
AN1249
ECAN™ Operation with DMA on dsPIC33F and PIC24H Devices
INTRODUCTION
This application note is focused on helping customers
understand the role of Direct Memory Access (DMA) in
implementing the functionality of the Enhanced
Controller Area Network (ECAN™) module.

This material will be of interest to engineers who use
the CAN protocol for communication.

The information presented assumes you have a
working knowledge of the CAN protocol. For those who
are new to CAN, refer to the following resources
available from Microchip:

• CAN resources such as application notes and
Web seminars can be accessed at:
www.microchip.com/CAN

• Sample code for various dsPIC® DSC devices
can be accessed at:
www.microchip.com/codeexamples

• Our Regional Training Centers (RTC) can help
you get started with ECAN and offer a range of
classes. For more information, visit:
www.microchip.com/rtc

• Additional material at the end of this application
note includes references to literature and
vocabulary

OVERVIEW
The ECAN module works in conjunction with the DMA
controller in dsPIC33F and PIC24H devices. The DMA
controller is a very important subsystem in Microchip’s
high-performance 16-bit dsPIC33F and PIC24H
devices. The DMA controller allows data transfer from
RAM to a peripheral and vice versa without any CPU
assistance, and operates across its own data bus and
address bus with no impact on CPU operation.

The DMA subsystem supports eight independent
channels. Because each channel is unidirectional, two
channels must be allocated to read and write to the
ECAN peripheral using DMA. One channel is allocated
for reading messages from the ECAN peripheral and
the other channel is allocated for writing messages to
the ECAN peripheral.

When more than one DMA channel receives a
request to transfer data, a simple fixed-priority
scheme that is based on the channel number dictates
the specific channel that completes the transfer and
the channels that are left pending. Each channel has
a fixed priority. The channels with a lower number
have higher priority, with channel 0 having the highest
priority, and channel 7 having the lowest priority.

Each dsPIC33F or PIC24H device contains up to
2 Kbytes of Dual Port SRAM (DPSRAM), which is
adequate to concurrently support multiple buffers for
several peripherals. Figure 1 highlights the DMA
integration with the architecture of dsPIC33F and
PIC24H devices. The CPU communicates with
conventional SRAM across the data space X-bus
known as the CPU X-bus, as shown in Figure 1. It also
communicates to port 1 of the new dual port SRAM
block across the same X-bus.

The CPU communicates to the ECAN peripheral
across a separate peripheral data space bus known as
the CPU Peripheral X-bus, shown in Figure 1, which
also resides in the X data space. The DMA controller
communicates with port 2 of the dual port SRAM and
the DMA port of ECAN module across a dedicated
DMA transfer bus known as the DMA X-bus.

Author: Jatinder Gharoo
Microchip Technology Inc.
© 2009 Microchip Technology Inc. DS01249A-page 1

www.microchip.com/CAN
www.microchip.com/codeexamples
www.microchip.com/rtc

AN1249

FIGURE 1: ECAN™ DMA BLOCK DIAGRAM

Microchip’s ECAN module on the dsPIC33F or PIC24H
device can be used with or without DMA to send and
receive messages. The biggest advantage of using
DMA with ECAN is that the data can be moved without
involving the CPU or stealing CPU cycles. This
implementation is optimized for performance of a
real-time embedded application where system latency
is a priority and CPU timing must be predictable.

CAN Data Frames
A CAN network can be configured to communicate with
both of the following formats:

• Standard format - intended for standard
messages that use 11 identifier bits

• Extended format - intended for extended
messages that use 29 identifier bits

The ECAN module on the dsPIC33F and PIC24H
devices supports both the standard and extended
formats.

The ECAN module distinguishes between the CAN
standard frame and CAN extended frame using the IDE
bit, which is part of the ECAN message that is
transmitted as dominant (logical ‘0’) for an 11-bit frame
(standard), and recessive (logical ‘1’) for a 29-bit frame
(extended).

The CAN bus frame consists of two main fields:

• User-controlled field
• Module-controlled field

The user specifies the ID and message data to which
the ECAN module adds the applicable fields to ensure
that the message frame meets the CAN specification.

SRAM
DPSRAM

DMA Controller

CPU

ECAN™

CPU DMA

PORT1 PORT2

CPU X-bus DMA X-bus

CPU Peripheral X-bus

Channel X Channel Y

Note: Microchip’s 16-bit CPU architecture is
capable of read and write access within
each CPU bus cycle. The DMA read and
write timing is the same as the CPU
timing, and can complete the transfer of a
byte or a word in every bus cycle across its
dedicated bus. This also guarantees that
all DMA transfers are atomic. This ensures
that once the data transfer has started, it is
completed within the same cycle,
regardless of the activity of other
channels.
DS01249A-page 2 © 2009 Microchip Technology Inc.

AN1249

Standard Data Frames
The standard data frame messages start with a
Start-of-Frame (SOF) bit followed by the message.
The user application provides the following fields to
the ECAN module:

• Arbitration field
• Control field
• Data field

The Cyclic Redundancy Check (CRC), Acknowledge
(ACK) and End-of-Frame (EOF) fields are
automatically appended by the ECAN module to the
user-provided fields and are sent over the CAN bus as
a single message.

FIGURE 2: STANDARD DATA FRAME

TABLE 1: ECAN™ STANDARD FRAME MESSAGE FIELDS
Field Length Application Usage

Start-of-Frame (SOF) 1 bit Indicates the start of frame transmission.
Identifier A 11 bits A (unique) identifier for the data.
Remote Transmission Request (RTR) 1 bit Can be dominant in Data frame (logical ‘0’) or recessive

(logical ‘1’).
Identifier Extension bit (IDE) 1 bit Must be dominant (logical ‘0’).
Reserved bit (RB0) 1 bit Must be set to dominant (logical ‘0’).
Data Length Code (DLC) 4 bits Number of bytes of data (0-8 bytes).
Data field 0-8 bytes Data to be transmitted (length dictated by DLC field).
CRC 15 bits Cyclic redundancy check.
CRC delimiter 1 bit Must be recessive (logical ‘1’).
ACK slot 1 bit Transmitter sends recessive (logical ‘1’) and a receiver will assert

a dominant (logical ‘0’), if message is received with no errors.
ACK delimiter 1 bit Must be recessive (logical ‘1’).
End-of-Frame (EOF) 7 bits Must be recessive (logical ‘1’).

Identifier
11 bits

RTR IDE DLC Data CRC ACK EOF
4 bits 0-8 bytes 16 bits 2 bits 7 bitsRB0 IFS

3 bits

SID10 SID1 SID0

Interframe Space Interframe Space

Arbitration
Field

Control
Field

Data
Field

CRC
Field

ACK
Field

End-of-

11-bit Identifier

User-provided fields Fields added by ECAN™ module

SOF

Frame

IDE = Dominant (logical ‘0’)
RTR = Dominant (logical ‘0’) for a data frame
RB0 = Dominant (logical ‘0’)
© 2009 Microchip Technology Inc. DS01249A-page 3

AN1249

Extended Data Frames
Extended data frame messages start with a
Start-of-Frame (SOF) bit followed by the message. The
user application provides the following fields to the
ECAN module:

• Arbitration field
• Control field
• Data field

The Cyclic Redundancy Check (CRC), Acknowledge
(ACK), and End-of-Frame (EOF) fields are
automatically appended by the ECAN module to the
user-provided fields and are sent over the CAN bus as
a single message.

