
IBM DB2 9.7
for Linux, UNIX, and Windows

SQL Procedural Languages: Application Enablement and Support
Updated September, 2010

Version 9 Release 7

SC27-2470-02

���

IBM DB2 9.7
for Linux, UNIX, and Windows

SQL Procedural Languages: Application Enablement and Support
Updated September, 2010

Version 9 Release 7

SC27-2470-02

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 413.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1993, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. SQL Procedural Language
(SQL PL) 1
Inline SQL PL 1
SQL PL in SQL procedures 2
Inline SQL PL and SQL functions, triggers, and
compound SQL statements 3
SQL PL data types 4

Anchored data type 4
Row types 8
Array types 22
Cursor types 39
Boolean data type 50

SQL routines 51
Overview of SQL routines 52
SQL procedures 57
SQL functions 89

Compound statements. 94
Restrictions on compound statements. 95
Creating compound statements 95

Chapter 2. PL/SQL support 97
PL/SQL features. 97
Creating PL/SQL procedures and functions from a
CLP script 98
Restrictions on PL/SQL support 100
PL/SQL sample schema 100
Obfuscation 107
Blocks (PL/SQL) 108

Anonymous block statement (PL/SQL) 108
Procedures (PL/SQL) 110

CREATE PROCEDURE statement (PL/SQL) . . 110
Procedure references (PL/SQL) 113
Function invocation syntax support (PL/SQL) 113

Functions (PL/SQL) 114
CREATE FUNCTION statement (PL/SQL). . . 115
Function references (PL/SQL) 117

Collections (PL/SQL) 118
VARRAY collection type declaration (PL/SQL) 118
CREATE TYPE (VARRAY) statement (PL/SQL) 119
Associative arrays (PL/SQL) 120
Collection methods (PL/SQL) 124

Variables (PL/SQL) 128
Variable declarations (PL/SQL) 129
Parameter modes (PL/SQL) 130
Data types (PL/SQL) 131
%TYPE attribute in variable declarations
(PL/SQL). 133
Record variables based on user-defined record
types (PL/SQL) 135
%ROWTYPE attribute in record type
declarations (PL/SQL) 136

Basic statements (PL/SQL) 137
NULL statement (PL/SQL) 138
Assignment statement (PL/SQL) 138
EXECUTE IMMEDIATE statement (PL/SQL) 139

SQL statements (PL/SQL) 142
BULK COLLECT INTO clause (PL/SQL) . . . 143
RETURNING INTO clause (PL/SQL) 144
Statement attributes (PL/SQL). 146

Control statements (PL/SQL) 147
IF statement (PL/SQL) 147
CASE statement (PL/SQL) 151
Loops (PL/SQL) 154
Exception handling (PL/SQL) 161
Raise application error (PL/SQL) 162
RAISE statement (PL/SQL). 163
Oracle-DB2 error mapping (PL/SQL) 164

Cursors (PL/SQL) 166
Static cursors (PL/SQL) 166
Cursor variables (PL/SQL) 172

Triggers (PL/SQL). 178
Types of triggers (PL/SQL) 178
Trigger variables (PL/SQL) 178
Transactions and exceptions (PL/SQL) 179
CREATE TRIGGER statement (PL/SQL) . . . 179
Dropping triggers (PL/SQL) 182
Examples: Triggers (PL/SQL) 182

Packages (PL/SQL) 185
Package components (PL/SQL) 185
Creating packages (PL/SQL) 185
Referencing package objects (PL/SQL) 191
Dropping packages (PL/SQL) 195

Chapter 3. System-defined modules 197
DBMS_ALERT module 197

REGISTER procedure - Register to receive a
specified alert 198
REMOVE procedure - Remove registration for a
specified alert 199
REMOVEALL procedure - Remove registration
for all alerts 200
SET_DEFAULTS - Set the polling interval for
WAITONE and WAITANY 200
SIGNAL procedure - Signal occurrence of a
specified alert 201
WAITANY procedure - Wait for any registered
alerts 201
WAITONE procedure - Wait for a specified alert 203

DBMS_DDL Module 204
WRAP function – Obfuscate a DDL statement 205
CREATE_WRAPPED procedure – Deploy an
obfuscated object 206

DBMS_JOB module 208
BROKEN procedure - Set the state of a job to
either broken or not broken 210
CHANGE procedure - Modify job attributes . . 210
INTERVAL procedure - Set run frequency . . . 211
NEXT_DATE procedure - Set the date and time
when a job is run 212

© Copyright IBM Corp. 1993, 2010 iii

REMOVE procedure - Delete the job definition
from the database 212
RUN procedure - Force a broken job to run . . 213
SUBMIT procedure - Create a job definition and
store it in the database 213
WHAT procedure - Change the SQL statement
run by a job 214

DBMS_LOB module 215
APPEND procedures - Append one large object
to another 216
CLOSE procedures - Close an open large object 216
COMPARE function - Compare two large
objects. 217
CONVERTTOBLOB procedure - Convert
character data to binary 218
CONVERTTOCLOB procedure - Convert binary
data to character 218
COPY procedures - Copy one large object to
another 219
ERASE procedures - Erase a portion of a large
object 220
GET_STORAGE_LIMIT function - Return the
limit on the largest allowable large object . . . 221
GETLENGTH function - Return the length of
the large object 221
INSTR function - Return the location of the nth
occurrence of a given pattern 221
ISOPEN function - Test if the large object is
open 222
OPEN procedures - Open a large object . . . 222
READ procedures - Read a portion of a large
object 223
SUBSTR function - Return a portion of a large
object 224
TRIM procedures - Truncate a large object to the
specified length 224
WRITE procedures - Write data to a large object 225
WRITEAPPEND procedures - Append data to
the end of a large object 225

DBMS_OUTPUT module 226
DISABLE procedure - Disable the message
buffer 227
ENABLE procedure - Enable the message buffer 228
GET_LINE procedure - Get a line from the
message buffer 228
GET_LINES procedure - Get multiple lines from
the message buffer 229
NEW_LINE procedure - Put an end-of-line
character sequence in the message buffer . . . 231
PUT procedure - Put a partial line in the
message buffer 232
PUT_LINE procedure - Put a complete line in
the message buffer 233

DBMS_PIPE module 233
CREATE_PIPE function - Create a pipe 235
NEXT_ITEM_TYPE function - Return the data
type code of the next item 237
PACK_MESSAGE function - Put a data item in
the local message buffer 238
PACK_MESSAGE_RAW procedure - Put a data
item of type RAW in the local message buffer . 239

PURGE procedure - Remove unreceived
messages from a pipe 240
RECEIVE_MESSAGE function - Get a message
from a specified pipe 241
REMOVE_PIPE function - Delete a pipe . . . 242
RESET_BUFFER procedure - Reset the local
message buffer 244
SEND_MESSAGE procedure - Send a message
to a specified pipe 245
UNIQUE_SESSION_NAME function - Return a
unique session name 246
UNPACK_MESSAGE procedures - Get a data
item from the local message buffer 247

DBMS_SQL module 249
BIND_VARIABLE_BLOB procedure - Bind a
BLOB value to a variable 252
BIND_VARIABLE_CHAR procedure - Bind a
CHAR value to a variable 252
BIND_VARIABLE_CLOB procedure - Bind a
CLOB value to a variable 253
BIND_VARIABLE_DATE procedure - Bind a
DATE value to a variable 253
BIND_VARIABLE_DOUBLE procedure - Bind a
DOUBLE value to a variable 254
BIND_VARIABLE_INT procedure - Bind an
INTEGER value to a variable 254
BIND_VARIABLE_NUMBER procedure - Bind a
NUMBER value to a variable 255
BIND_VARIABLE_RAW procedure - Bind a
RAW value to a variable 255
BIND_VARIABLE_TIMESTAMP procedure -
Bind a TIMESTAMP value to a variable . . . 256
BIND_VARIABLE_VARCHAR procedure - Bind
a VARCHAR value to a variable 256
CLOSE_CURSOR procedure - Close a cursor 257
COLUMN_VALUE_BLOB procedure - Return a
BLOB column value into a variable 257
COLUMN_VALUE_CHAR procedure - Return a
CHAR column value into a variable 258
COLUMN_VALUE_CLOB procedure - Return a
CLOB column value into a variable 259
COLUMN_VALUE_DATE procedure - Return a
DATE column value into a variable 259
COLUMN_VALUE_DOUBLE procedure -
Return a DOUBLE column value into a variable. 260
COLUMN_VALUE_INT procedure - Return an
INTEGER column value into a variable. . . . 260
COLUMN_VALUE_LONG procedure - Return a
LONG column value into a variable 261
COLUMN_VALUE_NUMBER procedure -
Return a DECFLOAT column value into a
variable 262
COLUMN_VALUE_RAW procedure - Return a
RAW column value into a variable 262
COLUMN_VALUE_TIMESTAMP procedure -
Return a TIMESTAMP column value into a
variable 263
COLUMN_VALUE_VARCHAR procedure -
Return a VARCHAR column value into a
variable 264

iv SQL Procedural Languages: Application Enablement and Support

DEFINE_COLUMN_BLOB- Define a BLOB
column in the SELECT list 264
DEFINE_COLUMN_CHAR procedure - Define a
CHAR column in the SELECT list 265
DEFINE_COLUMN_CLOB - Define a CLOB
column in the SELECT list 265
DEFINE_COLUMN_DATE - Define a DATE
column in the SELECT list 266
DEFINE_COLUMN_DOUBLE - Define a
DOUBLE column in the SELECT list 266
DEFINE_COLUMN_INT- Define an INTEGER
column in the SELECT list 267
DEFINE_COLUMN_LONG procedure - Define a
LONG column in the SELECT list 267
DEFINE_COLUMN_NUMBER procedure -
Define a DECFLOAT column in the SELECT list. 268
DEFINE_COLUMN_RAW procedure - Define a
RAW column or expression in the SELECT list . 268
DEFINE_COLUMN_TIMESTAMP - Define a
TIMESTAMP column in the SELECT list . . . 269
DEFINE_COLUMN_VARCHAR procedure -
Define a VARCHAR column in the SELECT list . 269
DESCRIBE_COLUMNS procedure - Retrieve a
description of the columns in a SELECT list . . 270
DESCRIBE_COLUMNS2 procedure - Retrieve a
description of column names in a SELECT list . 273
EXECUTE procedure - Run a parsed SQL
statement. 274
EXECUTE_AND_FETCH procedure - Run a
parsed SELECT command and fetch one row. . 276
FETCH_ROWS procedure - Retrieve a row from
a cursor 278
IS_OPEN procedure - Check if a cursor is open 281
LAST_ROW_COUNT procedure - return the
cumulative number of rows fetched 281
OPEN_CURSOR procedure - Open a cursor . . 284
PARSE procedure - Parse an SQL statement . . 285
VARIABLE_VALUE_BLOB procedure - Return
the value of a BLOB INOUT or OUT parameter . 287
VARIABLE_VALUE_CHAR procedure - Return
the value of a CHAR INOUT or OUT parameter 288
VARIABLE_VALUE_CLOB procedure - Return
the value of a CLOB INOUT or OUT parameter . 288
VARIABLE_VALUE_DATE procedure - Return
the value of a DATE INOUT or OUT parameter . 288
VARIABLE_VALUE_DOUBLE procedure -
Return the value of a DOUBLE INOUT or OUT
parameter 289
VARIABLE_VALUE_INT procedure - Return the
value of an INTEGER INOUT or OUT
parameter 289
VARIABLE_VALUE_NUMBER procedure -
Return the value of a DECFLOAT INOUT or
OUT parameter. 290
VARIABLE_VALUE_RAW procedure - Return
the value of a BLOB(32767) INOUT or OUT
parameter 290
VARIABLE_VALUE_TIMESTAMP procedure -
Return the value of a TIMESTAMP INOUT or
OUT parameter. 291

VARIABLE_VALUE_VARCHAR procedure -
Return the value of a VARCHAR INOUT or
OUT parameter. 291

DBMS_UTILITY module. 292
ANALYZE_DATABASE procedure - Gather
statistics on tables, clusters, and indexes . . . 293
ANALYZE_PART_OBJECT procedure - Gather
statistics on a partitioned table or partitioned
index 294
ANALYZE_SCHEMA procedure - Gather
statistics on schema tables, clusters, and indexes. 295
CANONICALIZE procedure - Canonicalize a
string 296
COMMA_TO_TABLE procedures - Convert a
comma-delimited list of names into a table of
names 298
COMPILE_SCHEMA procedure - Compile all
functions, procedures, triggers, and packages in
a schema 299
DB_VERSION procedure - Retrieve the database
version 300
EXEC_DDL_STATEMENT procedure - Run a
DDL statement 301
GET_CPU_TIME function - Retrieve the current
CPU time. 301
GET_DEPENDENCY procedure - List objects
dependent on the given object 302
GET_HASH_VALUE function - Compute a hash
value for a given string 303
GET_TIME function - Return the current time 304
NAME_RESOLVE procedure - Obtain the
schema and other membership information for a
database object 305
NAME_TOKENIZE procedure - Parse the given
name into its component parts 309
TABLE_TO_COMMA procedures - Convert a
table of names into a comma-delimited list of
names 312
VALIDATE procedure - Change an invalid
routine into a valid routine 314

MONREPORT module 314
CONNECTION procedure - generate a report
on connection metrics 316
CURRENTAPPS procedure - generate a report
of point-in-time application processing metrics . 317
CURRENTSQL procedure - generate a report
that summarizes activities 317
DBSUMMARY procedure - generate a summary
report of system and application performance
metrics 318
LOCKWAIT procedure - generate a report of
current lock waits 319
PKGCACHE procedure - generate a summary
report of package cache metrics 321

UTL_DIR module 322
CREATE_DIRECTORY procedure - Create a
directory alias 322
CREATE_OR_REPLACE_DIRECTORY
procedure - Create or replace a directory alias . 323
DROP_DIRECTORY procedure - Drop a
directory alias 324

Contents v

GET_DIRECTORY_PATH procedure - Get the
path for a directory alias 324

UTL_FILE module. 325
FCLOSE procedure - Close an open file . . . 326
FCLOSE_ALL procedure - Close all open files 327
FCOPY procedure - Copy text from one file to
another 328
FFLUSH procedure - Flush unwritten data to a
file 329
FOPEN function - Open a file 330
FREMOVE procedure - Remove a file 332
FRENAME procedure - Rename a file 332
GET_LINE procedure - Get a line from a file 333
IS_OPEN function - Determine whether a
specified file is open 334
NEW_LINE procedure - Write an end-of-line
character sequence to a file 335
PUT procedure - Write a string to a file . . . 337
PUT_LINE procedure - Write a line of text to a
file 338
PUTF procedure - Write a formatted string to a
file 339
UTL_FILE.FILE_TYPE 340

UTL_MAIL module 341
SEND procedure - Send an e-mail to an SMTP
server 341
SEND_ATTACH_RAW procedure - Send an
e-mail with a BLOB attachment to an SMTP
server 343
SEND_ATTACH_VARCHAR2 procedure - Send
an e-mail with a VARCHAR attachment to an
SMTP server. 344

UTL_SMTP module 345
CLOSE_DATA procedure - End an e-mail
message 347
COMMAND procedure - Run an SMTP
command 348
COMMAND_REPLIES procedure - Run an
SMTP command where multiple reply lines are
expected 349
DATA procedure - Specify the body of an e-mail
message 349
EHLO procedure - Perform initial handshaking
with an SMTP server and return extended
information 350
HELO procedure - Perform initial handshaking
with an SMTP server 351
HELP procedure - Send the HELP command 351
MAIL procedure - Start a mail transaction . . . 352
NOOP procedure - Send the null command . . 352
OPEN_CONNECTION function - Return a
connection handle to an SMTP server 353
OPEN_CONNECTION procedure - Open a
connection to an SMTP server 354
OPEN_DATA procedure - Send the DATA
command to the SMTP server 354
QUIT procedure - Close the session with the
SMTP server. 355
RCPT procedure - Provide the e-mail address of
the recipient 355

RSET procedure - End the current mail
transaction 356
VRFY procedure - Validate and verify the
recipient's e-mail address 356
WRITE_DATA procedure - Write a portion of an
e-mail message 357
WRITE_RAW_DATA procedure - Add RAW
data to an e-mail message 357

Chapter 4. DB2 compatibility features 359
Introduction to DB2 compatibility features. . . . 359
DB2_COMPATIBILITY_VECTOR registry variable 360
Setting up DB2 for Oracle application enablement 363
Sybase application migration 364
Data types 365

DATE data type based on TIMESTAMP(0). . . 365
NUMBER data type 367
VARCHAR2 and NVARCHAR2 data types . . 369

Character and graphic constant handling 372
Outer join operator 373
Hierarchical queries 374

CONNECT_BY_ROOT unary operator 379
PRIOR unary operator 380
SYS_CONNECT_BY_PATH 381

Database configuration parameters 382
ROWNUM pseudocolumn 382
DUAL table 383
Insensitive cursor 384
INOUT parameter 385
Currently committed semantics improve
concurrency 386
Oracle data dictionary-compatible views 387
DB2-Oracle terminology mapping 388

Chapter 5. DB2CI application
development. 395
IBM Data Server Driver for DB2CI 395
Building DB2CI applications 396

DB2CI application compile and link options
(AIX) 397
DB2CI application compile and link options
(HP-UX) 398
DB2CI application compile and link options
(Linux) 399
DB2CI application compile and link options
(Solaris) 400
DB2CI application compile and link options
(Windows) 401

Appendix A. Overview of the DB2
technical information 403
DB2 technical library in hardcopy or PDF format 403
Ordering printed DB2 books 406
Displaying SQL state help from the command line
processor 407
Accessing different versions of the DB2
Information Center 407
Displaying topics in your preferred language in the
DB2 Information Center 407

vi SQL Procedural Languages: Application Enablement and Support

Updating the DB2 Information Center installed on
your computer or intranet server 408
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 409
DB2 tutorials 411
DB2 troubleshooting information 411

Terms and Conditions 412

Appendix B. Notices 413

Index 417

Contents vii

viii SQL Procedural Languages: Application Enablement and Support

Chapter 1. SQL Procedural Language (SQL PL)

The SQL Procedural Language (SQL PL) is a language extension of SQL that
consists of statements and language elements that can be used to implement
procedural logic in SQL statements. SQL PL provides statements for declaring
variables and condition handlers, assigning values to variables, and for
implementing procedural logic.

Inline SQL PL
Inline SQL PL is a subset of SQL PL features that can be used in compound SQL
(inlined) statements. Compound SQL (inlined) statements can be executed
independently or can be used to implement the body of a trigger, SQL function, or
SQL method. Compound SQL (inlined) statements can be executed independently
from the DB2® CLP when it is in interactive mode to provide support for a basic
SQL scripting language.

Inline SQL PL is described as "inline", because the logic is expanded into and
executed with the SQL statements that reference them.

The following SQL PL statements are considered to be part of the set of inline SQL
PL statements:
v Variable related statements

– DECLARE <variable>
– DECLARE <condition>
– SET statement (assignment statement)

v Conditional statements
– IF
– CASE expression

v Looping statements
– FOR
– WHILE

v Transfer of control statements
– GOTO
– ITERATE
– LEAVE
– RETURN

v Error management statements
– SIGNAL
– GET DIAGNOSTICS

Other SQL PL statements that are supported in SQL procedures are not supported
in compound SQL (inlined) statements. Cursors and condition handlers are not
supported in inline SQL PL and therefore neither is the RESIGNAL statement.

Because inline SQL PL statements must be executed in compound SQL (inlined)
statements, there is no support for PREPARE, EXECUTE, or EXECUTE
IMMEDIATE statements.

© Copyright IBM Corp. 1993, 2010 1

Also, because ATOMIC must be specified in a compound SQL (inlined) statement
that is dynamically prepared or executed, all or none of the member statements
must commit successfully. Therefore the COMMIT and ROLLBACK statements are
not supported either.

As for the LOOP and REPEAT statements, the WHILE statement can be used to
implement equivalent logic.

Standalone scripting with inline SQL PL consists of executing a compound SQL
(inlined) statement that is dynamically prepared or executed within a Command
Line Processor (CLP) script or directly from a CLP prompt. Compound SQL
(inlined) statements that are dynamically prepared or executed are bounded by the
keywords BEGIN and END and must end with a non-default terminator character.
They can contain SQL PL and other SQL statements.

Because inline SQL PL statements are expanded within the SQL statements that
reference them rather than being individually compiled, there are some minor
performance considerations that should be considered when you are planning on
whether to implement your procedural logic in SQL PL in an SQL procedure or
with inline SQL PL in a function, trigger, or compound SQL (compiled) statement
that is dynamically prepared or executed.

SQL PL in SQL procedures
SQL PL statements are primarily used in SQL procedures. SQL procedures can
contain basic SQL statements for querying and modifying data, but they can also
include SQL PL statements for implementing control flow logic around the other
SQL statements. The complete set of SQL PL statements can be used in SQL
procedures.

SQL procedures also support parameters, variables, assignment statements, a
powerful condition and error handling mechanism, nested and recursive calls,
transaction and savepoint support, and the ability to return multiple result sets to
the procedure caller or a client application.

SQL PL, when used within SQL procedures, allows you to effectively program in
SQL. The high-level language of SQL PL and the additional features that SQL
procedures provide makes programming with SQL PL fast and easy to do.

As a simple example of SQL PL statements being used in a SQL procedure,
consider the following example:

CREATE PROCEDURE UPDATE_SAL (IN empNum CHAR(6),
INOUT rating SMALLINT)

LANGUAGE SQL
BEGIN

IF rating = 1 THEN
UPDATE employee

SET salary = salary * 1.10, bonus = 1000
WHERE empno = empNum;

ELSEIF rating = 2 THEN
UPDATE employee

SET salary = salary * 1.05, bonus = 500
WHERE empno = empNum;

ELSE
UPDATE employee

SET salary = salary * 1.03, bonus = 0
WHERE empno = empNum;

END IF;
END

2 SQL Procedural Languages: Application Enablement and Support

Inline SQL PL and SQL functions, triggers, and compound SQL
statements

Inline SQL PL statements can be executed in compound SQL (compiled)
statements, compound SQL (inlined) statements, SQL functions, and triggers.

A compound SQL (inlined) statement is one that allows you to group multiple SQL
statements into an optionally atomic block in which you can declare variables, and
condition handling elements. These statements are compiled by DB2 as a single
SQL statement and can contain inline SQL PL statements.

The bodies of SQL functions and triggers can contain compound SQL (inlined)
statements and can also include some inline SQL PL statements.

On their own, compound SQL (inlined) statements are useful for creating short
scripts that perform small units of logical work with minimal control flow, but that
have significant data flow. Within functions and triggers, they allow for more
complex logic to be executed when those objects are used.

As an example of a compound SQL (inlined) statement that contains SQL PL,
consider the following:

BEGIN ATOMIC
FOR row AS

SELECT pk, c1, discretize(c1) AS v FROM source
DO

IF row.v is NULL THEN
INSERT INTO except VALUES(row.pk, row.c1);

ELSE
INSERT INTO target VALUES(row.pk, row.d);

END IF;
END FOR;

END

The compound SQL (inlined) statement is bounded by the keywords BEGIN and
END. It includes use of both the FOR and IF/ELSE control-statements that are part
of SQL PL. The FOR statement is used to iterate through a defined set of rows. For
each row a column's value is checked and conditionally, based on the value, a set
of values is inserted into another table.

As an example of a trigger that contains SQL PL, consider the following:
CREATE TRIGGER validate_sched
NO CASCADE BEFORE INSERT ON c1_sched
FOR EACH ROW
MODE DB2SQL
Vs: BEGIN ATOMIC

IF (n.ending IS NULL) THEN
SET n.ending = n.starting + 1 HOUR;

END IF;

IF (n.ending > '21:00') THEN
SIGNAL SQLSTATE '80000' SET MESSAGE_TEXT =

'Class ending time is after 9 PM';
ELSE IF (n.DAY=1 or n.DAY-7) THEN

SIGNAL SQLSTATE '80001' SET MESSAGE_TEXT =
'Class cannot be scheduled on a weekend';

END IF;
END vs;

Chapter 1. SQL PL support 3

This trigger is activated upon an insert to a table named c1_sched and uses SQL
PL to check for and provide a class end time if one has not been provided and to
raise an error if the class end time is after 9 pm or if the class is scheduled on a
weekend. As an example of a scalar SQL function that contains SQL PL, consider
the following:

CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)
RETURNS DECIMAL(10,3)
LANGUAGE SQL MODIFIES SQL
BEGIN

DECLARE price DECIMAL(10,3);

IF Vendor = 'Vendor 1'
THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);

ELSE IF Vendor = 'Vendor 2'
THEN SET price = (SELECT Price FROM V2Table WHERE Pid = GetPrice.Pid);

END IF;

RETURN price;
END

This simple function returns a scalar price value, based on the value of an input
parameter that identifies a vendor. It also uses the IF statement.

For more complex logic that requires output parameters, the passing of result sets
or other more advanced procedural elements SQL procedures might be more
appropriate.

SQL PL data types

Anchored data type
An anchored data type is a data type that is defined to be the same as that of
another object. If the underlying object data type changes, the anchored data type
also changes.

The following topics provide more information about anchored data types:

Features of the anchored data type
An anchored type defines a data type based on another SQL object such as a
column, global variable, SQL variable, SQL parameter, or the row of a table or
view.

A data type defined using an anchored type definition maintains a dependency on
the object to which it is anchored. Any change in the data type of the anchor object
will impact the anchored data type. If anchored to the row of a table or view, the
anchored data type is ROW with the fields defined by the columns of the anchor
table or anchor view.

This data type is useful when declaring variables in cases where you require that
the variable have the same data type as another object, for example a column in a
table, but you do not know exactly what is the data type.

An anchored data type can be of the same type as one of:
v a row in a table
v a row in a view
v a cursor variable row definition
v a column in a table

4 SQL Procedural Languages: Application Enablement and Support

v a column in a view
v a local variable, including a local cursor variable or row variable
v a global variable

Anchored data types can only be specified when declaring or creating one of the
following:
v a local variable in an SQL procedure, including a row variable
v a local variable in a compiled SQL function, including a row variable
v a routine parameter
v a user-defined cursor data type using the CREATE TYPE statement.

– It cannot be referenced in a DECLARE CURSOR statement.
v a function return data type
v a global variable

To define an anchored data type specify the ANCHOR DATA TYPE TO clause (or
the shorter form ANCHOR clause) to specify what the data type will be. If the
anchored data type is a row data type, the ANCHOR ROW OF clause, or one of its
synonyms, must be specified. These clauses are supported within the following
statements:
v DECLARE
v CREATE TYPE
v CREATE VARIABLE

– In this version, global variables can only be anchored to other global
variables, a column in a table, or a column in a view.

Restrictions on the anchored data type
Review the restrictions on the use of the anchored data type before declaring
variables of this type or when troubleshooting problems related to their use.

The following restrictions apply to the use of anchored data types, including types
specified using the PL/SQL %TYPE attribute:
v Anchored data types are not supported in inline SQL functions.
v Anchored data types cannot reference nicknames or columns in nicknames.
v Anchored data types cannot reference typed tables, columns of typed tables,

typed views, or columns of typed views.
v Anchored data types cannot reference declared temporary tables, or columns of

declared temporary tables.
v Anchored data types cannot reference row definitions associated with a weakly

typed cursor.
v Anchored data types cannot reference objects with a code page or collation that

is different from the database code page or database collation.

Anchored data type variables
An anchored variable is a local variable or parameter with a data type that is an
anchored data type.

Anchored variables are supported in the following contexts:
v SQL procedures

– In SQL procedures, parameters and local variables can be specified to be of an
anchored data type.

v Compiled SQL functions

Chapter 1. SQL PL support 5

– SQL functions created using the CREATE FUNCTION statement that specify
the BEGIN clause instead of the BEGIN ATOMIC clause can include
parameter or local variable specification that are of the anchored data type.

v Module variables
– Anchored variables can be specified as published or unpublished variables

defined within a module.
v Global variables

– Global variables can be created of the anchored data type.

Anchored variables are declared using the DECLARE statement.

Declaring local variables of the anchored data type
Declaring local variables or parameters of the anchored data type is a task that you
would perform whenever it is necessary that the data type of the variable or
parameter remain consistent with the data type of the object to which it is
anchored.

The object of the data type that the variable will be anchored to must be defined.
1. Formulate a DECLARE statement

a. Specify the name of the variable.
b. Specify the ANCHOR DATA TYPE TO clause.
c. Specify the name of the object that is of the data type that the variable is to

be anchored.
2. Execute the DECLARE statement from a supported DB2 interface.

If the DECLARE statement executes successfully, the variable is defined in the
database with the specified anchor data type.

The following is an example of an anchored data type declaration in which a
variable named v1 is anchored to the data type of a column named c1 in a table
named emp:
DECLARE v1 ANCHOR DATA TYPE TO emp.c1;

Once the variable is defined it can be assigned a value, be referenced, or passed as
a parameter to routines.

Examples: Anchored data type use
Examples of anchored data type use can be useful as a reference when using this
data type.

The following topics include examples of anchored data type use:

Example: Variable declarations of anchored data types:

Examples of anchored data type declarations can be useful references when
declaring variables.

The following is an example of a declaration of a variable named v1 that has the
same data type as the column name in table staff:
DECLARE v1 ANCHOR DATA TYPE TO staff.name;

The following is an example of a CREATE TYPE statement that defines a type
named empRow1 that is anchored to a row defined in a table named employee:
CREATE TYPE empRow1 AS ROW ANCHOR DATA TYPE TO ROW OF employee;

6 SQL Procedural Languages: Application Enablement and Support

For variables declared of type empRow1, the field names are the same as the table
column names.

If the data type of the column name is VARCHAR(128), then the variable v1 will
also be of data type VARCHAR(128).

Examples: Anchored data type use in SQL routines:

Examples of anchored data type use in SQL routines are useful to reference when
creating your own SQL routines.

The set of examples below demonstrate various features and uses of anchored data
types in SQL routines. The anchored data type features are demonstrated more so
than the features of the SQL routines that contain them.

The following is an example that demonstrates a declared variable that is anchored
to the data type of a column in a table:
CREATE TABLE tab1(col1 INT, col2 CHAR)@

INSERT INTO tab1 VALUES (1,2)@

INSERT INTO tab1 VALUES (3,4)@

CREATE TABLE tab2 (col1a INT, col2a CHAR)@

CREATE PROCEDURE p1()
BEGIN

DECLARE var1 ANCHOR tab1.col1;
SELECT col1 INTO var1 FROM tab1 WHERE col2 = 2;
INSERT INTO tab2 VALUES (var1, 'a');

END@

CALL p1()@

When the procedure p1 is called, the value of the column col1 for a particular row
is selected into the variable var1 of the same type.

The following CLP script includes an example of a function that demonstrates the
use of an anchored data type for a parameter to a function:
-- Create a table with multiple columns
CREATE TABLE tt1 (c1 VARCHAR(18), c2 CHAR(8), c3 INT, c4 FLOAT)
@

INSERT INTO tt1 VALUES ('aaabbb', 'ab', 1, 1.1)
@

INSERT INTO tt1 VALUES ('cccddd', 'cd', 2, 2.2)
@

SELECT c1, c2, c3, c4 FROM tt1
@

-- Creation of the function
CREATE FUNCTION func_a(p1 ANCHOR tt1.c3)
RETURNS INT
BEGIN

RETURN p1 + 1;
END
@

-- Invocation of the function
SELECT c1, c2 FROM tt1 WHERE c3 = func_a(2)

Chapter 1. SQL PL support 7

@

-- Another invocation of the function
SELECT c1, c2 FROM tt1 WHERE c3 = func_a(1)
@

DROP FUNCTION func_a
@

DROP TABLE tt1
@

When the function func_a is invoked, the function performs a basic operation
using the value of the anchored data type parameter.

Row types
A row data type is a user-defined type containing an ordered sequence of named
fields each with an associated data type.

A row type can be used as the type for global variables, SQL variables, and SQL
parameters in SQL PL to provide flexible manipulation of the columns in a row of
data, typically retrieved using a query.

Features of the row data type
The features of the row data type make it useful for simplifying SQL PL code.

The row data type is supported for use with the SQL Procedural language only. It
is a structure composed of multiple fields each with their own name and data type
that can be used to store the column values of a row in a result set or other
similarly formatted data.

This data type can be used to:
v Simplify the coding of logic within SQL Procedural Language applications. For

example, database applications process records one at a time and require
parameters and variables to temporarily store records. A single row data type
can replace the multiple parameters and variables required to otherwise process
and store the record values. This greatly simplifies the ability to pass row values
as parameters within applications and routines.

v Facilitate the porting to DB2 SQL PL of code written in other procedural SQL
languages that support a similar data type.

v Reference row data in data-change statements and queries including: INSERT
statement, FETCH statement, VALUES INTO statement and SELECT INTO
statement.

Row data types must be created using the CREATE TYPE (ROW) statement. Once
created, variables of the defined data type can be declared within SQL PL contexts
using the DECLARE statements. These variables can then be used to store values
of the row type.

Row field values can be explicitly assigned and referenced using single-dot, "."
notation.

Restrictions on the row data type
It is important to note the restrictions on the use of the row data type before using
it or when troubleshooting an error that might be related to its use.

The following restrictions apply to the row data type:

8 SQL Procedural Languages: Application Enablement and Support

v The maximum number of fields supported in a row data type is 1012.
v The row data type cannot be passed as an input parameter value to procedures

and functions from the CLP.
v The row data type cannot be passed as an input-output or output parameter

value from procedures and functions to the CLP.
v Row data type variables cannot be directly compared. To compare row type

variables, each field can be compared.
v The following data types are not supported for row fields:

– XML data type
– LONG VARCHAR
– LONG VARGRAPHIC
– structured data types
– row data types
– array data types

v Global variables of type row that contain one or more fields of type LOB are not
supported.

v Use of the CAST function to cast a parameter value to a row data type is not
supported.

Other general restrictions might apply related to the use of a data type,
authorizations, execution of SQL, scope of use of the data type or other causes.

Row variables
Row variables are variables based on user-defined row data types. Row variables
can be declared, assigned a value, set to another value, or passed as a parameter to
and from SQL procedures. Row variables inherit the properties of the row data
types upon which they are based. Row variables are used to hold a row of data
from within a result set or can be assigned other tuple-format data.

Row variables can be declared within SQL procedures using the DECLARE
statement.

Creating row variables
To create row variables you must first create the row type and then declare the
row variable.

The following topics show you how to create the row data type and variable:

Creating a row data type:

Creating a row data type is a prerequisite to creating a row variable.

Before you create a row data type:
v Read: “Row types” on page 8
v Read: “Restrictions on the row data type” on page 8

This task can be done from any interface that supports the execution of the
CREATE TYPE statement.

To create a row data type within a database, you must successfully execute the
CREATE TYPE (ROW) statement from any DB2 interface that supports the
execution of SQL statements.

Chapter 1. SQL PL support 9

1. Formulate a CREATE TYPE (ROW) statement:
a. Specify a name for the type.
b. Specify the row field definition for the row by specifying a name and data

type for each field in the row.

The following is an example of how to create a row data type that can be
associated with result sets with the same format as the empRow row data type:
CREATE TYPE empRow AS ROW (name VARCHAR(128), id VARCHAR(8));

2. Execute the CREATE TYPE statement from a supported DB2 interface.

If the CREATE TYPE statement executes successfully, the row data type is created
in the database. If the statement does not execute successfully, verify the syntax of
the statement and verify that the data type does not already exist.

Once the row data type is created, row variables can be declared based on this
data type.

Declaring local variables of type row:

Variables of type row can be declared once the row data type has been created.

Before you create a row data type:
v Read: “Row types” on page 8
v Read: “Restrictions on the row data type” on page 8

Row data type variables can only be declared in SQL PL contexts including SQL
procedures and functions where execution of the DECLARE statement is
supported.

The following steps must be followed to declare a local row variable:
1. Formulate a declare statement:

a. Specify a name for the variable.
b. Specify the row data type that will define the variable. The specified row

data type must be already defined in the database.

The following is an example of how to formulate a DECLARE statement that
defines a row variable of type empRow:
DECLARE r1 empRow;

2. Execute the DECLARE statement within a supported context.

If execution of the DECLARE statement is successful, the row variable is created.

Upon creation of a row variable each field in the row is initialized to a NULL
value.

The row variable can be assigned values, be referenced, or passed as a parameter.

Assigning values to row variables
Values can be assigned to variables of type row in multiple ways. A row variable
value can be assigned to another row variable. Variable field values can be
assigned and referenced. Field values of a row are referenced by using a single-dot
“.” notation.

The following topics show how to assign values to row type variables and arrays
of row type variables:

10 SQL Procedural Languages: Application Enablement and Support

Supported assignments to row data types:

A variety of values are supported for assignment to rows and row fields.

When a row variable or parameter is declared, each field in the row has a default
value of NULL until a value is assigned to it.

The following types of values can be assigned to a row variable:
v another row variable of the same row data type using the SET statement

– Row variable values can only be assigned to row variables if they are type
compatible. Two row variables are compatible if they are both of the same
row data type or if the source row variable is anchored to a table or view
definition. For two variables to be type compatible, it is not sufficient for
them to have the same field names and field data types.
For example, if a row data type named row1 is created and another data type
named row2 is created and they are identical in definition, the value of a
variable of type row1 cannot be assigned to the variable of type row2. Nor
can the value of the variable of type row2 be assigned to the variable of type
row1. However, the value of variable v1 of type row1 can be assigned to a
variable v2 that is also of type row1.

v A tuple with the same number of elements as the row and elements of the same
data types as the fields of the row.
– The following is an example of a literal tuple being assigned to a row:

SET v1 = (1, 'abc')

v expression that resolves to a row value
– An example of an expression that resolves to a row value that can be

assigned to a row variable is the resolved expression in a VALUES ... INTO
statement. The following is an example of such an assignment:
VALUES (1, 'abc') INTO rv1

v the return type of a function (if it is of the same row data type as the target
variable):
– The following is an example where the return type of a function named foo is

of the same row data type as the target variable:
SET v1 = foo()

If the return data type is defined as an anchored data type, the anchored data
type assignment rules apply.

v the single row result set of a query
– The result set must have the same number of elements as the row and the

columns must be assignable to the same data types as the fields of the row.
The following is an example of this type of assignment:
SET v1 = (select c1, c2 from T)

v NULL
– When NULL is assigned to a row variable, all the row fields are set to NULL

but the row variable itself remains NOT NULL.

The following types of values can be assigned to a row variable field:
v literal
v parameter
v variable
v expression

Chapter 1. SQL PL support 11

v NULL

Values can be assigned to row field values in the following ways:
v Using the SET statement
v Using a SELECT INTO statement that resolves to a row value
v Using a FETCH INTO statement that resolves to a row value
v Using a VALUES INTO statement that resolves to a row value

The ROW data type can be specified as the return-type of an SQL scalar function.

Assigning values to a row variable using the SET statement:

Assigning values to a row variable can be done using the SET statement. A row
value can be assigned to a row variable. A row field value or expression can be
assigned to a row field.

Row values can be assigned to row variables using the SET statement if they are
both of the same user-defined row data type.

The following is an example of how to assign a row value to a row variable of the
same format:

SET empRow = newHire;

The row value newHire has the same format as the empRow variable - the number
and types of the row fields are identical:

empRow.lastName /* VARCHAR(128) */
empRow.firstName /* VARCHAR(128) */
empRow.id /* VARCHAR(10) */
empRow.hireDate /* TIMESTAMP */
empRow.dept /* VARCHAR(3) */

newHire.lastName /* VARCHAR(128) */
newHire.firstName /* VARCHAR(128) */
newHire.id /* VARCHAR(10) */
newHire.hireDate /* TIMESTAMP */
newHire.dept /* VARCHAR(3) */

If you attempt to assign a row value to a variable that does not have an identical
format an error will be raised.

Row values can be assigned by assigning values to the individual fields in a row.
The following is an example of how to assign values to the fields in the row
named empRow using the SET statement:
SET empRow.lastName = 'Brown'; // Literal value assignment

SET empRow.firstName = parmFirstName; // Parameter value of same type assignment

SET empRow.id = var1; // Local variable of same type assignment

SET empRow.hiredate = CURRENT_TIMESTAMP; // Special register expression assignment

SET empRow.dept = NULL; // NULL value assignment

Any supported field assignment can be used to initialize a row value.

Assigning row values to row variables using SELECT, VALUES, or FETCH
statements:

12 SQL Procedural Languages: Application Enablement and Support

A row value can be assigned to a variable of type row by using a SELECT INTO
statement, a VALUES INTO statement, or a FETCH INTO statement. The field
values of the source row value must be assignable to the field values of the target
row variable.

The following is an example of how to assign a single row value to a row variable
named empRow using a SELECT statement:
SELECT * FROM employee
INTO empRow
WHERE id=5;

If the select query resolves to more than one row value, an error is raised.

The following is an example of how to assign a row value to a row variable named
empEmpBasics using a VALUES INTO statement:
VALUES (5, 'Jane Doe', 10000) INTO empBasics;

The following is an example of how to assign a row value to a row variable named
empRow using a FETCH statement that references a cursor named cur1 that
defines a row with compatible field values as the variable empRow:
FETCH cur1 INTO empRow;

Other variations of use are possible with each of these statements.

Comparing row variables and row field values
Row variables cannot be directly compared even if they are the same row data
type, however individual row fields can be compared.

Individual fields within a row type can be compared to other values and the
comparison rules for the data type of the field apply.

To compare two row variables, individual corresponding field values must be
compared.

The following is an example of a comparison of two row values with compatible
field definitions in SQL PL:

IF ROW1.field1 = ROW2.field1 AND
ROW1.field2 = ROW2.field2 AND
ROW1.field3 = ROW2.field3

THEN
SET EQUAL = 1;

ELSE
SET EQUAL = 0;

In the example the IF statement is used to perform the procedural logic which sets
a local variable EQUAL to 1 if the field values are equal, or 0 if the field values are
not equal.

Referencing row values
Row values and row field values can be referenced within SQL and SQL
statements.

The following topics demonstrate where and how row values can be referenced:

Referencing row variables:

Chapter 1. SQL PL support 13

Row variable values can be referenced by name wherever row variable data type
references are supported.

