, 1-Cycle (With Instruction Stall)

2.8.8 Interrupt Processing
The instruction pipeline flow for interrupt processing is described in detail in Section 6.
“Interrupts” (DS70600).

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5 TCY6 TCY7

1. MOV W0,W1 Fetch 1 Execute 1

2. MOV [W1],W4 Fetch 2 Execute 2

3. MOV W4, LATB Fetch 3 Stall Execute 3
© 2010 Microchip Technology Inc. DS70359B-page 2-33

dsPIC33E/PIC24E Family Reference Manual
2.9 LOOP CONSTRUCTS
The dsPIC33E/PIC24E supports both REPEAT and DO instruction constructs to provide
unconditional automatic program loop control. The REPEAT instruction implements a single
instruction program loop. The DO instruction implements a multiple instruction program loop. Both
instructions use control bits within the CPU Status register (SR) to temporarily modify CPU
operation.

2.9.1 REPEAT Loop Construct
The REPEAT instruction causes the instruction that follows it to be repeated a specified number
of times. A literal value contained in the instruction or a value in one of the W registers can be
used to specify the REPEAT count value. The W register option enables the loop count to be a
software variable.

An instruction in a REPEAT loop is executed at least once. The number of iterations for a REPEAT
loop is the 15-bit literal value + 1, or Wn + 1.

The syntax for the two forms of the REPEAT instruction is:
REPEAT #lit15 ; RCOUNT <-- lit15
(Valid target Instruction)

or
REPEAT Wn ; RCOUNT <-- Wn
(Valid target Instruction)

2.9.1.1 REPEAT OPERATION

The loop count for REPEAT operations is held in the 16-bit Repeat Loop Counter
register(RCOUNT) , which is memory mapped. RCOUNT is initialized by the REPEAT instruction.
The REPEAT instruction sets the REPEAT Loop Active (RA) status bit (SR<4>) to ‘1’ if the
RCOUNT is a non-zero value.

RA is a read-only bit and cannot be modified through software. For REPEAT loop count values
greater than ‘0’, the Program Counter is not incremented. Further, Program Counter increments
are inhibited until RCOUNT = 0. For an instruction flow example of a REPEAT loop, refer to
Figure 2-19.

For a loop count value equal to ‘0’, REPEAT has the effect of a NOP and the RA (SR<4>) bit is not
set. The REPEAT loop is essentially disabled before it begins, allowing the target instruction to
execute only once while prefetching the subsequent instruction (i.e., normal execution flow).

Figure 2-19: REPEAT Instruction Pipeline Flow

Note: The instruction immediately following the REPEAT instruction (i.e., the target
instruction) is always executed at least one time, and it is always executed one time
more than the value specified in the 15-bit literal or the W register operand.

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5 TCY6 TCY7 TCY8 TCY9 TCY10

1. REPEAT #0x2 Fetch 1 Execute 1

2. MAC W4*W5,A,[W8]+=2,W4 Fetch 2 Execute 2

3. BSET PORTA,#3 Execute 2

Execute 2

Fetch 3 Execute 3

PC (at end of instruction) PC PC+2 PC+2 PC+2 PC+4 PC+4 PC+4

RCOUNT (at end of instruction) X 2 1 0 0 0 0

RA (at end of instruction) 0 1 1 0 0 0 0

Note: A consequence of repeating the same instruction is that even when the repeated
instruction is performing a PSV read, the first and last iteration incur 5 TCY and 6
TCY, respectively, due to Flash latency. All other iterations execute with an effective
throughput of 1 instruction per cycle. However, this data pipelining is limited to
certain addressing modes: post-increment or post-decrement by 1 or 2.
DS70359B-page 2-34 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.9.1.2 INTERRUPTING A REPEAT LOOP

A REPEAT instruction loop can be interrupted at any time.

The state of the RA bit is preserved on the stack during exception processing, to enable the user
application to execute further REPEAT loops from within any number of nested interrupts. After
SRL is stacked, the RA status bit is cleared to restore normal execution flow within the (ISR).

Returning into a REPEAT loop from an ISR using the RETFIE instruction requires no special
handling. Interrupts pre-fetch the repeated instruction during the fifth cycle of the RETFIE
instruction. The stacked RA bit is restored when the SRL register is popped and, if set, the
interrupted REPEAT loop is resumed.