FIGURE 3: EXTENDED DATA FRAME

TABLE 2: ECAN™ EXTENDED FRAME MESSAGE FIELDS
Field Length Application Usage

Start-of-Frame (SOF) 1 bit Indicates the start of frame transmission.
Identifier A 11 bits First part of the (unique) identifier for the data.
Substitute Remote Request (SRR) 1 bit Must be recessive (logical ‘1’).
Identifier Extension bit (IDE) 1 bit Must be recessive (logical ‘1’).
Identifier B 18 bits Second part of the (unique) identifier for the data.
Remote Transmission Request (RTR) 1 bit Can be dominant in Data frame (logical ‘0’) or recessive

(logical ‘1’).
Reserved bit (RB0, RB1) 2 bits Must be set to dominant (logical ‘0’).
Data Length Code (DLC) 4 bits Number of bytes of data (0-8 bytes).
Data field 0-8 bytes Data to be transmitted (length dictated by DLC field).
CRC 15 bits Cyclic redundancy check.
CRC delimiter 1 bit Must be recessive (logical ‘1’).
ACK slot 1 bit Transmitter sends recessive (logical ‘1’) and a receiver will assert

a dominant (logical ‘0’), if message is received with no errors.
ACK delimiter 1 bit Must be recessive (logical ‘1’).
End-of-Frame (EOF) 7 bits Must be recessive (logical ‘1’).

SOF Identifier
11 bits SRR IDE Identifier Data

18 bits 0-8 bytes
CRC

16 bits

SID10 SID1 SID0

Interframe Space Arbitration Field Control Field Data Field
CRC
Field

ACK
Field Frame

End-of-

User-provided fields Fields added by ECAN™ module

RTR RB1 RB0 DLC
4 bits

ACK
2 bits

EOF
7 bits

IFS
3 bits

29-bit Identifier

EID17 EID1 EID0

IDE = Recessive (logical ‘1’)
SRR = Recessive (logical ‘1’)
RTR = Dominant (logical ‘0’) for a data frame
RB0 = Dominant (logical ‘0’)
RB1 = Dominant (logical ‘0’)
DS01249A-page 4 © 2009 Microchip Technology Inc.

AN1249
ECAN MODULE OVERVIEW
The dsPIC33F and PIC24H ECAN module implements
the CAN Protocol 2.0B, which is used in a variety of
applications. The differential serial data communication
has been designed to be a robust means of
communication in an electrically noisy environment.
The ECAN module consists of a CAN protocol engine
and message filters, along with masks and a transmit
and receive interface with the DMA module.

The ECAN module can operate in one of the following
user-selectable modes:

• Configuration mode
• Normal mode
• Listen only mode
• Listen All Messages mode
• Loopback mode
• Disable mode

For a detailed description of these operating modes,
refer to Section 21. “Enhanced Controller Area
Network (ECAN™)” (see “References”). Normal
mode of operation is the most widely used mode for the
ECAN peripheral. The peripheral is designed to be
used with the DMA module for dsPIC33F and PIC24H
devices.

It can also be used without DMA to send and receive
messages from the CAN bus. However, this method is
not recommended as it defeats the advanced
architecture of the dsPIC33F and PIC24H devices.

FIGURE 4: ECAN™ MODULE

Transmit Buffer
TXB0/
RXB0

Transmit Buffer
TXB7/
RXB7

RXM0

RXM1

RXF0
RXF1
RXF2

RXF14
RXF15

Transmit Byte Sequencer

DeviceNet™
State Machine

Message Assembly Buffer (MAB)

DMA RAM Space

Receive Error Counter

BIT Timing Logic

Shift/CRC/Destuff

Comparator

CRC<14:0>

Protocol Machine

CAN 2.0B Engine Receive Module

RXB8

RXB31

TXB0/RXB0

TXB7/RXB7

RXB30

DMA RAM Space
Acceptance Masks

Transmitter Module

Acceptance Filters

RXM2
© 2009 Microchip Technology Inc. DS01249A-page 5

AN1249
DMA MODULE OVERVIEW
Direct Memory Access (DMA) is a subsystem that
allows the user to move data from one module to
another without CPU intervention. This feature allows
data transfer to and from peripherals with much less
CPU overhead than those without a DMA module. This
is highly efficient, if the system is operating on a high
traffic CAN bus. The CPU can be interrupted only when
the receive buffers must be serviced. The DMA module
allows the flexibility to select when the CPU should be
interrupted for message processing.

The DMA consists of a DMA controller and eight
channels that allow the module to interface with
different peripherals. The DMA subsystem uses
DPSRAM and a register structure that allows the DMA
module to operate across its own, independent data
bus and address bus with no impact on CPU operation.

Every DMA channel offers the flexibility of byte/word
transfer. The built-in priority scheme in the DMA
module allows it to arbitrate when more than one
request is received at the same time. Each DMA
channel has the capability of moving a block of up to

1024 data words (or 2048 data bytes) before
interrupting the CPU to indicate that the block is
available for processing. The DMA request for each
channel can be configured individually from any
supported interrupt source. DMA supports the following
modes of operation:

• Post-increment or Static DPSRAM Addressing
• Peripheral Indirect Addressing
• One-Shot or Continuous Block Transfer
• Ping-Pong mode
• Manual mode of operation

The ECAN peripheral in dsPIC33F and PIC24H
devices is supported by the DMA controller. Each DMA
channel is unidirectional, which requires at least two
channels to be allocated for transmission and reception
of messages from the CAN bus. The involvement of
both ECAN and DMA modules along with code
examples and some useful macros, will be discussed in
subsequent sections.

FIGURE 5: DMA BLOCK DIAGRAM

SRAM

CPU

DPSRAM

PORT 1 PORT2

DMA
Controller

CPU X-bus

CPU Peripheral X-bus

DMA X-bus

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7
DS01249A-page 6 © 2009 Microchip Technology Inc.

AN1249
ECAN MODULE CONFIGURATION
The ECAN module must be configured for sending and
receiving messages on the CAN bus.

The configuration steps are application dependent. For
the selection details, such as operating modes and
Baud Rate, refer to Section 21. “Enhanced
Controller Area Network (ECAN™)” (see
“References”) and the specific device data sheet. The
minimum configuration can be done as specified in the
following steps:

• Step 1: Request Configuration Mode from the
ECAN Module

• Step 2: Select ECAN Clock and Bit Timing
• Step 3: Assign Number of Buffers Used by ECAN

Module in DMA Memory Space
• Step 4: Set Up Filters and Masks
• Step 5: Put the ECAN Module in Normal Mode
• Step 6: Set Up the Transmit/Receive Buffers

The sequence is not important in configuring the ECAN
module as long as the module is in Configuration
mode. However, the bit time control registers (CiCFG1
and CiCFG2), and the filter and mask registers can
only be modified in Configuration mode. Refer to
Appendix A: “Flow Charts”.

Step 1: Request Configuration Mode from
the ECAN Module
The ECAN module must be in Configuration mode to
access some of the configuration registers. The code in
Example 1 requests Configuration mode and waits for
confirmation.

EXAMPLE 1: REQUESTING
CONFIGURATION MODE

Step 2: Select ECAN Clock and Bit Timing
For a detailed description of each operating mode and
system clock, refer to Section 21. “Enhanced
Controller Area Network (ECAN™)” (see
“References”) and the specific device data sheet.