Supported row variable reference contexts include the following:
v Source or target of a SET statement
v INSERT statement
v Target of SELECT INTO, VALUES INTO, or FETCH statements

The following is an example of a row variable being assigned to another row
variable with the same definition using the SET statement:

-- Referencing row variables as source and
target of a SET statement

SET v1 = v2;

The following is an example of row variables being referenced in an INSERT
statement that inserts two rows. The row variables v1 and v2 have a field
definition that is type compatible with the column definition of the table that is the
target of the INSERT statement:

-- Referencing row variables in an INSERT statement
INSERT INTO employee VALUES v1, v2;

The following is an example of a row variable being referenced in a FETCH
statement. The row variable empRow has the same column definition as the result
set associated with the cursor c1:
-- Referencing row variables in a FETCH statement
FETCH c1 INTO empRow;

The following is an example of a row variable named v3 being referenced in a
SELECT statement. Two column values in the employee table are being selected
into the two fields of the variable v3:
-- Referencing row variables in a SELECT statement
SELECT id, name INTO v3 FROM employee;

Referencing fields in row variables:

Field values can be referenced in multiple contexts.

A row field value can be referenced wherever a value of the field's data type is
permitted. The following contexts are supported for referencing row fields:
v Wherever a value of the field's data type is permitted including, but not limited

to:
– As the source of an assignment (SET statement)
– As the target of an assignment (SET statement)
– As the target of SELECT INTO, VALUES INTO, or FETCH INTO statement.

To reference the values of fields in a row variable a single-dot notation is used.
Field values are associated with variables as follows:
<row-variable-name>.<field-name>

The following is an example of how to access the field id of variable employee:
employee.id

Examples of supported references to row variable field values follow.

14 SQL Procedural Languages: Application Enablement and Support

The following is an example that shows how to assign a literal value to a field in
row variable v1:
-- Literal assignment to a row variable field
SET v1.c1 = 5;

The following example shows how to assign literal and expression values to
multiple row variable fields:
-- Literal assignment to fields of row variable
SET (emp.id, emp.name) = (v1.c1 + 1, 'James');

The following example shows how to reference field values in an INSERT
statement:
-- Field references in an INSERT statement
INSERT INTO employee
VALUES(v1.c1, 'Beth'),

(emp.id, emp.name);

The following example shows how to reference field values in an UPDATE
statement:
-- Field references in an UPDATE statement
UPDATE employee
SET name = 'Susan'
WHERE id = v1.c1;

The following example shows how to reference field values in a SELECT INTO
statement:
-- Field references in a SELECT INTO statement
SELECT employee.firstname INTO v2.c1
FROM employee
WHERE name=emp.name;

Referencing row variables in INSERT statements:

Row variables can be used in INSERT statements to append or modify an entire
table row.

The following is an example of an INSERT statement that inserts a row into tabled
employee:
INSERT INTO employee VALUES empRow;

For the INSERT statement, the number of fields in the row variable must match the
number of columns in the implicit or explicit target column list.

The INSERT statement shown above inserts into each column in the table, the
corresponding row field value. Thus the INSERT statement above is equivalent to
the following INSERT statement:
INSERT INTO employee VALUES (emp.id,

emp.name,
emp.salary,
emp.phone);

Passing rows as routine parameters
Row type values and arrays of row type variables can be passed as parameters to
procedures and functions. Procedures support these data types as IN, OUT, and
INOUT parameters.

Chapter 1. SQL PL support 15

The following is an example of a procedure that takes a CHAR type as an input
parameter, modifies a field in the output row parameter and then returns.
CREATE PROCEDURE p(IN basicChar CHAR, OUT outEmpRow empRow)
BEGIN

SET outEmpRow.field2 = basicChar;

END@

The following is an example of a CALL statement that invokes the procedure:
CALL p('1', myEmpRow)@

Dropping a row data type
Dropping a row data type is done when the row data type is no longer required or
when you want to reuse the name of an existing row data type.

The following prerequisites must be met before you can drop a row data type:
v A connection to the database must be established.
v The row data type must exist in the database.

Dropping a row data type is done when the row data type is no longer required or
when you want to reuse the name of an existing row data type. Dropping a row
can be done from any interface that supports the execution of the DROP statement.
1. Formulate a DROP statement that specifies the name of the row data type to be

dropped.
2. Execute the DROP statement from a supported DB2 interface.

The following is an example of how to drop a row data type named simpleRow.
DROP TYPE simpleRow;

If the DROP statement executes successfully, the row data type is dropped from
the database.

Examples: Row data type use
Examples of row data type use provide a useful reference for understanding how
and when to use the row data type.

The following topics demonstrate how to use the row data type:

Example: Row data type use in a CLP script:

Some basic features of row data types are shown within a DB2 CLP script to
demonstrate how row data types are most commonly used.

The following DB2 CLP script demonstrates the use of the row data type and its
related operations. It includes demonstrations of:
v Creating row data types
v Creating a table
v Creating a procedure that includes:

– Row data type declarations
– Inserting values to a type that include some row field values
– Updating row values based on a row field value
– Selecting values into a row field value
– Assigning a row value to a row

16 SQL Procedural Languages: Application Enablement and Support

– Assigning row field values to a parameter
v Calling the procedure
v Dropping the row data types and table
-- Creating row types

CREATE TYPE row01 AS ROW (c1 INTEGER)@

CREATE TYPE empRow AS ROW (id INTEGER, name VARCHAR(10))@

CREATE TABLE employee (id INTEGER, name VARCHAR(10))@

CREATE procedure proc01 (OUT p0 INTEGER, OUT p1 INTEGER)
BEGIN

DECLARE v1, v2 row01;
DECLARE emp empRow;

-- Assigning values to row fields
SET v1.c1 = 5;
SET (emp.id, emp.name) = (v1.c1 + 1, 'James');

-- Using row fields in DML
INSERT INTO employee
VALUES (v1.c1, 'Beth'), (emp.id, emp.name);

UPDATE employee
SET name = 'Susan' where id = v1.c1;

-- SELECT INTO a row field
SELECT id INTO v2.c1
FROM employee
WHERE name = emp.name;

-- Row level assignment
SET v1 = v2;

-- Assignment to parameters
SET (p0, p1) = (v1.c1, emp.id);

END@

CALL proc01(?, ?)@

SELECT * FROM employee@

DROP procedure proc01@

DROP TABLE employee@

-- Dropping row types
DROP TYPE empRow@

DROP TYPE row01@

This script can be saved and run from a DB2 Command Line by issuing the
following:
DB2 -td@ -vf <filename>;

The following is the output of running the script:
CREATE TYPE row01 AS ROW (c1 INTEGER)
DB20000I The SQL command completed successfully.

CREATE TYPE empRow AS ROW (id INTEGER, name VARCHAR(10))
DB20000I The SQL command completed successfully.

Chapter 1. SQL PL support 17

CREATE TABLE employee (id INTEGER, name VARCHAR(10))
DB20000I The SQL command completed successfully.

CREATE procedure proc01 (OUT p0 INTEGER, OUT p1 INTEGER)
BEGIN DECLARE v1, v2 row01;
DECLARE emp empRow;
SET v1.c1 = 5;
SET (emp.id, emp.name) = (v1.c1 + 1, 'James');
INSERT INTO employee VALUES (v1.c1, 'Beth'), (emp.id, emp.name);
UPDATE employee SET name = 'Susan' where id = v1.c1;
SELECT id INTO v2.c1 FROM employee WHERE name = emp.name;
SET v1 = v2;
SET (p0, p1) = (v1.c1, emp.id);

END

DB20000I The SQL command completed successfully.

CALL proc01(?, ?)

Value of output parameters

Parameter Name : P0
Parameter Value : 6

Parameter Name : P1
Parameter Value : 6

Return Status = 0

SELECT * FROM employee

ID NAME
----------- ----------

5 Susan
6 James

2 record(s) selected.

DROP procedure proc01
DB20000I The SQL command completed successfully.

DROP TABLE employee
DB20000I The SQL command completed successfully.

DROP TYPE empRow
DB20000I The SQL command completed successfully.

DROP TYPE row01
DB20000I The SQL command completed successfully.

Example: Row data type use in an SQL procedure:

The row data type can be used in SQL procedures to retrieve record data and pass
it as a parameter.

This topic contains an example of a CLP script that includes the definitions of
multiple SQL procedures that demonstrate some of the many uses of rows.

The procedure named ADD_EMP takes a row data type as an input parameter
which it then inserts into a table.

18 SQL Procedural Languages: Application Enablement and Support

The procedure named NEW_HIRE uses a SET statement to assign values to a row
variable and passes a row data type value as a parameter in a CALL statement that
invokes another procedure.

The procedure named FIRE_EMP selects a row of table data into a row variable
and inserts row field values into a table.

The following is the CLP script - it is followed by the output of running the script
from the CLP in verbose mode:
--#SET TERMINATOR @;
CREATE TABLE employee (id INT,

name VARCHAR(10),
salary DECIMAL(9,2))@

INSERT INTO employee VALUES (1, 'Mike', 35000),
(2, 'Susan', 35000)@

CREATE TABLE former_employee (id INT, name VARCHAR(10))@

CREATE TYPE empRow AS ROW ANCHOR ROW OF employee@
CREATE PROCEDURE ADD_EMP (IN newEmp empRow)
BEGIN

INSERT INTO employee VALUES newEmp;
END@

CREATE PROCEDURE NEW_HIRE (IN newName VARCHAR(10))
BEGIN

DECLARE newEmp empRow;
DECLARE maxID INT;

-- Find the current maximum ID;
SELECT MAX(id) INTO maxID FROM employee;

SET (newEmp.id, newEmp.name, newEmp.salary)
= (maxID + 1, newName, 30000);

-- Call a procedure to insert the new employee
CALL ADD_EMP (newEmp);

END@

CREATE PROCEDURE FIRE_EMP (IN empID INT)
BEGIN

DECLARE emp empRow;

-- SELECT INTO a row variable
SELECT * INTO emp FROM employee WHERE id = empID;

DELETE FROM employee WHERE id = empID;

INSERT INTO former_employee VALUES (emp.id, emp.name);
END@

CALL NEW_HIRE('Adam')@

CALL FIRE_EMP(1)@

SELECT * FROM employee@

SELECT * FROM former_employee@

The following is the output of running the script from the CLP in verbose mode:
CREATE TABLE employee (id INT, name VARCHAR(10), salary DECIMAL(9,2))
DB20000I The SQL command completed successfully.

Chapter 1. SQL PL support 19

INSERT INTO employee VALUES (1, 'Mike', 35000), (2, 'Susan', 35000)
DB20000I The SQL command completed successfully.

CREATE TABLE former_employee (id INT, name VARCHAR(10))
DB20000I The SQL command completed successfully.

CREATE TYPE empRow AS ROW ANCHOR ROW OF employee
DB20000I The SQL command completed successfully.

CREATE PROCEDURE ADD_EMP (IN newEmp empRow)
BEGIN

INSERT INTO employee VALUES newEmp;
END
DB20000I The SQL command completed successfully.

CREATE PROCEDURE NEW_HIRE (IN newName VARCHAR(10))
BEGIN

DECLARE newEmp empRow;
DECLARE maxID INT;

-- Find the current maximum ID;
SELECT MAX(id) INTO maxID FROM employee;

SET (newEmp.id, newEmp.name, newEmp.salary) = (maxID + 1, newName, 30000);

-- Call a procedure to insert the new employee
CALL ADD_EMP (newEmp);

END
DB20000I The SQL command completed successfully.

CREATE PROCEDURE FIRE_EMPLOYEE (IN empID INT)
BEGIN

DECLARE emp empRow;

-- SELECT INTO a row variable
SELECT * INTO emp FROM employee WHERE id = empID;

DELETE FROM employee WHERE id = empID;

INSERT INTO former_employee VALUES (emp.id, emp.name);
END
DB20000I The SQL command completed successfully.

CALL NEW_HIRE('Adam')

Return Status = 0

CALL FIRE_EMPLOYEE(1)

Return Status = 0

SELECT * FROM employee

ID NAME SALARY
----------- ---------- -----------

2 Susan 35000.00
3 Adam 30000.00

2 record(s) selected.

SELECT * FROM former_employee

ID NAME

20 SQL Procedural Languages: Application Enablement and Support

----------- ----------
1 Mike

1 record(s) selected.

Example: Row data type use in an SQL function:

Row data types can be used in SQL functions to construct, store, or modify record
data.

Variables based on row data types can be used as a simple way to hold a row
value that has the same format as a table. When used in this way, it is helpful to
initialize the row variable upon its first use.

The following is an example of a DB2 CLP script that contains SQL statements that
create a table, a row data type, and a function that includes the declaration of a
row variable, a row reference and an invocation of the UDF:
CREATE TABLE t1 (deptNo VARCHAR(3),

reportNo VARCHAR(3),
deptName VARCHAR(29),
mgrNo VARCHAR (8),
location VARCHAR(128))@

INSERT INTO t1 VALUES ('123', 'MM1', 'Sales-1', '0112345', 'Miami')@
INSERT INTO t1 VALUES ('456', 'MM2', 'Sales-2', '0221345', 'Chicago')@
INSERT INTO t1 VALUES ('789', 'MM3', 'Marketing-1', '0331299', 'Toronto')@

CREATE TYPE deptRow AS ROW (r_deptNo VARCHAR(3),
r_reportNo VARCHAR(3),
r_depTName VARCHAR(29),
r_mgrNo VARCHAR (8),
r_location VARCHAR(128))@

CREATE FUNCTION getLocation(theDeptNo VARCHAR(3),
reportNo VARCHAR(3),
theName VARCHAR(29))

RETURNS VARCHAR(128)
BEGIN

-- Declare a row variable
DECLARE dept deptRow;

-- Assign values to the fields of the row variable
SET dept.r_deptno = theDeptNo;
SET dept.r_reportNo = reportNo;
SET dept.r_deptname = theName;
SET dept.r_mgrno = '';
SET dept.r_location = '';

RETURN
(SELECT location FROM t1 WHERE deptNo = dept.r_deptno);

END@

VALUES (getLocation ('789', 'MM3','Marketing-1'))@

When executed this CLP script creates a table, inserts rows into the table, creates a
row data type, and a UDF.

The function getLocation is an SQL UDF that declares a row variable and assigns
values to it fields using the input parameter values. It references one of the fields
in the row variable within the SELECT statement that defines the scalar value
returned by the function.

Chapter 1. SQL PL support 21

When the VALUES statement is executed at the end of the script, the UDF is
invoked and the scalar return value is returned.

The following is the output of running this script from the CLP:
CREATE TABLE t1 (deptNo VARCHAR(3), reportNo VARCHAR(3),
deptName VARCHAR(29), mgrNo VARCHAR (8), location VARCHAR(128))
DB20000I The SQL command completed successfully.

INSERT INTO t1 VALUES ('123', 'MM1', 'Sales-1', '0112345', 'Miami')
DB20000I The SQL command completed successfully.

INSERT INTO t1 VALUES ('456', 'MM2', 'Sales-2', '0221345', 'Chicago')
DB20000I The SQL command completed successfully.

INSERT INTO t1 VALUES ('789', 'MM3', 'Marketing-1', '0331299', 'Toronto')
DB20000I The SQL command completed successfully.

CREATE TYPE deptRow AS ROW (r_deptNo VARCHAR(3), r_reportNo VARCHAR(3), r_depTNa
me VARCHAR(29), r_mgrNo VARCHAR (8), r_location VARCHAR(128))
DB20000I The SQL command completed successfully.

CREATE FUNCTION getLocation(theDeptNo VARCHAR(3),
reportNo VARCHAR(3),
theName VARCHAR(29))

RETURNS VARCHAR(128)
BEGIN

DECLARE dept deptRow;
SET dept.r_deptno = theDeptNo;
SET dept.r_reportNo = reportNo;
SET dept.r_deptname = theName;
SET dept.r_mgrno = '';
SET dept.r_location = '';

RETURN
(SELECT location FROM t1 WHERE deptNo = dept.r_deptno);

END
DB20000I The SQL command completed successfully.

VALUES (getLocation ('789', 'MM3','Marketing-1'))

1

--
--
Toronto

1 record(s) selected.

Array types
An array type is a user-defined data type consisting of an ordered set of elements
of a single data type.

An ordinary array type has a defined upper bound on the number of elements and
uses the ordinal position as the array index.

An associative array type has no specific upper bound on the number of elements
and each element has an associated index value. The data type of the index value
can be an integer or a character string but is the same data type for the entire
array.

22 SQL Procedural Languages: Application Enablement and Support

An array type can be used as the type for global variables, SQL variables, and SQL
parameters in SQL PL to provide flexible manipulation of a collection of values of
a single data type.

Comparison of arrays and associative arrays
Simple arrays and associative arrays differ in multiple ways. Understanding the
differences can help you to choose the right data type to use.

The following table highlights the differences between arrays and associative
arrays:

Table 1. Comparison of arrays and associative arrays

Arrays Associative arrays

The maximum cardinality of a simple array is defined
when the simple array is defined. When a value is
assigned to index N, the elements with indices between
the current cardinality of the array and N are implicitly
initialized to NULL.

There is no user-specified maximum cardinality and no
elements are initialized when an associative array
variable is declared. The maximum cardinality is limited
by the available free memory.

The index data type for a simple array must be an
integer value.

The index type for an associative array can be one of a
set of supported data types.

The index values in a simple array must be a contiguous
set of integer values.

In an associative array the index values can be sparse.

The CREATE TYPE statement for a simple array does not
require the specification of the array cardinality. For
example, in this statement, no cardinality is specified:

CREATE TYPE simple AS INTEGER ARRAY[];

In the CREATE TYPE statement for an associative array,
instead of requiring a specification of the array
cardinality, the index data type is required. For example,
in this statement, the cardinality for the index data type
is specified as INTEGER:

CREATE TYPE assoc AS INTEGER ARRAY[INTEGER];

A first assignment to a simple array results in the
initialization of array elements with index values
between 1 and the index value assigned to the array. The
following compound SQL (compiled) statement contains
the declaration of a simple array variable and the
assignment of a value to the variable:

BEGIN
DECLARE mySimpleA simple;

SET mySimpleA[100] = 123;

END

After the execution of the assignment statement, the
cardinality of mySimpleA is 100; the elements with indices
with values 1 to 99 are implicitly initialized to NULL.

A first assignment to an associative array results in the
initialization of a single element with a single index
value. The following compound SQL (compiled)
statement contains the declaration of an associative array
variable and the assignment of a value to the variable:

BEGIN
DECLARE myAssocA assoc;

SET myAssocA[100] = 123;
END

After the execution of the assignment statement, the
cardinality of the array is 1.

Example

Ordinary array data type
An ordinary array data type is a structure that contains an ordered collection of
data elements in which each element can be referenced by its ordinal position in
the collection.

If N is the cardinality (number of elements) in an array, the ordinal position
associated with each element, called the index, is an integer value greater than or
equal to 1 and less than or equal to N. All elements in an array have the same data
type.

Chapter 1. SQL PL support 23

Features of the array data type:

The many features of the array data type make it ideal for use in SQL PL logic.

An array type is a data type that is defined as an array of another data type.

Every array type has a maximum cardinality, which is specified on the CREATE
TYPE statement. If A is an array type with maximum cardinality M, the cardinality
of a value of type A can be any value between 0 and M, inclusive. Unlike the
maximum cardinality of arrays in programming languages such as C, the
maximum cardinality of SQL arrays is not related to their physical representation.
Instead, the maximum cardinality is used by the system at run time to ensure that
subscripts are within bounds. The amount of memory required to represent an
array value is usually proportional to its cardinality, and not to the maximum
cardinality of its type.

When an array is being referenced, all of the values in the array are stored in main
memory. Therefore, arrays that contain a large amount of data will consume large
amounts of main memory.

Array element values can be retrieved by specifying the element's corresponding
index value.

Array data types are useful when you want to store a set of values of a single data
type. This set of values can be used to greatly simplify the passing of values to
routines, because a single array value can be passed instead of multiple, possibly
numerous, individual parameters.

Array data types differ from associative array data types. Whereas array data types
are a simple collection of values, associative arrays are conceptually like an array
of arrays. That is associative arrays are ordered arrays that contain zero or more
subarray elements, such that the array elements are accessed by a primary index
and the subarray elements are accessed by a subindex.

Restrictions on the array data type:

It is important to note the restrictions on the array data type before you use it or
when troubleshooting problems with their declaration or use.

The following restrictions apply to the array data type:
v Use of the array data type in dynamic compound statements is not supported.
v Use of the ARRAY_AGG function outside of SQL procedures is not supported.
v Use of the UNNEST function outside of SQL procedures is not supported.
v Use of parameters of the array data type in external procedures other than Java™

procedures is not supported.
v The casting of an array to any data type other than a user-defined arrays data

type is not supported.
v The containment of elements of any data type other than that specified for the

array is not supported.
v The casting of an array with a cardinality larger than that of the target array is

not supported.
v The use of arrays as parameters or return types in methods is not supported.
v The use of arrays as parameters or return types in sourced or template functions

is not supported.

24 SQL Procedural Languages: Application Enablement and Support

v The use of arrays as parameters or return types in external scalar or external
table functions is not supported.

v The use of arrays as parameters or return types in SQL scalar functions, SQL
table functions, or SQL row functions is not supported.

v The assignment or casting of the result value of a TRIM_ARRAY function to any
data type other than an array is not supported.

v The assignment or casting of the result value of an ARRAY constructor or an
ARRAY_AGG function to any data type other than an array is not supported.

v

Array variables:

Array variables are variables based on user-defined array data types. Array
variables can be declared, assigned a value, set to another value, or passed as a
parameter to and from SQL procedures.

Array variables inherit the properties of the array data types upon which they are
based. Array variables are used to hold a set of data of the same data type.

Local array variables can be declared within SQL procedures using the DECLARE
statement.

Global array variables can be created using the CREATE VARIABLE statement.

Creating array variables:

To create array variables you must first create the array type and then declare the
local array variable or create the global array variable.

The following topics show you how to create array data types and array variables:

Creating an array data type (CREATE TYPE statement):

Creating an array data type is a task that you would perform as a prerequisite to
creating a variable of the array data type.

Before you create an array data type, ensure that you have the privileges required
to execute the CREATE TYPE statement.

Array data types can only be created in SQL PL contexts where execution of the
CREATE TYPE statement is supported.

Restrictions

See: “Restrictions on the array data type” on page 24
1. Define the CREATE TYPE statement

a. Specify a name for the array data type.
b. Specify the AS keyword followed by the keyword name for the data type of

the array element. For example, INTEGER, VARCHAR.
c. Specify the ARRAY keyword and the domain of the subindices in the array.

For example, if you specify 100, the valid indices will be from 1 to 100. This
number is the same as the cardinality of the array - the number of elements
in the array.

2. Execute the CREATE TYPE statement from a supported interface.

Chapter 1. SQL PL support 25

The CREATE type statement should execute successfully and the array type should
be created.

Example 1:

CREATE TYPE simpleArray AS INTEGER ARRAY[100];

This array data type can contain up to 100 integer values indexed by integer values
ranging from 1 to 100.
Example 2:

CREATE TYPE id_Phone AS VARCHAR(20) ARRAY[100];

This array data type can contain up to 100 phone values stored as VARCHAR(20)
data type values indexed by integer values ranging from 1 to 100.

After creating the array data type you can declare an array variable.

Declaring local variables of type array:

Declaring array data type variables is a task that you perform after creating array
data types if you want to be able to temporarily store or pass array data type
values.

Before you create a local variable of type row:
v Read: Array data types
v Read: “Restrictions on the array data type” on page 24
v Read: “Creating an array data type (CREATE TYPE statement)” on page 25
v Ensure that you have the privileges required to execute the DECLARE

statement.

Declaring array data types can be done in supported contexts including within:
SQL procedures, SQL functions, and triggers.
1. Define the DECLARE statement.

a. Specify a name for the array data type variable.
b. Specify the name of the array data type that you used when you created the

array data type.
If the array data type was declared using the following CREATE TYPE
statement:
CREATE TYPE simpleArray AS INTEGER ARRAY[10];

You would declare a variable of this data type as follows:
DECLARE myArray simpleArray;

If the array data type was declared using the following CREATE TYPE
statement:
CREATE TYPE id_Phone AS VARCHAR(20) ARRAY[100];

You would create a variable of this data type as follows:
DECLARE id_Phone_Toronto_List id_Phone;

This array can contain up to 100 phone values stored as VARCHAR(20) data
type values indexed by integer values ranging from 1 to 100. The variable name
indicates that the phone values are Toronto phone numbers.

26 SQL Procedural Languages: Application Enablement and Support

2. Include the DECLARE statement within a supported context. This can be
within a CREATE PROCEDURE, CREATE FUNCTION, or CREATE TRIGGER
statement.

3. Execute the statement which contains the DECLARE statement.

The statement should execute successfully.

If the statement does not execute successfully due to an error with the DECLARE
statement:
v Verify the SQL statement syntax of the DECLARE statement and execute the

statement again.
v Verify that no other variable with the same name has already been declared

within the same context.
v Verify that the array data type was created successfully.

After declaring associative array variables, you might want to assign values to
them.

Assigning values to arrays:

Values can be assigned to arrays in multiple ways. The following topics show you
how to assign values to arrays:

Assigning array values using the subindex and literal values:

Values can be assigned to associative arrays using subindices and literal values.
v Read: “Ordinary array data type” on page 23
v Read: “Restrictions on the array data type” on page 24
v Privileges required to execute the SET statement

You would perform this task before performing SQL PL that is conditional on the
variable having an assigned value or before passing the variable as a parameter to
a routine.
1. Define a SET statement.

a. Specify the array variable name.
b. Specify the assignment symbol, '=".
c. Specify the ARRAY keyword and specify within the required brackets sets

of paired values.
2. Execute the SET statement.

The following is an example of how to assign element values to an array named,
myArray:
SET myArray[1] = 123;
SET myArray[2] = 124;
...
SET myArray[100] = 223;

If the SET statements execute successfully, the array elements have been defined
successfully. To validate that the array was created you can attempt to retrieve
values from the array.

If the SET statement failed to execute successfully:

Chapter 1. SQL PL support 27

v Verify the SQL statement syntax of the SET statement and execute the statement
again.

v Verify that the data type was created successfully.

Retrieving array values:

Retrieving array values can be done in multiple ways. The following topics show
you how to retrieve values from arrays:

Retrieving array values using an index:

Retrieving array element values can be done directly by referencing the array and
specifying a sub-index value.

The following are prerequisites to this task:
v Read: “Ordinary array data type” on page 23
v Read: “Restrictions on the array data type” on page 24
v Privileges required to execute the SET statement or any SQL statement that

contains the array reference

You would perform this task within SQL PL code in order to access values stored
within an array. You might access the array element value as part of an assignment
(SET) statement or directly within an expression.
1. Define a SET statement.

a. Specify a variable name of the same data type as the array element.
b. Specify the assignment symbol, "=".
c. Specify the name of the array, square brackets, and within the square

brackets an index value.
2. Execute the SET statement.

The following is an example of a SET statement that retrieves an array value:
SET mylocalVar = myArray[1];

If the SET statement executes successfully, the local variable should contain the
array element value.

If the SET statement failed to execute successfully:
v Verify the SQL statement syntax of the SET statement and execute the statement

again.
v Verify that the variable is of the same data type as the array element.
v Verify that the array was created successfully and currently exists.

Retrieving the number of array elements:

Retrieving the number of array elements in a simple array can most easily be done
by using the CARDINALITY function and retrieving the maximum allowed size of
an array can be done using the MAX_CARDINALITY function.
v Read: “Ordinary array data type” on page 23
v Read: “Restrictions on the array data type” on page 24
v Privileges required to execute the SET statement

28 SQL Procedural Languages: Application Enablement and Support

You would perform this task within SQL PL code in order to access a count value
of the number of elements in an array. You might access the array element value as
part of an assignment (SET) statement or access the value directly within an
expression.
1. Define a SET statement.

a. Declare and specify a variable name of type integer that will hold the
cardinality value.

b. Specify the assignment symbol, ‘='.
c. Specify the name of the CARDINALITY or MAX_CARDINALTIY function

and within the required brackets, the name of the array.
2. Execute the SET statement.

If the SET statement executes successfully, the local variable should contain the
count value of the number of elements in the array.

The following is an example of two SET statements that demonstrate these
assignments:
SET card = CARDINALITY(arrayName);

SET maxcard = MAX_CARDINALITY(arrayName);

If the SET statement failed to execute successfully:
v Verify the SQL statement syntax of the SET statement and execute the statement

again.
v Verify that the local variable is of the integer data type.
v Verify that the array was created successfully and currently exists.

Retrieving the first and last array elements (FIRST, LAST functions):

Retrieving the first and last elements in a simple array can most easily be done by
using the FIRST and LAST functions.
v Read: “Ordinary array data type” on page 23
v Read: “Restrictions on the array data type” on page 24
v Privileges required to execute the SET statement

You would perform this task within SQL PL code in order to quickly access the
first element in an array.

Define a SET statement:
1. Declare and specify a variable that is of the same type as the array element.
2. Specify the assignment symbol, ‘='.
3. Specify the name of the FIRST or LAST function and within the required

brackets, the name of the array.

If the SET statement executes successfully, the local variable should contain the
value of the first or last (as appropriate) index value in the array.

For an array of phone numbers defined as:
firstPhone index 0 1 2 3

phone '416-223-2233' '416-933-9333' '416-887-8887' '416-722-7227'

If the following SQL statement is executed:
SET firstPhoneIx = FIRST(phones);

Chapter 1. SQL PL support 29

The variable firstPhoneIx will have the value 0. This would be true even if the
element value in this position was NULL.

The following SET statement accesses the element value in the first position in the
array:
SET firstPhone = A[FIRST(A)]

If the SET statement failed to execute successfully:
v Verify the SQL statement syntax of the SET statement and execute the statement

again.
v Verify that the local variable is of the correct data type.
v Verify that the array was created successfully and currently exists.

Retrieving the next and previous array elements:

Retrieving the next or previous elements in a simple array can most easily be done
by using the PREV and NEXT functions.
v Read: “Ordinary array data type” on page 23
v Read: “Restrictions on the array data type” on page 24
v Privileges required to execute the SET statement

You would perform this task within SQL PL code in order to quickly access the
immediately adjacent element value in an array.
1. Define a SET statement:

a. Declare and specify a variable that is of the same type as the array element.
b. Specify the assignment symbol, ‘='.
c. Specify the name of the NEXT or PREV function and within the required

brackets, the name of the array.
2. Execute the SET statement.

For an array of phone numbers defined as:
firstPhone index 0 1 2 3

phone '416-223-2233' '416-933-9333' '416-887-8887' '416-722-7227'

The following SQL statement sets the variable firstPhone to the value 0..
SET firstPhone = FIRST(phones);

The following SQL statement sets the variable nextPhone to the value 1.
SET nextPhone = NEXT(phones, firstPhone);

The following SQL statement sets the variable phoneNumber to the value of the
phone number at the next position in the array after nextPhone. This is the array
element value at index value position 2.
SET phoneNumber = phones[NEXT(phones, nextPhone)];

If the SET statement failed to execute successfully:
v Verify the SQL statement syntax of the SET statement and execute the statement

again.
v Verify that the local variable is of the correct data type.
v Verify that the array was created successfully and currently exists.

Trimming the array (TRIM_ARRAY function):

30 SQL Procedural Languages: Application Enablement and Support

Trimming an array is a task that you would perform using the TRIM_ARRAY
function when you want to remove unnecessary array elements from the end of an
array.
v Read: Array data types
v Read: Restrictions on array data types
v Privileges required to execute the SET statement

You would perform this task within SQL PL code in order to quickly remove array
elements from the end of an array.
1. Define a SET statement:

a. Declare and specify an array variable that is of the same type as the array
to be modified, or re-use the same array variable.

b. Specify the assignment symbol, ‘='.
c. Specify the name of the TRIM_ARRAY function and within the required

brackets, the name of the array and the number of elements to be trimmed.
2. Execute the SET statement.

If the SET statement executes successfully, the array phones should contain the
updated value.

For an array of phone numbers defined as:
phones index 0 1 2 3

phone '416-223-2233' '416-933-9333' '416-887-8887' '416-722-7227'

After executing the following:
SET phones = TRIM_ARRAY (phones, 2);

The array, phones, will be defined as:
phones index 0 1

phone '416-223-2233' '416-933-9333'

If the SET statement failed to execute successfully:
v Verify the SQL statement syntax of the SET statement and execute the statement

again.
v Verify that the local variable is of the correct data type.
v Verify that the array was created successfully and currently exists.

Deleting an array element (ARRAY_DELETE):

Deleting an element permanently from an array can be done using the
ARRAY_DELETE function.
v Read: Array data types
v Read: Restrictions on array data types
v Privileges required to execute the SET statement

You would perform this task within SQL PL code in order to delete an element in
an array.
1. Define a SET statement:

a. Declare and specify a variable that is of the same type as the array element.
b. Specify the assignment symbol, ‘='.

Chapter 1. SQL PL support 31

c. Specify the name of the ARRAY_DELETE function and within the required
brackets, the name of the array, and the subindices that define the range of
the elements to be deleted.

2. Execute the SET statement.

If the SET statement executes successfully, the array phones should contain the
updated value.

For an array of phone numbers defined as:
phones index 0 1 2 3

phone '416-223-2233' '416-933-9333' '416-887-8887' '416-722-7227'

After executing the following SQL statement:
SET phones = ARRAY_DELETE (phones, 1, 2);

The array, phones, will be defined as:
phones index 0 3

phone '416-223-2233' '416-722-7227'

If the SET statement failed to execute successfully:
v Verify the SQL statement syntax of the SET statement and execute the statement

again.
v Verify that the local variable is of the correct data type.
v Verify that the array was created successfully and currently exists.

Determining if an array element exists:

Determining if an array element exists and has a value is a task that can be done
using the ARRAY_EXISTS function.
v Read: “Ordinary array data type” on page 23
v Read: “Restrictions on the array data type” on page 24
v Privileges required to execute the IF statement or any SQL statement in which

the ARRAY_EXISTS function is referenced.

You would perform this task within SQL PL code in order to determine if an array
element exists within an array.
1. Define an IF statement:

a. Define a condition that includes the ARRAY_EXISTS function.
b. Specify the THEN clause and include any logic that you want to have

performed if the condition is true and add any ELSE caluse values you
want.

c. Close the IF statement with the END IF clause.
2. Execute the IF statement.

For an array of phone numbers defined as:
phones index 0 1 2 3

phone '416-223-2233' '416-933-9333' '416-887-8887' '416-722-7227'

After executing the following, the variable x will be set to 1.
IF (ARRAY_EXISTS(phones, 2)) THEN

SET x = 1;
END IF;

32 SQL Procedural Languages: Application Enablement and Support

If the SET statement failed to execute successfully:
v Verify the SQL statement syntax of the SET statement and execute the statement

again.
v Verify that the local variable is of the correct data type.
v Verify that the array was created successfully and currently exists.

Array support in SQL procedures:

SQL procedures support parameters and variables of array types. Arrays are a
convenient way of passing transient collections of data between an application and
a stored procedure or between two stored procedures.

Within SQL stored procedures, arrays can be manipulated as arrays in
conventional programming languages. Furthermore, arrays are integrated within
the relational model in such a way that data represented as an array can be easily
converted into a table and data in a table column can be aggregated into an array.
The examples below illustrate several operations on arrays. Both examples are
command line processor (CLP) scripts that use the percentage character (%) as a
statement terminator.

Example 1

This example shows two procedures, sub and main. Procedure main creates an
array of 6 integers using an array constructor. It then passes the array to procedure
sum, which computes the sum of all the elements in the input array and returns
the result to main. Procedure sum illustrates the use of array subindexing and of
the CARDINALITY function, which returns the number of elements in an array.
create type intArray as integer array[100] %

create procedure sum(in numList intArray, out total integer)
begin
declare i, n integer;

set n = CARDINALITY(numList);

set i = 1;
set total = 0;

while (i <= n) do
set total = total + numList[i];
set i = i + 1;
end while;

end %

create procedure main(out total integer)
begin
declare numList intArray;

set numList = ARRAY[1,2,3,4,5,6];

call sum(numList, total);

end %

Example 2

In this example, we use two array data types (intArray and stringArray), and a
persons table with two columns (id and name). Procedure processPersons adds

Chapter 1. SQL PL support 33

three additional persons to the table, and returns an array with the person names
that contain letter 'o', ordered by id. The ids and name of the three persons to be
added are represented as two arrays (ids and names). These arrays are used as
arguments to the UNNEST function, which turns the arrays into a two-column
table, whose elements are then inserted into the persons table. Finally, the last set
statement in the procedure uses the ARRAY_AGG aggregate function to compute
the value of the output parameter.
create type intArray as integer array[100] %
create type stringArray as varchar(10) array[100] %

create table persons (id integer, name varchar(10)) %
insert into persons values(2, 'Tom') %
insert into persons values(4, 'Jill') %
insert into persons values(1, 'Joe') %
insert into persons values(3, 'Mary') %

create procedure processPersons(out witho stringArray)
begin
declare ids intArray;
declare names stringArray;

set ids = ARRAY[5,6,7];
set names = ARRAY['Bob', 'Ann', 'Sue'];

insert into persons(id, name)
(select T.i, T.n from UNNEST(ids, names) as T(i, n));

set witho = (select array_agg(name order by id)
from persons
where name like '%o%');
end %

Associative array data type
An associative array data type is a data type used to represent a generalized array
with no predefined cardinality. Associative arrays contain an ordered set of zero or
more elements of the same data type, where each element is ordered by and can be
referenced by an index value.

The index values of associative arrays are unique, are of the same data type, and
do not have to be contiguous.

The following topics provide more information about the associative array data
type:

Features of associative arrays:

The associative array data type is used to represent associative arrays. It has many
features which contribute to its utility.

The associative array data type supports the following associative array properties:
v No predefined cardinality is specified for associative arrays. This enables you to

continue adding elements to the array without concern for a maximum size
which is useful if you do not know in advance how many elements will
constitute a set.

v The array index value can be a non integer data type. VARCHAR and INTEGER
are supported index values for the associative array index.

v Index values do not have to be contiguous. In contrast to a conventional array
which is indexed by position, an associative array is an array that is indexed by
values of another data type and there are not necessarily index elements for all

34 SQL Procedural Languages: Application Enablement and Support

possible index values between the lowest and highest. This is useful if for
example you want to create a set that stores names and phone numbers. Pairs of
data can be added to the set in any order and be sorted using which ever data
item in the pair is defined as the index.

v The elements in an associative array are sorted in ascending order of index
values. The insertion order of elements does not matter.

v Associative array data can be accessed and set using direct references or by
using a set of available scalar functions.

v Associative arrays are supported in SQL PL contexts.
v Associative arrays can be used to manage and pass sets of values of the same

kind in the form of a collection instead of having to:
– Reduce the data to scalar values and use one-element-at-a-time processing

which can cause network traffic problems.
– Use cursors passed as parameters.
– Reduce the data into scalar values and reconstitute them as a set using a

VALUES clause.

Restrictions on associative array data types:

It is important to note the restrictions on the array data type before you use it or
when troubleshooting problems with their declaration or use.

The following restrictions apply to the array data type:
v An associative array can only be declared, created, or referenced in SQL PL

contexts. The following is a list of SQL PL contexts in which this data type can
be used:
– Parameter to an SQL function that is defined in a module.
– Parameter to an SQL function that is not defined in a module, but that has a

compound SQL (compiled) statement as function body not defined in a
module.

– Return type from an SQL functions that is defined in a module.
– Return type from an SQL function that is not defined in a module, but that

has a compound SQL (compiled) statement as function body.
– Parameter to an SQL procedure.
– Local variable declared in an SQL function that is defined in a module.
– Local variable declared in an SQL function that is not defined in a module,

but that has a compound SQL (compiled) statement as function body.
– Local variable declared in an SQL procedure.
– Local variable declared in a trigger with a compound SQL (compiled)

statement as trigger body.
– Expressions in SQL statements within compound compiled (SQL) statements.
– Expressions in SQL statements in SQL PL contexts.
– Global variable.

Any use outside of one of the above SQL PL contexts is not valid.
v Associative arrays cannot be the type of a table column.
v NULL is not permitted as an index value.
v The maximum size of an associative array is limited by system resources.
v Associative arrays can not be input to the TRIM_ARRAY function. Associative

array values cannot be stored in table columns.

Chapter 1. SQL PL support 35

v The MAX_CARDINALITY function is supported for use with associative arrays,
but always returns null because associative arrays do not have a specified
maximum size.

Creating an associative array data type:

Creating an associative array data type is a task that you would perform as a
prerequisite to creating a variable of the associative array data type. Associative
array data types are created by executing the CREATE TYPE (array) statement.

Ensure you have the privileges required to execute the CREATE TYPE statement.

Associative array data types can only be used in certain contexts.
1. Define the CREATE TYPE statement:

a. Specify a name for the associative array data type. A good name is one that
clearly specifies the type of data stored in the array. For example: Products
might be a good name for an array that contains information about
products where the array index is the product identifier. As another
example, the name y_coordinate might be a good name for an array where
the array index is the x coordinate value in a graph function.

a. Specify the AS keyword followed by the keyword name for the data type of
the array elements (e.g. INTEGER).

b. Specify the ARRAY keyword. Within the square brackets of the ARRAY
clause, specify the data type of the array index. Note: With associative
arrays, there is no explicit limit on the number of. elements or on the
domain of the array index values.

2. Execute the CREATE TYPE statement from a supported interface.

Example 1:
The following is an example of a CREATE TYPE statement that creates an array
named assocArray with 20 elements and a array index of type VARCHAR.
CREATE TYPE assocArray AS INTEGER ARRAY[VARCHAR(20)];

Example 2:
The following is an example of a basic associative array definition that uses the
names of provinces for indices and where the elements are capital cities:
CREATE TYPE capitalsArray AS VARCHAR(12) ARRAY[VARCHAR(16)];

If the statement executes successfully the array data type is created in the database
and the array data type can be referenced..

After creating the array data type you might want to create an associative array
variable.

Declaring associative array variables:

Declaring associative array variables is a task that you perform after creating
associative array data typeso be able to temporarily store or pass associative array
data type values. Local variables are declared using the DECLARE statement.
Global variables are created using the CREATE VARIABLE statement.
v Read: Associative array data types
v Read: Restrictions on associative array data types
v Read: Creating the associative array data type

36 SQL Procedural Languages: Application Enablement and Support

v For global variables, you require the privilege to execute the CREATE
VARIABLE statement. For local variables, no privileges required to execute the
DECLARE statement

Associative array variables can be declared and used in supported contexts to store
sets of row data.
1. Define the DECLARE statement for a local variable or the CREATE TYPE

statement for a global variable:
a. Specify a name for the associative array data type.
b. Specify the name of the associative array data type that you used when you

created the associative array data type.
2. Execute the CREATE TYPE statement from a supported interface.