2.9.1.2.1 Early Termination of a REPEAT Loop
An interrupted REPEAT loop can be terminated earlier than normal in the ISR by clearing the
RCOUNT register in software.

2.9.1.3 RESTRICTIONS ON THE REPEAT INSTRUCTION

Any instruction can immediately follow a REPEAT except for the following:

• Program Flow Control instructions (any branch, compare and skip, subroutine calls,
returns, etc.)

• Another REPEAT or DO instruction
• DISI, ULNK, LNK, PWRSAV or RESET
• MOV.D instruction

2.9.2 DO Loop Construct (dsPIC33E Devices Only)
The DO instruction can execute a group of instructions that follow it a specified number of times
without software overhead. The set of instructions up to and including the end address are
repeated. The repeat count value for the DO instruction can be specified by a 15-bit literal value
+1 or by the contents of a W register +1 declared within the instruction.
The syntax for the 15-bit literal form of the DO instruction is:

DO #lit15,LOOP_END ; DCOUNT <-- lit15
Instruction1
Instruction2

:
:

LOOP_END: Instruction n

The syntax for the W register declared form of the DO instruction is:
DO Wn,LOOP_END ; DCOUNT <-- Wn<15:0>
Instruction1

 Instruction2
:
:

LOOP_END: Instruction n

Note: If a REPEAT loop has been interrupted, and an ISR is being processed, the user
application must stack the Repeat Count register (RCOUNT) before it executes
another REPEAT instruction within an ISR.
If a REPEAT instruction is used within an ISR, the user application must unstack the
RCOUNT register before it executes the RETFIE instruction.

Note: Some instructions and/or instruction addressing modes can be executed within a
REPEAT loop, but it might not make sense to repeat all instructions.
© 2010 Microchip Technology Inc. DS70359B-page 2-35

dsPIC33E/PIC24E Family Reference Manual
The following features are provided in the DO loop construct

• The first instruction of a DO loop cannot be a PSV read or a table read
• A W register can be used to specify the loop count, which allows the loop count to be

defined at run-time
• The instruction execution order need not be sequential (i.e., there can be branches,

subroutine calls, etc.)
• The loop end address need not be greater than the start address

2.9.2.1 DO LOOP REGISTERS AND OPERATION

The number of iterations executed by a DO loop will be the 15-bit literal value +1 or the Wn value
+ 1. If a W register is used to specify the number of iterations, the two MSbs are not used to
specify the loop count. The operation of a DO loop is similar to the DO-WHILE construct in the C
programming language because the instructions in the loop will always be executed at least
once.

The dsPIC33E/PIC24E has three registers associated with DO loops:

• The DO Loop Start Address (DOSTART) register holds the starting address of the DO loop. It
is a 22-bit register.

• The DO Loop End Address (DOEND) register holds the end address of the DO loop. It is a
22-bit register.

• The DO Loop Counter (DCOUNT) register holds the number of iterations to be executed by
the loop. It is a 16-bit register.

These registers are memory mapped and are automatically loaded by the hardware when the DO
instruction is executed. The MSb and LSb of these registers is fixed to ‘0’. The LSb is not stored
in these registers because PC<0> is always forced to ‘0’.

The DO Loop Active (DA) status bit (SR<9>) indicates that a single DO loop (or nested DO loops)
is active. When a DO instruction is executed, the DA bit is set, which enables the PC address to
be compared with the DOEND register on each subsequent instruction cycle. When the PC
matches the value in DOEND, DCOUNT is decremented.

If the DCOUNT register is not zero, the PC is loaded with the address contained in the DOSTART
register to start another iteration of the DO loop. When DCOUNT reaches zero, the DO loop
terminates.

If no other nested DO loops are in progress, the DA bit is also cleared. DO loops can be interrupted
at any time.