The following system parameters are used as code
defines to get the CAN bus timing:

• CAN clock = 40 MHz
• Bit rate = 1 Mbps
• Using 20 TQ in a bit
• The Baud Rate Prescaler (BRP) value (calculated

using Equation 1):

EQUATION 1: BRP FORMULA

EXAMPLE 2: CODE FOR BRP
CONFIGURATION

The system parameters for the clock and timing
initialization code are defined, as shown in Example 3.

Note: The ECAN module starts in Configuration
mode at hardware reset. While in this
mode, the ECAN registers have the Reset
values and all error counters are cleared.

C1CTRL1bits.REQOP=4;
while (C1CTRL1bits.OPMODE!=4);

Note: FCAN cannot exceed 40 MHz.

BRP =
FCAN

 [2*(N)TQ*Bit Rate]-1

/* CAN Baud Rate Configuration */
#define FCAN 40000000
#define BITRATE 1000000
#define NTQ 20 //20 time quanta in a bit time
#define BRP_VAL ((FCAN/(2*NTQ*BitRate))-1)
© 2009 Microchip Technology Inc. DS01249A-page 7

AN1249

EXAMPLE 3: CLOCK AND TIMING INITIALIZATION CODE

Following are the requirements for selecting the ECAN
clock and timing parameters:

• The total number of time quanta in a Nominal Bit
Time (NBT) must be programmed between 8 TQ
to 25 TQ

• NBT = Synchronization Segment (always 1 TQ) +
Propagation Segment (1 TQ -8 TQ) + Phase
Segment 1 (1 TQ - 8 TQ) + Phase Segment 2 (1
TQ - 8 TQ) are user selectable

• Propagation Segment + Phase Segment 1 ≥
Phase Segment 2

• Phase Segment 2 > Synchronization Jump Width
(SJW)

• Sampling of the bit happens at the end of Phase
Segment 1 and must take place at about 60-70%
of the bit time. Therefore, it is recommended that
Phase Segment 2 be selected at about 30%.

• Synchronization Jump Width (SJW) is used to
compensate for the phase shifts between the
oscillator frequencies of the different bus nodes.
Each CAN controller must be able to synchronize
in the hardware signal edge of the incoming signal
regardless of the clock that is used. This is
handled in the hardware.

• The number of time quanta must divide evenly into
the FCAN clock. For example, using an FCAN of
40 MHz, 20 TQ and 10 TQ are good choices,
whereas 16 TQ is not (40 ÷ 20 = 2.0, 40 ÷ 10 = 4.0,
etc., yields an integer result, whereas 40 ÷ 16 = 2.5
yields a decimal result and cannot be used). As a
general rule of thumb, always use the highest
number of time quanta to provide the best bit timing.

Step 3: Assign Number of Buffers Used
by ECAN Module in DMA Memory Space
The code in Example 4 assigns four buffers in DMA
RAM.

EXAMPLE 4: ASSIGNING FOUR BUFFERS

At least four buffers have to be assigned to the ECAN
module. The maximum number of buffers that can be
accessed directly in DMA RAM is 16. All 32 buffers are
only available in FIrst-In-First-Out (FIFO) mode.

/* FCAN is selected to be FCY */
/* FCAN = FCY = 40 MHz */

C1CTRL1bits.CANCKS = 0x1;

/* Bit Time = (Sync Segment + Propagation Delay + Phase Segment 1 + Phase Segment 2) = 20 * TQ */
/* Phase Segment 1 = 8 TQ */
/* Phase Segment 2 = 6 TQ */
/* Propagation Delay = 5 TQ */
/* Sync Segment = 1 TQ */
/* CiCFG1<BRP> =(FCAN/(2 * N * FBAUD))- 1 */
/* BIT RATE OF 1 Mbps */

C1CFG1bits.BRP = BRP_VAL;

/* Synchronization Jump Width set to 4 TQ */
C1CFG1bits.SJW = 0x3;

/* Phase Segment 1 time is 8 TQ */
C1CFG2bits.SEG1PH = 0x7;

/* Phase Segment 2 time is set to be programmable */
C1CFG2bits.SEG2PHTS = 0x1;

/* Phase Segment 2 time is 6 TQ */
C1CFG2bits.SEG2PH = 0x5;

/* Propagation Segment time is 5 TQ */
C1CFG2bits.PRSEG = 0x4;

/* Bus line is sampled three times at the sample point */
C1CFG2bits.SAM = 0x1;

C1FCTRLbits.DMABS=0b000;
DS01249A-page 8 © 2009 Microchip Technology Inc.

AN1249

Step 4: Set Up Filters and Masks
The ECAN module can receive both the Standard and
Extended messages from the CAN bus. For details on
how the filters and masks operate in the Microchip
ECAN module, refer to 21.7.1 “Message Reception
and Acceptance Filtering” in Section 21.
“Enhanced Controller Area Network (ECAN™)”
(see “References”).

Apply the following parameters during the set up of
filters and masks:

• There are 16 filters available on the ECAN
module to implement message filtering

• Three mask registers that are available on the
ECAN module to be used along with the filters

• ECAN SFR space is implemented using a memory
window scheme. Certain Register access depends
on the access window bit (CiCTRL1<WIN>). Some
registers are visible regardless of the window select
bit. For example, Address 0x0420 holds both
C1BUFPNT1 and C1RXFUL1, and access
depends on the status of WIN bit.

• Ensure that the SFR Map Window Select
(CiCTRL1<WIN>) bit is changed before modifying
the filter and mask registers.

The code in Example 5 provides macros to facilitate
message filtering.

EXAMPLE 5: MESSAGE FILTERING MACROS
/* Filter and mask defines */
/* Macros used to write filter/mask ID to Register CiRXMxSID and CiRXFxSID */
/* For example, to set up the filter to accept a value of 0x123, the macro when called as */
/* CAN_FILTERMASK2REG_SID(0x123) will write the register space to accept message with ID 0x123 */
/* Use for Standard Messages Only */
#define CAN_FILTERMASK2REG_SID(x) ((x & 0x07FF)<<5)

/* The Macro will set the MIDE bit in CiRXMxSID */
#define CAN_SETMIDE(sid) (sid|0x0008)

/* The Macro will set the EXIDE bit in CiRXFxSID to only accept extended messages */
#define CAN_FILTERXTD(sid) (sid|0x0008)

/* The macro will clear the EXIDE bit in CiRXFxSID to only accept standard messages */
#define CAN_FILTERSTD(sid) (sid & 0xFFF7)

/* Macro used to write filter/mask ID to Register CiRXMxSID, CiRXMxEID, CiRXFxSID and CiRXFxEID */
/* For example, to set up the filter to accept a value of 0x123, the macro when called as */
/* CAN_FILTERMASK2REG_SID(0x123) will write the register space to accept message with ID 0x123 */
/* Use for Extended Messages only*/
#define CAN_FILTERMASK2REG_EID0(x) (x & 0xFFFF)
#define CAN_FILTERMASK2REG_EID1(x) (((x & 0x1FFC)<<3)|(x & 0x3))
© 2009 Microchip Technology Inc. DS01249A-page 9

AN1249

The code in Example 6 shows how to configure filter 0
to use mask 0 to only accept the standard message ID,
0x123. All of the mask bits are set to a logical ‘1’ to
enable a check on every bit of the standard message
ID. The messages that are accepted by filter 0 are
configured to be received in buffer 1.