Example 1:
Consider an associative array data type defined as:
CREATE TYPE Representative_Location AS VARCHAR(20) ARRAY[VARCHAR(30)];

To declare a variable of this data type you would use the DECLARE statement as
follows:
DECLARE RepsByCity Representative_Location;

This array can contain up to the maximum number of associative array element
values stored as VARCHAR(20) data type values indexed by unique variable
character data type values. The variable name indicates that a set of names of sales
representatives is indexed by the name of the city that they represent. In this array,
no two sales representative names can be represented by the same city which is the
array index value.

Example 2:
Consider an associative array data type defined to store as element values, the
names of capital cities, where the indices are province names:
CREATE TYPE capitalsArray AS VARCHAR(12) ARRAY[VARCHAR(16)];

To create a variable of this data type you would use the CREATE VARIABLE
statement as follows:
CREATE VARIABLE capitals capitalsArray;

This array can contain up to the maximum number of associative array element
values stored as VARCHAR(20) data type values indexed by unique variable
character data type values. The variable name indicates that a set of names of sales
representatives is indexed by the name of the city that they represent. In this array,
no two sales representative names can be represented by the same city which is the
array index value.

If the DECLARE statement or CREATE VARIABLE statement executes successfully,
the array data type will have been defined successfully and can be referenced. To
validate that the associative array variables was created you can assign values to
the array or attempt to reference values in the array.

If the DECLARE statement or CREATE VARIABLE statement failed to execute
successfully, verify the SQL statement syntax of the DECLARE statement and
execute the statement again. See the DECLARE statement.

Assigning values to arrays using subindices and literal values:

Chapter 1. SQL PL support 37

Once an associative array variable has been created or declared, values can be
assigned to it. One way of assigning values to associative arrays is by direct
assignment.
v Read: Associative array data types
v Read: Restrictions on associative array data types
v Ensure that an associative array variable is in the current scope of use.

Assigning values to associative array variable elements can be done by using the
assignment statement in which the array is named, the index value is specified and
the corresponding element value is assigned.
1. Define the assignment statement for an associative array variable.
v Specify the variable name, the index value, and the element value.
v Specify another associative array variable.

2. Execute the assignment statement from a supported interface.

Example 1:
The following is an example of a variable declaration and a series of assignment
statements that define values in the array:
DECLARE capitals capitalsArray;

SET capitals['British Columbia'] = 'Victoria';
SET capitals['Alberta'] = 'Edmonton';
SET capitals['Manitoba'] = 'Winnipeg';
SET capitals['Ontario'] = 'Toronto';
SET capitals['Nova Scotia'] = 'Halifax';

In the capitals array, the array index values are province names and the associated
array element values are the names of the corresponding capital cities. Associative
arrays are sorted in ascending order of index value. The order in which values are
assigned to associative array elements does not matter.

Example 2:
An associative array variable can also be assigned an associative array variable
value of the same associative array data type. This can be done using the
assignment statement. For example, consider two associative array variables,
capitalsA and capitalsB defined as:
DECLARE capitalsA capitalsArray;
DECLARE capitalsB capitalsArray;

SET capitalsA['British Columbia'] = 'Victoria';
SET capitalsA['Alberta'] = 'Edmonton';
SET capitalsA['Manitoba'] = 'Winnipeg';
SET capitalsA['Ontario'] = 'Toronto';
SET capitalsA['Nova Scotia'] = 'Halifax';

The variable capitalsB can be assigned the value of the variable capitalsA by
executing the following assignment statement:
SET capitalsB = capitalsA;

Once executed, capitalsB will have the same value as capitalsA.

If the assignment statement executes successfully, the value has been successfully
assigned and the new variable value can be referenced.

38 SQL Procedural Languages: Application Enablement and Support

If the statement failed to execute successfully, verify and correct the SQL statement
syntax and verify that the variables named are defined before executing the
statement again.

Cursor types
A cursor type can be the built-in data type CURSOR or a user-defined type that is
based on the built-in CURSOR data type. A user-defined cursor type can also be
defined with a specific row type to restrict the attributes of the result row of the
associated cursor.

When a cursor type is associated with a row data structure (specified by a row), it
is called a strongly typed cursor. Only result sets that match the definition can be
assigned to and stored in a variable of a strongly typed cursor data type. When no
result set definition is associated with a cursor data type definition, the cursor data
type is said to be weakly typed. Any result set can be stored in a variable of a
weakly typed cursor data type.

The cursor data type is only supported for use with SQL PL. It is primarily used to
create cursor type definitions that can be used for cursor variable declarations.

This data type can be used to:
v Define cursor variable declarations.
v Simplify the coding of logic within SQL Procedural Language applications. For

example, database applications process sets of records called result sets and in
some cases the same result set might need to be referenced and processed in
different contexts. Passing defined result sets between interfaces can require
complex logic. A cursor data type permits the creation of cursor variables which
can be used to store result sets, process result sets, and pass result sets as
parameters.

v Facilitate the porting to DB2 SQL PL of code which has a similar data type.

Cursor data types must be created using the CREATE TYPE statement. Once this is
done variables of this data type can be declared and referenced. Cursor variables
can be assigned a row data structure definition, opened, closed, assigned a set of
rows from another cursor variable, or be passed as a parameter from SQL
procedures.

Overview of cursor data types
This overview of cursor data types introduces the types of cursor data types, the
scope in which they can be used, as well as provides information about the
restrictions and privileges that pertain to their use.

Types of cursor data types:

There are two main types of cursor data types: weakly-typed cursor data types and
strongly-typed cursor data types. The property of being strongly or weakly typed
is defined when the data type is created. This property is maintained in variables
created of each type.

The characteristics of strongly-typed cursor data types and weakly typed cursor
data types are provided here:

Strongly-typed cursor data types
A strongly-typed cursor data type is one that is created with a result set
definition specified by a row data structure. These data types are called

Chapter 1. SQL PL support 39

strongly typed, because when result set values are assigned to them the
data types of the result sets can be checked. Cursor data type result set
definitions can be defined by providing a row type definition. Only result
sets that match the definition can be assigned to and stored in a strongly
typed cursor data type. Strong type checking is performed at assignment
time and if there are any data type mismatches, an error is raised.

Result set definitions for strongly-typed cursor data types can be provided
by a row data type definition or an SQL statement definition.

The following is an example of a cursor data type definition that is defined
to return a result set with the same row format as the rowType data type:
CREATE TYPE cursorType AS rowType CURSOR@

Only result sets that contain columns of data with the same data type
definition as the rowType row definition can be successfully assigned to
variables declared to be of the cursorType cursor data type.

The following is an example of a cursor data type definition that is defined
to return a result set with the same row format as that which defines table
T1:
CREATE TABLE T1 (C1 INT)

CREATE TYPE cursorType AS ANCHOR ROW OF t1 CURSOR;

Only result sets that contain columns of data with the same data type
definition as the column definition for the table t1 can be successfully
assigned to variables declared to be of the cursorType cursor data type.

The row definition associated with a strongly typed cursor can be
referenced as the definition of an anchored data type. The following
example illustrates this:
CREATE TYPE r1 AS ROW (C1 INT);
CREATE TYPE c1 AS RTEST CURSOR;

DECLARE c1 CTEST;
DECLARE r1 ANCHOR ROW OF CV1;

A row data type named r1 is defined, a cursor type named c1 associated
with the row definition of r1 is defined. The subsequent SQL statements
are examples of variable declarations might appear in an SQL procedure.
The second variable declaration is for a variable named r1 which is defined
to be of the anchored data type - it is anchored to the row type that was
used to define the cursor cv1.

Weakly-typed cursor data types
A weakly typed cursor type is not associated with any row data type
definition. No type checking is performed when values are assigned to
weakly typed cursor variables.

There is a system-defined weakly typed cursor data type named CURSOR
that can be used to declare weakly typed cursor variables or parameters.
The following is an example of a weakly typed cursor variable declaration
based on the system-defined weakly typed cursor data type CURSOR:
DECLARE cv1 CURSOR;

Weakly typed cursor variables are useful when you must store a result set
with an unknown row definition.
To return a weakly typed cursor variable as an output parameter, the
cursor must be opened.

40 SQL Procedural Languages: Application Enablement and Support

In this version, variables based on weakly typed cursor data types cannot
be referenced as anchored data types.
User-defined weakly typed cursor data types can be defined.

All other characteristics of cursor variables are common for each type of cursor
variable.

Restrictions on cursor data types:

Restrictions on cursor data types and cursor variables limit cursor variable
functionality as well as where cursor variables can be defined and referenced.

The restrictions on cursor data types and variables are important to note before
implementing them. The restrictions can be important in determining whether a
cursor variable is appropriate for your needs and can be useful to review when
troubleshooting errors related to cursor data type and variable use.

The following restrictions apply to cursor data types in this version:
v Cursor data types can only be created as local types in SQL procedures.

The following restrictions apply to cursor variables in this version:
v Cursor variables are not supported for use in applications. Cursor variables can

only be declared and referenced in SQL PL contexts.
v Cursor variables are read-only cursors.
v Rows accessed through the use of a cursor variable are not updatable.
v Cursor variables are not scrollable cursors.
v Strongly typed cursor variable columns cannot be referenced as anchored data

types.
v There is no support for global cursor variables.
v XML columns cannot be referenced in cursor variable definitions.
v XQuery language statements cannot be used to define strongly-typed cursor

result sets.

Privileges related to cursor data type use:

Specific privileges related to cursor data types and variables exist to restrict and
control who can create them.

To create cursor data types, you require the following privilege:
v Privilege to execute the CREATE TYPE statement to create a cursor data type.

To declare cursor variables based on existing cursor data types, no privileges are
required.

To initialize cursor variables, to open the cursor referenced by a cursor variable, or
to fetch values from an opened cursor variable reference, you require the same
privileges as are required to execute the DECLARE CURSOR statement.

Cursor variables
Cursor variables are cursors based on predefined cursor data type. Cursor
variables can be un-initialized, initialized, assigned a value, set to another value, or
passed as a parameter from SQL procedures. Cursor variables inherit the
properties of the cursor data types upon which they are based. Cursor variables

Chapter 1. SQL PL support 41

can be strongly-typed or weakly-typed. Cursor variables hold a reference to the
context of the cursor defined by the cursor data type.

Cursor variables can be declared within SQL procedures using the DECLARE
statement.

Cursor predicates
Cursor predicates are SQL keywords that can be used to determine the state of a
cursor defined within the current scope. They provide a means for easily
referencing whether a cursor is open, closed or if there are rows associated with
the cursor.

Cursor predicates can be referenced in SQL and SQL PL statements wherever the
status of a cursor can be used as a predicate condition. The cursor predicates that
can be used include:

IS OPEN
This predicate can be used to determine if the cursor is in an open state.
This can be a useful predicate in cases where cursors are passed as
parameters to functions and procedures. Before attempting to open the
cursor, this predicate can be used to determine if the cursor is already
open.

IS NOT OPEN
This predicate can be used to determine if the cursor is closed. Its value is
the logical inverse of IS OPEN. This predicate can be useful to determine
whether a cursor is closed before attempting to actually close the cursor.

IS FOUND
This predicate can be used to determine if the cursor contains rows after
the execution of a FETCH statement. If the last FETCH statement executed
was successful, the IS FOUND predicate value is true. If the last FETCH
statement executed resulted in a condition where rows were not found, the
result is false. The result is unknown when:
v the value of cursor-variable-name is null
v the underlying cursor of cursor-variable-name is not open
v the predicate is evaluated before the first FETCH action was performed

on the underlying cursor
v the last FETCH action returned an error

The IS FOUND predicate can be useful within a portion of SQL PL logic
that loops and performs a fetch with each iteration. The predicate can be
used to determine if rows remain to be fetched. It provides an efficient
alternative to using a condition handler that checks for the error condition
that is raised when no more rows remain to be fetched.

An alternative to using IS FOUND is to use IS NOT FOUND which has the
opposite value.

Example

The following script defines an SQL procedure that contains references to these
predicates as well as the prerequisite objects required to successfully compile and
call the procedure:
CREATE TABLE T1 (c1 INT, c2 INT, c3 INT)@

insert into t1 values (1,1,1),(2,2,2),(3,3,3) @

42 SQL Procedural Languages: Application Enablement and Support

CREATE TYPE myRowType AS ROW(c1 INT, c2 INT, c3 INT)@

CREATE TYPE myCursorType AS myRowType CURSOR@

CREATE PROCEDURE p(OUT count INT)
LANGUAGE SQL
BEGIN

DECLARE C1 cursor;
DECLARE lvarInt INT;

SET count = -1;
SET c1 = CURSOR FOR SELECT c1 FROM t1;

IF (c1 IS NOT OPEN) THEN
OPEN c1;

ELSE
set count = -2;

END IF;

set count = 0;
IF (c1 IS OPEN) THEN

FETCH c1 into lvarInt;

WHILE (c1 IS FOUND) DO
SET count = count + 1;
FETCH c1 INTO lvarInt;

END WHILE;
ELSE

SET count = 0;
END IF;

END@

CALL p()@

Creating cursor variables
To create cursor variables you must first create a cursor type and then create a
cursor variable based on the type. The following topics show you how to do these
tasks:

Creating cursor data types using the CREATE TYPE statement:

Creating a cursor data type is a prerequisite to creating a cursor variable. Cursor
data types are created using the CREATE TYPE (cursor) statement.

To perform this task you require:
v Privileges to execute the CREATE TYPE (cursor) statement.
v If creating a strongly typed cursor data type, you must either prepare a row

specification or base it on an existing row from a table, view, or cursor.

The CREATE TYPE (cursor) statement defines a cursor data type that can be used
in SQL PL to declare parameters and local variables of the cursor data type. A
strongly typed cursor data type is created if the row-type-name clause is specified
in the CREATE TYPE (cursor) statement. A weakly defined cursor data type is
created when the row-type-name clause is omitted.

As an alternative to creating a weakly defined cursor data type, the system-defined
weakly defined cursor data type CURSOR can be used when declaring cursor
variables.

Chapter 1. SQL PL support 43

CREATE TYPE weakCursorType AS CURSOR@

If you want to create a strongly-typed cursor data type, a row data type definition
must exist that will define the result set that can be associated with the cursor. A
row data type definition can be derived from an explicitly defined row data type, a
table or view, or strongly typed cursor. The following is an example of a row type
definition:
CREATE TYPE empRow AS ROW (name varchar(128), ID varchar(8))@

The following is an example of a table definition from which a row type definition
can be derived:
CREATE TABLE empTable AS ROW (name varchar(128), ID varchar(8))@

To define a strongly-typed cursor data type within a database you must
successfully execute the CREATE TYPE (CURSOR) statement from any DB2
interface that supports the execution of SQL statements.
1. Formulate a CREATE TYPE (CURSOR) statement:

a. Specify a name for the type.
b. Specify a row definition by doing one of: referencing the name of a row

data type, specifying that the type should be anchored to a table or view, or
anchored to the result set definition associated with an existing strong
cursor type.

2. Execute the CREATE TYPE statement from a supported DB2 interface.

If the CREATE TYPE statement executes successfully, the cursor data type is
created in the database.

The following is an example of how to create a weakly typed cursor data type that
can be associated with result sets with the same format as the empRow row data
type:
CREATE TYPE cursorType AS empRow CURSOR@

The following is an example of how to create a cursor data type that can be
associated with result sets with the same format as the table empTable :
CREATE TYPE cursorType AS ANCHOR ROW OF empTable@

Once the cursor data type is created, cursor variables can be declared based on this
data type.

Declaring local variables of type cursor:

Local variables of type cursor can be declared once a cursor data type has been
created.

A cursor data type definition must exist in the database. Cursor data types are
created by successfully executing the CREATE TYPE (CURSOR) statement. The
following is an example of a strongly-typed cursor type definition:
CREATE TYPE cursorType AS empRow CURSOR;

In this version, cursor variables can only be declared as local variables within SQL
procedures. Both strongly-typed and weakly-typed cursor variables can be
declared.
1. Formulate a DECLARE statement:

a. Specify a name for the variable.

44 SQL Procedural Languages: Application Enablement and Support

b. Specify the cursor data type that will define the variable. If the cursor
variable is to be weakly-typed, a user-defined weakly typed cursor data
type must be specified or the system-defined weakly-typed cursor data type
CURSOR. If the cursor variable is to be based on a strongly-typed cursor
data type, you can initialize the variable immediately.

The following is an example of how to formulate a DECLARE statement that
will define a cursor variable of type cursorType that is not initialized:
DECLARE Cv1 cursorType@

The following is an example of how to formulate a DECLARE statement that
will define a cursor variable Cv2 with a type that is anchored to the type of the
existing cursor variable named Cv1:
DECLARE Cv2 ANCHOR DATA TYPE TO Cv1@

The following is an example of how to formulate a DECLARE statement that
will define a weakly-typed cursor variable:
DECLARE Cv1 CURSOR@

2. Execute the DECLARE statement within a supported context.

If execution of the DECLARE statement is successful, the cursor variable is created.

Once this cursor variable is created, the cursor variable can be assigned values,
referenced, or passed as a parameter.

Assigning values to cursor variables
Result sets can be assigned to cursor variables at different times and in multiple
ways using the SET statement.

Assigning a query result set to a cursor variable

A result set of a select query can be assigned to a cursor variable by using the SET
statement and the CURSOR FOR keywords. The following is an example of how
the result set associated with a query on a table named T is assigned to a cursor
variable named c1 that has an identical row definition as the table:

If T is defined as:
CREATE TABLE T (C1 INT, C2 INT, C3 INT);

If C1 is a strongly-typed cursor variable that was defined as:
CREATE TYPE simpleRow AS ROW (c1 INT, c2 INT, c3 INT);
CREATE TYPE simpleCur AS CURSOR RETURNS simpleRow;
DECLARE c1 simpleCur;

The assignment can be done as follows:
SET c1 = CURSOR FOR SELECT * FROM T;

The strong type checking will be successful since c1 has a compatible definition to
table T. If c1 was a weakly-typed cursor this assignment would also be successful,
because no data type checking would be performed.

Assigning literal values to a cursor variable

A result set of a select query can be assigned to a cursor variable by using the SET
statement and the CURSOR FOR keywords. The following is an example of how

Chapter 1. SQL PL support 45

the result set associated with a query on a table named T is assigned to a cursor
variable named c1 that has an identical row definition as the table.

Let T be a table defined as:
CREATE TABLE T (C1 INT, C2 INT, C3 INT);

Let simpleRow be a row type and simpleCur be a cursor type that are respectively
created as:
CREATE TYPE simpleRow AS ROW (c1 INT, c2 INT, c3 INT);
CREATE TYPE simpleCur AS CURSOR RETURNS simpleRow;

Let c1 be a strongly-typed cursor variable that is declared within a procedure as:
DECLARE c1 simpleCur;

The assignment of literal values to cursor c1 can be done as follows:
SET c1 = CURSOR FOR VALUES (1, 2, 3);

The strong type checking will be successful since the literal values are compatible
with the cursor definition. The following is an example of an assignment of literal
values that will fail, because the literal data types are incompatible with the cursor
type definition:
SET c1 = CURSOR FOR VALUES ('a', 'b', 'c');

Assigning cursor variable values to cursor variable values

A cursor variable value can be assigned to another cursor variable only if the
cursor variables have identical result set definitions. For example:

If c1 and c2 are strongly-typed cursor variable that was defined as:
CREATE TYPE simpleRow AS ROW (c1 INT, c2 INT, c3 INT);

CREATE TYPE simpleCur AS CURSOR RETURNS simpleRow

DECLARE c1 simpleCur;

DECLARE c2 simpleCur;

If c2 has been assigned values as follows:
SET c2 = CURSOR FOR VALUES (1, 2, 3);

The assignment of the result set of c2 to cursor variable c1 can be done as follows:
SET c1 = c2;

Once cursor variables have been assigned values, the cursor variables and cursor
variables field values can be assigned and referenced.

Referencing cursor variables
Cursor variables can be referenced in multiple ways as part of cursor operations
related to retrieving and accessing a result set or when calling a procedure and
passing cursor variables as parameters.

The following statements can be used to reference cursor variables within an SQL
PL context:
v CALL
v SET

46 SQL Procedural Languages: Application Enablement and Support

v OPEN
v FETCH
v CLOSE

The OPEN, FETCH, and CLOSE statements are most often used together when
accessing the result set associated with a cursor variable. The OPEN statement is
used to initialize the result set associated with the cursor variable. Upon successful
execution of this statement, the cursor variable is associated with the result set and
the rows in the result set can be accessed. The FETCH statement is used to
specifically retrieve the column values in the current row being accessed by the
cursor variable. The CLOSE statement is used to end the processing of the cursor
variable.

The following is an example of a created row data type definition and an SQL
procedure definition that contains a cursor variable definition. Use of the OPEN,
FETCH, and CLOSE statements with the cursor variable are demonstrated within
the SQL procedure:
CREATE TYPE simpleRow AS ROW (c1 INT, c2 INT, c3 INT);

CREATE PROCEDURE P(OUT p1 INT, OUT p2 INT, PUT p3 INT, OUT pRow simpleRow)
LANGUAGE SQL
BEGIN

CREATE TYPE simpleCur AS CURSOR RETURNS simpleRow
DECLARE c1 simpleCur;
DECLARE localVar1 INTEGER;
DECLARE localVar2 INTEGER;
DECLARE localVar3 INTEGER;
DECLARE localRow simpleRow;

SET c1 = CURSOR FOR SELECT * FROM T;

OPEN C1;

FETCH c1 INTO localVar1, localVar2, localVar3;

FETCH c1 into localRow;

SET p1 = localVar1;

SET p2 = localVar2;

SET p3 = localVar3;

SET pRow = localRow;

CLOSE c1;

END;

Cursor variables can also be referenced as parameters in the CALL statement. As
with other parameters, cursor variable parameters are simply referenced by name.
The following is an example of a CALL statement within an SQL procedure that
references a cursor variable named curVar which is an output parameter:
CALL P2(curVar);

Determining the number of fetched rows for a cursor
Determining the number of rows associated with a cursor can be efficiently done
by using the cursor_rowCount scalar function which takes a cursor variable as a

Chapter 1. SQL PL support 47

parameter and returns an integer value as an output corresponding to the number
of rows that have been fetched since the cursor was opened.

The following prerequisites must be met before you use the cursor_rowCount
function:
v A cursor data type must be created.
v A cursor variable of the cursor data type must be declared.
v An OPEN statement referencing the cursor must have been executed.

You can use the cursor_rowCount function within SQL PL contexts and would
perform this task whenever in your procedural logic it is necessary to access the
count of the number of rows that have been fetched for a cursor so far or the total
count of rows fetched. The use of the cursor_rowCount function simplifies
accessing the fetched row count which otherwise might require that within looping
procedural logic you maintain the count with a declared variable and a repeatedly
executed SET statement.

Restrictions

The cursor_rowCount function can only be used in SQL PL contexts.
1. Formulate an SQL statement with a reference to the cursor_rowCount scalar

function. The following is an example of a SET statement that assigns the
output of the cursor_rowCount scalar function to a local variable named
rows_fetched:
SET rows_fetched = CURSOR_ROWCOUNT(curEmp)

2. Include the SQL statement containing the cursor_rowCount function reference
within a supported SQL PL context. This might be, for example, within a
CREATE PROCEDURE statement or a CREATE FUNCTION statement and
compile the statement.

3.

The statement should compile successfully.

The following is an example of an SQL procedure that includes a reference to the
cursor_rowCount function:
CREATE PROCEDURE p()
LANGUAGE SQL
BEGIN

SET rows_fetched = CURSOR_ROWCOUNT(curEmp)

END@

Execute the SQL procedure or invoke the SQL function.

Example: Cursor variable use
Referencing examples of cursor variable use an be useful when designing and
implementing cursor variables.

Cursor variable use within an SQL procedure:

Referencing examples that demonstrate cursor variable use is a good way to learn
how and where you can use cursor variables.

This example shows the following:

48 SQL Procedural Languages: Application Enablement and Support

v CREATE TYPE statement to create a ROW data type
v CREATE TYPE statement to create a strongly-typed cursor based on a row data

type specification
v CREATE PROCEDURE statement to create a procedure that has an output

cursor parameter
v CREATE PROCEDURE statement to create a procedure that calls another

procedure and passes a cursor as an input parameter

A prerequisite to running this example is that the SAMPLE database must exist. To
create the sample database, issue the following command from a DB2 Command
Window:
db2sampl;

The following is an example CLP script that demonstrates the core features of
cursor variable use within SQL procedures. The script contains a row data type
definition, a cursor type definition and two SQL procedure definitions. The
procedure P_CALLER contains a cursor variable definition and a call to a
procedure named P. The procedure P defines a cursor, opens the cursor and passes
the cursor as an output parameter value. The procedure P_CALLER receives the
cursor parameter, fetches the cursor value into a local variable, and then sets two
output parameter values named edlvel and lastname based on the local variable
value.
--#SET TERMINATOR @
update command options using c off @
connect to sample @

CREATE TYPE myRowType AS ROW (edlevel SMALLINT, name VARCHAR(128))@

CREATE TYPE myCursorType AS myRowType CURSOR@

CREATE PROCEDURE P(IN pempNo VARCHAR(8), OUT pcv1 CURSOR)
LANGUAGE SQL
BEGIN

SET pcv1 = CURSOR FOR SELECT edlevel, lastname FROM employee WHERE empNo = pempNo;
OPEN pcv1;

END@

CREATE PROCEDURE P_CALLER(IN pempNo VARCHAR(8) ,
OUT edlevel SMALLINT,
OUT lastname VARCHAR(128))

LANGUAGE SQL
BEGIN

DECLARE rv1 myRowType;
DECLARE c1 CURSOR;

CALL P (pempNo,c1);
FETCH c1 INTO rv1;
CLOSE c1;

SET edlevel = rv1.edlevel;
SET lastname = rv1.name;

END @

CALL P_CALLER('000180',?,?) @

When the above script is run, the following output is generated:
update command options using c off
DB20000I The UPDATE COMMAND OPTIONS command completed successfully.

Chapter 1. SQL PL support 49

connect to sample

Database Connection Information

Database server = DB2/LINUXX8664 9.7.0
SQL authorization ID = REGRESS5
Local database alias = SAMPLE

CREATE TYPE myRowType AS ROW (edlevel SMALLINT, name VARCHAR(128))
DB20000I The SQL command completed successfully.

CREATE TYPE myCursorType AS myRowType CURSOR@
DB20000I The SQL command completed successfully.

CREATE PROCEDURE P(IN pempNo VARCHAR(8),OUT pcv1 CURSOR)
LANGUAGE SQL
BEGIN

SET pcv1 = CURSOR FOR SELECT edlevel, lastname FROM employee WHERE empNo = pempNo;
OPEN pcv1;

END
DB20000I The SQL command completed successfully.

CREATE PROCEDURE P_CALLER(IN pempNo VARCHAR(8) ,
OUT edlevel SMALLINT,
OUT lastname VARCHAR(128))

LANGUAGE SQL
BEGIN

DECLARE rv1 myRowType;
DECLARE c1 CURSOR;

CALL P (pempNo,c1);
FETCH c1 INTO rv1;
CLOSE c1;

SET EDLEVEL = rv1.edlevel;
SET LASTNAME = rv1.name;

END
DB20000I The SQL command completed successfully.

CALL P_CALLER('000180',?,?)

Value of output parameters

Parameter Name : EDLEVEL
Parameter Value : 17

Parameter Name : LASTNAME
Parameter Value : SCOUTTEN

Return Status = 0

Boolean data type
The BOOLEAN type is a built-in data type that can only be used for local
variables, global variables, parameters, or return types in compound SQL
(compiled) statements. A Boolean value represents a truth value of TRUE or
FALSE. A Boolean expression or predicate can result in a value of unknown, which
is represented as the null value.

Restrictions on the Boolean data type
It is important to note the restrictions on the Boolean data type before you use it or
when troubleshooting problems with their use.

50 SQL Procedural Languages: Application Enablement and Support

The following restrictions apply to the boolean data type:
v The Boolean data type can only be referenced as:

– Local variables declared in SQL functions
– Local variables declared in SQL procedures
– Local variables declared in triggers with a compound SQL (compiled)

statement as trigger body
– Parameter to SQL functions with a compound SQL (compiled) statement as

function body
– Parameter to SQL procedure with a compound SQL (compiled) statement as

procedure body
– Return type
– Global variable in a module

v The Boolean data type cannot be used to define the data type of a column in a
table or view.

v The system-defined values TRUE and FALSE cannot be referenced as values to
be inserted into a table.

v The Boolean data type cannot be referenced in external routines or client
applications.

v The Boolean data type cannot be cast to other data types.
v The Boolean data type cannot be returned as a return code value from an SQL

procedure.
v Variables of the Boolean data type can only be assigned one of the following

values: TRUE, FALSE, or NULL. Numeric or other data type assignments are not
supported.

v Selecting or fetching values into variables of the Boolean data type is not
supported.

v The Boolean data type cannot be returned in a result set.
v A Boolean variable cannot be used as a predicate. For example, the following

SQL clause is not supported:
IF (gb) THEN ...

Use of predicates is only supported in the SET statement and RETURN
statement from a UDF.

If these restrictions prevent you from using this data type consider using an
integer data type instead and assign it values such as 1 for TRUE, 0 for FALSE,
and -1 for NULL.

SQL routines
SQL routines are routines that have logic implemented with only SQL statements,
including SQL Procedural Language (SQL PL) statements. They are characterized
by having their routine-body logic contained within the CREATE statement that is
used to create them. This is in contrast with external routines that have their
routine logic implemented in a library built form programming source code. In
general SQL routines can contain and execute fewer SQL statements than external
routines; however they can be every bit as powerful and high performing when
implemented according to best practices.

You can create SQL procedures, SQL functions, and SQL methods. Although they
are all implemented in SQL, each routine functional type has different features.

Chapter 1. SQL PL support 51

Overview of SQL routines
SQL routines are routines that have logic implemented with only SQL statements,
including SQL Procedural Language (SQL PL) statements. They are characterized
by having their routine-body logic contained within the CREATE statement that is
used to create them. You can create SQL procedures, SQL functions, and SQL
methods. Although they are all implemented in SQL, each routine functional type
has different features.

Before deciding to implement a SQL routine, it is important that you first
understand what SQL routines are, how they are implemented, and used by
reading an "Overview of routines". With that knowledge you can then learn more
about SQL routine from the following concept topics so that you can make
informed decisions about when and how to use them in your database
environment:
v SQL procedures
v SQL functions
v Tools for developing SQL routines
v SQL Procedural Language (SQL PL)
v Comparison of SQL PL and inline SQL PL
v SQL PL statements and features
v Supported inline SQL PL statements and features
v Determining when to use SQL procedures or SQL functions
v Restrictions on SQL routines

After having learned about SQL routines, you might want to do one of the
following tasks:
v Develop SQL procedures
v Develop SQL functions
v Develop SQL methods

CREATE statements for SQL routines
SQL routines are created by executing the appropriate CREATE statement for the
routine type. In the CREATE statement you also specify the routine body, which
for an SQL routine must be composed only of SQL or SQL PL statements. You can
use the IBM® DB2 Development Center to help you create, debug, and run SQL
procedures. SQL procedures, functions, and methods can also be created using the
DB2 command line processor.

SQL procedures, functions, and methods each have a respective CREATE
statement. Although the syntax for these statements is different, there are some
common elements to them. In each you must specify the routine name, and
parameters if there are to be any as well as a return type. You can also specify
additional keywords that provide DB2 with information about the logic contained
in the routine. DB2 uses the routine prototype and the additional keywords to
identify the routine at invocation time, and to execute the routine with the required
feature support and best performance possible.

For specific information on creating SQL procedures in the DB2 Development
Center or from the Command Line Processor, or on creating functions and
methods, refer to the related topics.

52 SQL Procedural Languages: Application Enablement and Support

Determining when to use SQL routines or external routines

When implementing routine logic you can choose to implement SQL routines or
external routines. There are reasons for choosing each of these two
implementations.

To determine when to choose to implement an SQL routine or an external routine,
read the following to determine what if any factors might limit your choice.
v Choose to implement SQL routines if:

– SQL PL and SQL statements provide adequate support to implement the logic
that you require.

– The routine logic consists primarily of SQL statements that query or modify
data and performance is a concern. Logic that contains a relatively small
amount of control-flow logic relative to the number of SQL statements that
query or modify database data will generally perform better with an SQL
routine implementation. SQL PL is intended to be used for implementing
procedural logic around database operations and not primarily for
programming complex logic.

– The SQL statements that you need to execute can be executed in an external
routine implementation.

– You want to make the modules highly portable between operating system
environments and minimize the dependency on programming language code
compilers and script interpreters.

– You want to implement the logic quickly and easily using a high level
programming language.

– You are more comfortable working with SQL than with scripting or
programming languages.

– You want to secure the logic within the database management system.
– You want to minimize routine maintenance and routine package maintenance

upon release upgrades or operating system upgrades.
– You want to minimize the amount of code required to implement the logic.
– You want to maximize the safety of the code that is implemented by

minimizing the risk of memory management, pointer manipulation, or other
common programming pitfalls.

– You want to benefit from special SQL caching support made available when
SQL PL is used.

v Choose to implement an external procedure if:
– If the routine logic is very complex and consists of few SQL statements and

routine performance is a concern. Logic such as a complex math algorithm,
that involves a large amount of string manipulation, or that does not access
the database will generally perform better with an external routine
implementation.

– If the SQL statements that you need to execute can be executed in an external
routine implementation.

– The routine logic will make operating system calls - this can only be done
with external routines.

– The routine logic must read from or write to files - this can only be done with
external routines.

– Write to the server file system. Do this only with caution.
– Invoke an application or script that resides on the database server.
– Issue particular SQL statements that are not supported in SQL procedures.

Chapter 1. SQL PL support 53

– You are more comfortable programming in a programming language other
than SQL PL.

By default if SQL routines can meet your needs, use them. Generally it is a
requirement to implement complex logic or to access files or scripts on the
database server that motivates the decision to use external routines. Particularly
since SQL PL is fast and easy to learn and implement.

Determining when to use SQL procedures or SQL functions

When faced with the choice of implementing logic with SQL PL in an SQL
procedure or an SQL function, there are reasons for choosing each of these two
implementations.

Read the following to determine when to choose to use an SQL procedure or an
SQL function.
Choose to implement an SQL function if:
v Functional requirements can be met by an SQL function and you don't anticipate

later requiring the features provided by an SQL procedure.
v Performance is a priority and the logic to be contained in the routine consists

only of queries or returns only a single result set.
When they only contain queries or the return of a single result set an SQL
function performs better than a logically equivalent SQL procedure, because of
how SQL functions are compiled.
In SQL procedures, static queries in the form of SELECT statements and
full-select statements are compiled individually, such that each query becomes a
section of a query access plan in a package when the SQL procedure is created.
There is no recompilation of this package until the SQL procedure is recreated or
the package is rebound to the database. This means that the performance of the
queries is determined based on information available to the database manager at
a time earlier than the SQL procedure execution time and hence might not be
optimal. Also with an SQL procedure there is also a small overhead entailed
when the database manager transfers between executing procedural flow
statements and SQL statements that query or modify data.
SQL functions however are expanded and compiled within the SQL statement
that references them which means that they are compiled each time that SQL
statement is compiled which depending on the statement might happen
dynamically. Because SQL functions are not directly associated with a package,
there is no overhead entailed when the database manager transfers between
executing procedural flow statements and SQL statements that query or modify
data.

Choose to implement an SQL procedure if:
v SQL PL features that are only supported in SQL procedures are required. This

includes: output parameter support, use of a cursor, the ability to return
multiple result sets to the caller, full condition handling support, transaction and
savepoint control, or other features.

v You want to execute non-SQL PL statements that can only be executed in SQL
procedures.

v You want to modify data and modifying data is not supported for the type of
function you need.

Although it isn't always obvious, you can often easily re-write SQL procedures as
SQL functions that perform equivalent logic. This can be an effective way to
maximize performance when every little performance improvement counts.

54 SQL Procedural Languages: Application Enablement and Support

Determining when to use SQL routines or dynamically prepared
compound SQL statements
When determining how to implement an atomic block of SQL PL and other SQL
statements you might be faced with a choice between using SQL routines or
dynamically prepared compound SQL statements. Although SQL routines
internally make use of compound SQL statements, the choice of which to use
might depend on other factors.

Performance

If a dynamically prepared compound SQL statement can functionally meet your
needs, using one is preferable, because the SQL statements that appear in
dynamically prepared compound SQL statements are compiled and executed as a
single block. Also these statements generally perform better than CALL statements
to logically equivalent SQL procedures.

At SQL procedure creation time, the procedure is compiled and a package is
created. The package contains the best execution path for accessing data as of the
SQL procedure compile time. Dynamically prepared compound SQL statements are
compiled when they are executed. The best execution path for accessing data for
these statements is determined using the most up to date database information
which can mean that their access plan can be better than that of a logically
equivalent SQL procedure that was created at an earlier time which means that
they might perform better.

Complexity of the required logic

If the logic is quite simple and the number of SQL statements is relatively small,
consider using inline SQL PL in a dynamically prepared compound SQL statement
(specifying ATOMIC) or in an SQL function. SQL procedures can also handle
simple logic, but use of SQL procedures incurs some overhead, such as creating the
procedure and calling it, that, if not required, is best avoided.

Number of SQL statements to be executed

In cases where only one or two SQL statements are to be executed, there might be
no benefit in using an SQL procedure. This might actually negatively impact the
total performance required to execute these statements. In such a case, it is better
to use inline SQL PL in a dynamically prepared compound SQL statement.

Atomicity and transaction control

Atomicity is another consideration. A compound SQL (inlined) statement must be
atomic. Commits and rollbacks are not supported in compound SQL (inlined)
statements. If transaction control is required or if support for rollback to a
savepoint is required, SQL procedures must be used.

Security

Security can also be a consideration. SQL procedures can only be executed by users
with EXECUTE privilege on the procedure. This can be useful if you need to limit
who can execute a particular piece of logic. The ability to execute a dynamically
prepared compound SQL statement can also be managed. However SQL procedure
execution authorization provides an extra layer of security control.

Chapter 1. SQL PL support 55

Feature support

If you need to return one or more result sets, you must use SQL procedures.

Modularity, longevity, and re-use

SQL procedures are database objects that are persistently stored in the database
and can be consistently referenced by multiple applications or scripts. Dynamically
prepared compound SQL statements are not stored in the database and therefore
the logic they contain cannot be readily re-used.

If SQL procedures can meet your needs, use them. Generally it is a requirement to
implement complex logic or to use the features supported by SQL procedures, but
not available to dynamically prepared compound SQL statements that motivates
the decision to use SQL procedures.

Rewriting SQL procedures as SQL user-defined functions

To maximize performance in a database management system, if possible, it can
sometimes be beneficial to rewrite simple SQL procedures as SQL functions.
Procedures and functions share the fact that their routine-bodies are implemented
with a compound block that can contain SQL PL. In both, the same SQL PL
statements are included within compound blocks bounded by BEGIN and END
keywords.

There are some things to note when translating an SQL procedure into an SQL
function:
v The primary and only reason to do this is to improve routine performance when

the logic only queries data.
v In a scalar function you might have to declare variables to hold the return value

to get around the fact that you cannot directly assign a value to any output
parameter of the function. The output value of a user-defined scalar function is
only specified in the RETURN statement for the function.

v If an SQL function is going to modify data, it must be explicitly created using
the MODIFIES SQL clause so that is can contain SQL statements that modify
data.

In the example that follows an SQL procedure and an SQL scalar function that are
logically equivalent are shown. These two routines functionally provide the same
output value given the same input values, however they are implemented and
invoked in slightly different ways.

CREATE PROCEDURE GetPrice (IN Vendor CHAR(20),
IN Pid INT,
OUT price DECIMAL(10,3))

LANGUAGE SQL
BEGIN

IF Vendor = 'Vendor 1'
THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);
ELSE IF Vendor = 'Vendor 2'
THEN SET price = (SELECT Price FROM V2Table

WHERE Pid = GetPrice.Pid);
END IF;

END

This procedure takes in two input parameter values and returns an output
parameter value that is conditionally determined based on the input parameter

56 SQL Procedural Languages: Application Enablement and Support

values. It uses the IF statement. This SQL procedure is invoked by executing the
CALL statement. For example from the CLP, you might execute the following:

CALL GetPrice('Vendor 1', 9456, ?)

The SQL procedure can be rewritten as a logically-equivalent SQL table-function as
follows:

CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)
RETURNS DECIMAL(10,3)

LANGUAGE SQL MODIFIES SQL
BEGIN

DECLARE price DECIMAL(10,3);

IF Vendor = 'Vendor 1'
THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);

ELSE IF Vendor = 'Vendor 2'
THEN SET price = (SELECT Price FROM V2Table

WHERE Pid = GetPrice.Pid);
END IF;

RETURN price;
END

This function takes in two input parameters and returns a single scalar value,
conditionally based on the input parameter values. It requires the declaration and
use of a local variable named price to hold the value to be returned until the
function returns whereas the SQL procedure can use the output parameter as a
variable. Functionally these two routines are performing the same logic.

Now, of course the execution interface for each of these routines is different.
Instead of simply calling the SQL procedure with the CALL statement, the SQL
function must be invoked within an SQL statement where an expression is
allowed. In most cases this isn't a problem and might actually be beneficial if the
intention is to immediately operate on the data returned by the routine. Here are
two examples of how the SQL function can be invoked.

It can be invoked using the VALUES statement:
VALUES (GetPrice('Vendor 1', 9456))

It can also be invoked in a SELECT statement that for example might select values
from a table and filter rows based on the result of the function:

SELECT VName FROM Vendors WHERE GetPrice(Vname, Pid) < 10

SQL procedures
SQL procedures are procedures implemented completely with SQL that can be
used to encapsulate logic that can be invoked like a programming sub-routine.
There are many useful applications of SQL procedures within a database or
database application architecture. SQL procedures can be used to create simple
scripts for quickly querying transforming, and updating data or for generating
basic reports, for improving application performance, for modularizing
applications, and for improving overall database design, and database security.

There are many features of SQL procedures which make them powerful routine
options.

Before deciding to implement a SQL procedure, it is important that you
understand what SQL procedures are in the context of SQL routines, how they are

Chapter 1. SQL PL support 57

implemented, and how they can be used, by first learning about routines and then
by referring to the topic, "Overview of SQL procedures".