2.9.2.2 DO LOOP NESTING

The DOSTART, DOEND and DCOUNT registers each have an associated hardware stack that
allows the DO loop hardware to support up to three levels of nesting.
The DO Loop Nesting Level (DL<2:0>) status bits (CORCON<10:8>) indicate the nesting level of
the DO loop currently being executed. When the first DO instruction is executed, DL<2:0> is set
to ‘b001 to indicate that one level of DO loop is in progress. The DO Loop Active (DA) bit (SR<9>)
is also set.
When another DO instruction is executed within the first DO loop, the DOSTART, DOEND and
DCOUNT registers are transferred into the DO stack before they are updated with the new loop
values. The DL<2:0> bits are set to ‘b010 to indicate that a second, nested DO loop is in
progress. The DA (SR<9>) bit also remains set. This continues for subsequent nested DO loops.
The DOSTART, DOEND and DCOUNT registers are automatically restored from their DO stack
when a DO loop terminates.

Note: The group of instructions in a DO loop construct is always executed at least one
time. The DO loop is always executed one time more than the value specified in the
literal or W register operand.

Note: The DL<2:0> (CORCON<10:8>) bits are combined (logically ORed) to form the DA
(SR<9>) bit. If nested DO loops are being executed, the DA bit is cleared only when
the loop count associated with the outermost loop expires.
DS70359B-page 2-36 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.9.2.3 DO STACK

The DO stack is used to preserve the following elements associated with a DO loop underway
when another DO loop is encountered(i.e., a nested DO loop).

• DOSTART register value
• DOEND register value
• DCOUNT register value
• First loop instruction
• Second loop instruction, or second word of first loop instruction if it is a 2-word instruction
Note that the DO level status field (DL<2:0>) also acts as a pointer to address the DO stack. After
the DO is executed, DL<2:0> points to the next free entry.
The initial DO instruction executes without using the stack (actually stacks to a null (nonexistent)
entry). Subsequent DO instructions start to fill up the DO stack until three entries are in place. At
this point DL<2:0> = 4 after the final DO instruction has executed, indicating that the initial DO loop
plus three nested DO loops are executing. No further DO loops may be nested.
If the user attempts to nest an additional DO loop when DL<2:0> = 4 (at the start of the instruction,
prior to the DO level increment), the DO stack overflow bit, DO_OVR (INTCON3<4>), will be set
and a generic soft trap is generated.
A conceptual representation of the DO stack is shown in Figure 2-20.

Figure 2-20: DO Stack Conceptual Diagram

2.9.2.4 EARLY TERMINATION OF THE DO LOOP
There are two ways to terminate a DO loop earlier than normal:

• The Early DO Loop Termination Control (EDT) bit (CORCON<11>) provides a means for
the user application to terminate a DO loop before it completes all loops. Writing a ‘1’ to the
EDT bit forces the loop to complete the iteration underway and then terminate. If EDT is set
during the next-to-last (penultimate) or last instruction of the loop, one more iteration of the
loop occurs. EDT always reads as a ‘0’; clearing it has no effect. After the EDT bit is set,
the user can optionally branch out of the DO loop.

• Alternately, the code can branch out of the loop at any point except from the last two
instructions, which cannot be a flow-control instruction. Although the DA (SR<9>) bit
enables the DO loop hardware, it has no effect unless the address of the penultimate
instruction is encountered during an instruction pre-fetch. This is not a recommended
method for terminating a DO loop.

DCOUNTDOENDDOSTARTDL<2:0>

Empty

Level 3 Registers

000

001

010

011

100

Level 1 Ops

Level 2 Registers

Level 1 Registers

Level 2 Ops

Level 3 Ops

Level 4 Ops

Even Loop OpOdd Loop Op

Note 1: For DO register entries, DL<2:0> represents the value before the DO stack is executed.
2: For DO instruction buffer entries, DL<2:0> represents the value after the DO stack is executed.
3: If DL<2:0> = 0, no DO loops are active (DA = 0).