EXAMPLE 6: CONFIGURING FILTER 0 TO USE MASK 0 TO ONLY ACCEPT STANDARD
MESSAGE ID 0x123

/* Select acceptance mask 0 filter 0 buffer 1 */
C1FMSKSEL1bits.F0MSK = 0;

/* Configure acceptance mask - match the ID in filter 0 */
/* setup the mask to check every bit of the standard message, the macro when called as */
/* CAN_FILTERMASK2REG_SID(0x7FF) will write the register C1RXM0SID to include every bit in */
/* filter comparison */
C1RXM0SID=CAN_FILTERMASK2REG_SID(0x7FF);

/* Configure acceptance filter 0 */
/* Set up the filter to accept a standard ID of 0x123, the macro when called as */
/* CAN_FILTERMASK2REG_SID(0x123) will write the register C1RXF0SID to only accept standard */
/* ID of 0x123 */
C1RXF0SID=CAN_FILTERMASK2REG_SID(0x123);

/* Set filter to check for standard ID and accept standard ID only */
CAN_SETMIDE(C1RXM0SID);
CAN_FILTERSTD(C1RXF0SID);

/* Acceptance filter to use buffer 1 for incoming messages */
C1BUFPNT1bits.F0BP = 0b0001;

/* Enable filter 0 */
C1FEN1bits.FLTEN0 = 1;
DS01249A-page 10 © 2009 Microchip Technology Inc.

AN1249

The code in Example 7 shows how to configure filter 1
to use mask 1 to accept the extended message ID,
0x1234568. All the mask bits are set to a logical ‘1’ to
enable a check on every bit of the extended message
ID. The messages that are accepted by filter 1 are
configured to be received in buffer 2.

EXAMPLE 7: CONFIGURING FILTER 1 TO USE MASK 1 TO ACCEPT EXTENDED
MESSAGE ID 0x1234568

/* Select acceptance mask 1 filter 1 and buffer 2 */
C1FMSKSEL1bits.F1MSK = 0b01;

/* Configure acceptance mask1 */
/* Match ID in filter 1. Setup the mask to check every bit of the extended message, the macro */
/* when called as CAN_FILTERMASK2REG_EID0(0xFFFF) will write the register C1RXM1EID to include */
/* extended message ID bits EID0 to EID15 in filter comparison. */
/* The macro when called as CAN_FILTERMASK2REG_EID1(0x1FFF) will write the register C1RXM1SID */
/* to include extended message ID bits EID16 to EID28 in filter comparison.*/
C1RXM1EID=CAN_FILTERMASK2REG_EID0(0xFFFF);
C1RXM1SID=CAN_FILTERMASK2REG_EID1(0x1FFF);

/* Configure acceptance filter 1 */
/* Configure acceptance filter 1 - accept only XTD ID 0x12345678. Setup the filter to accept */
/* only extended message 0x12345678, the macro when called as CAN_FILTERMASK2REG_EID0(0x5678) */
/* will write the register C1RXF1EID to include extended message ID bits EID0 to EID15 when */
/* doing filter comparison. The macro when called as CAN_FILTERMASK2REG_EID1(0x1234) will write
*/
/* The register C1RXF1SID to include extended message ID bits EID16 to EID28 when doing */
/* filter comparison. */
C1RXF1EID=CAN_FILTERMASK2REG_EID0(0x5678);
C1RXF1EID=CAN_FILTERMASK2REG_EID1(0x1234);

/* Filter to check for extended ID only */
CAN_SETMIDE(C1RXM1SID);
CAN_FILTERXTD(C1RXF1SID);

/* Acceptance filter to use buffer 2 for incoming messages */
C1BUFPNT1bits.F1BP=0b0010;

/* Enable filter 1 */
C1FEN1bits.FLTEN1=1;

Note: A high-frequency message on the CAN
bus can generate overflow errors on the
module if there is only one filter enabled to
receive that message ID.

This can be resolved by enabling
multiple filters to accept the same
message ID. If a new message arrives
before the previous buffer is read, the
next available filter accepts the
message and uses an empty buffer.

Setting the mask bit to “don’t care”
(logical ‘0’), will disable filtering on that
specific bit of the message. This
technique can be used to accept a
range of messages in a filter.
© 2009 Microchip Technology Inc. DS01249A-page 11

AN1249

Step 5: Put the ECAN Module in Normal
Mode
The code in Example 8 puts the module in Normal
mode of operation and waits until the mode is
confirmed by the peripheral.

EXAMPLE 8: CODE REQUESTING
NORMAL MODE OF
OPERATION

Step 6: Set Up the Transmit/Receive
Buffers
By default, the first seven buffers are configured as
receive buffers. To configure a buffer as a Transmit
buffer, set the TXENx bit in the control register of the
buffer to high.

The ECAN module provides a mechanism of
prioritizing the messages within each node for
pending transmittable messages. Prior to sending the
Start-of-Frame (SOF), the priority of each buffer that is
ready for transmission is compared, and the buffer
with the highest priority is sent first. If two buffers have
the same priority, the buffer with the highest address
will be sent first.

For example, if transmit buffer 0 and 1 are both ready
for transmission and transmit buffer 0 has highest
priority, transmit buffer 0 will be transferred first.

Inversely, if buffer 0 and buffer 1 have the same priority,
buffer 1 is sent first.

There are four levels of transmit priority. For more
details, refer to Section 21. “Enhanced Controller
Area Network (ECAN™)” (see “References”).

Example 9 shows that buffer 0 and buffer 1 have the
same level of priority: highest priority. This completes
the necessary configuration of the ECAN module.

EXAMPLE 9: ENABLING BUFFERS AND SETTING TX BUFFER PRIORITY

C1CTRL1bits.REQOP = 0;
while(C1CTRL1bits.OPMODE! = 0);

C1TR01CONbits.TXEN0 = 1; /* ECAN1, Buffer 0 is a Transmit Buffer */
C1TR01CONbits.TXEN1 = 0; /* ECAN1, Buffer 1 is a Receive Buffer */
C1TR01CONbits.TX0PR1 = 0b11; /* Message Buffer 0 Priority Level */

Note 1: CiTRmnCON, ‘where ‘i’ = 1 or 2 depending on the device and refers to ECAN1 or ECAN2 module.

2: The control register is 16-bits wide and each physical register controls two buffers. Following are the
possible combinations with this register:

• CiTR01CON - To access buffer 0 and buffer 1 control registers
• CiTR23CON - To access buffer 2 and buffer 3 control registers
• CiTR45CON - To access buffer 4 and buffer 5 control registers
• CiTR67CON - To access buffer 6 and buffer 7 control registers
DS01249A-page 12 © 2009 Microchip Technology Inc.

AN1249
DMA MODULE CONFIGURATION
The DMA module must be configured to operate with
the ECAN peripheral. Each DMA channel can be
configured individually to interface between the
peripheral and the DMA controller. Before studying the
information related to DMA, the role of the
compiler/assembler/linker in using the dsPIC33F and
PIC24H devices must be known.

Role of Compiler/Assembler/Linker
The DMA controller must know the target address of
every message that is received. The compiler makes
this easy by providing built-in attributes. The compiler
must know where to reserve space for the message
buffers and how to access the reserved space when
needed. If MPLAB® C Compiler for PIC24 MCUs and
dsPIC DSCs is used, the code snippet shown in
Example 10 will reserve and align space for the
message buffers in DMA RAM. Refer to the DMA
initialization flow chart in Figure A-1.