Features of SQL procedures
SQL procedures are characterized by many features. SQL procedures:
v Can contain SQL Procedural Language statements and features which support

the implementation of control-flow logic around traditional static and dynamic
SQL statements.

v Are supported in the entire DB2 family brand of database products in which
many if not all of the features supported in DB2 Version 9 are supported.

v Are easy to implement, because they use a simple high-level, strongly typed
language.

v SQL procedures are more reliable than equivalent external procedures.
v Adhere to the SQL99 ANSI/ISO/IEC SQL standard.
v Support input, output, and input-output parameter passing modes.
v Support a simple, but powerful condition and error-handling model.
v Allow you to return multiple result sets to the caller or to a client application.
v Allow you to easily access the SQLSTATE and SQLCODE values as special

variables.
v Reside in the database and are automatically backed up and restored.
v Can be invoked wherever the CALL statement is supported.
v Support nested procedure calls to other SQL procedures or procedures

implemented in other languages.
v Support recursion.
v Support savepoints and the rolling back of executed SQL statements to provide

extensive transaction control.
v Can be called from triggers.

SQL procedures provide extensive support not limited to what is listed above.
When implemented according to best practices, they can play an essential role in
database architecture, database application design, and in database system
performance.

Designing SQL procedures

Designing SQL procedures requires an understanding of your requirements, SQL
procedure features, how to use the SQL features, and knowledge of any restrictions
that might impede your design. The following topics about SQL procedure design
will help you learn how to design SQL procedures that make best use of SQL
procedure features.
v Parts of SQL procedures
v Cross-platform SQL stored procedure considerations
v Supported SQL PL statements and language features in SQL procedures
v OLTP considerations for SQL procedures
v Performance of SQL procedures
v Rewriting SQL procedures as SQL user-defined functions
v Handling DB2 errors and warnings

Parts of SQL procedures: To understand SQL procedures, it helps to understand
the parts of an SQL procedure. The following are just some of the parts of SQL
procedures:

58 SQL Procedural Languages: Application Enablement and Support

v Structure of SQL procedures
v Parameters in SQL procedures
v Variables in SQL procedures
v SQLCODE and SQLSTATE in SQL procedures
v Atomic blocks and scope of variables in SQL procedures
v Cursors in SQL procedures
v Logic elements in SQL PL
v Condition and error handlers in SQL procedures
v SQL statements that can be executed in SQL procedures

Structure of SQL procedures: SQL procedures consist of several logic parts and
SQL procedure development requires you to implement these parts according to a
structured format. The format is quite straight-forward and easy to follow and is
intended to simplify the design and semantics of routines.

The core of an SQL procedure is a compound statement. Compound statements are
bounded by the keywords BEGIN and END. These statements can be ATOMIC or
NOT ATOMIC. By default they are NOT ATOMIC.

Within a compound statement, multiple optional SQL PL objects can be declared
and referenced with SQL statements. The following diagram illustrates the
structured format of a compound statement within SQL procedures:

label: BEGIN
Variable declarations
Condition declarations
Cursor declarations
Condition handler declarations
Assignment, flow of control, SQL statements and other compound statements

END label

The diagram shows that SQL procedures can consist of one or more optionally
atomic compound statements (or blocks) and that these blocks can be nested or
serially introduced within a single SQL procedure. Within each of these atomic
blocks there is a prescribed order for the optional variable, condition, and handler
declarations. These must precede the introduction of procedural logic implemented
with SQL-control statements and other SQL statements and cursor declarations.
Cursors can be declared anywhere with the set of SQL statements contained in the
SQL procedure body.

To clarify control-flow, SQL procedure atomic blocks can be labeled as can many of
the SQL control-statements contained within them. This makes it easier to be
precise when referencing variables and transfer of control statement references.

Here is an example of an SQL procedure that demonstrates each of the elements
listed above:

CREATE PROCEDURE DEL_INV_FOR_PROD (IN prod INT, OUT err_buffer VARCHAR(128))
LANGUAGE SQL
DYNAMIC RESULT SETS 1
BEGIN

DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLCODE integer DEFAULT 0;
DECLARE NO_TABLE CONDITION FOR SQLSTATE '42704';
DECLARE cur1 CURSOR WITH RETURN TO CALLER

FOR SELECT * FROM Inv;

A: BEGIN ATOMIC

Chapter 1. SQL PL support 59

DECLARE EXIT HANDLER FOR NO_TABLE
BEGIN

SET ERR_BUFFER='Table Inv does not exist';
END;

SET err_buffer = '';

IF (prod < 200)
DELETE FROM Inv WHERE product = prod;

ELSE IF (prod < 400)
UPDATE Inv SET quantity = 0 WHERE product = prod;

ELSE
UPDATE Inv SET quantity = NULL WHERE product = prod;

END IF;

B: OPEN cur1;

END

NOT ATOMIC compound statements in SQL procedures

The previous example illustrated a NOT ATOMIC compound statement and is the
default type used in SQL procedures. If an unhandled error condition occurs
within the compound statement, any work that is completed before the error will
not be rolled back, but will not be committed either. The group of statements can
only be rolled back if the unit of work is explicitly rolled back using ROLLBACK
or ROLLBACK TO SAVEPOINT statements. You can also use the COMMIT
statement to commit successful statements if it makes sense to do so.

Here is an example of an SQL procedure with a NOT ATOMIC compound
statement:

CREATE PROCEDURE not_atomic_proc ()
LANGUAGE SQL
SPECIFIC not_atomic_proc
nap: BEGIN NOT ATOMIC

INSERT INTO c1_sched (class_code, day)
VALUES ('R11:TAA', 1);

SIGNAL SQLSTATE '70000';

INSERT INTO c1_sched (class_code, day)
VALUES ('R22:TBB', 1);

END nap

When the SIGNAL statement is executed it explicitly raises an error that is not
handled. The procedure returns immediately afterwards. After the procedure
returns, although an error occurred, the first INSERT statement did successfully
execute and inserted a row into the c1_sched table. The procedure neither
committed, nor rolled back the row insert and this remains to be done for the
complete unit of work in which the SQL procedure was called.

ATOMIC compound statements in SQL procedures

As the name suggests, ATOMIC compound statements, can be thought of as a
singular whole. If any unhandled error conditions arise within it, all statements
that have executed up to that point are considered to have failed as well and are
therefore rolled back.

60 SQL Procedural Languages: Application Enablement and Support

Atomic compound statements cannot be nested inside other ATOMIC compound
statements.

You cannot use the SAVEPOINT statement, the COMMIT statement, or the
ROLLBACK statement from within an ATOMIC compound statement. These are
only supported in NOT ATOMIC compound statements within SQL procedures.

Here is an example of an SQL procedure with an ATOMIC compound statement:
CREATE PROCEDURE atomic_proc ()
LANGUAGE SQL
SPECIFIC atomic_proc

ap: BEGIN ATOMIC

INSERT INTO c1_sched (class_code, day)
VALUES ('R33:TCC', 1);

SIGNAL SQLSTATE '70000';

INSERT INTO c1_sched (class_code, day)
VALUES ('R44:TDD', 1);

END ap

When the SIGNAL statement is executed it explicitly raises an error that is not
handled. The procedure returns immediately afterwards. The first INSERT
statement is rolled back despite successfully executing resulting in a table with no
inserted rows for this procedure.

Labels and SQL procedure compound statements

Labels can optionally be used to name any executable statement in an SQL
procedure, including compound statements and loops. By referencing labels in
other statements you can force the flow of execution to jump out of a compound
statement or loop or additionally to jump to the beginning of a compound
statement or loop. Labels can be referenced by the GOTO, ITERATE, and LEAVE
statements.

Optionally you can supply a corresponding label for the END of a compound
statement. If an ending label is supplied, it must be same as the label used at its
beginning.

Each label must be unique within the body of an SQL procedure.

Labels can also be used to avoid ambiguity if a variable with the same name has
been declared in more than one compound statement if the stored procedure. A
label can be used to qualify the name of an SQL variable.

Parameters in SQL procedures: SQL procedures support parameters for the
passing of SQL values into and out of procedures.

Parameters can be useful in SQL procedures when implementing logic that is
conditional on a particular input or set of input scalar values or when you need to
return one or more output scalar values and you do not want to return a result set.

It is good to understand the features of and limitations of parameters in SQL
procedures when designing or creating SQL procedures.

Chapter 1. SQL PL support 61

v DB2 supports the optional use of a large number of input, output, and
input-output parameters in SQL procedures. The keywords IN, OUT, and
INOUT in the routine signature portion of CREATE PROCEDURE statements
indicate the mode or intended use of the parameter. IN and OUT parameters are
passed by value, and INOUT parameters are passed by reference.

v When multiple parameters are specified for a procedure they must each have a
unique name.

v If a variable is to be declared within the procedure with the same name as a
parameter, the variable must be declared within a labeled atomic block nested
within the procedure. Otherwise DB2 will detect what would otherwise be an
ambiguous name reference.

v Parameters to SQL procedures cannot be named either of SQLSTATE or
SQLCODE regardless of the data type for the parameter.

Refer to the CREATE PROCEDURE (SQL) statement for complete details about
parameter references in SQL procedures.

The following SQL procedure named myparams illustrates the use of IN, INOUT,
and OUT parameter modes. Let us say that SQL procedure is defined in a CLP file
named myfile.db2 and that we are using the command line.

CREATE PROCEDURE myparams (IN p1 INT, INOUT p2 INT, OUT p3 INT)
LANGUAGE SQL
BEGIN

SET p2 = p1 + 1;
SET p3 = 2 * p2;

END@

Parameter markers: A parameter marker, often denoted by a question mark (?) or
a colon followed by a variable name (:var1), is a place holder in an SQL statement
whose value is obtained during statement execution. An application associates
parameter markers to application variables. During the execution of the statement,
the values of these variables replace each respective parameter marker. Data
conversion might take place during the process.

Benefits of parameter markers

For SQL statements that need to be executed many times, it is often beneficial to
prepare the SQL statement once, and reuse the query plan by using parameter
markers to substitute the input values during runtime. In DB2® 9, a parameter
marker is represented in one of two ways:
v The first style, with a "?" character, is used in dynamic SQL execution (dynamic

Embedded SQL, CLI, Perl, etc).
v The second style represents the embedded SQL standard construction where the

name of the variable is prefixed with a colon (:var1) . This style is used in static
SQL execution and is commonly referred to as a host variable.

Use of either style indicates where an application variable is to be substituted
inside an SQL statement. Parameter markers are referenced by number, and are
numbered sequentially from left to right, starting at one. Before the SQL statement
is executed, the application must bind a variable storage area to each parameter
marker specified in the SQL statement. In addition, the bound variables must be a
valid storage area, and must contain input data values when the prepared
statement is executed against the database.

62 SQL Procedural Languages: Application Enablement and Support

The following example illustrates an SQL statement containing two parameter
markers.

SELECT * FROM customers WHERE custid = ? AND lastname = ?

Supported types

DB2 supports untyped parameter markers, which can be used in selected locations
of an SQL statement. Table 1 lists the restrictions on parameter marker usage.

Table 2. Restrictions on parameter marker usage

Untyped parameter marker location Data type

Expression: Alone in a select list Error

Expression: Both operands of an arithmetic
operator

Error

Predicate: Left-hand side operand of an IN
predicate

Error

Predicate: Both operands of a relational
operator

Error

Function: Operand of an aggregation
function

Error

Examples

DB2® provides a rich set of standard interfaces including CLI/ODBC, JDBC, and
ADO.NET to access data efficiently. The following code snippets show the use of
prepared statement with parameter markers for each data access API.

Consider the following table schema for table t1, where column c1 is the primary
key for table t1.

Table 3. Example table schema

Column name DB2 data type Nullable

c1 INTEGER false

c2 SMALLINT true

c3 CHAR(20) true

c4 VARCHAR(20) true

c5 DECIMAL(8,2) true

c6 DATE true

c7 TIME true

c8 TIMESTAMP true

c9 BLOB(30) true

The following examples illustrate how to insert a row into table t1 using a
prepared statement.

CLI Example
void parameterExample1(void)
{

SQLHENV henv;

Chapter 1. SQL PL support 63

SQLHDBC hdbc;
SQLHSTMT hstmt;
SQLRETURN rc;
TCHAR server[] = _T("C:\\mysample\\");
TCHAR uid[] = _T("db2e");
TCHAR pwd[] = _T("db2e");
long p1 = 10;
short p2 = 100;
TCHAR p3[100];
TCHAR p4[100];
TCHAR p5[100];
TCHAR p6[100];
TCHAR p7[100];
TCHAR p8[100];
char p9[100];
long len = 0;

_tcscpy(p3, _T("data1"));
_tcscpy(p4, _T("data2"));
_tcscpy(p5, _T("10.12"));
_tcscpy(p6, _T("2003-06-30"));
_tcscpy(p7, _T("12:12:12"));
_tcscpy(p8, _T("2003-06-30-17.54.27.710000"));

memset(p9, 0, sizeof(p9));
p9[0] = 'X';
p9[1] = 'Y';
p9[2] = 'Z';

rc = SQLAllocEnv(&henv);
// check return code ...

rc = SQLAllocConnect(henv, &hdbc);
// check return code ...

rc = SQLConnect(hdbc, (SQLTCHAR*)server, SQL_NTS,
(SQLTCHAR*)uid, SQL_NTS, (SQLTCHAR*)pwd, SQL_NTS);
// check return code ...

rc = SQLAllocStmt(hdbc, &hstmt);
// check return code ...

// prepare the statement
rc = SQLPrepare(hstmt, _T("INSERT INTO t1 VALUES (?,?,?,?,?,?,?,?,?)"), SQL_NTS);
// check return code ...

// bind input parameters
rc = SQLBindParameter(hstmt, (unsigned short)1, SQL_PARAM_INPUT,
SQL_C_LONG, SQL_INTEGER, 4, 0, &p1, sizeof(p1), &len);
// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)2, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_SMALLINT, 2, 0, &p2, sizeof(p2), &len);

// check return code ...

len = SQL_NTS;
rc = SQLBindParameter(hstmt, (unsigned short)3, SQL_PARAM_INPUT, SQL_C_TCHAR,

SQL_CHAR, 0, 0, &p3[0], 100, &len);
// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)4, SQL_PARAM_INPUT, SQL_C_TCHAR,
SQL_VARCHAR, 0, 0, &p4[0], 100, &len);

// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)5, SQL_PARAM_INPUT, SQL_C_TCHAR,
SQL_DECIMAL, 8, 2, &p5[0], 100, &len);

// check return code ...

64 SQL Procedural Languages: Application Enablement and Support

rc = SQLBindParameter(hstmt, (unsigned short)6, SQL_PARAM_INPUT, SQL_C_TCHAR,
SQL_TYPE_DATE, 0, 0, &p6[0], 100, &len);

// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)7, SQL_PARAM_INPUT, SQL_C_TCHAR,
SQL_TYPE_TIME, 0, 0, &p7[0], 100, &len);

// check return code ...

rc = SQLBindParameter(hstmt, (unsigned short)8, SQL_PARAM_INPUT, SQL_C_TCHAR,
SQL_TYPE_TIMESTAMP, 0, 0, &p8[0], 100, &len);

// check return code ...

len = 3;
rc = SQLBindParameter(hstmt, (unsigned short)9, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BINARY, 0, 0, &p9[0], 100, &len);
// check return code ...

// execute the prepared statement
rc = SQLExecute(hstmt);
// check return code ...

rc = SQLFreeStmt(hstmt, SQL_DROP);
// check return code ...

rc = SQLDisconnect(hdbc);
// check return code ...

rc = SQLFreeConnect(hdbc);
// check return code ...

rc = SQLFreeEnv(henv);
// check return code ...

C Example
EXEC SQL BEGIN DECLARE SECTION;

char hostVarStmt1[50];
short hostVarDeptnumb;

EXEC SQL END DECLARE SECTION;

/* prepare the statement with a parameter marker */
strcpy(hostVarStmt1, "DELETE FROM org WHERE deptnumb = ?");
EXEC SQL PREPARE Stmt1 FROM :hostVarStmt1;

/* execute the statement for hostVarDeptnumb = 15 */
hostVarDeptnumb = 15;
EXEC SQL EXECUTE Stmt1 USING :hostVarDeptnumb;

JDBC Example
public static void parameterExample1() {

String driver = "com.ibm.db2e.jdbc.DB2eDriver";
String url = "jdbc:db2e:mysample";
Connection conn = null;
PreparedStatement pstmt = null;

try
{

Class.forName(driver);

conn = DriverManager.getConnection(url);

// prepare the statement
pstmt = conn.prepareStatement("INSERT INTO t1 VALUES

(?, ?, ?, ?, ?, ?, ?, ?, ?)");

Chapter 1. SQL PL support 65

// bind the input parameters
pstmt.setInt(1, 1);
pstmt.setShort(2, (short)2);
pstmt.setString(3, "data1");
pstmt.setString(4, "data2");
pstmt.setBigDecimal(5, new java.math.BigDecimal("12.34"));
pstmt.setDate(6, new java.sql.Date(System.currentTimeMillis()));
pstmt.setTime(7, new java.sql.Time(System.currentTimeMillis()));
pstmt.setTimestamp (8, new java.sql.Timestamp(System.currentTimeMillis()));
pstmt.setBytes(9, new byte[] { (byte)'X', (byte)'Y', (byte)'Z' });

// execute the statement
pstmt.execute();

pstmt.close();

conn.close();
}
catch (SQLException sqlEx)
{

while(sqlEx != null)
{

System.out.println("SQLERROR: \n" + sqlEx.getErrorCode() +
", SQLState: " + sqlEx.getSQLState() +
", Message: " + sqlEx.getMessage() +
", Vendor: " + sqlEx.getErrorCode());

sqlEx = sqlEx.getNextException();
}

}
catch (Exception ex)
{

ex.printStackTrace();
}

}

ADO.NET Example [C#]
public static void ParameterExample1()
{

DB2eConnection conn = null;
DB2eCommand cmd = null;
String connString = @"database=.\; uid=db2e; pwd=db2e";
int i = 1;

try
{

conn = new DB2eConnection(connString);

conn.Open();

cmd = new DB2eCommand("INSERT INTO t1 VALUES
(?, ?, ?, ?, ?, ?, ?, ?, ?)", conn);

// prepare the command
cmd.Prepare();

// bind the input parameters
DB2eParameter p1 = new DB2eParameter("@p1", DB2eType.Integer);
p1.Value = ++i;
cmd.Parameters.Add(p1);

DB2eParameter p2 = new DB2eParameter("@p2", DB2eType.SmallInt);
p2.Value = 100;
cmd.Parameters.Add(p2);

DB2eParameter p3 = new DB2eParameter("@p3", DB2eType.Char);
p3.Value = "data1";

66 SQL Procedural Languages: Application Enablement and Support

cmd.Parameters.Add(p3);

DB2eParameter p4 = new DB2eParameter("@p4", DB2eType.VarChar);
p4.Value = "data2";
cmd.Parameters.Add(p4);

DB2eParameter p5 = new DB2eParameter("@p5", DB2eType.Decimal);
p5.Value = 20.25;
cmd.Parameters.Add(p5);

DB2eParameter p6 = new DB2eParameter("@p6", DB2eType.Date);
p6.Value = DateTime.Now;
cmd.Parameters.Add(p6);

DB2eParameter p7 = new DB2eParameter("@p7", DB2eType.Time);
p7.Value = new TimeSpan(23, 23, 23);
cmd.Parameters.Add(p7);

DB2eParameter p8 = new DB2eParameter("@p8", DB2eType.Timestamp);
p8.Value = DateTime.Now;
cmd.Parameters.Add(p8);

byte []barr = new byte[3];
barr[0] = (byte)'X';
barr[1] = (byte)'Y';
barr[2] = (byte)'Z';

DB2eParameter p9 = new DB2eParameter("@p9", DB2eType.Blob);
p9.Value = barr;
cmd.Parameters.Add(p9);

// execute the prepared command
cmd.ExecuteNonQuery();

}
catch (DB2eException e1)
{

for (int i=0; i < e1.Errors.Count; i++)
{

Console.WriteLine("Error #" + i + "\n" +
"Message: " + e1.Errors[i].Message + "\n" +
"Native: " + e1.Errors[i].NativeError.ToString() + "\n" +
"SQL: " + e1.Errors[i].SQLState + "\n");

}
}
catch (Exception e2)
{

Console.WriteLine(e2.Message);
}
finally
{

if (conn != null && conn.State != ConnectionState.Closed)
{

conn.Close();
conn = null;

}
}

}

Variables in SQL procedures (DECLARE, SET statements): Local variable
support in SQL procedures allows you to assign and retrieve SQL values in
support of SQL procedure logic.

Variables in SQL procedures are defined by using the DECLARE statement.

Chapter 1. SQL PL support 67

Values can be assigned to variables using the SET statement or the SELECT INTO
statement or as a default value when the variable is declared. Literals, expressions,
the result of a query, and special register values can be assigned to variables.

Variable values can be assigned to SQL procedure parameters, other variables in
the SQL procedure, and can be referenced as parameters within SQL statements
that executed within the routine.

The following example demonstrates various methods for assigning and retrieving
variable values.

CREATE PROCEDURE proc_vars()
SPECIFIC proc_vars
LANGUAGE SQL
BEGIN

DECLARE v_rcount INTEGER;

DECLARE v_max DECIMAL (9,2);

DECLARE v_adate, v_another DATE;

DECLARE v_total INTEGER DEFAULT 0; -- (1)

DECLARE v_rowsChanged BOOLEAN DEFAULT FALSE; -- (2)

SET v_total = v_total + 1 -- (3)

SELECT MAX(salary) -- (4)
INTO v_max FROM employee;

VALUES CURRENT_DATE INTO v_date; -- (5)

SELECT CURRENT DATE, CURRENT DATE -- (6)
INTO v_adate, v_another

FROM SYSIBM.SYSDUMMY1;

DELETE FROM T;
GET DIAGNOSTICS v_rcount = ROW_COUNT; -- (7)

IF v_rcount > 0 THEN -- (8)
SET is_done = TRUE;

END IF;
END

When declaring a variable, you can specify a default value using the DEFAULT
clause as in line (1). Line (2) shows the declaration of a variable of the Boolean
data type with a default value of FALSE. Line (3) shows that a SET statement can
be used to assign a single variable value. Variables can also be set by executing a
SELECT or FETCH statement in combination with the INTO clause as shown in
line (4). Lines (5) and (6) show how the VALUES INTO statement can be used to
evaluate a function or special register and assign the value to a variable or to
multiple variables.

You can also assign the result of a GET DIAGNOSTICS statement to a variable.
GET DIAGNOSTICS can be used to get a handle on the number of affected rows
(updated for an UPDATE statement, DELETE for a DELETE statement) or to get
the return status of a just executed SQL statement. Line (7) shows how the number
of rows modified by the just previously executed DELETE statement can be
assigned to a variable.

68 SQL Procedural Languages: Application Enablement and Support

Line (8) demonstrates how a piece of logic can be used to determine the value to
be assigned to a variable. In this case, if rows were changed as part of the earlier
DELETE statement and the GET DIAGNOSTICS statement execution resulted in
the variable v_rcount being assigned a value greater than zero, the variable
is_done is assigned the value TRUE.

SQLCODE and SQLSTATE variables in SQL procedures: To perform error
handling or to help you debug your SQL procedures, you might find it useful to
test the value of the SQLCODE or SQLSTATE values, return these values as output
parameters or as part of a diagnostic message string, or insert these values into a
table to provide basic tracing support.

To use the SQLCODE and SQLSTATE values within SQL procedures, you must
declare the following SQL variables in the SQL procedure body:

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';

DB2 implicitly sets these variables whenever a statement is executed. If a statement
raises a condition for which a handler exists, the values of the SQLSTATE and
SQLCODE variables are available at the beginning of the handler execution.
However, the variables are reset as soon as the first statement in the handler is
executed. Therefore, it is common practice to copy the values of SQLSTATE and
SQLCODE into local variables in the first statement of the handler. In the following
example, a CONTINUE handler for any condition is used to copy the SQLCODE
variable into another variable named retcode. The variable retcode can then be
used in the executable statements to control procedural logic, or pass the value
back as an output parameter.
BEGIN

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE retcode INTEGER DEFAULT 0;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION, SQLWARNING, NOT FOUND
SET retcode = SQLCODE;

executable-statements
END

Note: When you access the SQLCODE or SQLSTATE variables in an SQL
procedure, DB2 sets the value of SQLCODE to 0 and SQLSTATE to ‘00000' for the
subsequent statement.

Compound statements and scope of variables in SQL procedures: SQL
procedures can contain one or more compound statements. They can be introduced
in serial or can be nested within another compound statement. Each compound
statement introduces a new scope in which variables might or might not be
available for use.

The use of labels to identify a compound statement is important as the label can be
used to qualify and uniquely identify variables declared within the compound
statement. This is particularly important when referencing of variables in different
compound statements or in nested compound statements.

In the following example there are two declarations of the variable a. One instance
of it is declared in the outer compound statement that is labelled by lab1, and the
second instance is declared in the inner compound statement labelled by lab2. As it
is written, DB2 will presume that the reference to a in the assignment-statement is
the one which is in the local scope of the compound block, labelled by lab2.

Chapter 1. SQL PL support 69

However, if the intended instance of the variable a is the one declared in the
compound statement block labeled with lab1, then to correctly reference it in the
innermost compound block, the variable should be qualified with the label of that
block. That is, it should be qualified as: lab1.a.

CREATE PROCEDURE P1 ()
LANGUAGE SQL

lab1: BEGIN
DECLARE a INT DEFAULT 100;
lab2: BEGIN

DECLARE a INT DEFAULT NULL;

SET a = a + lab1.a;

UPDATE T1
SET T1.b = 5
WHERE T1.b = a; <-- Variable a refers to lab2.a

unless qualified otherwise

END lab2;
END lab1

The outermost compound statement in an SQL procedure can be declared to be
atomic, by adding the keyword ATOMIC after the BEGIN keyword. If any error
occurs in the execution of the statements that comprise the atomic compound
statement, then the entire compound statement is rolled back.

Cursors in SQL procedures: In SQL procedures, a cursor make it possible to
define a result set (a set of data rows) and perform complex logic on a row by row
basis. By using the same mechanics, an SQL procedure can also define a result set
and return it directly to the caller of the SQL procedure or to a client application.

A cursor can be viewed as a pointer to one row in a set of rows. The cursor can
only reference one row at a time, but can move to other rows of the result set as
needed.

To use cursors in SQL procedures, you need to do the following:
1. Declare a cursor that defines a result set.
2. Open the cursor to establish the result set.
3. Fetch the data into local variables as needed from the cursor, one row at a time.
4. Close the cursor when done

To work with cursors you must use the following SQL statements:
v DECLARE CURSOR
v OPEN
v FETCH
v CLOSE

The following example demonstrates the basic use of a read-only cursor within an
SQL procedure:

CREATE PROCEDURE sum_salaries(OUT sum INTEGER)
LANGUAGE SQL
BEGIN

DECLARE p_sum INTEGER;
DECLARE p_sal INTEGER;
DECLARE c CURSOR FOR SELECT SALARY FROM EMPLOYEE;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';

SET p_sum = 0;

70 SQL Procedural Languages: Application Enablement and Support

OPEN c;

FETCH FROM c INTO p_sal;

WHILE(SQLSTATE = '00000') DO
SET p_sum = p_sum + p_sal;
FETCH FROM c INTO p_sal;

END WHILE;

CLOSE c;

SET sum = p_sum;

END%

Here is a more complex example of use of a cursor within an SQL procedure. This
example demonstrates the combined use of a cursor and SQL PL statements.

SQL PL logic elements in the SQL-procedure body: Sequential execution is the
most basic path that program execution can take. With this method, the program
starts execution at the first line of the code, followed by the next, and continues
until the final statement in the code has been executed. This approach works fine
for very simple tasks, but tends to lack usefulness because it can only handle one
situation. Programs often need to be able to decide what to do in response to
changing circumstances. By controlling a code's execution path, a specific piece of
code can then be used to intelligently handle more than one situation.

SQL PL provides support for variables and flow of control statements that can be
used to control the sequence of statement execution. Statements such as IF and
CASE are used to conditionally execute blocks of SQL PL statements, while other
statements, such as WHILE and REPEAT, are typically used to execute a set of
statements repetitively until a task is complete.

Although there are many types of SQL PL statements, there are a few categories
into which these can be sorted:
v Variable related statements
v Conditional statements
v Loop statements
v Transfer of control statements

Variable related statements in SQL procedures: Variable related SQL statements are
used to declare variables and to assign values to variables. There are a few types of
variable related statements:
v DECLARE <variable> statement in SQL procedures
v DECLARE <condition> statement in SQL procedures
v DECLARE <condition handler> statement in SQL procedures
v DECLARE CURSOR in SQL procedures
v SET (assignment-statement) in SQL procedures

These statements provide the necessary support required to make use of the other
types of SQL PL statements and SQL statements that will make use of variable
values.

Chapter 1. SQL PL support 71

Conditional statements in SQL procedures: Conditional statements are used to define
what logic is to be executed based on the status of some condition being satisfied.
There are two types of conditional statements supported in SQL procedures:
v CASE
v IF

These statements are similar; however the CASE statements extends the IF
statement.

CASE statement in SQL procedures: CASE statements can be used to conditionally
enter into some logic based on the status of a condition being satisfied. There are
two types of CASE statements:
v Simple case statement: used to enter into some logic based on a literal value
v Searched case statement: used to enter into some logic based on the value of an

expression

The WHEN clause of the CASE statement defines the value that when satisfied
determines the flow of control.

Here is an example of an SQL procedure with a CASE statement with a
simple-case-statement-when-clause:

CREATE PROCEDURE UPDATE_DEPT (IN p_workdept)
LANGUAGE SQL
BEGIN

DECLARE v_workdept CHAR(3);
SET v_workdept = p_workdept;

CASE v_workdept
WHEN 'A00' THEN

UPDATE department SET deptname = 'D1';
WHEN 'B01' THEN

UPDATE department SET deptname = 'D2';
ELSE

UPDATE department SET deptname = 'D3';
END CASE

END

Here is an example of CASE statement with a searched-case-statement-when-
clause:

CREATE PROCEDURE UPDATE_DEPT (IN p_workdept)
LANGUAGE SQL
BEGIN

DECLARE v_workdept CHAR(3);
SET v_workdept = p_workdept;

CASE
WHEN v_workdept = 'A00' THEN

UPDATE department SET deptname = 'D1';
WHEN v_workdept = 'B01' THEN

UPDATE department SET deptname = 'D2';
ELSE

UPDATE department SET deptname = 'D3';
END CASE

END

72 SQL Procedural Languages: Application Enablement and Support

The examples provided above are logically equivalent, however it is important to
note that CASE statements with a searched-case-statement-when-clause can be very
powerful. Any supported SQL expression can be used here. These expressions can
contain references to variables, parameters, special registers, and more.

IF statement in SQL procedures: IF statements can be used to conditionally enter
into some logic based on the status of a condition being satisfied. The IF statement
is logically equivalent to a CASE statements with a searched-case-statement-when
clause.

The IF statement supports the use of optional ELSE IF clauses and a default ELSE
clause. An END IF clause is required to indicate the end of the statement.

Here is an example of procedure that contains an IF statement:
CREATE PROCEDURE UPDATE_SAL (IN empNum CHAR(6),

INOUT rating SMALLINT)
LANGUAGE SQL
BEGIN

IF rating = 1 THEN
UPDATE employee
SET salary = salary * 1.10, bonus = 1000

WHERE empno = empNum;
ELSEIF rating = 2 THEN

UPDATE employee
SET salary = salary * 1.05, bonus = 500

WHERE empno = empNum;
ELSE

UPDATE employee
SET salary = salary * 1.03, bonus = 0

WHERE empno = empNum;
END IF;

END

Looping statements in SQL procedures: Looping statements provide support for
repeatedly executing some logic until a condition is met. The following looping
statements are supported in SQL PL:
v FOR
v LOOP
v REPEAT
v WHILE

The FOR statement is distinct from the others, because it is used to iterate over
rows of a defined result set, whereas the others are using for iterating over a series
of SQL statements until for each a condition is satisfied.

Labels can be defined for all loop-control-statements to identify them.

FOR statement in SQL procedures: FOR statements are a special type of looping
statement, because they are used to iterate over rows in a defined read-only result
set. When a FOR statement is executed a cursor is implicitly declared such that for
each iteration of the FOR-loop the next row is the result set if fetched. Looping
continues until there are no rows left in the result set.

The FOR statement simplifies the implementation of a cursor and makes it easy to
retrieve a set of column values for a set of rows upon which logical operations can
be performed.

Chapter 1. SQL PL support 73

Here is an example of an SQL procedure that contains only a simple FOR
statement:

CREATE PROCEDURE P()
LANGUAGE SQL
BEGIN ATOMIC

DECLARE fullname CHAR(40);

FOR v AS cur1 CURSOR FOR
SELECT firstnme, midinit, lastname FROM employee

DO
SET fullname = v.lastname || ',' || v.firstnme

||' ' || v.midinit;
INSERT INTO tnames VALUES (fullname);

END FOR;
END

Note: Logic such as is shown in the example above would be better implemented
using the CONCAT function. The simple example serves to demonstrate the
syntax.

The for-loop-name specifies a label for the implicit compound statement generated
to implemented the FOR statement. It follows the rules for the label of a
compound statement. The for-loop-name can be used to qualify the column names
in the result set as returned by the select-statement.

The cursor-name simply names the cursor that is used to select the rows from the
result set. If it is not specified, the DB2 database manager will automatically
generate a unique cursor name internally.

The column names of the select statement must be unique and a FROM clause
specifying a table (or multiple tables if doing some kind of JOIN or UNION) is
required. The tables and columns referenced must exist prior to the loop being
executed. Global temporary tables and declared temporary tables can be
referenced.

Positioned updates and deletes, and searched updates and deletes are supported in
the FOR loop. To ensure correct results, the FOR loop cursor specification must
include a FOR UPDATE clause.

The cursor that is created in support of the FOR statement cannot be referenced
outside of the FOR loop.

LOOP statement in SQL procedures: The LOOP statement is a special type of
looping statement, because has no terminating condition clause. It defines a series
of statements that are executed repeatedly until another piece of logic, generally a
transfer of control statement, forces the flow of control to jump to some point
outside of the loop.

The LOOP statement is generally used in conjunction with one of the following
statements: LEAVE, GOTO, ITERATE, or RETURN. These statements can force
control to just after the loop, to a specified location in the SQL procedure, to the
start of the loop to begin another iteration of the loop, or to exit the SQL
procedure. To indicate where to pass flow to when using these statements, labels
are used.

The LOOP statement is useful when you have complicated logic in a loop which
you might need to exit in more than one way, however it should be used with care
to avoid instances of infinite loops.

74 SQL Procedural Languages: Application Enablement and Support

If the LOOP statement is used alone without a transfer of control statement, the
series of statements included in the loop will be executed indefinitely or until a
database condition occurs that raises a condition handler that forces a change in
the control flow or a condition occurs that is not handled that forces the return of
the SQL procedure.

Here is an example of an SQL procedure that contains a LOOP statement. It also
uses the ITERATE and LEAVE statements.

CREATE PROCEDURE ITERATOR()
LANGUAGE SQL
BEGIN

DECLARE v_deptno CHAR(3); DECLARE v_deptname VARCHAR(29);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';

DECLARE c1 CURSOR FOR SELECT deptno, deptname
FROM department ORDER BY deptno;

DECLARE CONTINUE HANDLER FOR not_found SET at_end = 1;
OPEN c1;

ins_loop: LOOP

FETCH c1 INTO v_deptno, v_deptname;

IF at_end = 1 THEN
LEAVE ins_loop;

ELSEIF v_dept = 'D11' THEN
ITERATE ins_loop;

END IF;

INSERT INTO department (deptno, deptname)
VALUES ('NEW', v_deptname);

END LOOP;

CLOSE c1;
END

WHILE statement in SQL procedures: The WHILE statement defines a set of
statements to be executed until a condition that is evaluated at the beginning of
the WHILE loop is false. The while-loop-condition (an expression) is evaluated
before each iteration of the loop.

Here is an example of an SQL procedure with a simple WHILE loop:
CREATE PROCEDURE sum_mn (IN p_start INT

,IN p_end INT
,OUT p_sum INT)

SPECIFIC sum_mn
LANGUAGE SQL
smn: BEGIN

DECLARE v_temp INTEGER DEFAULT 0;
DECLARE v_current INTEGER;

SET v_current = p_start;

WHILE (v_current <= p_end) DO
SET v_temp = v_temp + v_current;
SET v_current = v_current + 1;

END WHILE;
p_sum = v_current;
END smn;

Chapter 1. SQL PL support 75

Note: Logic such as is shown in the example above would be better implemented
using a mathematical formula. The simple example serves to demonstrate the
syntax.

REPEAT statement in SQL procedures: The REPEAT statement defines a set of
statements to be executed until a condition that is evaluated at the end of the
REPEAT loop is true. The repeat-loop-condition is evaluated at the completion of
each iteration of the loop.

With a WHILE statement, the loop is not entered if the while-loop-condition is
false at 1st pass. The REPEAT statement is useful alternative; however it is
noteworthy that while-loop logic can be rewritten as a REPEAT statement.

Here is an SQL procedure that includes a REPEAT statement:
CREATE PROCEDURE sum_mn2 (IN p_start INT

,IN p_end INT
,OUT p_sum INT)

SPECIFIC sum_mn2
LANGUAGE SQL
smn2: BEGIN

DECLARE v_temp INTEGER DEFAULT 0;
DECLARE v_current INTEGER;

SET v_current = p_start;

REPEAT
SET v_temp = v_temp + v_current;
SET v_current = v_current + 1;

UNTIL (v_current > p_end)
END REPEAT;

END

Transfer of control statements in SQL procedures: Transfer of control statements are
used to redirect the flow of control within an SQL procedure. This unconditional
branching can be used to cause the flow of control to jump from one point to
another point, which can either precede or follow the transfer of control statement.
The supported transfer of control statements in SQL procedures are:
v GOTO
v ITERATE
v LEAVE
v RETURN

Transfer of control statements can be used anywhere within an SQL procedure,
however ITERATE and LEAVE are generally used in conjunction with a LOOP
statement or other looping statements.

GOTO statement in SQL procedures: The GOTO statement is a straightforward and
basic flow of control statement that causes an unconditional change in the flow of
control. It is used to branch to a specific user-defined location using labels defined
in the SQL procedure.

Use of the GOTO statement is generally considered to be poor programming
practice and is not recommended. Extensive use of GOTO tends to lead to
unreadable code especially when procedures grow long. Besides, GOTO is not
necessary because there are better statements available to control the execution
path. There are no specific situations that require the use of GOTO; instead it is
more often used for convenience.

76 SQL Procedural Languages: Application Enablement and Support

Here is an example of an SQL procedure that contains a GOTO statement:
CREATE PROCEDURE adjust_salary (IN p_empno CHAR(6),

IN p_rating INTEGER,
OUT p_adjusted_salary DECIMAL (8,2))

LANGUAGE SQL
BEGIN

DECLARE new_salary DECIMAL (9,2);
DECLARE service DATE; -- start date

SELECT salary, hiredate INTO v_new_salary, v_service
FROM employee

WHERE empno = p_empno;

IF service > (CURRENT DATE - 1 year) THEN
GOTO exit;

END IF;

IF p_rating = 1 THEN
SET new_salary = new_salary + (new_salary * .10);

END IF;

UPDATE employee SET salary = new_salary WHERE empno = p_empno;

exit:
SET p_adjusted_salary = v_new_salary;

END

This example demonstrates what of the good uses of the GOTO statement:
skipping almost to the end of a procedure or loop so as not to execute some logic,
but to ensure that some other logic does still get executed.

You should be aware of a few additional scope considerations when using the
GOTO statement:
v If the GOTO statement is defined in a FOR statement, the label must be defined

inside the same FOR statement, unless it is in a nested FOR statement or nested
compound statement.

v If the GOTO statement is defined in a compound statement, the label must be
defined in side the same compound statement, unless it is in a nested FOR
statement or nested compound statement.

v If the GOTO statement is defined in a handler, the label must be defined in the
same handler, following the other scope rules.

v If the GOTO statement is defined outside of a handler, the label must not be
defined within a handler.

v If the label is not defined within a scope that the GOTO statement can reach, an
error is returned (SQLSTATE 42736).

ITERATE statement in SQL procedures: The ITERATE statement is used to cause the
flow of control to return to the beginning of a labeled LOOP statement.

Here is an example of an SQL procedure that contains an ITERATE statement:
CREATE PROCEDURE ITERATOR()
LANGUAGE SQL
BEGIN

DECLARE v_deptno CHAR(3); DECLARE v_deptname VARCHAR(29);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';

DECLARE c1 CURSOR FOR SELECT deptno, deptname

Chapter 1. SQL PL support 77

FROM department ORDER BY deptno;
DECLARE CONTINUE HANDLER FOR not_found SET at_end = 1;
OPEN c1;

ins_loop: LOOP
FETCH c1 INTO v_deptno, v_deptname;

IF at_end = 1 THEN
LEAVE ins_loop;

ELSEIF v_dept = 'D11' THEN
ITERATE ins_loop;

END IF;

INSERT INTO department (deptno, deptname)
VALUES ('NEW', v_deptname);

END LOOP;

CLOSE c1;

END

In the example, the ITERATE statement is used to return the flow of control to the
LOOP statement defined with label ins_loop when a column value in a fetched
row matches a certain value. The position of the ITERATE statement ensures that
no values are inserted into the department table.

LEAVE statement in SQL procedures: The LEAVE statement is used to transfer the
flow of control out of a loop or compound statement.

Here is an example of an SQL procedure that contain a LEAVE statement:
CREATE PROCEDURE ITERATOR()
LANGUAGE SQL
BEGIN

DECLARE v_deptno CHAR(3); DECLARE v_deptname VARCHAR(29);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE '02000';

DECLARE c1 CURSOR FOR SELECT deptno, deptname
FROM department ORDER BY deptno;

DECLARE CONTINUE HANDLER FOR not_found SET at_end = 1;

OPEN c1;

ins_loop: LOOP

FETCH c1 INTO v_deptno, v_deptname;

IF at_end = 1 THEN
LEAVE ins_loop;

ELSEIF v_dept = 'D11' THEN
ITERATE ins_loop;

END IF;

INSERT INTO department (deptno, deptname)
VALUES ('NEW', v_deptname);

END LOOP;

CLOSE c1;
END

In the example, the LEAVE statement is used to exit the LOOP statement defined
with label ins_loop. It is nested within an IF statement and therefore is
conditionally executed when the IF-condition is true which becomes true when

78 SQL Procedural Languages: Application Enablement and Support

there are no more rows found in the cursor. The position of the LEAVE statement
ensures that no further iterations of the loop are executed once a NOT FOUND
error is raised.

RETURN statement in SQL procedures: The RETURN statement is used to
unconditionally and immediately terminate an SQL procedure by returning the
flow of control to the caller of the stored procedure.