Note: Exiting a DO loop without using EDT is not recommended because the hardware will
continue to check for DOEND addresses.
© 2010 Microchip Technology Inc. DS70359B-page 2-37

dsPIC33E/PIC24E Family Reference Manual
2.9.2.5 DO LOOP RESTRICTIONS
The use of DO loops imposes restrictions such as:

• When the DOEND register can be read
• Certain instructions must not be used as the last two instructions in the loop
• Certain small loop lengths are prohibited (loop length refers to the size of the block of

instructions that is being repeated in the loop)

2.9.2.5.1 DOEND Register Restrictions
All DO loops must contain at least two instructions because the loop termination tests are
performed in the penultimate instruction. REPEAT should be used for single instruction loops.
The special function register, DOEND, cannot be read by user software in the instruction that
immediately follows either a DO instruction or a file register write operation to the DOEND SFR.
The instruction before the penultimate instruction in a DO loop should not modify:
• CPU priority level governed by the CPU Interrupt Priority Level (IPL) status bits (SR<7:5>)
• Peripheral Interrupt Enable bits governed by Interrupt Enable Control registers IECn
• Peripheral Interrupt Priority bits governed by Interrupt Priority Control registers IPCn
If these restrictions are not observed, the DO loop may execute incorrectly.

2.9.2.5.2 Restrictions on First Instruction
A PSV or table read cannot be the first instruction in the loop.

2.9.2.5.3 Restrictions on Last Two Instructions
The last two instructions in a DO loop should not be any of the following:
• Flow control instruction (e.g., any branch, compare and skip, GOTO, CALL, RCALL, TRAP)
• Another REPEAT or DO instruction
• Target instruction within a REPEAT loop. This restriction implies that the penultimate

instruction also cannot be a REPEAT
• Any instruction that occupies two words in program space
• DISI instruction
RETURN, RETFIE and RETLW work correctly as one of the last two instructions of a DO loop, but
the user application is responsible for returning to the loop to complete it.

2.9.2.5.4 Loop Length Restrictions
Loop length is defined as the signed offset of the last instruction from the first instruction in the
DO loop. The loop length, when added to the address of the first instruction in the loop, forms the
address of the last instruction of the loop. For example, a loop length of 1 implies a
one-instruction loop. The loop length must not be -1, 0 or 1.
DS70359B-page 2-38 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.10 ADDRESS REGISTER DEPENDENCIES
The dsPIC33E/PIC24E architecture supports a data space read (source) and a data space write
(destination) for most MCU class instructions. The EA calculation by the AGU, and subsequent
data space read or write, each take one instruction cycle to complete. This timing causes the data
space read and write operations for each instruction to partially overlap, as shown in Figure 2-21.
A ‘Read-After-Write’ (RAW) data dependency can occur across instruction boundaries because
of this overlap. RAW data dependencies are detected and handled at runtime by the
dsPIC33E/PIC24E CPU.

Figure 2-21: Data Space Access Timing

2.10.1 Read-After-Write Dependency Rules
If the W register is used as a write operation destination in the current instruction and the W
register being read in the prefetched instruction are the same, the following rules apply:

• If the destination write (current instruction) does not modify the contents of Wn, no stalls will
occur.

• If the source read (prefetched instruction) does not calculate an EA using Wn, no stalls will
occur.

During each instruction cycle, the dsPIC33E/PIC24E hardware automatically checks to see if a
RAW data dependency is about to occur. If the conditions specified above are not satisfied, the
CPU automatically adds a one instruction cycle delay before executing the prefetched
instruction. The instruction stall provides enough time for the destination W register write to occur
before the next (prefetched) instruction uses the written data. Table 2-7 provides a summary of
Read-After-Write Dependency.

ADD MOV

[W7]

[W10] [W9]++

X-Space Address W7 W10 W8 W9

ADD W0, [W7], [W10]
MOV [W8], [W9++]

[W8] X-Space RAGU

Instruction Register
 Contents

 X-Space WAGU

1 Instruction Cycle (TCY)

TCY1 TCY2 TCY3TCY0
© 2010 Microchip Technology Inc. DS70359B-page 2-39

dsPIC33E/PIC24E Family Reference Manual
Table 2-7: Read-After-Write Dependency Summary

2.10.2 Instruction Stall Cycles
An instruction stall is essentially a wait period instruction cycle, added in front of the read phase
of an instruction, to allow the prior write to complete before the next read operation. For interrupt
latency, the stall cycle is associated with the instruction following the instruction where it was
detected (i.e., stall cycles always precede instruction execution cycles).