The declaration is a standard C declaration except for
the inclusion of “space” and “align” attributes of MPLAB
C30.

Normally, the compiler allocates variables in general
data space. The “space” attribute is used to direct the
compiler to allocate a variable in DMA memory space.
Variables in DMA memory can be accessed using
ordinary C statements.

The “alignment” attribute specifies a minimum
alignment for the variable, measured in bytes and must
be a power of two.

Using the two attributes “space” and “alignment”, the
compiler is directed to reserve and align a continuous
block of 64-bytes in DMA memory.

Configuring DMA Module
This section configures DMA channel 0 for
transmission and channel 2 for reception with the
following settings that are relevant for the code
provided with this application note:

• DMAxCON Register
• DMAxPAD Register
• DMAxCNT Register
• DMAxREQ Register
• DMAxSTA Register

Example 11 provides code for configuring each of
these registers.

DMAxCON REGISTER
• Transfer size is configured to be two bytes (word)
• Read from DMA RAM and write to peripheral

(transmission)
• Write to DMA RAM and read from peripheral

(reception)
• Select DMA operating mode as Continuous,

Ping-Pong mode disabled
• Select DMA channel addressing mode as

Peripheral Indirect Addressing mode

DMAxPAD REGISTER
For a DMA transfer to operate correctly, the DMA
channels must be associated with the ECAN
peripheral. This information is supplied to the channel
through the DMAxPAD register.

EXAMPLE 10: RESERVE AND ALIGN MESSAGE BUFFER SPACE IN DMA RAM

Note: Byte mode is not supported when DMA is
used with the ECAN peripheral.

/* ECAN message buffer length */
#define ECAN1_MSG_BUF_LENGTH 4

typedef unsigned int ECAN1MSGBUF[ECAN1_MSG_BUF_LENGTH][8];
ECAN1MSGBUF ecan1msgBuf__attribute__((space(dma),aligned(ECAN1_MSG_BUF_LENGTH*16)));
© 2009 Microchip Technology Inc. DS01249A-page 13

AN1249

DMAxCNT REGISTER
The value in the DMAxCNT register is independent of
the transfer size selected in the DMAxCON register.
The value used in this register determines when the
buffer transfer is considered complete by the DMA
controller. Each DMA channel must be configured to
service requests before the data transfer is considered
complete. Since the buffer size of the CAN message is
eight words, the value 7 is used in this register that
transfers or receives eight words of data to/from the
peripheral.

DMAxREQ REGISTER
This register configures when the DMA transfer
requests are serviced. The DMA channel requests can
be triggered manually by setting the FORCE bit in the
DMAxREQ register. For the ECAN module, the transfer
request is automatically serviced by the DMA controller
and the interrupt request is sent to the CPU, if enabled.

DMAxSTA REGISTER
The DMAxSTA register stores the offset from the
beginning of the DMA memory, since the ECAN
peripheral can be used only in Peripheral Indirect
mode.

The built-in C30 attribute_builtin_dmaoffset()
function can be used to find the correct offset that is
used for calculating the addresses of message buffers.

EXAMPLE 11: CODE FOR CONFIGURING THE DMA REGISTERS

Note: During receptions, the ECAN module
always sends eight words to the DMA
(regardless of the DLC value), which
implies that the DMAxCNT register must
be a multiple of eight for the RX channel.

/* Initialize the DMA channel 0 for ECAN TX and clear the colission flags */
DMACS0 = 0;

/* Set up Channel 0 for peripheral indirect addressing mode normal operation, word operation */
/* and select TX to peripheral */
DMA0CON = 0x2020;

/* Set up the address of the peripheral ECAN1 (C1TXD) */
DMA0PAD = 0x0442;

/* Set the data block transfer size of 8 */
DMA0CNT = 7;

/* Automatic DMA TX initiation by DMA request */
DMA0REQ = 0x0046;

/* DPSRAM atart address offset value */
DMA0STA = __builtin_dmaoffset(&ecan1msgBuf);

/* Enable the channel */
DMA0CONbits.CHEN = 1;

/* Initialize DMA Channel 2 for ECAN RX and clear the collision flags */
DMACS0 = 0;

/* Set up Channel 2 for Peripheral Indirect addressing mode (normal operation, word operation */
/* and select as RX to peripheral */
DMA2CON = 0x0020;

/* Set up the address of the peripheral ECAN1 (C1RXD) */
DMA2PAD = 0x0440;

/* Set the data block transfer size of 8 */
DMA2CNT = 7;

/* Automatic DMA Rx initiation by DMA request */
DMA2REQ = 0x0022;

/* DPSRAM atart address offset value */
DMA2STA = __builtin_dmaoffset(&ecan1msgBuf);

/* Enable the channel */
DMA2CONbits.CHEN = 1;
DS01249A-page 14 © 2009 Microchip Technology Inc.

AN1249
ENABLING THE INTERRUPTS FOR
DATA EXCHANGE
There are several alternatives to send and receive
messages with/without using interrupts. For the
complete list of available interrupts, refer to the specific
device data sheet. Only interrupts that are relevant to
operating the ECAN module in Normal mode during the
exchange of data will be discussed.

Transmit Buffer Interrupt
The message buffers 0 to 7 that are configured for
message transmission will set the transmit buffer flag
(CiINTF<TBIF>) and the ECAN event flag
(IFS2<CiIF>), and generate an ECAN transmit event
interrupt (CiINTE<TBIE> and IEC2<CiIE>) if enabled,
once the CAN message is transmitted successfully. To
get the source of interrupt, the CiVEC<ICODE> flag
can be checked. The TBIF and CiIF flags must be
cleared in the Interrupt Service Routine (ISR). Figure 6
depicts the interrupts that are generated during a
message transmission.

The code in Example 12 enables the transmit interrupts
to generate an interrupt when a message transmission
is complete. Once the TXREQ bit is set and the bus is
available, the ECAN module will transmit the message
without any CPU interference.

EXAMPLE 12: ENABLE TX INTERRUPT

Receive Buffer Interrupt
When a message is successfully received and loaded
into one of the enabled receive buffers, the receive
buffer flag (CiINTE<RBIF>) and ECAN event flag
(IFS2<C1IF> or IFS3<C2IF>), are set and an interrupt
(CiINTE<RBIE>) is generated. If enabled, the ICODE
bits indicate the source of interrupt along with the
RXFUL flag in CiRXFUL1 or CiRXFUL2. Both CiIF and
RBIF flags must be cleared in the ISR. The RXFUL flag
must be cleared after the message has been read from
the buffer. Figure 7 depicts the level of interrupts that
are generated by the ECAN module during message
reception.

FIGURE 6: TX INTERRUPT SOURCE

/* Enable ECAN1 interrupt */
IEC2bits.C1IE = 1;

/* Enable transmit interrupt */
C1INTEbits.TBIE = 1;

Message sent successfully on TXB0

Message sent successfully on TXB6

TBIF

CiIF

TBIF flag is set

ECAN™ event interrupt CiIF is set

 ICODE bits are updated
© 2009 Microchip Technology Inc. DS01249A-page 15

AN1249

FIGURE 7: RX INTERRUPT SEQUENCE

The code in Example 13 enables the ECAN module to
generate an interrupt when the message is received in
the buffer. An interrupt is generated only when a
message passes the filtering stage and an ECAN event
interrupt is enabled.