It is mandatory that when the RETURN statement is executed that it return an
integer value. If the return value is not provided, the default is 0. The value is
typically used to indicate success or failure of the procedure's execution. The value
can be a literal, variable, or an expression that evaluates to an integer value.

You can use one or more RETURN statements in a stored procedure. The RETURN
statement can be used anywhere after the declaration blocks within the
SQL-procedure-body.

To return multiple output values, parameters can be used instead. Parameter
values must be set prior to the RETURN statement being executed.

Here is an example of an SQL procedure that uses the RETURN statement:
CREATE PROCEDURE return_test (IN p_empno CHAR(6),

IN p_emplastname VARCHAR(15))
LANGUAGE SQL
SPECIFIC return_test
BEGIN

DECLARE v_lastname VARCHAR (15);

SELECT lastname INTO v_lastname
FROM employee

WHERE empno = p_empno;

IF v_lastname = p_emplastname THEN
RETURN 1;

ELSE
RETURN -1;

END IF;

END rt

In the example, if the parameter p_emplastname matches the value stored in table
employee, the procedure returns 1. If it does not match, it returns -1.

Condition handlers in SQL procedures: Condition handlers determine the behavior of
your SQL procedure when a condition occurs. You can declare one or more
condition handlers in your SQL procedure for general conditions, named
conditions, or specific SQLSTATE values.

If a statement in your SQL procedure raises an SQLWARNING or NOT FOUND
condition, and you have declared a handler for the respective condition, DB2
passes control to the corresponding handler. If you have not declared a handler for
such a condition, DB2 passes control to the next statement in the SQL procedure
body. If the SQLCODE and SQLSTATE variables have been declared, they will
contain the corresponding values for the condition.

If a statement in your SQL procedure raises an SQLEXCEPTION condition, and
you declared a handler for the specific SQLSTATE or the SQLEXCEPTION

Chapter 1. SQL PL support 79

condition, DB2 passes control to that handler. If the SQLSTATE and SQLCODE
variables have been declared, their values after the successful execution of a
handler will be ‘00000' and 0 respectively.

If a statement in your SQL procedure raises an SQLEXCEPTION condition, and
you have not declared a handler for the specific SQLSTATE or the
SQLEXCEPTION condition, DB2 terminates the SQL procedure and returns to the
caller.

The handler declaration syntax for condition handlers is described in Compound
SQL (Procedure) statement.

Returning result sets from SQL procedures:

In SQL procedures, cursors can be used to do more than iterate through rows of a
result set. They can also be used to return result sets to the calling program. Result
sets can be retrieved by SQL procedures (in the case of a nested procedure calls) or
client applications programmed in C using the CLI application programming
interface, Java, CLI, or .NET CLR languages.

Prerequisites

v Authority to create an SQL procedure

To return a result set from an SQL procedure, you must:
1. Specify the DYNAMIC RESULT SETS clause in the CREATE PROCEDURE

statement
2. DECLARE the cursor using the WITH RETURN clause
3. Open the cursor in the SQL procedure
4. Keep the cursor open for the client application - do not close it

Here is an example of an SQL procedure that only returns a single result set:
CREATE PROCEDURE read_emp()
SPECIFIC read_emp
LANGUAGE SQL
DYNAMIC RESULT SETS 1

Re: BEGIN

DECLARE c_emp CURSOR WITH RETURN FOR
SELECT salary, bonus, comm.
FROM employee
WHERE job != 'PRES';

OPEN c_emp;

END Re

If the cursor is closed using the CLOSE statement prior to the return of the SQL
procedure, the cursor result set will not be returned to the caller or client
application.

Multiple result sets can be returned from an SQL procedure by using multiple
cursors. To return multiple cursors the following must be done:
v Specify the DYNAMIC RESULT SETS clause in the CREATE PROCEDURE

statement. Specify the maximum possible number of result sets likely to be
returned. The number of results sets actually returned must not exceed this
number.

80 SQL Procedural Languages: Application Enablement and Support

v Declare cursors for each of the result sets to be returned that specify the WITH
RETURN clause.

v Open the cursors to be returned.
v Keep the cursor open for the client application - do not close them.

One cursor is required per result set that is to be returned.

Result sets are returned to the caller in the order in which they are opened.

Once you have created the SQL procedure that returns a result set you might want
to call it and retrieve the result set.

Multiple result sets can also be returned by enabling multiple instances of a same
cursor. You must DECLARE the cursor using the WITH RETURN TO CLIENT.

An example to enable multiple instances of an open cursor using the WITH
RETURN TO CLIENT:
CREATE PROCEDURE PROC(IN a INT)
BEGIN

DECLARE index INTEGER DEFAULT 1;
WHILE index < a DO

BEGIN
DECLARE cur CURSOR WITH RETURN TO CLIENT FOR SELECT * FROM T WHERE pk = index;
OPEN cur;
SET index = index + 1;

END;
END WHILE;

END
@

Receiving procedure result sets in SQL routines:

You can receive result sets from procedures you invoke from within an SQL-bodied
routine.

You must know how many result sets the invoked procedure will return. For each
result set that the invoking routine receives, a result set must be declared.

To accept procedure result sets from within an SQL-bodied routine:
1. DECLARE result set locators for each result set that the procedure will return.

For example:
DECLARE result1 RESULT_SET_LOCATOR VARYING;
DECLARE result2 RESULT_SET_LOCATOR VARYING;
DECLARE result3 RESULT_SET_LOCATOR VARYING;

2. Invoke the procedure. For example:
CALL targetProcedure();

3. ASSOCIATE the result set locator variables (defined above) with the invoked
procedure. For example:

ASSOCIATE RESULT SET LOCATORS(result1, result2, result3)
WITH PROCEDURE targetProcedure;

4. ALLOCATE the result set cursors passed from the invoked procedure to the
result set locators. For example:

ALLOCATE rsCur CURSOR FOR RESULT SET result1;

5. FETCH rows from the result sets. For example:
FETCH rsCur INTO ...

Chapter 1. SQL PL support 81

Creating SQL procedures

Creating SQL procedures is similar to creating any database object in that it
consists of executing a DDL SQL statement.

SQL procedures are created by executing the CREATE PROCEDURE statement
which can be done using graphical development environment tools or by directly
executing the statement from the DB2 Command Line Processor (CLP), a DB2
Command Window, the DB2 Command Editor, or another DB2 interface.

When creating SQL procedures, you can specify how the precompiler and binder
should generate the procedure package, what authorization ID should be used to
set the SQL procedure definer in the DB2 catalog views, and to set other package
options.

Creating SQL procedures from the command line:

v The user must have the privileges required to execute the CREATE
PROCEDURE statement for an SQL procedure.

v Privileges to execute all of the SQL statements included within the
SQL-procedure-body of the procedure.

v Any database objects referenced in the CREATE PROCEDURE statement for the
SQL procedure must exist prior to the execution of the statement.

v Select an alternate terminating character for the Command Line Processor (DB2
CLP) other than the default terminating character, which is a semicolon (';'), to
use in the script that you will prepare in the next step.
This is required so that the CLP can distinguish the end of SQL statements that
appear within the body of a routine's CREATE statement from the end of the
CREATE PROCEDURE statement itself. The semicolon character must be used to
terminate SQL statements within the SQL routine body and the chosen alternate
terminating character should be used to terminate the CREATE statement and
any other SQL statements that you might contain within your CLP script.
For example, in the following CREATE PROCEDURE statement, the 'at;' sign
('@') is used as the terminating character for a DB2 CLP script named
myCLPscript.db2:

CREATE PROCEDURE UPDATE_SALARY_IF
(IN employee_number CHAR(6), IN rating SMALLINT)
LANGUAGE SQL
BEGIN

DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE EXIT HANDLER FOR not_found

SIGNAL SQLSTATE '20000' SET MESSAGE_TEXT = 'Employee not found';

IF (rating = 1)
THEN UPDATE employee

SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

ELSEIF (rating = 2)
THEN UPDATE employee

SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END IF;
END

@

v Run the DB2 CLP script containing the CREATE PROCEDURE statement for the
procedure from the command line, using the following CLP command:

82 SQL Procedural Languages: Application Enablement and Support

db2 -td terminating-character -vf CLP-script-name

where terminating-character is the terminating character used in the CLP script
file CLP-script-name that is to be run.
The DB2 CLP option -td indicates that the CLP terminator default is to be reset
with terminating-character. The -vf indicates that the CLP's optional verbose (-v)
option is to be used, which will cause each SQL statement or command in the
script to be displayed to the screen as it is run, along with any output that
results from its execution. The -f option indicates that the target of the command
is a file.
To run the specific script shown in the first step, issue the following command
from the system command prompt:

db2 -td@ -vf myCLPscript.db2

Customizing precompile and bind options for compiled SQL objects:

The precompile and bind options for SQL procedures, compiled functions,
compiled triggers and compound SQL (complied) statements can be customized by
setting the instance-wide DB2 registry variable, DB2_SQLROUTINE_PREPOPTS with the
command:

db2set DB2_SQLROUTINE_PREPOPTS=<options>

The options can be changed at the procedure level with the SET_ROUTINE_OPTS
stored procedure. The values of the options set for the creation of SQL procedures
in the current session can be obtained with the GET_ROUTINE_OPTS function.
The options used to compile a given routine are stored in the system catalog table
ROUTINES.PRECOMPILE_OPTIONS, in the row corresponding to the routine. If
the routine is revalidated, those stored options are also used during the
revalidation.
After a routine is created, the compile options can be altered using the
SYSPROC.ALTER_ROUTINE_PACKAGE and
SYSPROC.REBIND_ROUTINE_PACKAGE procedures. The altered options are
reflected in the ROUTINES_PRECOMPILE_OPTIONS system catalog table.

Note: Cursor blocking is disabled in SQL procedures for cursors referenced in
FETCH statements and for implicit cursors in FOR statements. Regardless of the
value specified for the BLOCKING bind option, data will be retrieved one row at a
time in an optimized, highly efficient manner.

Example.

The SQL procedures used in this example will be defined in CLP scripts
(given below). These scripts are not in the sqlpl samples directory, but you
can easily create these files by cutting-and-pasting the CREATE procedure
statements into your own files.

The examples use a table named "expenses", which you can create in the
sample database as follows:

db2 connect to sample
db2 CREATE TABLE expenses(amount DOUBLE, date DATE)
db2 connect reset

To begin, specify the use of ISO format for dates as an instance-wide
setting:

db2set DB2_SQLROUTINE_PREPOPTS="DATETIME ISO"
db2stop
db2start

Chapter 1. SQL PL support 83

Stopping and restarting DB2 is necessary for the change to take affect.

Then connect to the database:
db2 connect to sample

The first procedure is defined in CLP script maxamount.db2 as follows:
CREATE PROCEDURE maxamount(OUT maxamnt DOUBLE)
BEGIN

SELECT max(amount) INTO maxamnt FROM expenses;
END @

It will be created with options DATETIME ISO and ISOLATION UR:
db2 "CALL SET_ROUTINE_OPTS(GET_ROUTINE_OPTS() || ' ISOLATION UR')"
db2 -td@ -vf maxamount.db2

The next procedure is defined in CLP script fullamount.db2 as follows:
CREATE PROCEDURE fullamount(OUT fullamnt DOUBLE)
BEGIN

SELECT sum(amount) INTO fullamnt FROM expenses;
END @

It will be created with option ISOLATION CS (note that we are not using the
instance-wide DATETIME ISO setting in this case):

CALL SET_ROUTINE_OPTS('ISOLATION CS')
db2 -td@ -vf fullamount.db2

The last procedure in the example is defined in CLP script perday.db2 as
follows:
CREATE PROCEDURE perday()
BEGIN

DECLARE cur1 CURSOR WITH RETURN FOR
SELECT date, sum(amount)
FROM expenses
GROUP BY date;

OPEN cur1;
END @

The last SET_ROUTINE_OPTS call uses the NULL value as the argument. This
restores the global setting specified in the DB2_SQLROUTINE_PREPOPTS
registry, so the last procedure will be created with option DATETIME ISO:

CALL SET_ROUTINE_OPTS(NULL)
db2 -td@ -vf perday.db2

Improving the performance of SQL procedures
Overview of how DB2 compiles SQL PL and inline SQL PL

Before discussing how to improve the performance of SQL procedures we should
discuss how DB2 compiles them upon the execution of the CREATE PROCEDURE
statement.

When an SQL procedure is created, DB2 separates the SQL queries in the
procedure body from the procedural logic. To maximize performance, the SQL
queries are statically compiled into sections in a package. For a statically compiled
query, a section consists mainly of the access plan selected by the DB2 optimizer
for that query. A package is a collection of sections. For more information on
packages and sections, please refer to the DB2 SQL Reference. The procedural logic
is compiled into a dynamically linked library.

84 SQL Procedural Languages: Application Enablement and Support

During the execution of a procedure, every time control flows from the procedural
logic to an SQL statement, there is a "context switch" between the DLL and the
DB2 engine. As of DB2 Version 8.1, SQL procedures run in "unfenced mode". That
is they run in the same addressing space as the DB2 engine. Therefore the context
switch we refer to here is not a full context switch at the operating system level,
but rather a change of layer within DB2. Reducing the number of context switches
in procedures that are invoked very often, such as procedures in an OLTP
application, or that process large numbers of rows, such as procedures that
perform data cleansing, can have a noticeable impact on their performance.

Whereas an SQL procedure containing SQL PL is implemented by statically
compiling its individual SQL queries into sections in a package, an inline SQL PL
function is implemented, as the name suggests, by inlining the body of the
function into the query that uses it. Queries in SQL functions are compiled
together, as if the function body were a single query. The compilation occurs every
time a statement that uses the function is compiled. Unlike what happens in SQL
procedures, procedural statements in SQL functions are not executed in a different
layer than dataflow statements. Therefore, there is no context switch every time
control flows from a procedural to a dataflow statement or vice versa.

If there are no side-effects in your logic use an SQL function instead

Because of the difference in compilation between SQL PL in procedures and inline
SQL PL in functions, it is reasonable to presume that a piece of procedural code
will execute faster in a function than in a procedure if it only queries SQL data and
does no data modifications - that is it has no side-effects on the data in the
database or external to the database.

That is only good news if all the statements that you need to execute are
supported in SQL functions. SQL functions can not contain SQL statements that
modify the database. As well, only a subset of SQL PL is available in the inline
SQL PL of functions. For example, you cannot execute CALL statements, declare
cursors, or return result sets in SQL functions.

Here is an example of an SQL procedure containing SQL PL that was a good
candidate for conversion to an SQL function to maximize performance:

CREATE PROCEDURE GetPrice (IN Vendor CHAR&(20&),
IN Pid INT, OUT price DECIMAL(10,3))

LANGUAGE SQL
BEGIN

IF Vendor eq; ssq;Vendor 1ssq;
THEN SET price eq; (SELECT ProdPrice

FROM V1Table
WHERE Id = Pid);

ELSE IF Vendor eq; ssq;Vendor 2ssq;
THEN SET price eq; (SELECT Price FROM V2Table

WHERE Pid eq; GetPrice.Pid);
END IF;

END

Here is the rewritten SQL function:
CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)
RETURNS DECIMAL(10,3)
LANGUAGE SQL
BEGIN

DECLARE price DECIMAL(10,3);
IF Vendor = 'Vendor 1'

THEN SET price = (SELECT ProdPrice
FROM V1Table

Chapter 1. SQL PL support 85

WHERE Id = Pid);
ELSE IF Vendor = 'Vendor 2'

THEN SET price = (SELECT Price FROM V2Table
WHERE Pid = GetPrice.Pid);

END IF;
RETURN price;

END

Remember that the invocation of a function is different than a procedure. To
invoke the function, use the VALUES statement or invoke the function where an
expression is valid, such as in a SELECT or SET statement. Any of the following
are valid ways of invoking the new function:

VALUES (GetPrice('IBM', 324))

SELECT VName FROM Vendors WHERE GetPrice(Vname, Pid) < 10

SET price = GetPrice(Vname, Pid)

Avoid multiple statements in an SQL PL procedure when just one is
sufficient

Although it is generally a good idea to write concise SQL, it is very ease to forget
to do this in practice. For example the following SQL statements:

INSERT INTO tab_comp VALUES (item1, price1, qty1);
INSERT INTO tab_comp VALUES (item2, price2, qty2);
INSERT INTO tab_comp VALUES (item3, price3, qty3);

can be rewritten as a single statement:
INSERT INTO tab_comp VALUES (item1, price1, qty1),

(item2, price2, qty2),
(item3, price3, qty3);

The multi-row insert will require roughly one third of the time required to execute
the three original statements. Isolated, this improvement might seem negligible,
but if the code fragment is executed repeatedly, for example in a loop or in a
trigger body, the improvement can be significant.

Similarly, a sequence of SET statements like:
SET A = expr1;
SET B = expr2;
SET C = expr3;

can be written as a single VALUES statement:
VALUES expr1, expr2, expr3 INTO A, B, C;

This transformation preserves the semantics of the original sequence if there are no
dependencies between any two statements. To illustrate this, consider:

SET A = monthly_avg * 12;
SET B = (A / 2) * correction_factor;

Converting the previous two statements to:
VALUES (monthly_avg * 12, (A / 2) * correction_factor) INTO A, B;

does not preserve the original semantics because the expressions before the INTO
keyword are evaluated 'in parallel'. This means that the value assigned to B is not
based on the value assigned to A, which was the intended semantics of the original
statements.

86 SQL Procedural Languages: Application Enablement and Support

Reduce multiple SQL statements to a single SQL expression

Like other programming languages, the SQL language provides two types of
conditional constructs: procedural (IF and CASE statements) and functional (CASE
expressions). In most circumstances where either type can be used to express a
computation, using one or the other is a matter of taste. However, logic written
using CASE expressions is not only more compact, but also more efficient than
logic written using CASE or IF statements.

Consider the following fragment of SQL PL code:
IF (Price <= MaxPrice) THEN

INSERT INTO tab_comp(Id, Val) VALUES(Oid, Price);
ELSE

INSERT INTO tab_comp(Id, Val) VALUES(Oid, MaxPrice);
END IF;

The condition in the IF clause is only being used to decide what value is inserted
in the tab_comp.Val column. To avoid the context switch between the procedural
and the dataflow layers, the same logic can be expressed as a single INSERT with a
CASE expression:

INSERT INTO tab_comp(Id, Val)
VALUES(Oid,

CASE
WHEN (Price <= MaxPrice) THEN Price
ELSE MaxPrice

END);

It's worth noting that CASE expressions can be used in any context where a scalar
value is expected. In particular, they can be used on the right-hand side of
assignments. For example:

IF (Name IS NOT NULL) THEN
SET ProdName = Name;

ELSEIF (NameStr IS NOT NULL) THEN
SET ProdName = NameStr;

ELSE
SET ProdName = DefaultName;

END IF;

can be rewritten as:
SET ProdName = (CASE

WHEN (Name IS NOT NULL) THEN Name
WHEN (NameStr IS NOT NULL) THEN NameStr
ELSE DefaultName

END);

In fact, this particular example admits an even better solution:
SET ProdName = COALESCE(Name, NameStr, DefaultName);

Don't underestimate the benefit of taking the time to analyze and consider
rewriting your SQL. The performance benefits will pay you back many times over
for the time invested in analyzing and rewriting your procedure.

Exploit the set-at-a-time semantics of SQL

Procedural constructs such as loops, assignment and cursors allow us to express
computations that would not be possible to express using just SQL DML
statements. But when we have procedural statements at our disposal, there is a
risk that we could turn to them even when the computation at hand can, in fact,

Chapter 1. SQL PL support 87

be expressed using just SQL DML statements. As we've mentioned earlier, the
performance of a procedural computation can be orders of magnitude slower than
the performance of an equivalent computation expressed using DML statements.
Consider the following fragment of code:

DECLARE cur1 CURSOR FOR SELECT col1, col2 FROM tab_comp;
OPEN cur1;
FETCH cur1 INTO v1, v2;
WHILE SQLCODE <> 100 DO

IF (v1 > 20) THEN
INSERT INTO tab_sel VALUES (20, v2);

ELSE
INSERT INTO tab_sel VALUES (v1, v2);

END IF;
FETCH cur1 INTO v1, v2;

END WHILE;

To begin with, the loop body can be improved by applying the transformation
discussed in the last section - "Reduce multiple SQL statements to a single SQL
expression":

DECLARE cur1 CURSOR FOR SELECT col1, col2 FROM tab_comp;
OPEN cur1;
FETCH cur1 INTO v1, v2;
WHILE SQLCODE <> 100 DO

INSERT INTO tab_sel VALUES (CASE
WHEN v1 > 20 THEN 20
ELSE v1

END, v2);
FETCH cur1 INTO v1, v2;

END WHILE;

But upon closer inspection, the whole block of code can be written as an INSERT
with a sub-SELECT:

INSERT INTO tab_sel (SELECT (CASE
WHEN col1 > 20 THEN 20
ELSE col1

END),
col2

FROM tab_comp);

In the original formulation, there was a context switch between the procedural and
the dataflow layers for each row in the SELECT statements. In the last formulation,
there is no context switch at all, and the optimizer has a chance to globally
optimize the full computation.

On the other hand, this dramatic simplification would not have been possible if
each of the INSERT statements targeted a different table, as shown below:

DECLARE cur1 CURSOR FOR SELECT col1, col2 FROM tab_comp;
OPEN cur1;
FETCH cur1 INTO v1, v2;
WHILE SQLCODE <> 100 DO

IF (v1 > 20) THEN
INSERT INTO tab_default VALUES (20, v2);

ELSE
INSERT INTO tab_sel VALUES (v1, v2);

END IF;
FETCH cur1 INTO v1, v2;

END WHILE;

However, the set-at-a-time nature of SQL can also be exploited here:

88 SQL Procedural Languages: Application Enablement and Support

INSERT INTO tab_sel (SELECT col1, col2
FROM tab_comp
WHERE col1 <= 20);

INSERT INTO tab_default (SELECT col1, col2
FROM tab_comp
WHERE col1 > 20);

When looking at improving the performance of existing procedural logic, any time
spent in eliminating cursor loops will likely pay off.

Keep the DB2 optimizer informed

When a procedure is created, its individual SQL queries are compiled into sections
in a package. The DB2 optimizer chooses an execution plan for a query based,
among other things, on table statistics (for example, table sizes or the relative
frequency of data values in a column) and indexes available at the time the query
is compiled. When tables suffer significant changes, it may be a good idea to let
DB2 collect statistics on these tables again. And when statistics are updated or new
indexes are created, it may also be a good idea to rebind the packages associated
with SQL procedures that use the tables, to let DB2 create plans that exploit the
latest statistics and indexes.

Table statistics can be updated using the RUNSTATS command. To rebind the
package associated with an SQL procedure, you can use the
REBIND_ROUTINE_PACKAGE built-in procedure that is available in DB2 Version
8.1. For example, the following command can be used to rebind the package for
procedure MYSCHEMA.MYPROC:

CALL SYSPROC.REBIND_ROUTINE_PACKAGE('P', 'MYSCHEMA.MYPROC', 'ANY')

where 'P' indicates that the package corresponds to a procedure and 'ANY'
indicates that any of the functions and types in the SQL path are considered for
function and type resolution. See the Command Reference entry for the REBIND
command for more details.

Use arrays

You can use arrays to efficiently pass collections of data between applications and
stored procedures and to store and manipulate transient collections of data within
SQL procedures without having to use relational tables. Operators on arrays
available within SQL procedures allow for the efficient storage and retrieval of
data. Applications that create arrays of moderate size will experience significantly
better performance than applications that create very large arrays (on the scale of
multiple megabytes), as the entire array is stored in main memory. See Related links
section for additional information.

SQL functions
SQL functions are functions implemented completely with SQL that can be used to
encapsulate logic that can be invoked like a programming sub-routine. You can
create SQL scalar functions and SQL table functions.

There are many useful applications for SQL functions within a database or
database application architecture. SQL functions can be used to create operators on
column data, for extending the support of built-in functions, for making
application logic more modular, and for improving overall database design, and
database security.

Chapter 1. SQL PL support 89

The following topics provide more information about SQL functions:

Features of SQL functions
SQL functions are characterized by many general features:

SQL functions:
v Can contain SQL Procedural Language statements and features which support

the implementation of control-flow logic around traditional static and dynamic
SQL statements.

v Are supported in the entire DB2 family brand of database products in which
many if not all of the features supported in DB2 Version 9 are supported.

v Are easy to implement, because they use a simple high-level, strongly typed
language.

v SQL functions are more reliable than equivalent external functions.
v Support input parameters.
v SQL scalar functions return a scalar value.
v SQL table functions return a table result set.
v Support a simple, but powerful condition and error-handling model.
v Allow you to easily access the SQLSTATE and SQLCODE values as special

variables.
v Reside in the database and are automatically backed up and restored as part of

backup and restore operations.
v Can be invoked wherever expressions in an SQL statement are supported.
v Support nested functions calls to other SQL functions or functions implemented

in other languages.
v Support recursion (when dynamic SQL is used in compiled functions).
v Can be invoked from triggers.
v Many SQL statements can be included within SQL functions, however there are

exceptions. For the complete list of SQL statements that can included and
executed in SQL functions, see:SQL statements that can be executed in routines

SQL functions provide extensive support not limited to what is listed above. When
implemented according to best practices, they can play an essential role in
database architecture, database application design, and in database system
performance.

Designing SQL functions
Designing SQL functions is a task that you perform before creating SQL functions
in a database.

To design SQL functions it is important to be familiar with the features of SQL
functions. The following topics provide more information about SQL function
design concepts:

Inlined SQL functions and compiled SQL functions:

There are two implementation types for SQL functions: inlined SQL functions and
compiled SQL functions.

Inlined SQL functions

Inlined SQL functions are SQL functions that are created using the
CREATE FUNCTION statement with a body that is either a RETURN

90 SQL Procedural Languages: Application Enablement and Support

statement or an inline compound statement. Inline compound statements
are defined with the BEGIN ATOMIC and END keywords.

Inlined SQL functions can contain SQL statements and inline SQL PL
statements - a subset of SQL PL statements.

Compiled SQL functions

Compiled SQL functions are SQL functions that are created using the
CREATE FUNCTION statement with a body that is either a RETURN
statement or a compiled compound statement. Compiled compound
statements are defined with the BEGIN and END keywords.

When the ATOMIC clause is omitted, SQL functions are compiled and as
such can include or reference more SQL PL features than inlined SQL
functions. Compiled SQL functions can include the following features
which are not supported in inlined SQL functions:
v SQL PL statements, including:

– CASE statement
– REPEAT statement

v Cursor processing
v Dynamic SQL
v Condition handlers

Restrictions on SQL functions:

It is important to note the restrictions on SQL functions before creating them or
when troubleshooting problems related to their implementation and use.

The following restrictions apply to SQL functions:
v SQL table functions cannot contain compiled compound statements.
v SQL scalar functions containing compiled compound statements cannot be

invoked in partitioned database environments.
v By definition, SQL functions cannot contain cursors defined with the WITH

RETURN clause.
v Compiled SQL scalar functions cannot be invoked in partitioned database

environments.
v The following data types are not supported within compiled SQL functions:

structured data types, XML data type, LONG VARCHAR data type, and LONG
VARGRAPHIC data type.

v In this version, use of the DECLARE TYPE statement within compiled SQL
functions is not supported.

Creating SQL scalar functions
Creating SQL scalar functions is a task that you would perform when designing a
database or when developing applications. SOL scalar functions are generally
created when there is an identifiable benefit in encapsulating a piece of reusable
logic so that it can be referenced within SQL statements in multiple applications or
within database objects.

Before you create an SQL function:
v Read: “SQL functions” on page 89
v Read: “Features of SQL functions” on page 90

Chapter 1. SQL PL support 91

v Ensure that you have the privileges required to execute the CREATE
FUNCTION (scalar) statement.

Restrictions

See:“Restrictions on SQL functions” on page 91
1. Define the CREATE FUNCTION (scalar) statement:

a. Specify a name for the function.
b. Specify a name and data type for each input parameter.
c. Specify the RETURNS keyword and the data type of the scalar return value.
d. Specify the BEGIN keyword to introduce the function-body. Note: Use of

the BEGIN ATOMIC keyword is not recommended for new functions.
e. Specify the function body. Specify the RETURN clause and a scalar return

value or variable.
f. Specify the END keyword.

2. Execute the CREATE FUNCTION (scalar) statement from a supported interface.

The CREATE FUNCTION (scalar) statement should execute successfully and the
scalar function should be created.

Example 1:

The following is an example of a compiled SQL function:
CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)

RETURNS DECIMAL(10,3)
LANGUAGE SQL
MODIFIES SQL
BEGIN

DECLARE price DECIMAL(10,3);

IF Vendor = 'Vendor 1'
THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);

ELSE IF Vendor = 'Vendor 2'
THEN SET price = (SELECT Price

FROM V2Table
WHERE Pid = GetPrice.Pid);

END IF;

RETURN price;
END

This function takes in two input parameters and returns a single scalar value,
conditionally based on the input parameter values. It requires the declaration and
use of a local variable named price to hold the value to be returned until the
function returns.

Example 2:

The following example demonstrates a compiled SQL function definition
containing a cursor, condition handler statement, and a REPEAT statement:

CREATE FUNCTION exit_func(a INTEGER)
SPECIFIC exit_func
LANGUAGE SQL
RETURNS INTEGER
BEGIN

DECLARE val INTEGER DEFAULT 0;

92 SQL Procedural Languages: Application Enablement and Support

DECLARE myint INTEGER DEFAULT 0;

DECLARE cur2 CURSOR FOR
SELECT c2 FROM udfd1

WHERE c1 <= a
ORDER BY c1;

DECLARE EXIT HANDLER FOR NOT FOUND
BEGIN

SIGNAL SQLSTATE '70001'
SET MESSAGE_TEXT =

'Exit handler for not found fired';
END;

OPEN cur2;

REPEAT
FETCH cur2 INTO val;
SET myint = myint + val;

UNTIL (myint >= a)
END REPEAT;

CLOSE cur2;

RETURN myint;

END@

After creating the scalar function you might want to invoke the function to test it.

Creating SQL table functions
The task of creating SQL table functions can be done at any time.

Before you create an SQL table function ensure that you have the privileges
required to execute the CREATE FUNCTION (table) statement.

Restrictions

See: “Restrictions on SQL functions” on page 91
1. Define the CREATE FUNCTION (table) statement:

a. Specify a name for the function.
b. Specify a name and data type for each input parameter.
c. Specify the routine attributes.
d. Specify the RETURNS TABLE keyword.
e. Specify the BEGIN ATOMIC keyword to introduce the function-body.
f. Specify the function body.
g. Specify the RETURN clause with brackets in which you specify a query

that defines the result set to be returned.
h. Specify the END keyword.

2. Execute the CREATE FUNCTION (table) statement from a supported interface.

The CREATE FUNCTION (table) statement should execute successfully and the
table function should be created.

Example 1:

The following is an example of a compiled SQL table function that is used to track
and audit updates made to employee salary data:

Chapter 1. SQL PL support 93

CREATE FUNCTION update_salary (updEmpNum CHAR(4), amount INTEGER)
RETURNS TABLE (emp_lastname VARCHAR(10),

emp_firstname VARCHAR(10),
newSalary INTEGER)

LANGUAGE SQL
MODIFIES SQL DATA
NO EXTERNAL ACTION
NOT DETERMINISTIC
BEGIN ATOMIC

INSERT INTO audit_table(user, table, action, time)
VALUES (USER, 'EMPLOYEE',
'Salary update. Values: ' || updEmpNum || ' ' || char(amount), CURRENT_TIMESTAMP);

RETURN (SELECT lastname, firstname, salary
FROM FINAL TABLE(UPDATE employee SET salary = salary + amount WHERE employee.empnum = updEmpNum));

END

This function updates the salary of an employee specified by updEmpNum, by the
amount specified by amount, and also records in an audit table named audit_table,
the user that invoked the routine, the name of the table that was modified, and the
type of modification made by the user. A SELECT statement that references a data
change statement in the FROM clause is used to get back the updated row values.

Example 2:

The following is an example of a compiled SQL table function:
CREATE TABLE t1(pk INT

CREATE TABLE t1_archive LIKE T1%

CREATE FUNCTION archive_tbl_t1(ppk INT)
RETURNS TABLE(pk INT, c1 INT, date)

LANGUAGE SQL
MODIFIES SQL DATA
BEGIN ATOMIC

DECLARE c1 INT;

DECLARE date DATE;

SET (c1, date) = (SELECT * FROM OLD TABLE(DELETE FROM t1 WHERE t1.pk = ppk));

INSERT INTO T1_ARCHIVE VALUES (ppk, c1, date);

RETURN VALUES (pk, c1, date);
END%

After creating the table function you might want to invoke the function to test it.

Compound statements
A compound statement groups other statements together into an executable block.
Compound statements can be executed independently or be included in the
definitions of database objects such as procedures, functions, methods, and
triggers. There are different SQL statements for these because there are unique
differences and restrictions that apply to each.

Compound statements can be either inline compound statements (formerly called
dynamic compound statements) or compiled compound statements. The
differences between these two statements are shown below.

94 SQL Procedural Languages: Application Enablement and Support

Inline compound statements
Inline compound statements are atomic and are defined with the BEGIN
ATOMIC and END keywords, between which other SQL statements can be
defined and executed. Inline compound statements can contain variable
declarations, SQL statements and the subset of SQL PL statements known
as inline SQL PL statements.

Compiled compound statements
Compiled compound statements are not atomic and are defined with the
BEGIN and END keywords, between which other SQL statements can be
defined and executed. Compiled compound statements can contain SQL
statements and all SQL PL statements.

You would choose to use a compiled compound statement instead of an inline
compound statement if you want to make use of the additional features available
with compiled compound statements.

Uses of compound statements

Compound statements are primarily useful for creating short scripts that can be
executed from the DB2 Command Line Processor. They are also used to define the
body of a routine or trigger.

Restrictions on compound statements
It is important to note the restrictions on compound statements before creating
them or when troubleshooting problems related to their implementation and use.

The following restrictions apply to inlined SQL functions:
v Only a subset of SQL PL statements are supported.
v The DECLARE TYPE statement is not supported.

The following restrictions apply to compiled SQL functions:
v SQL table functions cannot contain compiled compound statements.
v SQL scalar functions containing compiled compound statements cannot be

invoked in partitioned database environments.
v The DECLARE TYPE statement is supported, but the following data types are

not supported with its use: structured data types, XML data type, LONG
VARCHAR data type, and LONG VARGRAPHIC data type.

Creating compound statements
Creating and executing compound statements is a task that you would perform
when you need to run a script consisting of SQL statements.

Before you create a compound statement:
v Read: “Compound statements” on page 94
v Ensure that you have the privileges required to execute the Compound

statement.

Restrictions

For a list of restrictions on compound statements, so:
v “Restrictions on compound statements”
1. Define a compound SQL statement.

Chapter 1. SQL PL support 95

2. Execute the compound SQL statement from a supported interface.

If executed dynamically, the SQL statement should execute successfully.

The following is an example of an inlined compound SQL statement that contains
SQL PL:
BEGIN
FOR row AS

SELECT pk, c1, discretize(c1) AS v FROM source
DO

IF row.v is NULL THEN
INSERT INTO except VALUES(row.pk, row.c1);

ELSE
INSERT INTO target VALUES(row.pk, row.d);

END IF;
END FOR;
END

The compound statement is bounded by the keywords BEGIN and END. It
includes use of both the FOR and IF/ELSE control-statements that are part of SQL
PL. The FOR statement is used to iterate through a defined set of rows. For each
row a column's value is checked and conditionally, based on the value, a set of
values is inserted into another table.

96 SQL Procedural Languages: Application Enablement and Support

Chapter 2. PL/SQL support

PL/SQL (Procedural Language/Structured Query Language) statements can be
compiled and executed using DB2 interfaces. This support reduces the complexity
of enabling existing PL/SQL solutions so that they will work with the DB2 data
server.

The supported interfaces include:
v DB2 command line processor (CLP)
v DB2 CLPPlus
v IBM Data Studio
v IBM Optim™ Development Studio

PL/SQL statement execution is not enabled from these interfaces by default.
PL/SQL statement execution support must be enabled on the DB2 data server.

PL/SQL features
PL/SQL statements and scripts can be compiled and executed using DB2
interfaces.

You can execute the following PL/SQL statements:
v Anonymous blocks; for example, DECLARE...BEGIN...END
v CREATE OR REPLACE FUNCTION statement
v CREATE OR REPLACE PACKAGE statement
v CREATE OR REPLACE PACKAGE BODY statement
v CREATE OR REPLACE PROCEDURE statement
v CREATE OR REPLACE TRIGGER statement
v DROP PACKAGE statement
v DROP PACKAGE BODY statement

PL/SQL procedures and functions can be invoked from other PL/SQL statements
or from DB2 SQL PL statements. You can call a PL/SQL procedure from SQL PL
by using the CALL statement.

The following statements and language elements are supported in PL/SQL
contexts:
v Type declarations (In this version, type declarations are only supported within

packages. They are not supported within procedures, functions, triggers, or
anonymous blocks.)
– Associative arrays
– Record types
– VARRAY types

v Variable declarations:
– %ROWTYPE
– %TYPE

v Basic statements, clauses, and statement attributes:
– Assignment statement

© Copyright IBM Corp. 1993, 2010 97

– NULL statement
– RETURNING INTO clause
– Statement attributes, including SQL%FOUND, SQL%NOTFOUND, and

SQL%ROWCOUNT
v Control statements and structures:

– CASE statements:
- Simple CASE statement
- Searched CASE statement

– Exception handling
– EXIT statement
– FOR statement
– GOTO statement
– IF statement
– LOOP statement
– WHILE statement

v Static cursors:
– CLOSE statement
– Cursor FOR loop statement
– FETCH statement (including FETCH INTO a %ROWTYPE variable)
– OPEN statement
– Parameterized cursors
– Cursor attributes

v REF CURSOR support:
– Variables and parameters of type REF CURSOR
– Strong REF CURSORs
– OPEN FOR statement
– Returning REF CURSORs to JDBC applications

v Error support:
– RAISE_APPLICATION_ERROR procedure
– RAISE statement
– SQLCODE function
– SQLERRM function

Creating PL/SQL procedures and functions from a CLP script
You can create PL/SQL procedures and functions from a DB2 command line
processor (CLP) script.
1. Formulate PL/SQL procedure or function definitions within a CLP script file.

Terminate each statement with a new line and a forward slash character (/).
Other statement termination characters are also supported.

2. Save the file. In this example, the file name is script.db2.
3. Execute the script from the CLP. If a forward slash character or a semicolon

was used to terminate statements, issue the following command:
db2 -td/ -vf script.db2

98 SQL Procedural Languages: Application Enablement and Support

If another statement termination character (for example, the @ character) was
used in the script file, you must specify that character in the command string.
For example:
db2 -td@ -vf script.db2

The CLP script should execute successfully if there are no syntax errors.

The following example of a CLP script creates a PL/SQL function and procedure,
and then calls the PL/SQL procedure.
CONNECT TO mydb
/

CREATE TABLE emp (
name VARCHAR2(10),
salary NUMBER,
comm NUMBER,
tot_comp NUMBER

)
/

INSERT INTO emp VALUES ('Larry', 1000, 50, 0)
/
INSERT INTO emp VALUES ('Curly', 200, 5, 0)
/
INSERT INTO emp VALUES ('Moe', 10000, 1000, 0)
/

CREATE OR REPLACE FUNCTION emp_comp (
p_sal NUMBER,
p_comm NUMBER)

RETURN NUMBER
IS
BEGIN

RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp
/

CREATE OR REPLACE PROCEDURE update_comp(p_name IN VARCHAR) AS
BEGIN

UPDATE emp SET tot_comp = emp_comp(salary, comm)
WHERE name = p_name;

END update_comp
/

CALL update_comp('Curly')
/

SELECT * FROM emp
/

CONNECT RESET
/

This script produces the following sample output:
CALL update_comp('Curly')

Return Status = 0

SELECT * FROM emp

NAME SALARY COMM TOT_COMP
---------- ------...--------- ----...----------- --------...-------
Larry 1000 50 0

Chapter 2. PL/SQL support 99

Curly 200 5 4920
Moe 10000 1000 0

3 record(s) selected.

Test your new procedures or functions by invoking them. For procedures, use the
CALL statement. For functions, execute queries or other SQL statements that
contain references to those functions.

Restrictions on PL/SQL support
It is important to note the restrictions on PL/SQL compilation support before
performing PL/SQL compilation, or when troubleshooting PL/SQL compilation or
runtime problems.

In this version:
v PL/SQL statement compilation and execution for the following product editions

is not supported:
– DB2 Express-C

v PL/SQL functions and triggers cannot be created in a partitioned database
environment.

v The NCLOB data type is not supported for use in PL/SQL statements or in
PL/SQL contexts when the database is not defined as a Unicode database. In
Unicode databases, the NCLOB data type is mapped to a DB2 DBCLOB data
type.

v The XMLTYPE data type is not supported.
v TYPE declaration is not supported in a function, procedure, trigger, or

anonymous block.
v The FOR EACH STATEMENT option is not supported for PL/SQL triggers.

PL/SQL sample schema
Most of the PL/SQL examples are based on a PL/SQL sample schema that
represents employees in an organization.