If a RAW data dependency is detected, the dsPIC33E/PIC24E begins an instruction stall. During
an instruction stall, the following events occur:

• The write operation in progress (for the previous instruction), is allowed to complete as
normal

• Data space is not addressed until after the instruction stall
• PC increment is inhibited until after the instruction stall
• Further instruction fetches are inhibited until after the instruction stall

2.10.2.1 INSTRUCTION STALL CYCLES AND INTERRUPTS

When an interrupt event coincides with two adjacent instructions that causes an instruction stall,
one of two possible outcomes can occur:

• If the interrupt coincides with the first instruction, the first instruction is allowed to complete
while the second instruction is executed after the ISR completes. In this case, the stall
cycle is eliminated from the second instruction because the exception process provides
time for the first instruction to complete the write phase.

• If the interrupt coincides with the second instruction, the second instruction and the
appended stall cycle are allowed to execute before the ISR. In this case, the stall cycle
associated with the second instruction executes normally. However, the stall cycle is effec-
tively absorbed into the exception process timing. The exception process proceeds as if an
ordinary two-cycle instruction was interrupted.

Destination
Addressing Mode

Using Wn

Source
Addressing Mode

Using Wn
Status Examples

(Wn = W2)

Direct Direct Allowed ADD.w W0, W1, W2
MOV.w W2, W3

Direct Indirect Stall ADD.w W0, W1, W2
MOV.w [W2], W3

Direct Indirect with
modification

Stall ADD.w W0, W1, W2
MOV.w [W2++], W3

Indirect Direct Allowed ADD.w W0, W1, [W2]
MOV.w W2, W3

Indirect Indirect Allowed ADD.w W0, W1, [W2]
MOV.w [W2], W3

Indirect Indirect with
modification

Allowed ADD.w W0, W1, [W2]
MOV.w [W2++], W3

Indirect with
modification

Direct Allowed ADD.w W0, W1, [W2++]
MOV.w W2, W3

Indirect Indirect Stall ADD.w W0, W1, [W2]
MOV.w [W2], W3
; W2=0x0004 (mapped W2)

Indirect Indirect with
modification

Stall ADD.w W0, W1, [W2]
MOV.w [W2++], W3
; W2=0x0004 (mapped W2)

Indirect with
modification

Indirect Stall ADD.w W0, W1, [W2++]
MOV.w [W2], W3

Indirect with
modification

Indirect with
modification

Stall ADD.w W0, W1, [W2++]
MOV.w [W2++], W3
DS70359B-page 2-40 © 2010 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.10.2.2 INSTRUCTION STALL CYCLES AND FLOW CHANGE INSTRUCTIONS

The CALL and RCALL instructions write to the stack using working register W15 and can,
therefore, force an instruction stall prior to the next instruction, if the source read of the next
instruction uses W15.

The RETFIE and RETURN instructions can never force an instruction stall prior to the next
instruction because they only perform read operations. However, the RETLW instruction can force
a stall, because it writes to a W register during the last cycle.

The GOTO and branch instructions can never force an instruction stall because they do not
perform write operations.

2.10.2.3 INSTRUCTION STALLS AND DO AND REPEAT LOOPS

Other than the addition of instruction stall cycles, RAW data dependencies do not affect the
operation of either DO or REPEAT loops.

The prefetched instruction within a REPEAT loop does not change until the loop is complete or
an exception occurs. Although register dependency checks occur across instruction boundaries,
the dsPIC33E/PIC24E effectively compares the source and destination of the same instruction
during a REPEAT loop.

The last instruction of a DO loop either pre-fetches the instruction at the loop start address or the
next instruction (outside the loop). The instruction stall decision is based on the last instruction
in the loop and the contents of the prefetched instruction.

2.10.2.4 INSTRUCTION STALLS AND PROGRAM SPACE VISIBILITY (PSV)

When Program Space (PS) is mapped to data space and the X space EA falls within the visible
program space window, the read or write cycle redirects to the address in program space. In
general, any instruction accessing data from program space takes 5 instruction cycles and
therefore incurs a stall to ensure that the data is available.

Instructions operating in PSV address space are subject to RAW data dependencies and
consequent instruction stalls, just like any other instruction. In Example 2-6, the sequence of
instructions would take 7 instruction cycles to execute. The PSV access via W1 requires 5
instruction cycles, while an additional cycle is inserted to resolve the RAW data dependency
caused by W2.