EXAMPLE 13: ENABLE RX INTERRUPT

In addition to the ECAN module interrupts, each DMA
channel provides an interrupt when block transfer is
complete. These interrupts can be used to monitor
ECAN transmit and receive, if needed. However, the
ECAN peripheral interrupts are selected for this
document. Refer to Section 21. “Enhanced
Controller Area Network (ECAN™)” (see
“References”) and the specific device data sheet for
more details on how to use the DMA channel interrupts.

Sending CAN Messages
Message buffers 0-7 can be used to transmit
messages over the CAN bus. Each transmit buffer can
be assigned a user-defined priority level using the
CiTRmnCON<TXnPRI> bits. The data is loaded into
Dual Port SRAM (DPSRAM) and the <TXREQm> bit in
the CiTRmnCON register is set to request the
transmission of the message. At this point, the
message is “pending” for transmission and the module
starts transmitting as soon as the CAN bus is available.
Refer to Section 21. “Enhanced Controller Area
Network (ECAN™)” (see “References”) and the
specific device data sheet for more details on the
registers used in this document.

WRITING TO THE DMA RAM FOR
TRANSMISSION
In Example 14, the message is written in buffer 0 for
transmission.

Message received successfully on RXB31

RBIF

CiIF

RBIF flag is set

ECAN™ event interrupt CiIF is set

ICODE bits are updated

RXFULx flag is set

Message received successfully on RXB0

/* Enable ECAN1 receive Interrupt */
C1INTEbits.RBIE = 1;

Note: Refer to Appendix B: “CAN Message
Structure and Define Statements” for
message structure and other definitions.
DS01249A-page 16 © 2009 Microchip Technology Inc.

AN1249

EXAMPLE 14: CODE FOR WRITING MESSAGE INTO DMA RAM
/* Message Format: */
/* Word0 : 0bUUUx xxxx xxxx xxxx */
/* |____________||| */
/* SID10:0 SRR IDE (bit 0) */
/* Word1 : 0bUUUU xxxx xxxx xxxx */
/* |_____________| */
/* EID17:6 */
/* Word2 : 0bxxxx xxx0 UUU0 xxxx */
/* |_____|| |__| */
/* EID5:0 RTR DLC */

/* Remote Transmission Request Bit for standard frames */
/* SRR-> “0” Normal Message */
/* “1” Message will request remote transmission */
/* Substitute Remote Request Bit for extended frames */
/* SRR-> should always be set to “1” as per CAN specification */

/* Extended Identifier Bit */
/* IDE-> “0” Message will transmit standard identifier */
/* “1” Message will transmit extended identifier */

/* Remote Transmission Request Bit for extended frames */
/* RTR-> “0” Message transmitted is a normal message */

“1” Message transmitted is a remote message */
/* Do not care for standard frames */

/* check to see if the message has an extended ID */
if(message->frame_type==CAN_FRAME_EXT)
{

/* get the extended message id EID28..18*/
word0=(message->id & 0x1FFC0000) >> 16;
/* set the SRR and IDE bit */
word0=word0+0x0003;
/* the the value of EID17..6 */
word1=(message->id & 0x0003FFC0) >> 6;
/* get the value of EID5..0 for word 2 */
word2=(message->id & 0x0000003F) << 10;

}
else
{

/* get the SID */
word0=((message->id & 0x000007FF) << 2);

}
/* check to see if the message is an RTR message */
if(message->message_type==CAN_MSG_RTR)
{

if(message->frame_type==CAN_FRAME_EXT)
word2=word2 | 0x0200;

else
word0=word0 | 0x0002;

ecan1msgBuf[message->buffer][0]=word0;
ecan1msgBuf[message->buffer][1]=word1;
ecan1msgBuf[message->buffer][2]=word2;

}
else
{

word2=word2+(message->data_length & 0x0F);
ecan1msgBuf[message->buffer][0]=word0;
ecan1msgBuf[message->buffer][1]=word1;
ecan1msgBuf[message->buffer][2]=word2;
/* fill the data */
ecan1msgBuf[message->buffer][3]=((message->data[1] << 8) + message->data[0]);
ecan1msgBuf[message->buffer][4]=((message->data[3] << 8) + message->data[2]);
ecan1msgBuf[message->buffer][5]=((message->data[5] << 8) + message->data[4]);
ecan1msgBuf[message->buffer][6]=((message->data[7] << 8) + message->data[6]);

}

© 2009 Microchip Technology Inc. DS01249A-page 17

AN1249

SETTING THE TXREQ BIT
Setting the TXREQ bit in the control register initiates
the transmission. Setting the TXREQ bit does not
guarantee that the transmission will be successful. In
Example 15, buffer 0 is set for transmission.

EXAMPLE 15: SET MESSAGE FOR
TRANSMISSION

When data is ready to be transmitted on the CAN bus,
an interrupt is issued by the ECAN module as shown in
Figure 8. The architecture of the dsPIC33F and
PIC24H devices allow the user to choose between the
CPU and DMA controller to service the interrupt.
However, it is assumed that the user will exclusively
configure either the CPU/DMA controller to service the
request. The interrupt in Example 14 is serviced by the
DMA controller. The DMA channel will read data from
DMA RAM and then transfer the data to the peripheral.
The DMA channel concurrently moves the data
element and checks the block transfer counter. When
the transfer counter reaches the user-defined limit, the
block transfer is considered complete and a CPU
interrupt and DMA interrupt is asserted to alert the
modules.

FIGURE 8: TRANSMIT DATA SEQUENCE

Note: Before writing to the buffer, it is a good
idea to check the TXREQ bit to make sure
there are no pending messages that have
yet to be transmitted.

/* set the message for transmission */
C1TR01CONbits.TXREQ=1;

DPSRAM

CPU
ECAN™

CPU DMA

Port1 Port2

DMA DS Bus

Peripheral Address

DPSRAM Address Interrupt

Data

Data

DMA Controller Channel X Channel Y
RXTX

SRAM
DS01249A-page 18 © 2009 Microchip Technology Inc.

AN1249

Receiving CAN Message
The code in Example 16 receives the message in an
ISR and clears all the flags once the message is read
from the ECAN module.

EXAMPLE 16: SERVICING C1 ISR AND CLEARING INTERRUPT FLAGS

The code for RxECAN(&canRxMessage); that reads
the buffer into a temporary buffer in RAM, is shown in
Example 17.

/* Interrupt Service Routine 1
/* No fast context save, and no variables stacked */
void__attribute__((interrupt, no_auto_psv))_C1Interrupt(void)
{

/* check to see if the interrupt is caused by receive */
if(C1INTFbits.RBIF)
{

/*check to see if buffer 1 is full */
if(C1RXFUL1bits.RXFUL1)
{

/* set the buffer full flag and the buffer received flag */
canRxMessage.buffer_status=CAN_BUF_FULL;
canRxMessage.buffer=1;

}
/* check to see if buffer 2 is full */
else if(C1RXFUL1bits.RXFUL2)
{

/* set the buffer full flag and the buffer received flag */
canRxMessage.buffer_status+CAN_BUF_FULL;
canRxMessage.buffer=2;

}
/* check to see if buffer 3 is full */
else if(C1RXFUL1bits.RXFUL3)
{

/* set the buffer full flag and the buffer received flag */
canRxMessage.buffer_status=CAN_BUF_FULL;
canRxMessage.buffer=3;

}
else;
/* clear flag */
C1INTFbits.RBIF = 0;

}
else if(C1INTFbits.TBIF)
{

puts_ecanTc(&canTxMessage);
/* clear flag */
C1INTFbits.TBIF = 0;