The following script (plsql_sample.sql) defines that PL/SQL sample schema.
--
-- Script that creates the 'sample' tables, views, procedures,
-- functions, triggers, and so on.
--
-- Create and populate tables used in the documentation examples.
--
-- Create the 'dept' table
--
CREATE TABLE dept (

deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
dname VARCHAR2(14) NOT NULL CONSTRAINT dept_dname_uq UNIQUE,
loc VARCHAR2(13)

);
--
-- Create the 'emp' table
--
CREATE TABLE emp (

empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,

100 SQL Procedural Languages: Application Enablement and Support

sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
comm NUMBER(7,2),
deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

REFERENCES dept(deptno)
);
--
-- Create the 'jobhist' table
--
CREATE TABLE jobhist (

empno NUMBER(4) NOT NULL,
startdate DATE NOT NULL,
enddate DATE,
job VARCHAR2(9),
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2),
chgdesc VARCHAR2(80),
CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),
CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)

REFERENCES emp(empno) ON DELETE CASCADE,
CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)

REFERENCES dept (deptno) ON DELETE SET NULL,
CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)

);
--
-- Create the 'salesemp' view
--
CREATE OR REPLACE VIEW salesemp AS

SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';
--
-- Sequence to generate values for function 'new_empno'
--
CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
--
-- Issue PUBLIC grants
--
GRANT ALL ON emp TO PUBLIC;
GRANT ALL ON dept TO PUBLIC;
GRANT ALL ON jobhist TO PUBLIC;
GRANT ALL ON salesemp TO PUBLIC;
--
-- Load the 'dept' table
--
INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');
--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);
--
-- Load the 'jobhist' table
--

Chapter 2. PL/SQL support 101

INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,
'New Hire');

INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL,'SALESMAN',1600,300,30,
'New Hire');

INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,
'New Hire');

INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL,'MANAGER',2975,NULL,20,
'New Hire');

INSERT INTO jobhist VALUES (7654,'28-SEP-81',NULL,'SALESMAN',1250,1400,30,
'New Hire');

INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL,'MANAGER',2850,NULL,30,
'New Hire');

INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL,'MANAGER',2450,NULL,10,
'New Hire');

INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-88','CLERK',1000,NULL,20,
'New Hire');

INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-89','CLERK',1040,NULL,20,
'Raise');

INSERT INTO jobhist VALUES (7788,'05-MAY-90',NULL,'ANALYST',3000,NULL,20,
'Promoted to Analyst');

INSERT INTO jobhist VALUES (7839,'17-NOV-81',NULL,'PRESIDENT',5000,NULL,10,
'New Hire');

INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,
'New Hire');

INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,
'New Hire');

INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-83','CLERK',950,NULL,10,
'New Hire');

INSERT INTO jobhist VALUES (7900,'15-JAN-83',NULL,'CLERK',950,NULL,30,
'Changed to Dept 30');

INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,
'New Hire');

INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,
'New Hire');

SET SQLCOMPAT PLSQL;
--
-- Procedure that lists all employees' numbers and names
-- from the 'emp' table using a cursor
--
CREATE OR REPLACE PROCEDURE list_emp
IS

v_empno NUMBER(4);
v_ename VARCHAR2(10);
CURSOR emp_cur IS

SELECT empno, ename FROM emp ORDER BY empno;
BEGIN

OPEN emp_cur;
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH emp_cur INTO v_empno, v_ename;
EXIT WHEN emp_cur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

END LOOP;
CLOSE emp_cur;

END;
/
--
-- Procedure that selects an employee row given the employee
-- number and displays certain columns
--
CREATE OR REPLACE PROCEDURE select_emp (

p_empno IN NUMBER
)
IS

v_ename emp.ename%TYPE;

102 SQL Procedural Languages: Application Enablement and Support

v_hiredate emp.hiredate%TYPE;
v_sal emp.sal%TYPE;
v_comm emp.comm%TYPE;
v_dname dept.dname%TYPE;
v_disp_date VARCHAR2(10);

BEGIN
SELECT ename, hiredate, sal, NVL(comm, 0), dname

INTO v_ename, v_hiredate, v_sal, v_comm, v_dname
FROM emp e, dept d
WHERE empno = p_empno

AND e.deptno = d.deptno;
v_disp_date := TO_CHAR(v_hiredate, 'YYYY/MM/DD');
DBMS_OUTPUT.PUT_LINE('Number : ' || p_empno);
DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
DBMS_OUTPUT.PUT_LINE(SQLERRM);
DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
DBMS_OUTPUT.PUT_LINE(SQLCODE);

END;
/
--
-- Procedure that queries the 'emp' table based on
-- department number and employee number or name. Returns
-- employee number and name as IN OUT parameters and job,
-- hire date, and salary as OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query (

p_deptno IN NUMBER,
p_empno IN OUT NUMBER,
p_ename IN OUT VARCHAR2,
p_job OUT VARCHAR2,
p_hiredate OUT DATE,
p_sal OUT NUMBER

)
IS
BEGIN

SELECT empno, ename, job, hiredate, sal
INTO p_empno, p_ename, p_job, p_hiredate, p_sal
FROM emp
WHERE deptno = p_deptno

AND (empno = p_empno
OR ename = UPPER(p_ename));

END;
/
--
-- Procedure to call 'emp_query_caller' with IN and IN OUT
-- parameters. Displays the results received from IN OUT and
-- OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query_caller
IS

v_deptno NUMBER(2);
v_empno NUMBER(4);
v_ename VARCHAR2(10);
v_job VARCHAR2(9);
v_hiredate DATE;
v_sal NUMBER;

BEGIN
v_deptno := 30;

Chapter 2. PL/SQL support 103

v_empno := 0;
v_ename := 'Martin';
emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);

EXCEPTION
WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE('More than one employee was selected');
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('No employees were selected');
END;
/
--
-- Function to compute yearly compensation based on semimonthly
-- salary
--
CREATE OR REPLACE FUNCTION emp_comp (

p_sal NUMBER,
p_comm NUMBER

) RETURN NUMBER
IS
BEGIN

RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;
/
--
-- After statement-level triggers that display a message after
-- an insert, update, or deletion to the 'emp' table. One message
-- per SQL command is displayed.
--
CREATE OR REPLACE TRIGGER user_ins_audit_trig

AFTER INSERT ON emp
FOR EACH ROW

DECLARE
v_action VARCHAR2(24);

BEGIN
v_action := ' added employee(s) on ';
DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||

TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;
/
CREATE OR REPLACE TRIGGER user_upd_audit_trig

AFTER UPDATE ON emp
FOR EACH ROW

DECLARE
v_action VARCHAR2(24);

BEGIN
v_action := ' updated employee(s) on ';
DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||

TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;
/
CREATE OR REPLACE TRIGGER user_del_audit_trig

AFTER DELETE ON emp
FOR EACH ROW

DECLARE
v_action VARCHAR2(24);

BEGIN
v_action := ' deleted employee(s) on ';
DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||

TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;
/

104 SQL Procedural Languages: Application Enablement and Support

--
-- Before row-level triggers that display employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the 'emp' table
--
CREATE OR REPLACE TRIGGER emp_ins_sal_trig

BEFORE INSERT ON emp
FOR EACH ROW

DECLARE
sal_diff NUMBER;

BEGIN
DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);
DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);

END;
/
CREATE OR REPLACE TRIGGER emp_upd_sal_trig

BEFORE UPDATE ON emp
FOR EACH ROW

DECLARE
sal_diff NUMBER;

BEGIN
sal_diff := :NEW.sal - :OLD.sal;
DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);

END;
/
CREATE OR REPLACE TRIGGER emp_del_sal_trig

BEFORE DELETE ON emp
FOR EACH ROW

DECLARE
sal_diff NUMBER;

BEGIN
DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);

END;
/
--
-- Package specification for the 'emp_admin' package
--
CREATE OR REPLACE PACKAGE emp_admin
IS

FUNCTION get_dept_name (
p_deptno NUMBER

) RETURN VARCHAR2;
FUNCTION update_emp_sal (

p_empno NUMBER,
p_raise NUMBER

) RETURN NUMBER;
PROCEDURE hire_emp (

p_empno NUMBER,
p_ename VARCHAR2,
p_job VARCHAR2,
p_sal NUMBER,
p_hiredate DATE,
p_comm NUMBER,
p_mgr NUMBER,
p_deptno NUMBER

);
PROCEDURE fire_emp (

p_empno NUMBER
);

END emp_admin;
/
--
-- Package body for the 'emp_admin' package

Chapter 2. PL/SQL support 105

--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS

--
-- Function that queries the 'dept' table based on the department
-- number and returns the corresponding department name
--
FUNCTION get_dept_name (

p_deptno IN NUMBER
) RETURN VARCHAR2
IS

v_dname VARCHAR2(14);
BEGIN

SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
RETURN v_dname;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
RETURN '';

END;
--
-- Function that updates an employee's salary based on the
-- employee number and salary increment/decrement passed
-- as IN parameters. Upon successful completion the function
-- returns the new updated salary.
--
FUNCTION update_emp_sal (

p_empno IN NUMBER,
p_raise IN NUMBER

) RETURN NUMBER
IS

v_sal NUMBER := 0;
BEGIN

SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
v_sal := v_sal + p_raise;
UPDATE emp SET sal = v_sal WHERE empno = p_empno;
RETURN v_sal;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
RETURN -1;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
DBMS_OUTPUT.PUT_LINE(SQLERRM);
DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
DBMS_OUTPUT.PUT_LINE(SQLCODE);
RETURN -1;

END;
--
-- Procedure that inserts a new employee record into the 'emp' table
--
PROCEDURE hire_emp (

p_empno NUMBER,
p_ename VARCHAR2,
p_job VARCHAR2,
p_sal NUMBER,
p_hiredate DATE,
p_comm NUMBER,
p_mgr NUMBER,
p_deptno NUMBER

)
AS
BEGIN

INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
VALUES(p_empno, p_ename, p_job, p_sal,

p_hiredate, p_comm, p_mgr, p_deptno);
END;

106 SQL Procedural Languages: Application Enablement and Support

--
-- Procedure that deletes an employee record from the 'emp' table based
-- on the employee number
--
PROCEDURE fire_emp (

p_empno NUMBER
)
AS
BEGIN

DELETE FROM emp WHERE empno = p_empno;
END;

END;
/

SET SQLCOMPAT DB2;

Obfuscation
Obfuscation encodes the body of the DDL statements for database objects such as
routines, triggers, views, and PL/SQL packages. Obfuscating your code helps
protect your intellectual property because users cannot read the code, but DB2
Database for Linux®, UNIX®, and Windows® can still understand it.

The DBMS_DDL module provides two routines for obfuscating your routines,
triggers, views, or your PL/SQL packages:

WRAP function
Takes a routine, trigger, PL/SQL package, or PL/SQL package body
definition as an argument and produces a string containing the initial
header followed by an obfuscated version of the rest of the statement. For
example, input like:
CREATE PROCEDURE P(a INT)
BEGIN

INSERT INTO T1 VALUES (a);
END

using the DBMS_DDL.WRAP function might result in:
CREATE PROCEDURE P(a INT) WRAPPED SQL09072
aBcDefg12AbcasHGJG6JKHhgkjFGHHkkkljljk878979HJHui99

The obfuscated portion of the DDL statement contains codepage invariant
characters, ensuring that it is valid for any codepage.

CREATE_WRAPPED procedure
Takes the same input as the WRAP function described above, but instead
of returning the obfuscated text, an object is created in the database.
Internally the object is not obfuscated so that it can be processed by the
compiler, but in catalog views like SYSCAT.ROUTINES or
SYSCAT.TRIGGERS the content of the TEXT column is obfuscated.

An obfuscated statement can be used in CLP scripts and can be submitted as
dynamic SQL using other client interfaces.

Obfuscation is available for the following statements:
v db2look by using the -wrap option
v CREATE FUNCTION
v CREATE PACKAGE
v CREATE PACKAGE BODY

Chapter 2. PL/SQL support 107

v CREATE PROCEDURE
v CREATE TRIGGER
v CREATE VIEW
v ALTER MODULE

The db2look tool obfuscates all the above statements when the -wrap option is
used.

Blocks (PL/SQL)
PL/SQL block structures can be included within PL/SQL procedure, function, or
trigger definitions or executed independently as an anonymous block statement.

PL/SQL block structures and the anonymous block statement contain one or more
of the following sections:
v An optional declaration section
v A mandatory executable section
v An optional exception section

These sections can include SQL statements, PL/SQL statements, data type and
variable declarations, or other PL/SQL language elements.

Anonymous block statement (PL/SQL)
The PL/SQL anonymous block statement is an executable statement that can
contain PL/SQL control statements and SQL statements. It can be used to
implement procedural logic in a scripting language. In PL/SQL contexts, this
statement can be compiled and executed by the DB2 data server.

The anonymous block statement, which does not persist in the database, can
consist of up to three sections: an optional declaration section, a mandatory
executable section, and an optional exception section.

The optional declaration section, which can contain the declaration of variables,
cursors, and types that are to be used by statements within the executable and
exception sections, is inserted before the executable BEGIN-END block.

The optional exception section can be inserted near the end of the BEGIN-END
block. The exception section must begin with the keyword EXCEPTION, and
continues until the end of the block in which it appears.

Invocation

This statement can be executed from an interactive tool or command line interface
such as the CLP. This statement can also be embedded within a PL/SQL procedure
definition, function definition, or trigger definition. Within these contexts, the
statement is called a block structure instead of an anonymous block statement.

Authorization

No privileges are required to invoke an anonymous block. However, the privileges
held by the authorization ID of the statement must include all necessary privileges
to invoke the SQL statements that are embedded within the anonymous block.

108 SQL Procedural Languages: Application Enablement and Support

Syntax

��

� declaration
DECLARE

�BEGIN statement �

�

� � �EXCEPTION WHEN exception-condition THEN handler-statement
OR

END ��

Description

DECLARE
An optional keyword that starts the DECLARE statement, which can be used
to declare data types, variables, or cursors. The use of this keyword depends
upon the context in which the block appears.

declaration
Specifies a variable, cursor, or type declaration whose scope is local to the
block. Each declaration must be terminated by a semicolon.

BEGIN
A mandatory keyword that introduces the executable section, which can
include one or more SQL or PL/SQL statements. A BEGIN-END block can
contain nested BEGIN-END blocks.

statement
Specifies a PL/SQL or SQL statement. Each statement must be terminated by a
semicolon.

EXCEPTION
An optional keyword that introduces the exception section.

WHEN exception-condition
Specifies a conditional expression that tests for one or more types of
exceptions.

THEN handler-statement
Specifies a PL/SQL or SQL statement that is executed if a thrown exception
matches an exception in exception-condition. Each statement must be terminated
by a semicolon.

END
A mandatory keyword that ends the block.

Examples

The following example shows the simplest possible anonymous block statement
that the DB2 data server can compile:
BEGIN

NULL;
END;

The following example shows an anonymous block that you can enter interactively
through the DB2 CLP:

Chapter 2. PL/SQL support 109

SET SERVEROUTPUT ON;

BEGIN
dbms_output.put_line('Hello');

END;

The following example shows an anonymous block with a declaration section that
you can enter interactively through the DB2 CLP:
SET SERVEROUTPUT ON;

DECLARE
current_date DATE := SYSDATE;

BEGIN
dbms_output.put_line(current_date);

END;

Procedures (PL/SQL)
The DB2 data server supports the compilation and execution of PL/SQL
procedures. PL/SQL procedures are database objects that contain PL/SQL
procedural logic and SQL statements that can be invoked in contexts where the
CALL statement or procedure references are valid.

PL/SQL procedures are created by executing the PL/SQL CREATE PROCEDURE
statement. Such procedures can be dropped from the database by using the DB2
SQL DROP statement. If you want to replace the implementation for a procedure,
you do not need to drop it. You can use the CREATE PROCEDURE statement and
specify the OR REPLACE option to replace the procedure implementation.

CREATE PROCEDURE statement (PL/SQL)
The CREATE PROCEDURE statement defines a procedure that is stored in the
database.

Invocation

This statement can be executed from the DB2 command line processor (CLP), any
supported interactive SQL interface, an application, or a routine.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:
v If the schema name of the procedure does not exist, IMPLICIT_SCHEMA

authority on the database
v If the schema name of the procedure refers to an existing schema, CREATEIN

privilege on the schema
v DBADM authority

The privileges held by the authorization ID of the statement must also include all
of the privileges necessary to invoke the SQL statements that are specified in the
procedure body.

The authorization ID of the statement must be the owner of the matched procedure
if OR REPLACE is specified (SQLSTATE 42501).

110 SQL Procedural Languages: Application Enablement and Support

Syntax

�� CREATE PROCEDURE
OR REPLACE

�

�

�

()
,

IN
parameter-name data-type

OUT default-clause
IN OUT

�

�
READS SQL DATA

IS
AS

�

declaration

�BEGIN statement �

�

� � �EXCEPTION WHEN exception THEN statement
OR exception

�

� END
procedure-name

��

Description

PROCEDURE procedure-name
Specifies an identifier for the procedure. The unqualified form of
procedure-name is an SQL identifier with a maximum length of 128. In dynamic
SQL statements, the value of the CURRENT SCHEMA special register is used
to qualify an unqualified object name. In static SQL statements, the
QUALIFIER precompile or bind option implicitly specifies the qualifier for
unqualified object names. The qualified form of procedure-name is a schema
name followed by a period character and an SQL identifier. If a two-part name
is specified, the schema name cannot begin with 'SYS'; otherwise, an error is
returned (SQLSTATE 42939).

The name (including an implicit or explicit qualifier), together with the number
of parameters, must not identify a procedure that is described in the catalog
(SQLSTATE 42723). The unqualified name, together with the number of
parameters, is unique within its schema, but does not need to be unique across
schemas.

parameter-name
Specifies the name of a parameter. The parameter name must be unique for
this procedure (SQLSTATE 42734).

data-type
Specifies one of the supported PL/SQL data types.

READS SQL DATA
Indicates that SQL statements that do not modify SQL data can be included in
the procedure. This clause is a DB2 extension.

Chapter 2. PL/SQL support 111

IS or AS
Introduces the procedure body definition.

declaration
Specifies one or more variable, cursor, or REF CURSOR type declarations.

BEGIN
Introduces the executable block. The BEGIN-END block can contain an
EXCEPTION section.

statement
Specifies a PL/SQL or SQL statement. The statement must be terminated by a
semicolon.

EXCEPTION
An optional keyword that introduces the exception section.

WHEN exception-condition
Specifies a conditional expression that tests for one or more types of
exceptions.

statement
Specifies a PL/SQL or SQL statement. The statement must be terminated by a
semicolon.

END
A mandatory keyword that ends the block. You can optionally specify the
name of the procedure.

Notes

The CREATE PROCEDURE statement can be submitted in obfuscated form. In an
obfuscated statement, only the procedure name is readable. The rest of the
statement is encoded in such a way that it is not readable, but can be decoded by
the database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

Examples

The following example shows a simple procedure that takes no parameters:
CREATE OR REPLACE PROCEDURE simple_procedure
IS
BEGIN

DBMS_OUTPUT.PUT_LINE('That''s all folks!');
END simple_procedure;

The following example shows a procedure that takes an IN and an OUT parameter,
and that has GOTO statements whose labels are of the standard PL/SQL form
(<<label>>):
CREATE OR REPLACE PROCEDURE test_goto
(p1 IN INTEGER, out1 OUT VARCHAR2(30))
IS
BEGIN
<<LABEL2ABOVE>>
IF p1 = 1 THEN
out1 := out1 || 'one';
GOTO LABEL1BELOW;
END IF;
if out1 IS NULL THEN
out1 := out1 || 'two';
GOTO LABEL2ABOVE;
END IF;

112 SQL Procedural Languages: Application Enablement and Support

out1 := out1 || 'three';

<<LABEL1BELOW>>
out1 := out1 || 'four';

END test_goto;

Procedure references (PL/SQL)
Invocation references to PL/SQL procedures within PL/SQL contexts can be
compiled by the DB2 data server.

A valid PL/SQL procedure reference consists of the procedure name followed by
its parameters, if any.

Syntax

�� procedure-name

�

,

()
parameter-value

��

Description

procedure-name
Specifies an identifier for the procedure.

parameter-value
Specifies a parameter value. If no parameters are to be passed, the procedure
can be called either with or without parentheses.

Example

The following example shows how to call a PL/SQL procedure within a PL/SQL
context:
BEGIN

simple_procedure;
END;

After a PL/SQL procedure has been created in a DB2 database, it can also be called
using the CALL statement, which is supported in DB2 SQL contexts and
applications using supported DB2 application programming interfaces.

Function invocation syntax support (PL/SQL)
A number of procedures support function invocation syntax in a PL/SQL
assignment statement.

These procedures include:
v DBMS_SQL.EXECUTE
v DBMS_SQL.EXECUTE_AND_FETCH
v DBMS_SQL.FETCH_ROWS
v DBMS_SQL.IS_OPEN
v DBMS_SQL.LAST_ERROR_POSITION
v DBMS_SQL.LAST_ROW_COUNT

Chapter 2. PL/SQL support 113

v DBMS_SQL.OPEN_CURSOR
v UTL_SMTP.CLOSE_DATA
v UTL_SMTP.COMMAND
v UTL_SMTP.COMMAND_REPLIES
v UTL_SMTP.DATA
v UTL_SMTP.EHLO
v UTL_SMTP.HELO
v UTL_SMTP.HELP
v UTL_SMTP.MAIL
v UTL_SMTP.NOOP
v UTL_SMTP.OPEN_DATA
v UTL_SMTP.QUIT
v UTL_SMTP.RCPT
v UTL_SMTP.RSET
v UTL_SMTP.VRFY

Examples
DECLARE

cursor1 NUMBER;
rowsProcessed NUMBER;

BEGIN
cursor1 := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(cursor1, 'INSERT INTO T1 VALUES (10)', DBMS_SQL.NATIVE);
rowsProcessed := DBMS_SQL.EXECUTE(cursor1);
DBMS_SQL.CLOSE_CURSOR(cursor1);

END;
/

DECLARE
v_connection UTL_SMTP.CONNECTION;
v_reply UTL_SMTP.REPLY;

BEGIN
UTL_SMTP.OPEN_CONNECTION('127.0.0.1', 25, v_connection, 10, v_reply);
UTL_SMTP.HELO(v_connection,'127.0.0.1');
UTL_SMTP.MAIL(v_connection, 'sender1@ca.ibm.com');
UTL_SMTP.RCPT(v_connection, 'receiver1@ca.ibm.com');
v_reply := UTL_SMTP.OPEN_DATA (v_connection);
UTL_SMTP.WRITE_DATA (v_connection, 'Test message');
UTL_SMTP.CLOSE_DATA (v_connection);
UTL_SMTP.QUIT(v_connection);

END;
/

Functions (PL/SQL)
The DB2 data server supports the compilation and execution of PL/SQL functions.
PL/SQL functions are database objects that contain PL/SQL procedural logic and
SQL statements that can be invoked in contexts where expressions are valid. When
evaluated, a PL/SQL function returns a value that is substituted within the
expression in which the function is embedded.

PL/SQL functions are created by executing the CREATE FUNCTION statement.
Such functions can be dropped from the database by using the DB2 SQL DROP
statement. If you want to replace the implementation for a function, you do not
need to drop it. You can use the CREATE FUNCTION statement and specify the
OR REPLACE option to replace the function implementation.

114 SQL Procedural Languages: Application Enablement and Support

CREATE FUNCTION statement (PL/SQL)
The CREATE FUNCTION statement defines an SQL scalar function that is stored
in the database. A scalar function returns a single value each time it is invoked,
and is generally valid wherever an SQL expression is valid. PL/SQL functions do
not support output parameters.

Invocation

This statement can be executed from the DB2 command line processor, any
supported interactive SQL interface, an application, or routine.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:
v If the schema name of the function does not exist, IMPLICIT_SCHEMA authority

on the database
v If the schema name of the function refers to an existing schema, CREATEIN

privilege on the schema
v DBADM authority

The privileges held by the authorization ID of the statement must also include all
of the privileges necessary to invoke the SQL statements that are specified in the
function body.

The authorization ID of the statement must be the owner of the matched function
if OR REPLACE is specified (SQLSTATE 42501).

Syntax

�� CREATE FUNCTION name
OR REPLACE

�

�

�

()
,

IN
parameter-name data-type

OUT default-clause
IN OUT

�

� RETURN return-type
MODIFIES SQL DATA

IS
AS

�

declaration
�

� �BEGIN statement �

Chapter 2. PL/SQL support 115

�

� � �EXCEPTION WHEN exception THEN statement
OR exception

�

� END
name

��

Description

The CREATE FUNCTION statement specifies the name of the function, the
optional parameters, the return type of the function, and the body of the function.
The body of the function is a block that is enclosed by the BEGIN and END
keywords. It can contain an optional EXCEPTION section that defines an action to
be taken when a defined exception condition occurs.

OR REPLACE
Indicates that if a function with the same name already exists in the schema,
the new function is to replace the existing one. If this option is not specified,
the new function cannot replace an existing one with the same name in the
same schema.

FUNCTION name
Specifies an identifier for the function.

parameter-name
Specifies the name of a parameter. The name cannot be the same as any other
parameter-name in the parameter list (SQLSTATE 42734).

data-type
Specifies one of the supported PL/SQL data types.

RETURN return-type
Specifies the data type of the scalar value that is returned by the function.

MODIFIES SQL DATA
Indicates that the function can issue any SQL statement except statements that
are not supported in functions (SQLSTATE 38002 or 42985).

This clause is a DB2 extension. It must be used when dynamic SQL statements
that could modify SQL data are specified in statement, otherwise issuing of a
dynamic statement that attempts to modify SQL data will fail during function
invocation (SQLSTATE 38002).

IS or AS
Introduces the block that defines the function body.

declaration
Specifies one or more variable, cursor, or REF CURSOR type declarations.

statement
Specifies one or more PL/SQL program statements. Each statement must be
terminated by a semicolon.

exception
Specifies an exception condition name.

116 SQL Procedural Languages: Application Enablement and Support

Notes

A PL/SQL function cannot take any action that changes the state of an object that
the database manager does not manage.

The CREATE FUNCTION statement can be submitted in obfuscated form. In an
obfuscated statement, only the function name is readable. The rest of the statement
is encoded in such a way that it is not readable, but can be decoded by the
database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

Examples

The following example shows a basic function that takes no parameters:
CREATE OR REPLACE FUNCTION simple_function

RETURN VARCHAR2
IS
BEGIN

RETURN 'That''s All Folks!';
END simple_function;

The following example shows a function that takes two input parameters:
CREATE OR REPLACE FUNCTION emp_comp (

p_sal NUMBER,
p_comm NUMBER)

RETURN NUMBER
IS
BEGIN

RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp;

Function references (PL/SQL)
PL/SQL functions can be referenced wherever an expression is supported.

Syntax

�� function-name

�

,

(parameter-value)

��

Description

function-name
Specifies an identifier for the function.

parameter-value
Specifies a value for a parameter.

Examples

The following example shows how a function named SIMPLE_FUNCTION,
defined in the PL/SQL sample schema, can be called from a PL/SQL anonymous
block:
BEGIN

DBMS_OUTPUT.PUT_LINE(simple_function);
END;

Chapter 2. PL/SQL support 117

The following example shows how a function can be used within an SQL
statement:
SELECT

empno "EMPNO", ename "ENAME", sal "SAL", comm "COMM",
emp_comp(sal, comm) "YEARLY COMPENSATION"

FROM emp

Collections (PL/SQL)
The use of PL/SQL collections is supported by the DB2 data server. A PL/SQL
collection is a set of ordered data elements with the same data type. Individual data
items in the set can be referenced by using subscript notation within parentheses.

In PL/SQL contexts, the DB2 server supports both the VARRAY collection type and
associative arrays.

VARRAY collection type declaration (PL/SQL)
A VARRAY is a type of collection in which each element is referenced by a positive
integer called the array index. The maximum cardinality of the VARRAY is specified
in the type definition.

The TYPE IS VARRAY statement is used to define a VARRAY collection type.

Syntax

�� TYPE varraytype IS VARRAY (n) OF datatype ; ��

Description

varraytype
An identifier that is assigned to the array type.

n The maximum number of elements in the array type.

datatype
A supported data type, such as NUMBER, VARCHAR2, or a record type. The
%TYPE attribute and the %ROWTYPE attribute are also supported.

Example

The following example reads employee names from the EMP table, stores the
names in an array variable of type VARRAY, and then displays the results. The
EMP table contains one column named ENAME. The code is executed from a DB2
script (script.db2). The following commands should be issued from the DB2
command window before executing the script (db2 -tvf script.db2):
db2set DB2_COMPATIBILITY_VECTOR=FFF
db2stop
db2start

The script contains the following code:
SET SQLCOMPAT PLSQL;

connect to mydb
/

CREATE PACKAGE foo
AS

118 SQL Procedural Languages: Application Enablement and Support

TYPE emp_arr_typ IS VARRAY(5) OF VARCHAR2(10);
END;
/

SET SERVEROUTPUT ON
/

DECLARE
emp_arr foo.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 5;
i INTEGER := 0;

BEGIN
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i) := r_emp.ename;

END LOOP;
FOR j IN 1..5 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j));
END LOOP;

END;
/

DROP PACKAGE foo
/

connect reset
/

This script produces the following sample output:
Curly
Larry
Moe
Shemp
Joe

CREATE TYPE (VARRAY) statement (PL/SQL)
The CREATE TYPE (VARRAY) statement defines a VARRAY data type.

Invocation

This statement can be executed from the DB2 command line processor (CLP), any
supported interactive SQL interface, an application, or a routine.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:
v If the schema name of the VARRAY type does not exist, IMPLICIT_SCHEMA

authority on the database
v If the schema name of the VARRAY type refers to an existing schema,

CREATEIN privilege on the schema
v DBADM authority

Syntax

�� CREATE TYPE varraytype
OR REPLACE

IS
AS

VARRAY (n) �

Chapter 2. PL/SQL support 119

� OF datatype ��

Description

OR REPLACE
Indicates that if a user-defined data type with the same name already exists in
the schema, the new data type is to replace the existing one. If this option is
not specified, the new data type cannot replace an existing one with the same
name in the same schema.

varraytype
Specifies an identifier for the VARRAY type. The unqualified form of varraytype
is an SQL identifier with a maximum length of 128. The value of the
CURRENT SCHEMA special register is used to qualify an unqualified object
name. The qualified form of varraytype is a schema name followed by a period
character and an SQL identifier. If a two-part name is specified, the schema
name cannot begin with 'SYS'; otherwise, an error is returned (SQLSTATE
42939). The name (including an implicit or explicit qualifier) must not identify
a user-defined data type that is described in the catalog (SQLSTATE 42723).
The unqualified name is unique within its schema, but does not need to be
unique across schemas.

n Specifies the maximum number of elements in the array type. The maximum
cardinality of an array on a given system is limited by the total amount of
memory that is available to DB2 applications. As such, although arrays of large
cardinalities (up to 2,147,483,647) can be created, not all elements might be
available for use.

datatype
Specifies a supported data type, such as NUMBER, VARCHAR2, or a record
type. The %TYPE attribute and the %ROWTYPE attribute are also supported.

Example

The following example creates a VARRAY data type with a maximum of 10
elements, where each element has the data type NUMBER:
CREATE TYPE NUMARRAY1 AS VARRAY (10) OF NUMBER

Associative arrays (PL/SQL)
A PL/SQL associative array is a collection type that associates a unique key with a
value.

An associative array has the following characteristics:
v An associative array type must be defined before array variables of that array

type can be declared. Data manipulation occurs in the array variable.
v The array does not need to be initialized; simply assign values to array elements.
v There is no defined limit on the number of elements in the array; it grows

dynamically as elements are added.
v The array can be sparse; there can be gaps in the assignment of values to keys.
v An attempt to reference an array element that has not been assigned a value

results in an exception.

Use the TYPE IS TABLE OF statement to define an associative array type.

120 SQL Procedural Languages: Application Enablement and Support

Syntax

�� TYPE assoctype IS TABLE OF datatype
rectype

�

� INDEX BY BINARY_INTEGER
PLS_INTEGER
VARCHAR2 (n)

��

Description

TYPE assoctype
Specifies an identifer for the array type.

datatype
Specifies a scalar data type, such as VARCHAR2 or NUMBER. The %TYPE
attribute is also supported.

rectype
Specifies a previously defined record type. The %ROWTYPE attribute is also
supported.

INDEX BY
Specifies that the associative array is to be indexed by one of the data types
introduced by this clause.

BINARY INTEGER
Integer numeric data.

PLS_INTEGER
Integer numeric data.

VARCHAR2 (n)
A variable-length character string of maximum length n. The %TYPE
attribute is also supported if the object to which the %TYPE attribute is
being applied is of the BINARY_INTEGER, PLS_INTEGER, or VARCHAR2
data type.

To declare a variable with an associative array type, specify array-name assoctype,
where array-name represents an identifier that is assigned to the associative array,
and assoctype represents the identifier for a previously declared array type.

To reference a particular element of the array, specify array-name(n), where
array-name represents the identifier for a previously declared array, and n
represents a value of INDEX BY data type of assoctype. If the array is defined from
a record type, the reference becomes array-name(n).field, where field is defined
within the record type from which the array type is defined. To reference the entire
record, omit field.

Examples

The following example reads the first ten employee names from the EMP table,
stores them in an array, and then displays the contents of the array.
SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test_type1
IS

TYPE emp_arr_typ IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;
END pkg_test_type1

Chapter 2. PL/SQL support 121

/

DECLARE
emp_arr pkg_test_type1.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;

BEGIN
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i) := r_emp.ename;

END LOOP;
FOR j IN 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j));
END LOOP;

END
/

This code generates the following sample output:
SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
KING
TURNER

The example can be modified to use a record type in the array definition.
SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test_type2
IS

TYPE emp_rec_typ IS RECORD (
empno INTEGER,
ename VARCHAR2(10)

);
END pkg_test_type2
/

CREATE OR REPLACE PACKAGE pkg_test_type3
IS

TYPE emp_arr_typ IS TABLE OF pkg_test_type2.emp_rec_typ INDEX BY BINARY_INTEGER;
END pkg_test_type3
/

DECLARE
emp_arr pkg_test_type3.emp_arr_typ;
CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;

BEGIN
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i).empno := r_emp.empno;
emp_arr(i).ename := r_emp.ename;

END LOOP;
FOR j IN 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
emp_arr(j).ename);

END LOOP;
END
/

122 SQL Procedural Languages: Application Enablement and Support

The modified code generates the following sample output:
EMPNO ENAME
----- -------
1001 SMITH
1002 ALLEN
1003 WARD
1004 JONES
1005 MARTIN
1006 BLAKE
1007 CLARK
1008 SCOTT
1009 KING
1010 TURNER

This example can be further modified to use the emp%ROWTYPE attribute to
define emp_arr_typ, instead of using the emp_rec_typ record type.
SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test_type4
IS

TYPE emp_arr_typ IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
END pkg_test_type4
/

DECLARE
emp_arr pkg_test_type4.emp_arr_typ;
CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;

BEGIN
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i).empno := r_emp.empno;
emp_arr(i).ename := r_emp.ename;

END LOOP;
FOR j IN 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
emp_arr(j).ename);

END LOOP;
END
/

In this case, the sample output is identical to that of the previous example.

Finally, instead of assigning each field of the record individually, a record-level
assignment can be made from r_emp to emp_arr:
SET SERVEROUTPUT ON
/

CREATE OR REPLACE PACKAGE pkg_test_type5
IS

TYPE emp_rec_typ IS RECORD (
empno INTEGER,
ename VARCHAR2(10)

);
END pkg_test_type5
/

CREATE OR REPLACE PACKAGE pkg_test_type6
IS

TYPE emp_arr_typ IS TABLE OF pkg_test_type5.emp_rec_typ INDEX BY BINARY_INTEGER;
END pkg_test_type6

Chapter 2. PL/SQL support 123

/

DECLARE
emp_arr pkg_test_type6.emp_arr_typ;
CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
i INTEGER := 0;

BEGIN
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i) := r_emp;

END LOOP;
FOR j IN 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
emp_arr(j).ename);

END LOOP;
END
/

Collection methods (PL/SQL)
Collection methods can be used to obtain information about collections or to
modify collections.

The following commands should be executed before attempting to run the
examples in Table 4 on page 125.
db2set DB2_COMPATIBILITY_VECTOR=ORA
db2stop
db2start
db2 connect to mydb

The MYDB database has one table, EMP, which has one column, ENAME (defined
as VARCHAR(10)):
db2 select * from emp

ENAME

Curly
Larry
Moe
Shemp
Joe

5 record(s) selected.

124 SQL Procedural Languages: Application Enablement and Support

Table 4. Collection methods that are supported (or tolerated) by the DB2 data server in a PL/SQL context

Collection method Description Example

COUNT Returns the
number of
elements in a
collection.

CREATE PACKAGE foo
AS

TYPE sparse_arr_typ IS TABLE OF NUMBER
INDEX BY BINARY_INTEGER;

END;
/

SET SERVEROUTPUT ON
/

DECLARE
sparse_arr foo.sparse_arr_typ;

BEGIN
sparse_arr(-10) := -10;
sparse_arr(0) := 0;
sparse_arr(10) := 10;
DBMS_OUTPUT.PUT_LINE('COUNT: ' ||

sparse_arr.COUNT);
END;
/

DELETE Removes all
elements from a
collection.

CREATE PACKAGE foo
AS

TYPE names_typ IS TABLE OF VARCHAR2(10)
INDEX BY BINARY INTEGER;

END;
/

SET SERVEROUTPUT ON
/

DECLARE
actor_names foo.names_typ;

BEGIN

actor_names(1) := 'Chris';
actor_names(2) := 'Steve';
actor_names(3) := 'Kate';
actor_names(4) := 'Naomi';
actor_names(5) := 'Peter';
actor_names(6) := 'Philip';
actor_names(7) := 'Michael';
actor_names(8) := 'Gary';

DBMS_OUTPUT.PUT_LINE('COUNT: ' ||
actor_names.COUNT);

actor_names.DELETE(2);
DBMS_OUTPUT.PUT_LINE('COUNT: ' ||

actor_names.COUNT);

actor_names.DELETE(3, 5);
DBMS_OUTPUT.PUT_LINE('COUNT: ' ||

actor_names.COUNT);

actor_names.DELETE;
DBMS_OUTPUT.PUT_LINE('COUNT: ' ||

actor_names.COUNT);

END;
/

Chapter 2. PL/SQL support 125

Table 4. Collection methods that are supported (or tolerated) by the DB2 data server in a PL/SQL context (continued)

Collection method Description Example

DELETE (n) Removes element n
from an associative
array. You cannot
delete individual
elements from a
VARRAY collection
type.

See “DELETE”.

DELETE (n1, n2) Removes all
elements from n1
to n2 from an
associative array.
You cannot delete
individual
elements from a
VARRAY collection
type.

See “DELETE”.

EXISTS (n) Returns TRUE if
the specified
element exists.

CREATE PACKAGE foo
AS

TYPE emp_arr_typ IS VARRAY(5) OF VARCHAR2(10);
END;
/

SET SERVEROUTPUT ON
/

DECLARE
emp_arr foo.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp

WHERE ROWNUM <= 5;
i INTEGER := 0;

BEGIN
FOR r_emp IN emp_cur LOOP

i := i + 1;
emp_arr(i) := r_emp.ename;

END LOOP;
emp_arr.TRIM;
FOR j IN 1..5 LOOP

IF emp_arr.EXISTS(j) = true THEN
DBMS_OUTPUT.PUT_LINE(emp_arr(j));

ELSE
DBMS_OUTPUT.PUT_LINE('THIS ELEMENT

HAS BEEN DELETED');
END IF;

END LOOP;
END;
/

EXTEND Appends a single
NULL element to a
collection.

No-op

EXTEND (n) Appends n NULL
elements to a
collection.

No-op

EXTEND (n1, n2) Appends n1 copies
of the n2th element
to a collection.

No-op

126 SQL Procedural Languages: Application Enablement and Support

Table 4. Collection methods that are supported (or tolerated) by the DB2 data server in a PL/SQL context (continued)

Collection method Description Example

FIRST Returns the
smallest index
number in a
collection.

CREATE PACKAGE foo
AS

TYPE emp_arr_typ IS VARRAY(5) OF VARCHAR2(10);
END;
/

SET SERVEROUTPUT ON
/

DECLARE
emp_arr foo.emp_arr_typ;
CURSOR emp_cur IS SELECT ename FROM emp

WHERE ROWNUM <= 5;
i INTEGER := 0;
k INTEGER := 0;
l INTEGER := 0;

BEGIN

FOR r_emp IN emp_cur LOOP
i := i + 1;
emp_arr(i) := r_emp.ename;

END LOOP;

-- Use FIRST and LAST to specify the lower and
-- upper bounds of a loop range:
FOR j IN emp_arr.FIRST..emp_arr.LAST LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j));
END LOOP;

-- Use NEXT(n) to obtain the subscript of
-- the next element:
k := emp_arr.FIRST;
WHILE k IS NOT NULL LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(k));
k := emp_arr.NEXT(k);

END LOOP;

-- Use PRIOR(n) to obtain the subscript of
-- the previous element:
l := emp_arr.LAST;
WHILE l IS NOT NULL LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(l));
l := emp_arr.PRIOR(l);

END LOOP;

DBMS_OUTPUT.PUT_LINE('COUNT: ' || emp_arr.COUNT);

emp_arr.TRIM;
DBMS_OUTPUT.PUT_LINE('COUNT: ' || emp_arr.COUNT);

emp_arr.TRIM(2);
DBMS_OUTPUT.PUT_LINE('COUNT: ' || emp_arr.COUNT);

DBMS_OUTPUT.PUT_LINE('Max. no. elements = ' ||
emp_arr.LIMIT);

END;
/

LAST Returns the largest
index number in a
collection.

See “FIRST”.

Chapter 2. PL/SQL support 127

Table 4. Collection methods that are supported (or tolerated) by the DB2 data server in a PL/SQL context (continued)

Collection method Description Example

LIMIT Returns the
maximum number
of elements for a
VARRAY, or NULL
for nested tables.

See “FIRST”.

NEXT (n) Returns the index
number of the
element
immediately
following the
specified element.

See “FIRST”.

PRIOR (n) Returns the index
number of the
element
immediately prior
to the specified
element.

See “FIRST”.

TRIM Removes a single
element from the
end of a collection.
You cannot trim
elements from an
associative array
collection type.

See “FIRST”.

TRIM (n) Removes n
elements from the
end of a collection.
You cannot trim
elements from an
associative array
collection type.

See “FIRST”.

Variables (PL/SQL)
Variables must be declared before they are referenced.

Variables that are used in a block must generally be defined in the declaration
section of the block unless they are global variables or package-level variables. The
declaration section contains the definitions of variables, cursors, and other types
that can be used in PL/SQL statements within the block. A variable declaration
consists of a name that is assigned to the variable and the data type of the
variable. Optionally, the variable can be initialized to a default value within the
variable declaration.

Procedures and functions can have parameters for passing input values.
Procedures can also have parameters for passing output values, or parameters for
passing both input and output values.

PL/SQL also includes variable data types to match the data types of existing
columns, rows, or cursors using the %TYPE and %ROWTYPE qualifiers.

128 SQL Procedural Languages: Application Enablement and Support

Variable declarations (PL/SQL)
Variables that are used in a block must generally be defined in the declaration
section of the block unless they are global variables or package-level variables. A
variable declaration consists of a name that is assigned to the variable and the data
type of the variable. Optionally, the variable can be initialized to a default value
within the variable declaration.

Syntax

�� name
CONSTANT

type
NOT NULL := expression

DEFAULT NULL

��

Description

name
Specifies an identifier that is assigned to the variable.

CONSTANT
Specifies that the variable value is constant. A default expression must be
assigned, and a new value cannot be assigned to the variable within the
application program.

type
Specifies a data type for the variable.

NOT NULL
Specifies that the variable cannot have a null value. If NOT NULL is specified,
a default expression must be assigned, and the variable cannot be made null
within the application program.