Example 2-6:

2.11 DATA SPACE ARBITER STALLS
A CPU stall can also be a result of competition for Extended Data Space resources. When the
Data Space Arbiter logic determines that the CPU cycle must be stalled to allow another bus
master (like, DMA controller or USB module) access to data memory, instruction execution is
suspended until the higher priority bus master completes the data access.

ADD W0,[W1],[W2++] ; W1=0x8000, PSVPAG=0xAA, DSRPAG=0x0200

 MOV [W2],[W3]
© 2010 Microchip Technology Inc. DS70359B-page 2-41

dsPIC
33E/PIC

24E Fam
ily R

eference M
anual

D
S

70359B
-page 2-42

©
 2010 M

icrochip Technology Inc.

le 2-8.

Bit 2 Bit 1 Bit 0 Reset State

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0 0000 0000 0000 0000

0000 0000 0000 0001

0000 0000 0000 0001

xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx

0 xxxx xxxx xxxx xxx0

0000 0000 00xx xxxx

0 xxxx xxxx xxxx xxx0
2.12 REGISTER MAP
A summary of the registers associated with the dsPIC33E/PIC24E CPU is provided in Tab

Table 2-8: dsPIC33E/PIC24E CPU Register Map
 Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3

W0 W0 (WREG)

W1 W1

W2 W2

W3 W3

W4 W4

W5 W5

W6 W6

W7 W7

W8 W8

W9 W9

W10 W10

W11 W11

W12 W12

W13 W13

W14 W14

W15 W15

SPLIM SPLIM

ACCAL ACCAL

ACCAH ACCAH

ACCAU Sign-extension of ACCA<39> ACCAU

ACCBL ACCBL

ACCBH ACCBH

ACCBU Sign-extension of ACCB<39> ACCBU

PCL PCL

PCH — — — — — — — — — PCH

DSRPAG — — — — — — DSRPAG

DSWPAG — — — — — — — DSWPAG

RCOUNT RCOUNT

DCOUNT DCOUNT

DOSTARTL DOSTARTL

DOSTARTH — — — — — — — — — DOSTARTH

DOENDL DOENDL
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note: Refer to the device data sheet for specific Core Register Map details.

©
 2010 M

icrochip Technology Inc.
D

S
70359B

-page 2-43

Section 2. C
PU

2

DO 0000 0000 00xx xxxx

SR V Z C 0000 0000 0000 0000

CO FA RND IF 0000 0000 0010 0000

MO WM<3:0> 0000 0000 0000 0000

XM 0 xxxx xxxx xxxx xxx0

XM 1 xxxx xxxx xxxx xxx1

YM 0 xxxx xxxx xxxx xxx0

YM 1 xxxx xxxx xxxx xxx1

XB xxxx xxxx xxxx xxxx

DI 0000 0000 0000 0000

TB 0000 0000 0000 0000

MS 0000 0000 0000 0000

Ta
it 2 Bit 1 Bit 0 Reset State

L
N

CPU

ENDH — — — — — — — — — DOENDH

OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N O
RCON — — US<1:0> EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3 S

DCON XMODEN YMODEN — — BWM<3:0> YWM<3:0> X

ODSRT XMODSRT<15:0>

ODEND XMODEND<15:0>

ODSRT YMODSRT<15:0>

ODEND YMODEND<15:0>

REV BREN XBREV<14:0>

SICNT — — DISICNT<13:0>

LPAG — — — — — — — — TBLPAG<7:0>

TRPR MSTRPR<15:0>

ble 2-8: dsPIC33E/PIC24E CPU Register Map (Continued)
 Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 B

egend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
ote: Refer to the device data sheet for specific Core Register Map details.

dsPIC33E/PIC24E Family Reference Manual
2.13 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33E/PIC24E Product Family, but
the concepts are pertinent and could be used with modification and possible limitations. The
current application notes related to the dsPIC33E/PIC24E CPU are:

Title Application Note #
No related application notes at this time.