}
else;
/* clear interrupt flag */
IFS2bits.C1IF = 0;

}

© 2009 Microchip Technology Inc. DS01249A-page 19

AN1249

EXAMPLE 17: COPYING MESSAGE FROM DMA INTO SRAM
void rxECAN(mID * message)
{

unsigned int ide=0;
unsigned int rtr=0;
unsigned long id=0;

/* Standard Message Format: */
/* Word0 : 0bUUUx xxxx xxxx xxxx */
/* |____________||| */
/* SID10:0 SRR IDE (bit 0) */
/* Word1 : 0bUUUU xxxx xxxx xxxx */
/* |_____________| */
/* EID17:6 */
/* Word2 : 0bxxxx xxx0 UUU0 xxxx */
/* |_____|| |__| */
/* EID5:0 RTR DLC */
/* Word3-Word6: Data bytes */
/* Word7: Filter hit code bits */

/* Remote Transmission Request Bit for standard frames */
/* SRR-> "0 " Normal Message */
/* "1" Message will request remote transmission */
/* Substitute Remote Request Bit for extended frames */
/* SRR-> Should always be set to ‘1’ as per CAN specification */

/* Extended Identifier Bit */
/* IDE-> "0" Message will transmit standard identifier */
/* "1" Message will transmit extended identifier */

/* Remote Transmission Request Bit for extended frames */
/* RTR-> "0" Message transmitted is a normal message */

"1" Message transmitted is a remote message
/* Don't care for standard frames */
/* read word 0 to see the message type */

ide=ecan1msgBuf[message->buffer][0] & 0x0001;

/* check to see what type of message it is */
/* message is standard identifier */
if(ide==0)
{

message->id=(ecan1msgBuf[message->buffer][0] & 0x1FFC) >> 2;
message->frame_type=CAN_FRAME_STD;
rtr=ecan1msgBuf[message->buffer][0] & 0x0002;

}
/* mesage is extended identifier */
else
{

id=ecan1msgBuf[message->buffer][0] & 0x1FFC;
message->id=id << 16;
id=ecan1msgBuf[message->buffer][1] & 0x0FFF;
message->id=message->id+(id << 6);
id=(ecan1msgBuf[message->buffer][2] & 0xFC00) >> 10;
message->id=message->id+id;
message->frame_type=CAN_FRAME_EXT;
rtr=ecan1msgBuf[message->buffer][2] & 0x0200;

}
/* check to see what type of message it is */
/* RTR message */
if(rtr==1)
{

message->message_type=CAN_MSG_RTR;
}

...
DS01249A-page 20 © 2009 Microchip Technology Inc.

AN1249

EXAMPLE 17: COPYING MESSAGE FROM DMA INTO SRAM (CONTINUED)

Every incoming message from the CAN bus is
received in the Message Assembly Buffer (MAB). The
ID of the message is then used by the module to
decide whether to accept or reject the message. Once
the message is accepted, the ECAN peripheral issues
an interrupt that can either be serviced by the CPU or
DMA. The request is serviced in the next cycle where
the data is read by the DMA module channel Y, and
then transferred to DPSRAM. The address is partly
supplied by the peripheral. Figure 9 shows the receive
data sequence.

FIGURE 9: RECEIVE DATA SEQUENCE

...
/* normal message */
else
{

message->message_type=CAN_MSG_DATA;
message->data[0]=(unsigned char)ecan1msgBuf[message->buffer][3];
message->data[1]=(unsigned char)((ecan1msgBuf[message->buffer][3] & 0xFF00) >> 8);
message->data[2]=(unsigned char)ecan1msgBuf[message->buffer][4];
message->data[3]=(unsigned char)((ecan1msgBuf[message->buffer][4] & 0xFF00) >> 8);
message->data[4]=(unsigned char)ecan1msgBuf[message->buffer][5];
message->data[5]=(unsigned char)((ecan1msgBuf[message->buffer][5] & 0xFF00) >> 8);
message->data[6]=(unsigned char)ecan1msgBuf[message->buffer][6];
message->data[7]=(unsigned char)((ecan1msgBuf[message->buffer][6] & 0xFF00) >> 8);
message->data_length=(unsigned char)(ecan1msgBuf[message->buffer][2] & 0x000F);

}
clearRxFlags(message->buffer);

}

Note: This example uses a C1 interrupt to read a
single message from the DMA RAM. In
this example using a C1 interrupt does not
make a difference as one message is
transferred at a time. However, if the user
wants to transmit/receive multiple
messages at a time, it is recommended
that DMAxISR be used. This will make
effective use of the DMA module. In this
case, a C1 interrupt should be used for
error checking and handling of the CAN
Bus.

SRAM

DPSRAM

ECAN™

CPU DMA

Port1 Port2

DMA DS Bus

Peripheral Address

DPSRAM Address Interrupt

Data

DMA Controller Channel X Channel Y
RXTX

CPU

Data
© 2009 Microchip Technology Inc. DS01249A-page 21

AN1249
CONCLUSION
This application note provides an overview of the DMA
and compiler role in implementing the ECAN module in
your application. To get a thorough understanding of
both modules, refer to the appropriate section of the
dsPIC33F or PIC24H Family Reference Manual (see
“References”).

This application note has been written to provide a
working example for sending and receiving messages
on the CAN bus, and applied to dsPIC33F and PIC24H
devices that have an ECAN module.

REFERENCES
• Section 21. “Enhanced Controller Area

Network (ECAN™) Module” (DS70226) of the
“PIC24H Family Reference Manual”

• Section 21. “Enhanced Controller Area
Network (ECAN™) Module” (DS70185) of the
“dsPIC33F Family Reference Manual”

• Section 22. “Direct Memory Access (DMA)”
(DS70223) of the “PIC24H Family Reference
Manual”

• Section 22. “Direct Memory Access (DMA)”
(DS70182) of the “dsPIC33F Family Reference
Manual”

• Microchip Web Seminar: “dsPIC33F and PIC24H
Direct Memory Access (DMA) Module”

• TB3008: “PLL Jitter and its Effects on ECAN™
Technology Communications” (DS93008)

These documents and the Web seminar can be
downloaded from the Microchip Web site at:
(www.microchip.com).
DS01249A-page 22 © 2009 Microchip Technology Inc.

www.microchip.com

AN1249
APPENDIX A: FLOW CHARTS

FIGURE A-1: ECAN™ INITIALIZATION FLOW CHART

Put module in Configuration mode

Select Clock used by the module

Set Timing Parameters

Configure Filter Settings

Configure Mask Settings

Put module in Normal mode

Start

Module in Configuration
mode?

Module in Normal
mode?