DEFAULT
Specifies a default value for the variable. This default is evaluated every time
that the block is entered. For example, if SYSDATE has been assigned to a
variable of type DATE, the variable resolves to the current invocation time, not
to the time at which the procedure or function was precompiled.

:= The assignment operator is a synonym for the DEFAULT keyword. However, if
this operator is specified without expression, the variable is initialized to the
value NULL.

expression
Specifies the initial value that is to be assigned to the variable when the block
is entered.

NULL
Specifies the SQL value NULL, which has a null value.

Example

The following procedure shows variable declarations that utilize defaults consisting
of string and numeric expressions:
CREATE OR REPLACE PROCEDURE dept_salary_rpt (

p_deptno NUMBER
)
IS

todays_date DATE := SYSDATE;
rpt_title VARCHAR2(60) := 'Report For Department # ' || p_deptno

|| ' on ' || todays_date;
base_sal INTEGER := 35525;

Chapter 2. PL/SQL support 129

base_comm_rate NUMBER := 1.33333;
base_annual NUMBER := ROUND(base_sal * base_comm_rate, 2);

BEGIN
DBMS_OUTPUT.PUT_LINE(rpt_title);
DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base_annual);

END;

The following sample output was obtained by calling this procedure:
CALL dept_salary_rpt(20);

Report For Department # 20 on 10-JUL-07 16:44:45
Base Annual Salary: 47366.55

Parameter modes (PL/SQL)
PL/SQL procedure parameters can have one of three possible modes: IN, OUT, or
IN OUT. PL/SQL function parameters can only be IN.
v An IN formal parameter is initialized to the actual parameter with which it was

called, unless it was explicitly initialized with a default value. The IN parameter
can be referenced within the called program; however, the called program
cannot assign a new value to the IN parameter. After control returns to the
calling program, the actual parameter always contains the value to which it was
set prior to the call.

v An OUT formal parameter is initialized to the actual parameter with which it
was called. The called program can reference and assign new values to the
formal parameter. If the called program terminates without an exception, the
actual parameter takes on the value to which the formal parameter was last set.
If a handled exception occurs, the actual parameter takes on the last value to
which the formal parameter was set. If an unhandled exception occurs, the value
of the actual parameter remains what it was prior to the call.

v Like an IN parameter, an IN OUT formal parameter is initialized to the actual
parameter with which it was called. Like an OUT parameter, an IN OUT formal
parameter is modifiable by the called program, and the last value of the formal
parameter is passed to the calling program's actual parameter if the called
program terminates without an exception. If a handled exception occurs, the
actual parameter takes on the last value to which the formal parameter was set.
If an unhandled exception occurs, the value of the actual parameter remains
what it was prior to the call.

Table 5 summarizes this behavior.

Table 5. Parameter modes

Mode property IN IN OUT OUT

Formal parameter
initialized to:

Actual parameter
value

Actual parameter
value

Actual parameter
value

Formal parameter
modifiable by the
called program?

No Yes Yes

After normal
termination of the
called program,
actual parameter
contains:

Original actual
parameter value
prior to the call

Last value of the
formal parameter

Last value of the
formal parameter

130 SQL Procedural Languages: Application Enablement and Support

Table 5. Parameter modes (continued)

Mode property IN IN OUT OUT

After a handled
exception in the
called program,
actual parameter
contains:

Original actual
parameter value
prior to the call

Last value of the
formal parameter

Last value of the
formal parameter

After an unhandled
exception in the
called program,
actual parameter
contains:

Original actual
parameter value
prior to the call

Original actual
parameter value
prior to the call

Original actual
parameter value
prior to the call

Data types (PL/SQL)
The DB2 data server supports a wide range of data types that can be used to
declare variables in a PL/SQL block.

Table 6. Supported scalar data types that are available in PL/SQL

PL/SQL data type DB2 SQL data type Description

BINARY_INTEGER INTEGER Integer numeric data

BLOB BLOB (4096) Binary data

BLOB (n) BLOB (n)
n = 1 to 2 147 483 647

Binary large object data

BOOLEAN BOOLEAN Logical Boolean (true or
false)

CHAR CHAR (1) Fixed-length character string
data of length 1

CHAR (n) CHAR (n)
n = 1 to 254

Fixed-length character string
data of length n

CHAR VARYING (n) VARCHAR (n) Variable-length character
string data of maximum
length n

CHARACTER CHARACTER (1) Fixed-length character string
data of length 1

CHARACTER (n) CHARACTER (n)
n = 1 to 254

Fixed-length character string
data of length n

CHARACTER VARYING (n) VARCHAR (n)
n = 1 to 32 672

Variable-length character
string data of maximum
length n

CLOB CLOB (1M) Character large object data

CLOB (n) CLOB (n)
n = 1 to 2 147 483 647

Fixed-length long character
string data of length n

DATE DATE 1 Date and time data
(expressed to the second)

DEC DEC (9, 2) Decimal numeric data

DEC (p) DEC (p)
p = 1 to 31

Decimal numeric data of
precision p

DEC (p, s) DEC (p, s)
p = 1 to 31; s = 1 to 31

Decimal numeric data of
precision p and scale s

Chapter 2. PL/SQL support 131

Table 6. Supported scalar data types that are available in PL/SQL (continued)

PL/SQL data type DB2 SQL data type Description

DECIMAL DECIMAL (9, 2) Decimal numeric data

DECIMAL (p) DECIMAL (p)
p = 1 to 31

Decimal numeric data of
precision p

DECIMAL (p, s) DECIMAL (p, s)
p = 1 to 31; s = 1 to 31

Decimal numeric data of
precision p and scale s

DOUBLE DOUBLE Double precision
floating-point number

DOUBLE PRECISION DOUBLE PRECISION Double precision
floating-point number

FLOAT FLOAT Float numeric data

FLOAT (n)
n = 1 to 24

REAL Real numeric data

FLOAT (n)
n = 25 to 53

DOUBLE Double numeric data

INT INT Signed four-byte integer
numeric data

INTEGER INTEGER Signed four-byte integer
numeric data

LONG CLOB (32760) Character large object data

LONG RAW BLOB (32760) Binary large object data

LONG VARCHAR CLOB (32760) Character large object data

NATURAL INTEGER Signed four-byte integer
numeric data

NCHAR GRAPHIC (127) Fixed-length graphic string
data

NCHAR (n)
n = 1 to 2000

GRAPHIC (n)
n = 1 to 127

Fixed-length graphic string
data of length n

NCLOB 2 DBCLOB (1M) Double-byte character large
object data

NCLOB (n) DBCLOB (2000) Double-byte long character
string data of maximum
length n

NVARCHAR2 VARGRAPHIC (2048) Variable-length graphic
string data

NVARCHAR2 (n) VARGRAPHIC (n) Variable-length graphic
string data of maximum
length n

NUMBER NUMBER 3 Exact numeric data

NUMBER (p) NUMBER (p) 3 Exact numeric data of
maximum precision p

NUMBER (p, s) NUMBER (p, s) 3

p = 1 to 31
Exact numeric data of
maximum precision p and
scale s

NUMERIC NUMERIC (9.2) Exact numeric data

NUMERIC (p) NUMERIC (p)
p = 1 to 31

Exact numeric data of
maximum precision p

132 SQL Procedural Languages: Application Enablement and Support

Table 6. Supported scalar data types that are available in PL/SQL (continued)

PL/SQL data type DB2 SQL data type Description

NUMERIC (p, s) NUMERIC (p, s)
p = 1 to 31; s = 0 to 31

Exact numeric data of
maximum precision p and
scale s

PLS_INTEGER INTEGER Integer numeric data

RAW BLOB (32767) Binary large object data

RAW (n) BLOB (n)
n = 1 to 32 767

Binary large object data

SMALLINT SMALLINT Signed two-byte integer data

TIMESTAMP (0) TIMESTAMP (0) Date data with timestamp
information

TIMESTAMP (p) TIMESTAMP (p) Date and time data with
optional fractional seconds
and precision p

VARCHAR VARCHAR (4096) Variable-length character
string data with a maximum
length of 4096 characters

VARCHAR (n) VARCHAR (n) Variable-length character
string data with a maximum
length of n characters

VARCHAR2 (n) VARCHAR2 (n) 4 Variable-length character
string data with a maximum
length of n characters

1. When the DB2_COMPATIBILITY_VECTOR registry variable is set for the DATE data
type, DATE is equivalent to TIMESTAMP (0).

2. For restrictions on the NCLOB data type in certain database environments,
see “Restrictions on PL/SQL support”.

3. This data type is supported when the number_compat database configuration
parameter set to ON.

4. This data type is supported when the varchar2_compat database configuration
parameter set to ON.

In addition to the scalar data types described in Table 6 on page 131, the DB2 data
server also supports collection types, record types, and REF CURSOR types.

%TYPE attribute in variable declarations (PL/SQL)
The %TYPE attribute, used in PL/SQL variable and parameter declarations, is
supported by the DB2 data server. Use of this attribute ensures that type
compatibility between table columns and PL/SQL variables is maintained.

A qualified column name in dot notation or the name of a previously declared
variable must be specified as a prefix to the %TYPE attribute. The data type of this
column or variable is assigned to the variable being declared. If the data type of
the column or variable changes, there is no need to modify the declaration code.

The %TYPE attribute can also be used with formal parameter declarations.

Chapter 2. PL/SQL support 133

Syntax

�� name table . column
view

variable

%TYPE ��

Description

name
Specifies an identifier for the variable or formal parameter that is being
declared.

table
Specifies an identifier for the table whose column is to be referenced.

view
Specifies an identifier for the view whose column is to be referenced.

column
Specifies an identifier for the table or view column that is to be referenced.

variable
Specifies an identifier for a previously declared variable that is to be
referenced. The variable does not inherit any other column attributes, such as,
for example, the nullability attribute.

Example

The following example shows a procedure that queries the EMP table using an
employee number, displays the employee's data, finds the average salary of all
employees in the department to which the employee belongs, and then compares
the chosen employee's salary with the department average.
CREATE OR REPLACE PROCEDURE emp_sal_query (

p_empno IN NUMBER
)
IS

v_ename VARCHAR2(10);
v_job VARCHAR2(9);
v_hiredate DATE;
v_sal NUMBER(7,2);
v_deptno NUMBER(2);
v_avgsal NUMBER(7,2);

BEGIN
SELECT ename, job, hiredate, sal, deptno

INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
FROM emp WHERE empno = p_empno;

DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

SELECT AVG(sal) INTO v_avgsal
FROM emp WHERE deptno = v_deptno;

IF v_sal > v_avgsal THEN
DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the department '

|| 'average of ' || v_avgsal);
ELSE

134 SQL Procedural Languages: Application Enablement and Support

DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the department '
|| 'average of ' || v_avgsal);

END IF;
END;

This procedure could be rewritten without explicitly coding the EMP table data
types in the declaration section.
CREATE OR REPLACE PROCEDURE emp_sal_query (

p_empno IN emp.empno%TYPE
)
IS

v_ename emp.ename%TYPE;
v_job emp.job%TYPE;
v_hiredate emp.hiredate%TYPE;
v_sal emp.sal%TYPE;
v_deptno emp.deptno%TYPE;
v_avgsal v_sal%TYPE;

BEGIN
SELECT ename, job, hiredate, sal, deptno

INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
FROM emp WHERE empno = p_empno;

DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

SELECT AVG(sal) INTO v_avgsal
FROM emp WHERE deptno = v_deptno;

IF v_sal > v_avgsal THEN
DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the department '

|| 'average of ' || v_avgsal);
ELSE

DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the department '
|| 'average of ' || v_avgsal);

END IF;
END;

The p_empno parameter is an example of a formal parameter that is defined using
the %TYPE attribute. The v_avgsal variable is an example of the %TYPE attribute
referring to another variable instead of a table column.

The following sample output is generated by a call to the EMP_SAL_QUERY
procedure:
CALL emp_sal_query(7698);

Employee # : 7698
Name : BLAKE
Job : MANAGER
Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00
Dept # : 30
Employee's salary is more than the department average of 1566.67

Record variables based on user-defined record types
(PL/SQL)

PL/SQL record variable declarations based on user-defined record type definitions
are supported by the DB2 data server in PL/SQL contexts.

A record type is a definition of a record that consists of one or more identifiers and
their corresponding data types. A record type cannot, by itself, be used to

Chapter 2. PL/SQL support 135

manipulate data. You can declare PL/SQL record variables that are based on
existing user-defined record types, and you can create user-defined record types by
using the PL/SQL TYPE IS RECORD statement. A record type definition is only
supported in the CREATE PACKAGE or CREATE PACKAGE BODY statement.

A record variable (or record) is an instance of a record type. A record variable is
declared from a record type. The properties of the record, such as its field names
and types, are inherited from the record type.

Dot notation is used to reference fields in a record. For example, record.field.

Syntax

�� TYPE rectype IS RECORD �

,

(field datatype) ��

Description

TYPE rectype IS RECORD
Specifies an identifier for the record type.

field
Specifies an identifier for a field of the record type.

datatype
Specifies the corresponding data type of the field. The %TYPE attribute is
supported; the %ROWTYPE attribute is not supported.

Example

The following example shows a package that references a user-defined record type:
CREATE OR REPLACE PACKAGE pkg7a
IS
TYPE t1_typ IS RECORD (

c1 T1.C1%TYPE,
c2 VARCHAR(10)

);
END;

%ROWTYPE attribute in record type declarations (PL/SQL)
The %ROWTYPE attribute, used to declare PL/SQL variables of type record with
fields that correspond to the columns of a table or view, is supported by the DB2
data server. Each field in a PL/SQL record assumes the data type of the
corresponding column in the table.

A record is a named, ordered collection of fields. A field is similar to a variable; it
has an identifier and a data type, but it also belongs to a record, and must be
referenced using dot notation, with the record name as a qualifier.

Syntax

�� record table
view

%ROWTYPE ��

136 SQL Procedural Languages: Application Enablement and Support

Description

record
Specifies an identifier for the record.

table
Specifies an identifier for the table whose column definitions will be used to
define the fields in the record.

view
Specifies an identifier for the view whose column definitions will be used to
define the fields in the record.

%ROWTYPE
Specifies that the record field data types are to be derived from the column
data types that are associated with the identified table or view. Record fields
do not inherit any other column attributes, such as, for example, the nullability
attribute.

Example

The following example shows how to use the %ROWTYPE attribute to create a
record (named r_emp) instead of declaring individual variables for the columns in
the EMP table.
CREATE OR REPLACE PROCEDURE emp_sal_query (

p_empno IN emp.empno%TYPE
)
IS

r_emp emp%ROWTYPE;
v_avgsal emp.sal%TYPE;

BEGIN
SELECT ename, job, hiredate, sal, deptno

INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
FROM emp WHERE empno = p_empno;

DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

SELECT AVG(sal) INTO v_avgsal
FROM emp WHERE deptno = r_emp.deptno;

IF r_emp.sal > v_avgsal THEN
DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the department '

|| 'average of ' || v_avgsal);
ELSE

DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the department '
|| 'average of ' || v_avgsal);

END IF;
END;

Basic statements (PL/SQL)
The programming statements that can be used in a PL/SQL application include:
assignment, DELETE, EXECUTE IMMEDIATE, INSERT, NULL, SELECT INTO, and
UPDATE.

Chapter 2. PL/SQL support 137

NULL statement (PL/SQL)
The NULL statement is an executable statement that does nothing. The NULL
statement can act as a placeholder whenever an executable statement is required,
but no SQL operation is wanted; for example, within a branch of the
IF-THEN-ELSE statement.

Syntax

�� NULL ��

Examples

The following example shows the simplest valid PL/SQL program that the DB2
data server can compile:
BEGIN

NULL;
END;

The following example shows the NULL statement within an IF...THEN...ELSE
statement:
CREATE OR REPLACE PROCEDURE divide_it (

p_numerator IN NUMBER,
p_denominator IN NUMBER,
p_result OUT NUMBER

)
IS
BEGIN

IF p_denominator = 0 THEN
NULL;

ELSE
p_result := p_numerator / p_denominator;

END IF;
END;

Assignment statement (PL/SQL)
The assignment statement sets a previously-declared variable or formal OUT or IN
OUT parameter to the value of an expression.

Syntax

�� variable := expression ��

Description

variable
Specifies an identifier for a previously-declared variable, OUT formal
parameter, or IN OUT formal parameter.

expression
Specifies an expression that evaluates to a single value. The data type of this
value must be compatible with the data type of variable.

Example

The following example shows assignment statements in the executable section of a
procedure:

138 SQL Procedural Languages: Application Enablement and Support

CREATE OR REPLACE PROCEDURE dept_salary_rpt (
p_deptno IN NUMBER,
p_base_annual OUT NUMBER

)
IS

todays_date DATE;
rpt_title VARCHAR2(60);
base_sal INTEGER;
base_comm_rate NUMBER;

BEGIN
todays_date := SYSDATE;
rpt_title := 'Report For Department # ' || p_deptno || ' on '

|| todays_date;
base_sal := 35525;
base_comm_rate := 1.33333;
p_base_annual := ROUND(base_sal * base_comm_rate, 2);

DBMS_OUTPUT.PUT_LINE(rpt_title);
DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || p_base_annual);

END
/

EXECUTE IMMEDIATE statement (PL/SQL)
The EXECUTE IMMEDIATE statement prepares an executable form of an SQL
statement from a character string form of the statement and then executes the SQL
statement. EXECUTE IMMEDIATE combines the basic functions of the PREPARE
and EXECUTE statements.

Invocation

This statement can only be specified in a PL/SQL context.

Authorization

The authorization rules are those defined for the specified SQL statement.

The authorization ID of the statement might be affected by the DYNAMICRULES
bind option.

Syntax

�� EXECUTE IMMEDIATE sql-expression �

�

�

�

,

INTO variable
,

BULK COLLECT INTO array-variable

�

�

�

,
IN

USING expression
IN OUT variable
OUT variable

��

Chapter 2. PL/SQL support 139

Description

sql-expression
An expression returning the statement string to be executed. The expression
must return a character-string type that is less than the maximum statement
size of 2 097 152 bytes. Note that a CLOB(2097152) can contain a maximum
size statement, but a VARCHAR cannot.

The statement string must be one of the following SQL statements:
v ALTER
v CALL
v COMMENT
v COMMIT
v Compound SQL (compiled)
v Compound SQL (inlined)
v CREATE
v DECLARE GLOBAL TEMPORARY TABLE
v DELETE
v DROP
v EXPLAIN
v FLUSH EVENT MONITOR
v FLUSH PACKAGE CACHE
v GRANT
v INSERT
v LOCK TABLE
v MERGE
v REFRESH TABLE
v RELEASE SAVEPOINT
v RENAME
v REVOKE
v ROLLBACK
v SAVEPOINT
v SELECT (only when the EXECUTE IMMEDIATE statement also specifies the

BULK COLLECT INTO clause)
v SET COMPILATION ENVIRONMENT
v SET CURRENT DECFLOAT ROUNDING MODE
v SET CURRENT DEFAULT TRANSFORM GROUP
v SET CURRENT DEGREE
v SET CURRENT FEDERATED ASYNCHRONY
v SET CURRENT EXPLAIN MODE
v SET CURRENT EXPLAIN SNAPSHOT
v SET CURRENT IMPLICIT XMLPARSE OPTION
v SET CURRENT ISOLATION
v SET CURRENT LOCALE LC_TIME
v SET CURRENT LOCK TIMEOUT
v SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
v SET CURRENT MDC ROLLOUT MODE

140 SQL Procedural Languages: Application Enablement and Support

v SET CURRENT OPTIMIZATION PROFILE
v SET CURRENT QUERY OPTIMIZATION
v SET CURRENT REFRESH AGE
v SET CURRENT SQL_CCFLAGS
v SET ROLE (only if DYNAMICRULES run behavior is in effect for the

package)
v SET ENCRYPTION PASSWORD
v SET EVENT MONITOR STATE (only if DYNAMICRULES run behavior is in

effect for the package)
v SET INTEGRITY
v SET PASSTHRU
v SET PATH
v SET SCHEMA
v SET SERVER OPTION
v SET SESSION AUTHORIZATION
v SET variable
v TRANSFER OWNERSHIP (only if DYNAMICRULES run behavior is in

effect for the package)
v TRUNCATE (only if DYNAMICRULES run behavior is in effect for the

package)
v UPDATE

The statement string must not contain a statement terminator, with the
exception of compound SQL statements which can contain semicolons (;) to
separate statements within the compound block. A compound SQL statement is
used within some CREATE and ALTER statements which, therefore, can also
contain semicolons.

When an EXECUTE IMMEDIATE statement is executed, the specified
statement string is parsed and checked for errors. If the SQL statement is
invalid, it is not executed, and an exception is thrown.

INTO variable
Specifies the name of a variable that is to receive an output value from the
corresponding parameter marker.

BULK COLLECT INTO array-variable
Identifies one or more variables with an array data type. Each row of the
query is assigned to an element in each array in the order of the result set,
with the array index assigned in sequence.
v If exactly one array-variable is specified:

– If the data type of the array-variable element is not a record type, the
SELECT list must have exactly one column and the column data type
must be assignable to the array element data type.

– If the data type of the array-variable element is a record type, the SELECT
list must be assignable to the record type.

v If multiple array variables are specified:
– The data type of the array-variable element must not be a record type.
– There must be an array-variable for each column in the SELECT list.
– The data type of each column in the SELECT list must be assignable to

the array element data type of the corresponding array-variable.

Chapter 2. PL/SQL support 141

If the data type of array-variable is an ordinary array, the maximum cardinality
must be greater than or equal to the number of rows that are returned by the
query.

This clause can only be used if the sql-expression is a SELECT statement.

USING

IN expression
Specifies a value that is passed to an input parameter marker. IN is the
default.

IN OUT variable
Specifies the name of a variable that is to provide an input value to, or
receive an output value from the corresponding parameter marker.

OUT variable
Specifies the name of a variable that is to receive an output value from the
corresponding parameter marker.

The number and order of evaluated expressions or variables must match the
number and order of—and be type-compatible with—the parameter markers in
sql-expression.

Notes
v Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.

Example
CREATE OR REPLACE PROCEDURE proc1(p1 IN NUMBER, p2 IN OUT NUMBER, p3 OUT NUMBER)
IS
BEGIN

p3 := p1 + 1;
p2 := p2 + 1;

END;
/

EXECUTE IMMEDIATE 'BEGIN proc1(:1, :2, :3); END' USING IN p1 + 10, IN OUT p3,
OUT p2;

EXECUTE IMMEDIATE 'BEGIN proc1(:1, :2, :3); END' INTO p3, p2 USING p1 + 10, p3;

SQL statements (PL/SQL)
SQL statements that are supported within PL/SQL contexts can be used to modify
data or to specify the manner in which statements are to be executed.

Table 7 lists these statements. The behavior of these statements when executed in
PL/SQL contexts is equivalent to the behavior of the corresponding DB2 SQL
statements.

Table 7. SQL statements that can be executed by the DB2 server within PL/SQL contexts

Command Description

DELETE Deletes rows from a table

INSERT Inserts rows into a table

MERGE Updates a target (a table or view) using data
from a source (result of a table reference)

SELECT INTO Retrieves rows from a table

UPDATE Updates rows in a table

142 SQL Procedural Languages: Application Enablement and Support

BULK COLLECT INTO clause (PL/SQL)
A SELECT INTO statement with the optional BULK COLLECT keywords
preceding the INTO keyword retrieves multiple rows into an array.

Syntax

�� �

,

BULK COLLECT INTO array-variable ��

Description

BULK COLLECT INTO array-variable
Identifies one or more variables with an array data type. Each row of the result
is assigned to an element in each array in the order of the result set, with the
array index assigned in sequence.
v If exactly one array-variable is specified:

– If the data type of the array-variable element is not a record type, the
SELECT list must have exactly one column, and the column data type
must be assignable to the array element data type.

– If the data type of the array-variable element is a record type, the SELECT
list must be assignable to the record type.

v If multiple array variables are specified:
– The data type of the array-variable element must not be a record type.
– There must be an array-variable for each column in the SELECT list.
– The data type of each column in the SELECT list must be assignable to

the array element data type of the corresponding array-variable.

If the data type of array-variable is an ordinary array, the maximum cardinality
must be greater than or equal to the number of rows that are returned by the
query.

Notes
v Variations of the BULK COLLECT INTO clause are also supported with the

FETCH statement and the EXECUTE IMMEDIATE statement.

Example

The following example shows a procedure that uses the BULK COLLECT INTO
clause to return an array of rows from the procedure. The procedure and the type
for the array are defined in a package.
CREATE OR REPLACE PACAKGE bci_sample
IS
TYPE emps_array IS VARRAY (30) OF VARCHAR2(6);

PROCEDURE get_dept_empno (
dno IN emp.deptno%TYPE,
emps_dno OUT emps_array
);

END bci_sample;

CREATE OR REPLACE PACKAGE BODY bci_sample
IS

Chapter 2. PL/SQL support 143

PROCEDURE get_dept_empno (
dno IN emp.deptno%TYPE,
emps_dno OUT emps_array
)
IS
BEGIN
SELECT empno BULK COLLECT INTO emps_dno
FROM emp
WHERE deptno=dno;

END get_dept_empno;
END bci_sample;

RETURNING INTO clause (PL/SQL)
INSERT, UPDATE, and DELETE statements that are appended with the optional
RETURNING INTO clause can be compiled by the DB2 data server. When used in
PL/SQL contexts, this clause captures the newly added, modified, or deleted
values from executing INSERT, UPDATE, or DELETE statements, respectively.

Syntax

�� insert-statement
update-statement
delete-statement

�

RETURNING *
,

expr �

INTO record
,

field

��

Description

insert-statement
Specifies a valid INSERT statement. An exception is raised if the INSERT
statement returns a result set that contains more than one row.

update-statement
Specifies a valid UPDATE statement. An exception is raised if the UPDATE
statement returns a result set that contains more than one row.

delete-statement
Specifies a valid DELETE statement. An exception is raised if the DELETE
statement returns a result set that contains more than one row.

RETURNING *
Specifies that all of the values from the row that is affected by the INSERT,
UPDATE, or DELETE statement are to be made available for assignment.

RETURNING expr
Specifies an expression to be evaluated against the row that is affected by the
INSERT, UPDATE, or DELETE statement. The evaluated results are assigned to
a specified record or fields.

INTO record
Specifies that the returned values are to be stored in a record with compatible
fields and data types. The fields must match in number, order, and data type
those values that are specified with the RETURNING clause. If the result set
contains no rows, the fields in the record are set to the null value.

INTO field
Specifies that the returned values are to be stored in a set of variables with
compatible fields and data types. The fields must match in number, order, and
data type those values that are specified with the RETURNING clause. If the
result set contains no rows, the fields are set to the null value.

144 SQL Procedural Languages: Application Enablement and Support

Examples

The following example shows a procedure that uses the RETURNING INTO
clause:
CREATE OR REPLACE PROCEDURE emp_comp_update (

p_empno IN emp.empno%TYPE,
p_sal IN emp.sal%TYPE,
p_comm IN emp.comm%TYPE

)
IS

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
v_job emp.job%TYPE;
v_sal emp.sal%TYPE;
v_comm emp.comm%TYPE;
v_deptno emp.deptno%TYPE;

BEGIN
UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno
RETURNING

empno,
ename,
job,
sal,
comm,
deptno

INTO
v_empno,
v_ename,
v_job,
v_sal,
v_comm,
v_deptno;

IF SQL%FOUND THEN
DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || v_empno);
DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
DBMS_OUTPUT.PUT_LINE('New Salary : ' || v_sal);
DBMS_OUTPUT.PUT_LINE('New Commission : ' || v_comm);

ELSE
DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');

END IF;
END;

This procedure returns the following sample output:
EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503
Name : PETERSON
Job : ANALYST
Department : 40
New Salary : 6540.00
New Commission : 1200.00

The following example shows a procedure that uses the RETURNING INTO clause
with record types:
CREATE OR REPLACE PROCEDURE emp_delete (

p_empno IN emp.empno%TYPE
)
IS

r_emp emp%ROWTYPE;
BEGIN

DELETE FROM emp WHERE empno = p_empno

Chapter 2. PL/SQL support 145

RETURNING
*

INTO
r_emp;

IF SQL%FOUND THEN
DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || r_emp.empno);
DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
DBMS_OUTPUT.PUT_LINE('Manager : ' || r_emp.mgr);
DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
DBMS_OUTPUT.PUT_LINE('Commission : ' || r_emp.comm);
DBMS_OUTPUT.PUT_LINE('Department : ' || r_emp.deptno);

ELSE
DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');

END IF;
END;

This procedure returns the following sample output:
EXEC emp_delete(9503);

Deleted Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00
Salary : 6540.00
Commission : 1200.00
Department : 40

Statement attributes (PL/SQL)
SQL%FOUND, SQL%NOTFOUND, and SQL%ROWCOUNT are PL/SQL attributes
that can be used to determine the effect of an SQL statement.
v The SQL%FOUND attribute has a Boolean value that returns TRUE if at least

one row was affected by an INSERT, UPDATE, or DELETE statement, or if a
SELECT INTO statement retrieved one row. The following example shows an
anonymous block in which a row is inserted and a status message is displayed.
BEGIN

INSERT INTO emp (empno,ename,job,sal,deptno)
VALUES (9001, 'JONES', 'CLERK', 850.00, 40);

IF SQL%FOUND THEN
DBMS_OUTPUT.PUT_LINE('Row has been inserted');

END IF;
END;

v The SQL%NOTFOUND attribute has a Boolean value that returns TRUE if no
rows were affected by an INSERT, UPDATE, or DELETE statement, or if a
SELECT INTO statement did not retrieve a row. For example:
BEGIN

UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9000;
IF SQL%NOTFOUND THEN

DBMS_OUTPUT.PUT_LINE('No rows were updated');
END IF;

END;

v The SQL%ROWCOUNT attribute has an integer value that represents the
number of rows that were affected by an INSERT, UPDATE, or DELETE
statement. For example:
BEGIN

UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9001;
DBMS_OUTPUT.PUT_LINE('# rows updated: ' || SQL%ROWCOUNT);

END;

146 SQL Procedural Languages: Application Enablement and Support

Control statements (PL/SQL)
Control statements are the programming statements that make PL/SQL a full
procedural complement to SQL.

A number of PL/SQL control statements can be compiled by the DB2 data server.

IF statement (PL/SQL)
Use the IF statement within PL/SQL contexts to execute SQL statements on the
basis of certain criteria.

The four forms of the IF statement are:
v IF...THEN...END IF
v IF...THEN...ELSE...END IF
v IF...THEN...ELSE IF...END IF
v IF...THEN...ELSIF...THEN...ELSE...END IF

IF...THEN...END IF

The syntax of this statement is:
IF boolean-expression THEN

statements
END IF;

IF...THEN statements are the simplest form of IF. The statements between THEN
and END IF are executed only if the condition evaluates to TRUE. In the following
example, an IF...THEN statement is used to test for and to display those employees
who have a commission.
DECLARE

v_empno emp.empno%TYPE;
v_comm emp.comm%TYPE;
CURSOR emp_cursor IS SELECT empno, comm FROM emp;

BEGIN
OPEN emp_cursor;
DBMS_OUTPUT.PUT_LINE('EMPNO COMM');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH emp_cursor INTO v_empno, v_comm;
EXIT WHEN emp_cursor%NOTFOUND;

--
-- Test whether or not the employee gets a commission
--

IF v_comm IS NOT NULL AND v_comm > 0 THEN
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
TO_CHAR(v_comm,'$99999.99'));

END IF;
END LOOP;
CLOSE emp_cursor;

END;

This program generates the following sample output:
EMPNO COMM
----- -------
7499 $300.00
7521 $500.00
7654 $1400.00

Chapter 2. PL/SQL support 147

IF...THEN...ELSE...END IF

The syntax of this statement is:
IF boolean-expression THEN

statements
ELSE

statements
END IF;

IF...THEN...ELSE statements specify an alternative set of statements that should be
executed if the condition evaluates to FALSE. In the following example, the
previous example is modified so that an IF...THEN...ELSE statement is used to
display the text “Non-commission” if an employee does not have a commission.
DECLARE

v_empno emp.empno%TYPE;
v_comm emp.comm%TYPE;
CURSOR emp_cursor IS SELECT empno, comm FROM emp;

BEGIN
OPEN emp_cursor;
DBMS_OUTPUT.PUT_LINE('EMPNO COMM');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH emp_cursor INTO v_empno, v_comm;
EXIT WHEN emp_cursor%NOTFOUND;

--
-- Test whether or not the employee gets a commission
--

IF v_comm IS NOT NULL AND v_comm > 0 THEN
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
TO_CHAR(v_comm,'$99999.99'));

ELSE
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || 'Non-commission');

END IF;
END LOOP;
CLOSE emp_cursor;

END;

This program generates the following sample output:
EMPNO COMM
----- -------
7369 Non-commission
7499 $ 300.00
7521 $ 500.00
7566 Non-commission
7654 $ 1400.00
7698 Non-commission
7782 Non-commission
7788 Non-commission
7839 Non-commission
7844 Non-commission
7876 Non-commission
7900 Non-commission
7902 Non-commission
7934 Non-commission

IF...THEN...ELSE IF...END IF

The syntax of this statement is:
IF boolean-expression THEN

IF boolean-expression THEN
statements

148 SQL Procedural Languages: Application Enablement and Support

ELSE
IF boolean-expression THEN

statements
END IF;

You can nest IF statements so that alternative IF statements are invoked, depending
on whether the conditions of an outer IF statement evaluate to TRUE or FALSE. In
the following example, the outer IF...THEN...ELSE statement tests whether or not
an employee has a commission. The inner IF...THEN...ELSE statements
subsequently test whether the employee's total compensation exceeds or is less
than the company average. When you use this form of the IF statement, you are
actually nesting an IF statement inside of the ELSE part of an outer IF statement.
You therefore need one END IF for each nested IF and one for the parent IF...ELSE.
(Note that the logic in this program can be simplified considerably by calculating
each employee's yearly compensation using an NVL function within the SELECT
statement of the cursor declaration; however, the purpose of this example is to
demonstrate how IF statements can be used.)
DECLARE

v_empno emp.empno%TYPE;
v_sal emp.sal%TYPE;
v_comm emp.comm%TYPE;
v_avg NUMBER(7,2);
CURSOR emp_cursor IS SELECT empno, sal, comm FROM emp;

BEGIN
--
-- Calculate the average yearly compensation
--

SELECT AVG((sal + NVL(comm,0)) * 24) INTO v_avg FROM emp;
DBMS_OUTPUT.PUT_LINE('Average Yearly Compensation: ' ||

TO_CHAR(v_avg,'$999,999.99'));
OPEN emp_cursor;
DBMS_OUTPUT.PUT_LINE('EMPNO YEARLY COMP');
DBMS_OUTPUT.PUT_LINE('----- -----------');
LOOP

FETCH emp_cursor INTO v_empno, v_sal, v_comm;
EXIT WHEN emp_cursor%NOTFOUND;

--
-- Test whether or not the employee gets a commission
--

IF v_comm IS NOT NULL AND v_comm > 0 THEN
--
-- Test whether the employee's compensation with commission exceeds
-- the company average
--

IF (v_sal + v_comm) * 24 > v_avg THEN
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') ||
' Exceeds Average');

ELSE
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') ||
' Below Average');

END IF;
ELSE

--
-- Test whether the employee's compensation without commission exceeds
-- the company average
--

IF v_sal * 24 > v_avg THEN
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

TO_CHAR(v_sal * 24,'$999,999.99') || ' Exceeds Average');
ELSE

DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
TO_CHAR(v_sal * 24,'$999,999.99') || ' Below Average');

Chapter 2. PL/SQL support 149

END IF;
END IF;

END LOOP;
CLOSE emp_cursor;

END;

This program generates the following sample output:
Average Yearly Compensation: $ 53,528.57
EMPNO YEARLY COMP
----- -----------
7369 $ 19,200.00 Below Average
7499 $ 45,600.00 Below Average
7521 $ 42,000.00 Below Average
7566 $ 71,400.00 Exceeds Average
7654 $ 63,600.00 Exceeds Average
7698 $ 68,400.00 Exceeds Average
7782 $ 58,800.00 Exceeds Average
7788 $ 72,000.00 Exceeds Average
7839 $ 120,000.00 Exceeds Average
7844 $ 36,000.00 Below Average
7876 $ 26,400.00 Below Average
7900 $ 22,800.00 Below Average
7902 $ 72,000.00 Exceeds Average
7934 $ 31,200.00 Below Average

IF...THEN...ELSIF...THEN...ELSE...END IF

The syntax of this statement is:
IF boolean-expression THEN

statements
[ELSIF boolean-expression THEN

statements
[ELSIF boolean-expression THEN

statements] ...]
[ELSE

statements]
END IF;

IF...THEN...ELSIF...ELSE statements provide the means for checking many
alternatives in one statement. Formally, this statement is equivalent to nested
IF...THEN...ELSE...IF...THEN statements, but only one END IF is needed. The
following example uses an IF...THEN...ELSIF...ELSE statement to count the number
of employees by compensation, in steps of $25,000.
DECLARE

v_empno emp.empno%TYPE;
v_comp NUMBER(8,2);
v_lt_25K SMALLINT := 0;
v_25K_50K SMALLINT := 0;
v_50K_75K SMALLINT := 0;
v_75K_100K SMALLINT := 0;
v_ge_100K SMALLINT := 0;
CURSOR emp_cursor IS SELECT empno, (sal + NVL(comm,0)) * 24 FROM emp;

BEGIN
OPEN emp_cursor;
LOOP

FETCH emp_cursor INTO v_empno, v_comp;
EXIT WHEN emp_cursor%NOTFOUND;
IF v_comp < 25000 THEN

v_lt_25K := v_lt_25K + 1;
ELSIF v_comp < 50000 THEN

v_25K_50K := v_25K_50K + 1;
ELSIF v_comp < 75000 THEN

v_50K_75K := v_50K_75K + 1;
ELSIF v_comp < 100000 THEN

150 SQL Procedural Languages: Application Enablement and Support

v_75K_100K := v_75K_100K + 1;
ELSE

v_ge_100K := v_ge_100K + 1;
END IF;

END LOOP;
CLOSE emp_cursor;
DBMS_OUTPUT.PUT_LINE('Number of employees by yearly compensation');
DBMS_OUTPUT.PUT_LINE('Less than 25,000 : ' || v_lt_25K);
DBMS_OUTPUT.PUT_LINE('25,000 - 49,9999 : ' || v_25K_50K);
DBMS_OUTPUT.PUT_LINE('50,000 - 74,9999 : ' || v_50K_75K);
DBMS_OUTPUT.PUT_LINE('75,000 - 99,9999 : ' || v_75K_100K);
DBMS_OUTPUT.PUT_LINE('100,000 and over : ' || v_ge_100K);

END;

This program generates the following sample output:
Number of employees by yearly compensation
Less than 25,000 : 2
25,000 - 49,9999 : 5
50,000 - 74,9999 : 6
75,000 - 99,9999 : 0
100,000 and over : 1

CASE statement (PL/SQL)
The CASE statement executes a set of one or more statements when a specified
search condition is true. CASE is a standalone statement that is distinct from the
CASE expression, which must appear as part of an expression.

There are two forms of the CASE statement: the simple CASE statement and the
searched CASE statement.

Simple CASE statement (PL/SQL)
The simple CASE statement attempts to match an expression (known as the
selector) to another expression that is specified in one or more WHEN clauses. A
match results in the execution of one or more corresponding statements.

Syntax

�� CASE selector-expression �

� � �WHEN match-expression THEN statements

�ELSE statements

�

� END CASE ��

Description

CASE selector-expression
Specifies an expression whose value has a data type that is compatible with

Chapter 2. PL/SQL support 151

each match-expression. If the value of selector-expression matches the first
match-expression, the statements in the corresponding THEN clause are
executed. If there are no matches, the statements in the corresponding ELSE
clause are executed. If there are no matches and there is no ELSE clause, an
exception is thrown.

WHEN match-expression
Specifies an expression that is evaluated within the CASE statement. If
selector-expression matches a match-expression, the statements in the
corresponding THEN clause are executed.

THEN
A keyword that introduces the statements that are to be executed when the
corresponding Boolean expression evaluates to TRUE.

statements
Specifies one or more SQL or PL/SQL statements, each terminated with a
semicolon.

ELSE
A keyword that introduces the default case of the CASE statement.

Example

The following example uses a simple CASE statement to assign a department
name and location to a variable that is based upon the department number.
DECLARE

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
v_deptno emp.deptno%TYPE;
v_dname dept.dname%TYPE;
v_loc dept.loc%TYPE;
CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;

BEGIN
OPEN emp_cursor;
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME '

|| ' LOC');
DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------'

|| ' ---------');
LOOP

FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
EXIT WHEN emp_cursor%NOTFOUND;
CASE v_deptno

WHEN 10 THEN v_dname := 'Accounting';
v_loc := 'New York';

WHEN 20 THEN v_dname := 'Research';
v_loc := 'Dallas';

WHEN 30 THEN v_dname := 'Sales';
v_loc := 'Chicago';

WHEN 40 THEN v_dname := 'Operations';
v_loc := 'Boston';

ELSE v_dname := 'unknown';
v_loc := '';

END CASE;
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||

' ' || v_deptno || ' ' || RPAD(v_dname, 14) || ' ' ||
v_loc);

END LOOP;
CLOSE emp_cursor;

END;

This program returns the following sample output:

152 SQL Procedural Languages: Application Enablement and Support

EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

Searched CASE statement (PL/SQL)
A searched CASE statement uses one or more Boolean expressions to determine
which statements to execute.

Syntax

�� CASE � WHEN boolean-expression THEN statements ELSE statements �

� END CASE ��

Description

CASE
A keyword that introduces the first WHEN clause in the CASE statement.

WHEN boolean-expression
Specifies an expression that is evaluated when control flow enters the WHEN
clause in which the expression is defined. If boolean-expression evaluates to
TRUE, the statements in the corresponding THEN clause are executed. If
boolean-expression does not evaluate to TRUE, the statements in the
corresponding ELSE clause are executed.

THEN
A keyword that introduces the statements that are to be executed when the
corresponding Boolean expression evaluates to TRUE.

statements
Specifies one or more SQL or PL/SQL statements, each terminated with a
semicolon.

ELSE
A keyword that introduces the default case of the CASE statement.