Note: Please visit the Microchip web site (www.microchip.com) for additional Application
Notes and code examples for the dsPIC33E/PIC24E family of devices.
DS70359B-page 2-44 © 2010 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 2. CPU
C

PU

2

2.14 REVISION HISTORY
Revision A (November 2008)
This is the initial release of this document.

Revision B (May 2010)
This revision includes the following changes:

• Updated the document to include references to PIC24E devices
• Updated the titles of the following sections to indicate content applies only to dsPIC33E

devices:
- 2.1.5 “DSP Engine and Instructions (dsPIC33E Devices Only)”
- 2.6.1 “Data Accumulators (dsPIC33E Devices Only)”
- 2.6.2.1 “DSP Multiply Instructions (dsPIC33E Devices Only)”
- 2.6.4 “Round Logic (dsPIC33E Devices Only)”
- 2.6.5 “Barrel Shifter (dsPIC33E Devices Only)”
- 2.6.6 “DSP Engine Mode Selection (dsPIC33E Devices Only)”
- 2.6.7 “DSP Engine Trap Events (dsPIC33E Devices Only)”
- 2.9.2 “DO Loop Construct (dsPIC33E Devices Only)”

• Added Note 1 to the Programmer’s Model Register Descriptions in Table 2-1
• Updated the Programmer’s Model in Figure 2-2
• Added a new sentence on additional causes of a stack error trap to the first shaded note in

2.3.3 “Stack Pointer Overflow”
• Added a new Note 1 and Note 2 to the CPU Status Register (see Register 2-1); existing

Note 1 and Note 2 were renumbered as Note 3 and Note 4
• Added a new Note 2 to the Core Control Register (see Register 2-2); the existing Note 2

was renumbered as Note 3
• Removed Note 2 and added three rows to the MCU Instructions that Utilize the Multiplier

(see Table 2-4)
• Updated the second MOV.D instruction in Figure 2-13
• Updated the third instruction in Figure 2-15
• Updated the fourth instruction in Figure 2-16
• Updated the second and third instructions in Figure 2-18
• Updated the second and third instructions in Figure 2-19
• Updated the second shaded note in 2.9.1.1 “REPEAT Operation”
• Updated the last sentence in the first paragraph of 2.9.2 “DO Loop Construct (dsPIC33E

Devices Only)”
• Updated the MOV instruction in Figure 2-21
• Updated the first sentence in the first paragraph of 2.10.2.4 “Instruction Stalls and

Program Space Visibility (PSV)”
• Updated the last paragraph of 2.10.2.4 “Instruction Stalls and Program Space Visibility

(PSV)”
• Changed the ranges for the available bits in the DOSTARTH, DOENDH, and MSTRPR

SFRs in the CPU Register Map (see Table 2-8)
• Additional minor formatting updates were incorporated throughout the document
© 2010 Microchip Technology Inc. DS70359B-page 2-45

dsPIC33E/PIC24E Family Reference Manual
NOTES:
DS70359B-page 2-46 © 2010 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2010 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-171-0
DS70359B-page 47

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS70359B-page 48 © 2010 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/05/10

	Section 2. CPU
	2.1 Introduction
	2.1.1 Registers
	2.1.2 Instruction Set
	2.1.3 Data Space Addressing
	2.1.4 Addressing Modes
	2.1.5 DSP Engine and Instructions (dsPIC33E Devices Only)
	2.1.6 Exception Processing
	Figure 2-1: dsPIC33E/PIC24E CPU Block Diagram

	2.2 Programmer’s Model
	Table 2-1: Programmer’s Model Register Descriptions
	Figure 2-2: Programmer’s Model
	2.2.1 Working Register Array
	Example 2-1:
	Example 2-2:
	Example 2-3:
	Example 2-4:

	2.2.2 Shadow Registers
	Example 2-5:

	2.2.3 Uninitialized W Register Reset

	2.3 Software Stack Pointer
	Figure 2-3: Stack Operation for a CALL Instruction
	2.3.1 Software Stack Examples
	Figure 2-4: Stack Pointer at Device Reset
	Figure 2-5: Stack Pointer After the First PUSH Instruction
	Figure 2-6: Stack Pointer After the Second PUSH Instruction
	Figure 2-7: Stack Pointer After a POP Instruction

	2.3.2 W14 Software Stack Frame Pointer
	2.3.3 Stack Pointer Overflow
	2.3.4 Stack Pointer Underflow
	2.3.5 Stack Frame Active (SFA) Control

	2.4 CPU Register Descriptions
	2.4.1 SR: CPU Status Register
	2.4.2 CORCON: Core Control Register
	Register 2-1: SR: CPU Status Register
	Register 2-2: CORCON: Core Control Register