Enable buffers and clear error flags

End

No

Yes

No

Yes

FCAN = FCY = 40 MHz

Enable three Filters: Filter 0, Filter 1, Filter 2
Filter 0 Settings:
Accept Standard messages with ID 0x123
Use buffer 1 for incoming messages
Select Mask 0 to be used with filter 0
Filter 1 Settings:
Accept Extended messages with ID 0x12345678
Use buffer 2 for incoming messages
Select Mask 1 to be used with filter 1
 Filter 2 Settings:
Accept Extended messages with ID 0x12345679
Use buffer 3 for incoming messages
Select Mask 1 to be used with filter 2

Enable 4 buffers:
Buffer 0 - TX
Buffer 1 - RX
Buffer 2 - RX
Buffer 3 - RX

Enable two masks: Mask 0 and Mask1
Mask 0 Settings:
Apply filter to Standard messages only
Compare all Message ID bits
Mask 1 Settings:
Apply filter to Extended messages only
Compare all Message ID bits

Bit Time = (Sync Segment + Propagation
Delay + Phase Segment + Phase Segment 2)
= 20 * TQ
SJW = TQ
Sync Segment = 1 TQ
Propagation Delay = 5 TQ
Phase Segment 1 = 8 TQ
Phase Segment 2 = 6 TQ
Bit Rate of 1 Mbps
© 2009 Microchip Technology Inc. DS01249A-page 23

AN1249

FIGURE A-2: DMA INITIALIZATION FLOW CHART

Setup DMA Channel

Setup Data Block Transfer Size

Setup DMA Start Address Offset

Enable the Channel

Start

End

Set Up ECAN1 Peripheral Target Address

Setup Data Channel IRQ Request

Peripheral Indirect Addressing mode (DMAxCON)
Normal operation of the channel, Word operation for data transactions

ECAN1 peripheral target address (DMAxPAD)
0x0442 for C1TXD, 0x440 for C1RXD

Block transfer size of 8 (DMAxCNT)

DMAxREQ
0x46 for ECAN1 TX, 0x22 for ECAN1 RX

Pointer to the address offset calculated by the compiler

Enable channel (DMAxCON)
Channel 0 for TX, Channel 2 for RX
DS01249A-page 24 © 2009 Microchip Technology Inc.

AN1249

FIGURE A-3: MAIN APPLICATION FLOW CHART

Configuration Oscillator Settings

Initialize Timer2 (used to generate delays)

Initialize ECAN1 Module

Initialize LCD

Enable Interrupts

Configure a Message to be sent on the BUS

Start

Message received

Read the Message into RAM

Initialize DMA

Display Welcome Message on LCD

Send the message after 1 second delay

in DMA RAM?

Display Message ID on LCD Module

Device frequency 40 MHz
FOSC = FIN * M/(N1 * N2)
FCY = FOSC/2
FOSC = 8M * 40(2 * 2)

M = 40

Display Contents:
Microchip Inc.
TBXXX Demo

Enable ECAN1 Interrupts
Enable TX Interrupt
Enable RX Interrupt

Message ID: 0x123 (Extended Frame)
Message Length: 8 bytes
Message Data: 0x55 in all eight bytes

= 80 MHz for 8M crystal

N1 = 2
N2 = 2

No

Yes
© 2009 Microchip Technology Inc. DS01249A-page 25

AN1249
APPENDIX B: CAN MESSAGE STRUCTURE AND DEFINE STATEMENTS

EXAMPLE B-1: CAN MESSAGE STRUCTURE

EXAMPLE B-2: CAN DEFINES USED IN THE APPLICATION CODE

/* message structure in RAM */
typedef struct{

/* Keep track of the buffer status */
unsigned char buffer_status;

/* RTR message or data message */
unsigned char message_type;

/* Frame type extended or standard */
unsigned char frame_type;

/* Buffer being used to send and receive messages */
unsigned char buffer;

/* 29 bit ID max of 0x1FFF FFFF */
/* 11 bit ID max of 0x7FF */
unsigned long id;
unsigned char data[8];
unsigned char data_length;
}mID;

/* ECAN message buffer length */
#define ECAN1_MSG_BUF_LENGTH 4

/* ECAN message type identifiers */
#define CAN_MSG_DATA 0x01
#define CAN_MSG_RTR 0x02
#define CAN_FRAME_EXT 0x03
#define CAN_FRAME_STD 0x04
#define CAN_BUF_FULL 0x05
#define CAN_BUF_EMPTY 0x06
DS01249A-page 26 © 2009 Microchip Technology Inc.

AN1249
APPENDIX C: SOURCE CODE

All of the software covered in this application note is
available as a single WinZip archive file. This archive
can be downloaded from the Microchip corporate Web
site at:

www.microchip.com

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE
FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
© 2009 Microchip Technology Inc. DS01249A-page 27

http://www.microchip.com

AN1249

NOTES:
DS01249A-page 28 © 2009 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2009 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01249A-page 29

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01249A-page 30 © 2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/16/09

	Introduction
	Overview
	FIGURE 1: ECAN™ DMA Block Diagram
	CAN Data Frames
	Standard Data Frames
	FIGURE 2: Standard Data Frame

	TABLE 1: ECAN™ Standard Frame Message Fields
	Extended Data Frames
	FIGURE 3: Extended Data Frame

	TABLE 2: ECAN™ Extended Frame Message Fields

	ECAN Module Overview
	FIGURE 4: ECAN™ Module

	DMA Module Overview
	FIGURE 5: DMA Block Diagram

	ECAN Module Configuration
	Step 1: Request Configuration Mode from the ECAN Module
	EXAMPLE 1: Requesting Configuration mode

	Step 2: Select ECAN Clock and Bit Timing
	EQUATION 1: BRP Formula
	EXAMPLE 2: Code for BRP Configuration
	EXAMPLE 3: clock and timing initialization Code

	Step 3: Assign Number of Buffers Used by ECAN Module in DMA Memory Space
	EXAMPLE 4: Assigning four Buffers

	Step 4: Set Up Filters and Masks
	EXAMPLE 5: Message Filtering Macros
	EXAMPLE 6: configuring Filter 0 to use Mask 0 to only accept standard message ID 0x123
	EXAMPLE 7: configuring Filter 1 to use Mask 1 to accept extended message ID 0x1234568

	Step 5: Put the ECAN Module in Normal Mode
	EXAMPLE 8: Code Requesting Normal Mode of Operation

	Step 6: Set Up the Transmit/Receive Buffers
	EXAMPLE 9: Enabling Buffers and Setting TX Buffer Priority

	DMA Module Configuration
	Role of Compiler/Assembler/Linker
	Configuring DMA Module
	EXAMPLE 10: Reserve and Align Message buffer Space in DMA Ram
	EXAMPLE 11: Code for Configuring the DMA Registers

	Enabling the Interrupts for Data Exchange
	Transmit Buffer Interrupt
	EXAMPLE 12: Enable TX Interrupt

	Receive Buffer Interrupt
	FIGURE 6: TX Interrupt Source
	FIGURE 7: RX Interrupt Sequence
	EXAMPLE 13: Enable RX Interrupt

	Sending CAN Messages
	EXAMPLE 14: Code for Writing Message Into DMA RAM
	EXAMPLE 15: Set Message for Transmission
	FIGURE 8: Transmit Data Sequence

	Receiving CAN Message
	EXAMPLE 16: Servicing C1 ISR and Clearing Interrupt Flags
	EXAMPLE 17: Copying message from DMA into SRAM
	EXAMPLE 17: Copying message from DMA into SRAM (Continued)
	FIGURE 9: Receive Data Sequence

	Conclusion
	References
	Appendix A: Flow Charts
	FIGURE A-1: ECAN™ Initialization Flow Chart
	FIGURE A-2: DMA Initialization Flow Chart
	FIGURE A-3: Main Application Flow Chart

	Appendix B: CAN Message Structure and Define Statements
	EXAMPLE B-1: Can Message Structure
	EXAMPLE B-2: Can Defines Used in the Application Code

	Appendix C: Source Code

	ECAN™ Operation with DMA on dsPIC33F and PIC24H Devices
	Worldwide Sales and Service