	2.4.3 Other dsPIC33E/PIC24E CPU Control Registers

	2.5 Arithmetic Logic Unit (ALU)
	2.5.1 Byte to Word Conversion

	2.6 DSP Engine
	Figure 2-8: DSP Engine Block Diagram
	2.6.1 Data Accumulators (dsPIC33E Devices Only)
	2.6.2 Multiplier
	Table 2-2: dsPIC33E/PIC24E Data Ranges
	Figure 2-9: Integer and Fractional Representation of 0x4001
	Figure 2-10: Integer and Fractional Representation of 0xC002
	Table 2-3: DSP Instructions that Use the Multiplier
	Table 2-4: MCU Instructions that Utilize the Multiplier

	2.6.3 Data Accumulator Adder/Subtracter
	Table 2-5: Accumulator Overflow and Saturation Status Bits

	2.6.4 Round Logic (dsPIC33E Devices Only)
	Figure 2-11: Conventional and Convergent Rounding Modes

	2.6.5 Barrel Shifter (dsPIC33E Devices Only)
	Table 2-6: Instructions that Use the DSP Engine Barrel Shifter

	2.6.6 DSP Engine Mode Selection (dsPIC33E Devices Only)
	2.6.7 DSP Engine Trap Events (dsPIC33E Devices Only)

	2.7 Divide Support
	2.8 Instruction Flow Types
	2.8.1 1 Instruction Word, 1 Instruction Cycle
	Figure 2-12: Instruction Flow – 1-Word, 1-Cycle

	2.8.2 1 Instruction Word, 2 Instruction Cycles
	Figure 2-13: Instruction Flow – 1-Word, 2-Cycle (MOV.D Operation)

	2.8.3 1 Instruction Word, 2 or 4 Instruction Cycle (Program Flow Changes)
	Figure 2-14: Instruction Flow (Program Flow Changes)

	2.8.4 Table Read/Write Instructions
	Figure 2-15: Instruction Flow (Table Operations)

	2.8.5 2 Instruction Words, 4 Instruction Cycles – GOTO or CALL
	Figure 2-16: Instruction Flow (GOTO or CALL)

	2.8.6 2 Instruction Words, 2 Instruction Cycles – DO
	Figure 2-17: Instruction Flow (DO)

	2.8.7 Address Register Dependencies
	Figure 2-18: Instruction Pipeline Flow – 1-Word, 1-Cycle (With Instruction Stall)

	2.8.8 Interrupt Processing

	2.9 Loop Constructs
	2.9.1 REPEAT Loop Construct
	Figure 2-19: REPEAT Instruction Pipeline Flow

	2.9.2 DO Loop Construct (dsPIC33E Devices Only)
	Figure 2-20: DO Stack Conceptual Diagram

	2.10 Address Register Dependencies
	Figure 2-21: Data Space Access Timing
	2.10.1 Read-After-Write Dependency Rules
	Table 2-7: Read-After-Write Dependency Summary

	2.10.2 Instruction Stall Cycles
	Example 2-6:

	2.11 Data Space Arbiter Stalls
	2.12 Register Map
	Table 2-8: dsPIC33E/PIC24E CPU Register Map

	2.13 Related Application Notes
	2.14 Revision History
	Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MIC...
	Trademarks
	The Microchip name and logo, the Microchip logo, dsPIC, KeeLoq, KeeLoq logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
	FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
	Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octo...
	SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
	All other trademarks mentioned herein are property of their respective companies.
	© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
	Printed on recycled paper.
	ISBN: 978-1-60932-171-0
	Corporate Office
	Atlanta
	Boston
	Chicago
	Cleveland
	Fax: 216-447-0643
	Dallas
	Detroit
	Kokomo
	Toronto
	Fax: 852-2401-3431
	Australia - Sydney
	China - Beijing
	China - Shanghai
	India - Bangalore
	Korea - Daegu
	Korea - Seoul
	Singapore
	Taiwan - Taipei
	Fax: 43-7242-2244-393
	Denmark - Copenhagen
	France - Paris
	Germany - Munich
	Italy - Milan
	Spain - Madrid
	UK - Wokingham

	Worldwide Sales and Service