Example

The following example uses a searched CASE statement to assign a department
name and location to a variable that is based upon the department number.
DECLARE

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;

Chapter 2. PL/SQL support 153

v_deptno emp.deptno%TYPE;
v_dname dept.dname%TYPE;
v_loc dept.loc%TYPE;
CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;

BEGIN
OPEN emp_cursor;
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME '

|| ' LOC');
DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------'

|| ' ---------');
LOOP

FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
EXIT WHEN emp_cursor%NOTFOUND;
CASE

WHEN v_deptno = 10 THEN v_dname := 'Accounting';
v_loc := 'New York';

WHEN v_deptno = 20 THEN v_dname := 'Research';
v_loc := 'Dallas';

WHEN v_deptno = 30 THEN v_dname := 'Sales';
v_loc := 'Chicago';

WHEN v_deptno = 40 THEN v_dname := 'Operations';
v_loc := 'Boston';

ELSE v_dname := 'unknown';
v_loc := '';

END CASE;
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||

' ' || v_deptno || ' ' || RPAD(v_dname, 14) || ' ' ||
v_loc);

END LOOP;
CLOSE emp_cursor;

END;

This program returns the following sample output:
EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

Loops (PL/SQL)
Use the EXIT, FOR, LOOP, and WHILE statements to repeat a series of commands
in your PL/SQL program.

FOR (cursor variant) statement (PL/SQL)
The cursor FOR loop statement opens a previously declared cursor, fetches all rows
in the cursor result set, and then closes the cursor.

Use this statement instead of separate SQL statements to open a cursor, define a
loop construct to retrieve each row of the result set, test for the end of the result
set, and then finally close the cursor.

154 SQL Procedural Languages: Application Enablement and Support

Invocation

This statement can be invoked within a PL/SQL procedure, function, trigger, or
anonymous block.

Authorization

No specific authorization is required to reference a row expression within an SQL
statement; however, for successful statement execution, all other authorization
requirements for processing a cursor are required.

Syntax

�� FOR record IN cursor LOOP statements END LOOP ��

Description

FOR
Introduces the condition that must be true if the FOR loop is to proceed.

record
Specifies an identifier that was assigned to an implicitly declared record with
definition cursor%ROWTYPE.

IN cursor
Specifies the name of a previously declared cursor.

LOOP and END LOOP
Starts and ends the loop containing SQL statements that are to be executed
during each iteration through the loop.

statements
One or more PL/SQL statements. A minimum of one statement is required.

Example

The following example shows a procedure that contains a cursor FOR loop:
CREATE OR REPLACE PROCEDURE cursor_example
IS

CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN

DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
FOR v_emp_rec IN emp_cur_1 LOOP

DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
END LOOP;

END;

FOR (integer variant) statement (PL/SQL)
Use the FOR statement to execute a set of SQL statements more than once.

Invocation

This statement can be embedded within a PL/SQL procedure, function, or
anonymous block statement.

Chapter 2. PL/SQL support 155

Authorization

No privileges are required to invoke the FOR statement; however, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded in the FOR statement.

Syntax

�� FOR integer-variable IN
REVERSE

expression1 .. expression2 �

� LOOP statements END LOOP ��

Description

integer-variable
An automatically defined integer variable that is used during loop processing.
The initial value of integer-variable is expression1. After the initial iteration, the
value of integer-variable is incremented at the beginning of each subsequent
iteration. Both expression1 and expression2 are evaluated when entering the loop,
and loop processing stops when integer-variable is equal to expression2.

IN Introduces the optional REVERSE keyword and expressions that define the
range of integer variables for the loop.

REVERSE
Specifies that the iteration is to proceed from expression2 to expression1. Note
that expression2 must have a higher value than expression1, regardless of
whether the REVERSE keyword is specified, if the statements in the loop are to
be processed.

expression1
Specifies the initial value of the range of integer variables for the loop. If the
REVERSE keyword is specified, expression1 specifies the end value of the range
of integer variables for the loop.

expression2
Specifies the end value of the range of integer variables for the loop. If the
REVERSE keyword is specified, expression2 specifies the initial value of the
range of integer variables for the loop.

statements
Specifies the PL/SQL and SQL statements that are executed each time that the
loop is processed.

Examples

The following example shows a basic FOR statement within an anonymous block:
BEGIN

FOR i IN 1 .. 10 LOOP
DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);

END LOOP;
END;

This example generates the following output:
Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4

156 SQL Procedural Languages: Application Enablement and Support

Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

If the start value is greater than the end value, the loop body is not executed at all,
but no error is returned, as shown by the following example:
BEGIN

FOR i IN 10 .. 1 LOOP
DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);

END LOOP;
END;

This example generates no output, because the loop body is never executed.

The following example uses the REVERSE keyword:
BEGIN

FOR i IN REVERSE 1 .. 10 LOOP
DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);

END LOOP;
END;

This example generates the following output:
Iteration # 10
Iteration # 9
Iteration # 8
Iteration # 7
Iteration # 6
Iteration # 5
Iteration # 4
Iteration # 3
Iteration # 2
Iteration # 1

FORALL statement (PL/SQL)
The FORALL statement executes a data change statement for all elements of an
array or for a range of elements of an array.

Invocation

This statement can only be specified in a PL/SQL block.

Authorization

The privileges held by the authorization ID of the statement must include all of the
privileges necessary to invoke the data change statement that is specified in the
FORALL statement.

Syntax

�� FORALL index-variable IN lower-bound .. upper-bound
INDICES OF indexing-array
VALUES OF indexing-array

�

Chapter 2. PL/SQL support 157

� insert-statement
searched-delete-statement
searched-update-statement
execute-immediate-statement

��

Description

index-variable
Identifies a name to be used as an array index. It is implicitly declared as an
INTEGER and it can only be referenced in the FORALL statement.

lower-bound .. upper-bound
Identifies a range of index values that are assignable to the index-variable with
lower-bound less than upper-bound. The range represents every integer value
starting with lower-bound and incrementing by 1 up to and including
upper-bound.

INDICES OF indexing-array
Identifies the set of array index values of the array identified by indexing–array.
If indexing-array is an associative array, array index values must be assignable
to index-variable and could be a sparse set.

VALUES OF indexing-array
Identifies the set of element values of the array identified by indexing–array.
The element values must be assignable to index-variable and could be an
unordered sparse set.

insert-statement
Specifies an INSERT statement that is effectively executed for each
index-variable value.

searched-delete-statement
Specifies a searched DELETE statement that is effectively executed for each
index-variable value.

searched-update-statement
Specifies a searched UPDATE statement that is effectively executed for each
index-variable value.

execute-immediate-statement
Specifies an EXECUTE IMMEDIATE statement that is effectively executed for
each index-variable value.

Notes
v FORALL statement processing is not atomic. If an error occurs while iterating in

the FORALL statement, any data change operations that have already been
processed are not implicitly rolled back. An application can use a ROLLBACK
statement to roll back the entire transaction when an error occurs in the
FORALL statement.

Example

The following example shows a basic FORALL statement:
FORALL x

IN in_customer_list.FIRST..in_customer_list.LAST
DELETE FROM customer

WHERE cust_id IN in_customer_list(x);

158 SQL Procedural Languages: Application Enablement and Support

EXIT statement (PL/SQL)
The EXIT statement terminates execution of a loop within a PL/SQL code block.

Invocation

This statement can be embedded within a FOR, LOOP, or WHILE statement, or
within a PL/SQL procedure, function, or anonymous block statement.

Authorization

No privileges are required to invoke the EXIT statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded within the FOR, LOOP, or WHILE statement.

Syntax

�� EXIT ��

Example

The following example shows a basic LOOP statement with an EXIT statement
within an anonymous block:
DECLARE

sum PLS_INTEGER := 0;
BEGIN

LOOP
sum := sum + 1;
IF sum > 10 THEN

EXIT;
END IF;

END LOOP;
END

LOOP statement (PL/SQL)
The LOOP statement executes a sequence of statements within a PL/SQL code
block multiple times.

Invocation

This statement can be embedded in a PL/SQL procedure, function, or anonymous
block statement.

Authorization

No privileges are required to invoke the LOOP statement. However, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded within the LOOP statement.

Syntax

�� LOOP statements END LOOP ��

Chapter 2. PL/SQL support 159

Description

statements
Specifies one or more PL/SQL or SQL statements. These statements are
executed during each iteration of the loop.

Example

The following example shows a basic LOOP statement within an anonymous
block:
DECLARE

sum INTEGER := 0;
BEGIN

LOOP
sum := sum + 1;
IF sum > 10 THEN

EXIT;
END IF;

END LOOP;
END

WHILE statement (PL/SQL)
The WHILE statement repeats a set of SQL statements as long as a specified
expression is true. The condition is evaluated immediately before each entry into
the loop body.

Invocation

This statement can be embedded within a PL/SQL procedure, function, or
anonymous block statement.

Authorization

No privileges are required to invoke the WHILE statement; however, the
authorization ID of the statement must hold the necessary privileges to invoke the
SQL statements that are embedded in the WHILE statement.

Syntax

�� WHILE expression LOOP statements END LOOP ��

Description

expression
Specifies an expression that is evaluated immediately before each entry into the
loop body to determine whether or not the loop is to be executed. If the
expression is logically true, the loop is executed. If the expression is logically
false, loop processing ends. An EXIT statement can be used to terminate the
loop while the expression is true.

statements
Specifies the PL/SQL and SQL statements that are executed each time that the
loop is processed.

Example

The following example shows a basic WHILE statement within an anonymous
block:

160 SQL Procedural Languages: Application Enablement and Support

DECLARE
sum INTEGER := 0;

BEGIN
WHILE sum < 11 LOOP

sum := sum + 1;
END LOOP;

END

The WHILE statement within this anonymous block executes until sum is equal to
11; loop processing then ends, and processing of the anonymous block proceeds to
completion.

Exception handling (PL/SQL)
By default, any error encountered in a PL/SQL program stops execution of the
program. You can trap and recover from errors by using an EXCEPTION section.

The syntax for exception handlers is an extension of the syntax for a BEGIN block.

Syntax

��

�DECLARE declaration

�BEGIN
statement

�

�

� �EXCEPTION WHEN exception-condition THEN handler-statement
OR condition

END ��

If no error occurs, the block simply executes statement, and control passes to the
statement after END. But if an error occurs while executing a statement, further
processing of the statement is abandoned, and control passes to the EXCEPTION
list. The list is searched for the first condition matching the error that occurred. If a
match is found, the corresponding handler-statement is executed, and control passes
to the statement after END. If no match is found, the program stops executing.

If a new error occurs during execution of the handler-statement, it can only be
caught by a surrounding EXCEPTION clause.

Table 8 summarizes the system-defined conditions that you can use. The special
condition name OTHERS matches every error type. Condition names are not case
sensitive.

Table 8. System-defined exception condition names

Condition name Description

CASE_NOT_FOUND None of the cases in a CASE statement
evaluates to “true”, and there is no ELSE
condition.

CURSOR_ALREADY_OPEN An attempt was made to open a cursor that
is already open.

DUP_VAL_ON_INDEX There are duplicate values for the index key.

INVALID_CURSOR An attempt was made to access an
unopened cursor.

Chapter 2. PL/SQL support 161

Table 8. System-defined exception condition names (continued)

Condition name Description

INVALID_NUMBER The numeric value is invalid.

LOGIN_DENIED The user name or password is invalid.

NO_DATA_FOUND No rows satisfied the selection criteria.

NOT_LOGGED_ON A database connection does not exist.

OTHERS For any exception that has not been caught
by a prior condition in the exception section.

SUBSCRIPT_BEYOND_COUNT An array index is out of range or does not
exist.

SUBSCRIPT_OUTSIDE_LIMIT The data type of an array index expression
is not assignable to the array index type.

TOO_MANY_ROWS More than one row satisfied the selection
criteria, but only one row is allowed to be
returned.

VALUE_ERROR The value is invalid.

ZERO_DIVIDE Division by zero was attempted.

Raise application error (PL/SQL)
The RAISE_APPLICATION_ERROR procedure makes a user-defined code and
error message available to the program which can then be used to identify the
exception. This procedure is only supported in PL/SQL contexts.

Syntax

�� RAISE_APPLICATION_ERROR (error-number , message) ; ��

Description

error-number
A vendor-specific number (expressed as a literal) that is mapped to a DB2 error
code before it is stored in a variable named SQLCODE. The
RAISE_APPLICATION_ERROR procedure accepts user-defined error-number
values from -20000 to -20999. The SQLCODE that is returned in the error
message is SQL0438N. The SQLSTATE contains class 'UD' plus three characters
that correspond to the last three digits of the error-number value.

message
A user-defined message with a maximum length of 70 bytes.

Example

The following example uses the RAISE_APPLICATION_ERROR procedure to
display error codes and messages that are specific to missing employee
information:
CREATE OR REPLACE PROCEDURE verify_emp (

p_empno NUMBER
)
IS

v_ename emp.ename%TYPE;
v_job emp.job%TYPE;
v_mgr emp.mgr%TYPE;

162 SQL Procedural Languages: Application Enablement and Support

v_hiredate emp.hiredate%TYPE;
BEGIN

SELECT ename, job, mgr, hiredate
INTO v_ename, v_job, v_mgr, v_hiredate FROM emp
WHERE empno = p_empno;

IF v_ename IS NULL THEN
RAISE_APPLICATION_ERROR(-20010, 'No name for ' || p_empno);

END IF;
IF v_job IS NULL THEN

RAISE_APPLICATION_ERROR(-20020, 'No job for' || p_empno);
END IF;
IF v_mgr IS NULL THEN

RAISE_APPLICATION_ERROR(-20030, 'No manager for ' || p_empno);
END IF;
IF v_hiredate IS NULL THEN

RAISE_APPLICATION_ERROR(-20040, 'No hire date for ' || p_empno);
END IF;
DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||

' validated without errors');
EXCEPTION

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);

END;

CALL verify_emp(7839);

SQLCODE: -438
SQLERRM: SQL0438N Application raised error or warning with
diagnostic text: "No manager for 7839". SQLSTATE=UD030

RAISE statement (PL/SQL)
The RAISE statement raises a previously-defined condition.

Syntax

�� RAISE condition ��

Description

condition
Specifies a previously-defined condition.

Example

The following example shows a procedure that raises a defined condition:
CREATE OR REPLACE PROCEDURE raise_demo (inval NUMBER) IS

evenno EXCEPTION;
oddno EXCEPTION;

BEGIN
IF MOD(inval, 2) = 1 THEN

RAISE oddno;
ELSE

RAISE evenno;
END IF;

EXCEPTION
WHEN evenno THEN

dbms_output.put_line(TO_CHAR(inval) || ' is even');
WHEN oddno THEN

dbms_output.put_line(TO_CHAR(inval) || ' is odd');
END raise_demo;
/

Chapter 2. PL/SQL support 163

SET SERVEROUTPUT ON;

CALL raise_demo;

Oracle-DB2 error mapping (PL/SQL)
PL/SQL error codes and exception names have corresponding DB2 error codes and
SQLSTATE values.

These error codes, exception names, and SQLSTATE values are summarized in
Table 9.

Table 9. Mapping of PL/SQL error codes and exception names to DB2 error codes and
SQLSTATE values

plsqlCode plsqlName db2Code db2State

-1 DUP_VAL_ON_INDEX -803 23505

+100 NO_DATA_FOUND +100 02000

-1012 NOT_LOGGED_ON -1024 08003

-1017 LOGIN_DENIED -30082 08001

-1476 ZERO_DIVIDE -801 22012

-1722 INVALID_NUMBER -420 22018

-1001 INVALID_CURSOR -501 24501

-1422 TOO_MANY_ROWS -811 21000

-6502 VALUE_ERROR -433 22001

-6511 CURSOR_ALREADY_OPEN -502 24502

-6532 SUBSCRIPT_OUTSIDE_LIMIT -20438 428H1

-6533 SUBSCRIPT_BEYOND_COUNT -20439 2202E

-6592 CASE_NOT_FOUND -773 20000

-54 -904 57011

-60 -911 40001

-310 -206 42703

-595 -390 42887

-597 -303 42806

-598 -407 23502

-600 -30071 58015

-603 -119 42803

-604 -119 42803

-610 -20500 428HR

-611 -117 42802

-612 -117 42802

-613 -811 21000

-615 -420 22018

-616 -420 22018

-617 -418 42610

-618 -420 22018

164 SQL Procedural Languages: Application Enablement and Support

Table 9. Mapping of PL/SQL error codes and exception names to DB2 error codes and
SQLSTATE values (continued)

plsqlCode plsqlName db2Code db2State

-619 -418 42610

-620 -171 42815

-622 -304 22003

-623 -604 42611

-904 -206 42703

-911 -7 42601

-942 -204 42704

-955 -601 42710

-996 -1022 57011

-1119 -292 57047

-1002 +231 02000

-1403 -100 02000

-1430 -612 42711

-1436 -20451 560CO

-1438 -413 22003

-1450 -614 54008

-1578 -1007 58034

-2112 -811 21000

-2261 +605 01550

-2291 -530 23503

-2292 -532 23001

-3113 -30081 08001

-3114 -1024 08003

-3214 -20170 57059

-3297 -20170 57059

-4061 -727 56098

-4063 -727 56098

-4091 -723 09000

-6502 -304 22003

-6508 -440 42884

-6550 -104 42601

-6553 -104 42601

-14028 -538 42830

-19567 -1523 55039

-30006 -904 57011

-30041 -1139 54047

Chapter 2. PL/SQL support 165

Cursors (PL/SQL)
A cursor is a named control structure used by an application program to point to
and select a row of data from a result set. Instead of executing a query all at once,
you can use a cursor to read and process the query result set one row at a time.

A cursor in a PL/SQL context is treated as a WITH HOLD cursor. For more
information about WITH HOLD cursors, see “DECLARE CURSOR statement”.

The DB2 data server supports both PL/SQL static cursors and cursor variables.

Static cursors (PL/SQL)
A static cursor is a cursor whose associated query is fixed at compile time.
Declaring a cursor is a prerequisite to using it. Declarations of static cursors using
PL/SQL syntax within PL/SQL contexts are supported by the DB2 server.

Syntax

�� CURSOR cursor-name IS query ��

Description

cursor-name
Specifies an identifier for the cursor that can be used to reference the cursor
and its result set.

query
Specifies a SELECT statement that determines a result set for the cursor.

Example

The following example shows a procedure that contains multiple static cursor
declarations:
CREATE OR REPLACE PROCEDURE cursor_example
IS

CURSOR emp_cur_1 IS SELECT * FROM emp;

CURSOR emp_cur_2 IS SELECT empno, ename FROM emp;

CURSOR emp_cur_3 IS SELECT empno, ename
FROM emp
WHERE deptno = 10
ORDER BY empno;

BEGIN
OPEN emp_cur_1;

...
END;

Parameterized cursors (PL/SQL)
Parameterized cursors are static cursors that can accept passed-in parameter values
when they are opened.

The following example includes a parameterized cursor. The cursor displays the
name and salary of each employee in the EMP table whose salary is less than that
specified by a passed-in parameter value.
DECLARE

my_record emp%ROWTYPE;
CURSOR c1 (max_wage NUMBER) IS

166 SQL Procedural Languages: Application Enablement and Support

SELECT * FROM emp WHERE sal < max_wage;
BEGIN

OPEN c1(2000);
LOOP

FETCH c1 INTO my_record;
EXIT WHEN c1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE('Name = ' || my_record.ename || ', salary = '

|| my_record.sal);
END LOOP;
CLOSE c1;

END;

If 2000 is passed in as the value of max_wage, only the name and salary data for
those employees whose salary is less than 2000 is returned:
Name = SMITH, salary = 800.00
Name = ALLEN, salary = 1600.00
Name = WARD, salary = 1250.00
Name = MARTIN, salary = 1250.00
Name = TURNER, salary = 1500.00
Name = ADAMS, salary = 1100.00
Name = JAMES, salary = 950.00
Name = MILLER, salary = 1300.00

Opening a cursor (PL/SQL)
The result set that is associated with a cursor cannot be referenced until the cursor
has been opened.

Syntax

��

�

OPEN cursor-name
,

(expression)
expression

��

Description

cursor-name
Specifies an identifier for a cursor that was previously declared within a
PL/SQL context. The specified cursor cannot already be open.

expression
When cursor-name is a parameterized cursor, specifies one or more optional
actual parameters. The number of actual parameters must match the number of
corresponding formal parameters.

Example

The following example shows an OPEN statement for a cursor that is part of the
CURSOR_EXAMPLE procedure:
CREATE OR REPLACE PROCEDURE cursor_example
IS

CURSOR emp_cur_3 IS SELECT empno, ename
FROM emp
WHERE deptno = 10
ORDER BY empno;

BEGIN
OPEN emp_cur_3;

...
END;

Chapter 2. PL/SQL support 167

Fetching rows from a cursor (PL/SQL)
The FETCH statement that is required to fetch rows from a PL/SQL cursor is
supported by the DB2 data server in PL/SQL contexts.

Syntax

�� FETCH cursor-name

�

INTO record
,

variable
bulk-collect-clause

��

bulk-collect-clause:

�

,

BULK COLLECT INTO array-variable
LIMIT integer-constant

Description

cursor-name
Name of a static cursor or cursor variable.

record
Identifier for a previously-defined record. This can be a user-defined record or
a record definition that is derived from a table using the %ROWTYPE
attribute.

variable
A PL/SQL variable that will hold the field data from the fetched row. One or
more variables can be defined, but they must match in order and number the
fields that are returned in the select list of the query that was specified in the
cursor declaration. The data types of the fields in the select list must match or
be implicitly convertible to the data types of the fields in the record or the data
types of the variables.

The variable data types can be defined explicitly or by using the %TYPE
attribute.

BULK COLLECT INTO array-variable
Identifies one or more variables with an array data type. Each row of the result
is assigned to an element in each array in the order of the result set, with the
array index assigned in sequence.
v If exactly one array-variable is specified:

– If the data type of the array-variable element is not a record type, the
result row of the cursor must have exactly one column, and the column
data type must be assignable to the array element data type.

– If the data type of the array-variable element is a record type, the result
row of the cursor must be assignable to the record type.

v If multiple array variables are specified:
– The data type of the array-variable element must not be a record type.
– There must be an array-variable for each column in the result row of the

cursor.

168 SQL Procedural Languages: Application Enablement and Support

– The data type of each column in the result row of the cursor must be
assignable to the array element data type of the corresponding
array-variable.

If the data type of array-variable is an ordinary array, the maximum cardinality
must be greater than or equal to the number of rows that are returned by the
query, or greater than or equal to the integer-constant that is specified in the
LIMIT clause.

LIMIT integer-constant
Identifies a limit for the number of rows stored in the target array. The cursor
position is moved forward integer-constant rows or to the end of the result set.

Example

The following example shows a procedure that contains a FETCH statement.
CREATE OR REPLACE PROCEDURE cursor_example
IS

v_empno NUMBER(4);
v_ename VARCHAR2(10);
CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10

ORDER BY empno;
BEGIN

OPEN emp_cur_3;
FETCH emp_cur_3 INTO v_empno, v_ename;

...
END;

If the %TYPE attribute is used to define the data type of a target variable, the
target variable declaration in a PL/SQL application program does not need to
change if the data type of the database column changes. The following example
shows a procedure with variables that are defined using the %TYPE attribute.
CREATE OR REPLACE PROCEDURE cursor_example
IS

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10

ORDER BY empno;
BEGIN

OPEN emp_cur_3;
FETCH emp_cur_3 INTO v_empno, v_ename;

...
END;

If all of the columns in a table are retrieved in the order in which they are defined,
the %ROWTYPE attribute can be used to define a record into which the FETCH
statement will place the retrieved data. Each field within the record can then be
accessed using dot notation. The following example shows a procedure with a
record definition that uses %ROWTYPE. This record is used as the target of the
FETCH statement.
CREATE OR REPLACE PROCEDURE cursor_example
IS

v_emp_rec emp%ROWTYPE;
CURSOR emp_cur_1 IS SELECT * FROM emp;

BEGIN
OPEN emp_cur_1;
FETCH emp_cur_1 INTO v_emp_rec;
DBMS_OUTPUT.PUT_LINE('Employee Number: ' || v_emp_rec.empno);
DBMS_OUTPUT.PUT_LINE('Employee Name : ' || v_emp_rec.ename);

END;

Chapter 2. PL/SQL support 169

Closing a cursor (PL/SQL)
After all rows have been retrieved from the result set that is associated with a
cursor, the cursor must be closed. The result set cannot be referenced after the
cursor has been closed.

However, the cursor can be reopened and the rows of the new result set can be
fetched.

Syntax

�� CLOSE cursor-name ��

Description

cursor-name
Specifies an identifier for an open cursor that was previously declared within a
PL/SQL context.

Example

The following example shows a CLOSE statement for a cursor that is part of the
CURSOR_EXAMPLE procedure:
CREATE OR REPLACE PROCEDURE cursor_example
IS

v_emp_rec emp%ROWTYPE;
CURSOR emp_cur_1 IS SELECT * FROM emp;

BEGIN
OPEN emp_cur_1;
FETCH emp_cur_1 INTO v_emp_rec;
DBMS_OUTPUT.PUT_LINE('Employee Number: ' || v_emp_rec.empno);
DBMS_OUTPUT.PUT_LINE('Employee Name : ' || v_emp_rec.ename);
CLOSE emp_cur_1;

END;

Using %ROWTYPE with cursors (PL/SQL)
The %ROWTYPE attribute is used to define a record with fields corresponding to
all of the columns that are fetched from a cursor or cursor variable. Each field
assumes the data type of its corresponding column.

The %ROWTYPE attribute is prefixed by a cursor name or a cursor variable name.
The syntax is record cursor%ROWTYPE, where record is an identifier that is assigned
to the record, and cursor is an explicitly declared cursor within the current scope.

The following example shows how to use a cursor with the %ROWTYPE attribute
to retrieve department information about each employee in the EMP table.
CREATE OR REPLACE PROCEDURE emp_info
IS

CURSOR empcur IS SELECT ename, deptno FROM emp;
myvar empcur%ROWTYPE;

BEGIN
OPEN empcur;
LOOP

FETCH empcur INTO myvar;
EXIT WHEN empcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(myvar.ename || ' works in department '

|| myvar.deptno);
END LOOP;
CLOSE empcur;

END;

170 SQL Procedural Languages: Application Enablement and Support

A call to this procedure (CALL emp_info;) returns the following sample output:
SMITH works in department 20
ALLEN works in department 30
WARD works in department 30
JONES works in department 20
MARTIN works in department 30
BLAKE works in department 30
CLARK works in department 10
SCOTT works in department 20
KING works in department 10
TURNER works in department 30
ADAMS works in department 20
JAMES works in department 30
FORD works in department 20
MILLER works in department 10

Cursor attributes (PL/SQL)
Each cursor has a set of attributes that enables an application program to test the
state of the cursor.

These attributes are %ISOPEN, %FOUND, %NOTFOUND, and %ROWCOUNT.

%ISOPEN
This attribute is used to determine whether a cursor is in the open state.
When a cursor is passed as a parameter to a function or procedure, it is
useful to know (before attempting to open the cursor) whether the cursor
is already open.

%FOUND
This attribute is used to determine whether a cursor contains rows after
the execution of a FETCH statement. If FETCH statement execution was
successful, the %FOUND attribute has a value of true. If FETCH statement
execution was not successful, the %FOUND attribute has a value of false.
The result is unknown when:
v The value of cursor-variable-name is null
v The underlying cursor of cursor-variable-name is not open
v The %FOUND attribute is evaluated before the first FETCH statement

was executed against the underlying cursor
v FETCH statement execution returns an error

The %FOUND attribute provides an efficient alternative to using a
condition handler that checks for the error that is returned when no more
rows remain to be fetched.

%NOTFOUND
This attribute is the logical opposite of the %FOUND attribute.

%ROWCOUNT
This attribute is used to determine the number of rows that have been
fetched since a cursor was opened.

Table 10 summarizes the attribute values that are associated with certain cursor
events.

Table 10. Summary of cursor attribute values

Cursor attribute %ISOPEN %FOUND %NOTFOUND %ROWCOUNT

Before OPEN False Undefined Undefined “Cursor not
open” exception

Chapter 2. PL/SQL support 171

Table 10. Summary of cursor attribute values (continued)

Cursor attribute %ISOPEN %FOUND %NOTFOUND %ROWCOUNT

After OPEN and
before 1st
FETCH

True Undefined Undefined 0

After 1st
successful
FETCH

True True False 1

After nth
successful
FETCH (last
row)

True True False n

After n+1st
FETCH (after
last row)

True False True n

After CLOSE False Undefined Undefined “Cursor not
open” exception

Cursor variables (PL/SQL)
A cursor variable is a cursor that contains a pointer to a query result set. The result
set is determined by execution of the OPEN FOR statement using the cursor
variable.

A cursor variable, unlike a static cursor, is not associated with a particular query.
The same cursor variable can be opened a number of times with separate OPEN
FOR statements containing different queries. A new result set is created each time
and made available through the cursor variable.

SYS_REFCURSOR cursor variables (PL/SQL)
The DB2 server supports the declaration of cursor variables of the
SYS_REFCURSOR built-in data type, which can be associated with any result set.

The SYS_REFCURSOR data type is known as a weakly-typed REF CURSOR type.
Strongly-typed cursor variables of the REF CURSOR type require a result set
specification.

Syntax

�� DECLARE cursor-variable-name SYS_REFCURSOR ��

Description

cursor-variable-name
Specifies an identifier for the cursor variable.

SYS_REFCURSOR
Specifies that the data type of the cursor variable is the system-defined
SYS_REFCURSOR data type.

Example

The following example shows a SYS_REFCURSOR variable declaration:
DECLARE emprefcur SYS_REFCURSOR;

172 SQL Procedural Languages: Application Enablement and Support

User-defined REF CURSOR type variables (PL/SQL)
The DB2 server supports the user-defined REF CURSOR data type and cursor
variable declarations.

The user-defined REF CURSOR type can be defined by executing the TYPE
declaration in a PL/SQL context. After the type has been defined, you can declare
a cursor variable of that type.

Syntax

�� TYPE cursor-type-name IS REF CURSOR
RETURN return-type

��

Description

TYPE cursor-type-name
Specifies an identifier for the cursor data type.

IS REF CURSOR
Specifies that the cursor is of a user-defined REF CURSOR data type.

RETURN return-type
Specifies the return type that is associated with the cursor. If a return-type is
specified, this REF CURSOR type is strongly typed; otherwise, it is weakly
typed.

Example

The following example shows a cursor variable declaration in the DECLARE
section of an anonymous block:
DECLARE

TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
my_rec emp_cur_type;

BEGIN
...

END

Dynamic queries with cursor variables (PL/SQL)
The DB2 data server supports dynamic queries through the OPEN FOR statement
in PL/SQL contexts.

Syntax

�� OPEN cursor-variable-name FOR dynamic-string

�

,

USING bind-arg

��

Description

OPEN cursor-variable-name
Specifies an identifier for a cursor variable that was previously declared within
a PL/SQL context.

FOR dynamic-string
Specifies a string literal or string variable that contains a SELECT statement

Chapter 2. PL/SQL support 173

(without the terminating semicolon). The statement can contain named
parameters, such as, for example, :param1.

USING bind-arg
Specifies one or more bind arguments whose values are substituted for
placeholders in dynamic-string when the cursor opens.

Examples

The following example shows a dynamic query that uses a string literal:
CREATE OR REPLACE PROCEDURE dept_query
IS

emp_refcur SYS_REFCURSOR;
v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;

BEGIN
OPEN emp_refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = 30' ||

' AND sal >= 1500';
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH emp_refcur INTO v_empno, v_ename;
EXIT WHEN emp_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

END LOOP;
CLOSE emp_refcur;

END;

The following example output is generated by the DEPT_QUERY procedure:
CALL dept_query;

EMPNO ENAME
----- -------
7499 ALLEN
7698 BLAKE
7844 TURNER

The query in the previous example can be modified with bind arguments to pass
the query parameters:
CREATE OR REPLACE PROCEDURE dept_query (

p_deptno emp.deptno%TYPE,
p_sal emp.sal%TYPE

)
IS

emp_refcur SYS_REFCURSOR;
v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;

BEGIN
OPEN emp_refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = :dept'

|| ' AND sal >= :sal' USING p_deptno, p_sal;
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH emp_refcur INTO v_empno, v_ename;
EXIT WHEN emp_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

END LOOP;
CLOSE emp_refcur;

END;

The following CALL statement generates the same output that was generated in
the previous example:
CALL dept_query(30, 1500);

174 SQL Procedural Languages: Application Enablement and Support

A string variable to pass the SELECT statement provides the most flexibility:
CREATE OR REPLACE PROCEDURE dept_query (

p_deptno emp.deptno%TYPE,
p_sal emp.sal%TYPE

)
IS

emp_refcur SYS_REFCURSOR;
v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
p_query_string VARCHAR2(100);

BEGIN
p_query_string := 'SELECT empno, ename FROM emp WHERE ' ||

'deptno = :dept AND sal >= :sal';
OPEN emp_refcur FOR p_query_string USING p_deptno, p_sal;
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH emp_refcur INTO v_empno, v_ename;
EXIT WHEN emp_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

END LOOP;
CLOSE emp_refcur;

END;

This version of the DEPT_QUERY procedure generates the following example
output:
CALL dept_query(20, 1500);

EMPNO ENAME
----- -------
7566 JONES
7788 SCOTT
7902 FORD

Example: Returning a REF CURSOR from a procedure (PL/SQL)
This example demonstrates how to define and open a REF CURSOR variable, and
then pass it as a procedure parameter.

The cursor variable is specified as an IN OUT parameter so that the result set is
made available to the caller of the procedure:
CREATE OR REPLACE PROCEDURE emp_by_job (

p_job VARCHAR2,
p_emp_refcur IN OUT SYS_REFCURSOR

)
IS
BEGIN

OPEN p_emp_refcur FOR SELECT empno, ename FROM emp WHERE job = p_job;
END;

The EMP_BY_JOB procedure is invoked in the following anonymous block by
assigning the procedure's IN OUT parameter to a cursor variable that was declared
in the anonymous block's declaration section. The result set is fetched using this
cursor variable.
DECLARE

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
v_job emp.job%TYPE := 'SALESMAN';
v_emp_refcur SYS_REFCURSOR;

BEGIN
DBMS_OUTPUT.PUT_LINE('EMPLOYEES WITH JOB ' || v_job);
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
emp_by_job(v_job, v_emp_refcur);

Chapter 2. PL/SQL support 175

LOOP
FETCH v_emp_refcur INTO v_empno, v_ename;
EXIT WHEN v_emp_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

END LOOP;
CLOSE v_emp_refcur;

END;

The following example output is generated when the anonymous block executes:
EMPLOYEES WITH JOB SALESMAN
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER

Example: Modularizing cursor operations (PL/SQL)
This example demonstrates how various operations on cursor variables can be
modularized into separate programs or PL/SQL components.

The following example shows a procedure that opens a cursor variable whose
query retrieves all rows in the EMP table:
CREATE OR REPLACE PROCEDURE open_all_emp (

p_emp_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN

OPEN p_emp_refcur FOR SELECT empno, ename FROM emp;
END;

In the next example, a procedure opens a cursor variable whose query retrieves all
rows for a given department:
CREATE OR REPLACE PROCEDURE open_emp_by_dept (

p_emp_refcur IN OUT SYS_REFCURSOR,
p_deptno emp.deptno%TYPE

)
IS
BEGIN

OPEN p_emp_refcur FOR SELECT empno, ename FROM emp
WHERE deptno = p_deptno;

END;

The following example shows a procedure that opens a cursor variable whose
query retrieves all rows in the DEPT table:
CREATE OR REPLACE PROCEDURE open_dept (

p_dept_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN

OPEN p_dept_refcur FOR SELECT deptno, dname FROM dept;
END;

In the next example, a procedure fetches and displays a cursor variable result set
consisting of employee number and name:
CREATE OR REPLACE PROCEDURE fetch_emp (

p_emp_refcur IN OUT SYS_REFCURSOR
)
IS

v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;

BEGIN

176 SQL Procedural Languages: Application Enablement and Support

DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH p_emp_refcur INTO v_empno, v_ename;
EXIT WHEN p_emp_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

END LOOP;
END;

The following example shows a procedure that fetches and displays a cursor
variable result set consisting of department number and name:
CREATE OR REPLACE PROCEDURE fetch_dept (

p_dept_refcur IN SYS_REFCURSOR
)
IS

v_deptno dept.deptno%TYPE;
v_dname dept.dname%TYPE;

BEGIN
DBMS_OUTPUT.PUT_LINE('DEPT DNAME');
DBMS_OUTPUT.PUT_LINE('---- ---------');
LOOP

FETCH p_dept_refcur INTO v_deptno, v_dname;
EXIT WHEN p_dept_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_deptno || ' ' || v_dname);

END LOOP;
END;

The following example shows a procedure that closes a cursor variable:
CREATE OR REPLACE PROCEDURE close_refcur (

p_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN

CLOSE p_refcur;
END;

The following example shows an anonymous block that executes these procedures:
DECLARE

gen_refcur SYS_REFCURSOR;
BEGIN

DBMS_OUTPUT.PUT_LINE('ALL EMPLOYEES');
open_all_emp(gen_refcur);
fetch_emp(gen_refcur);
DBMS_OUTPUT.PUT_LINE('****************');

DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #10');
open_emp_by_dept(gen_refcur, 10);
fetch_emp(gen_refcur);
DBMS_OUTPUT.PUT_LINE('****************');

DBMS_OUTPUT.PUT_LINE('DEPARTMENTS');
open_dept(gen_refcur);
fetch_dept(gen_refcur);
DBMS_OUTPUT.PUT_LINE('*****************');

close_refcur(gen_refcur);
END;

The following example output is generated when the anonymous block executes:
ALL EMPLOYEES
EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN

Chapter 2. PL/SQL support 177

7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EMPLOYEES IN DEPT #10
EMPNO ENAME
----- -------
7782 CLARK
7839 KING
7934 MILLER

DEPARTMENTS
DEPT DNAME
---- ---------
10 ACCOUNTING
20 RESEARCH
30 SALES
40 OPERATIONS

Triggers (PL/SQL)
A PL/SQL trigger is a named database object that encapsulates and defines a set of
actions that are to be performed in response to an insert, update, or delete
operation against a table. Triggers are created using the PL/SQL CREATE
TRIGGER statement.

Types of triggers (PL/SQL)
The DB2 data server supports row-level triggers within a PL/SQL context.

A row-level trigger fires once for each row that is affected by a triggering event. For
example, if deletion is defined as a triggering event for a particular table, and a
single DELETE statement deletes five rows from that table, the trigger will fire five
times, once for each row.

The trigger code block is executed either before or after each row is affected by the
triggering statement.

Trigger variables (PL/SQL)
NEW and OLD are special variables that you can use with PL/SQL triggers
without explicitly defining them.
v NEW is a pseudo-record name that refers to the new table row for insert and

update operations in row-level triggers. Its usage is :NEW.column, where column
is the name of a column in the table on which the trigger is defined.
– When used in a before row-level trigger, the initial content of :NEW.column is

the column value in the new row that is to be inserted or in the row that is to
replace the old row.

– When used in an after row-level trigger, the new column value has already
been stored in the table.

178 SQL Procedural Languages: Application Enablement and Support

In the trigger code block, :NEW.column can be used like any other variable. If a
value is assigned to :NEW.column in the code block of a before row-level trigger,
the assigned value is used in the inserted or updated row.

v OLD is a pseudo-record name that refers to the old table row for update and
delete operations in row-level triggers. Its usage is :OLD.column, where column is
the name of a column in the table on which the trigger is defined.
– When used in a before row-level trigger, the initial content of :OLD.column is the

column value in the row that is to be deleted or in the old row that is to be
replaced by the new row.

– When used in an after row-level trigger, the old column value is no longer
stored in the table.

In the trigger code block, :OLD.column can be used like any other variable. If a
value is assigned to :OLD.column in the code block of a before row-level trigger,
the assigned value has no affect on the action of the trigger.

Transactions and exceptions (PL/SQL)
A trigger is always executed as part of the same transaction within which the
triggering statement is executing.

If no exceptions occur within the trigger code block, the effects of data
manipulation language (DML) within the trigger are committed only if the
transaction that contains the triggering statement commits. If the transaction is
rolled back, the effects of DML within the trigger are also rolled back.

A DB2 rollback can only occur within an atomic block or by using an UNDO
handler. The triggering statement itself is not rolled back unless the application
forces a rollback of the encapsulating transaction.

If an unhandled exception occurs within the trigger code block, the calling
statement is rolled back.

CREATE TRIGGER statement (PL/SQL)
The CREATE TRIGGER statement defines a PL/SQL trigger in the database.

Syntax

�� CREATE TRIGGER trigger-name
OR REPLACE

BEFORE
AFTER

�

�

�

INSERT
DELETE
UPDATE

,

OF column-name

ON table-name �

Chapter 2. PL/SQL support 179

�

�
(1) AS

REFERENCING OLD correlation-name
AS

NEW correlation-name

FOR EACH ROW �

�
WHEN (search-condition)

�DECLARE declaration

�

� �BEGIN statement �

� �

� �EXCEPTION WHEN condition THEN handler-statement
OR

END ��

Notes:

1 OLD and NEW can only be specified once each.

Description

OR REPLACE
Specifies to replace the definition for the trigger if one exists at the current
server. The existing definition is effectively dropped before the new definition
is replaced in the catalog. This option is ignored if a definition for the trigger
does not exist at the current server.

trigger-name
Names the trigger. The name, including the implicit or explicit schema name,
must not identify a trigger already described in the catalog (SQLSTATE 42710).
If a two-part name is specified, the schema name cannot begin with 'SYS'
(SQLSTATE 42939).

BEFORE
Specifies that the associated triggered action is to be applied before any
changes caused by the actual update of the subject table are applied to the
database. It also specifies that the triggered action of the trigger will not cause
other triggers to be activated.

AFTER
Specifies that the associated triggered action is to be applied after the changes
caused by the actual update of the subject table are applied to the database.

INSERT
Specifies that the triggered action associated with the trigger is to be executed
whenever an INSERT operation is applied to the subject table.

DELETE
Specifies that the triggered action associated with the trigger is to be executed
whenever a DELETE operation is applied to the subject table.

180 SQL Procedural Languages: Application Enablement and Support

UPDATE
Specifies that the triggered action associated with the trigger is to be executed
whenever an UPDATE operation is applied to the subject table, subject to the
columns specified or implied.

If the optional column-name list is not specified, every column of the table is
implied. Therefore, omission of the column-name list implies that the trigger
will be activated by the update of any column of the table.

OF column-name,...
Each column-name specified must be a column of the base table (SQLSTATE
42703). If the trigger is a BEFORE trigger, the column-name specified cannot
be a generated column other than the identity column (SQLSTATE 42989).
No column-name can appear more than once in the column-name list
(SQLSTATE 42711). The trigger will only be activated by the update of a
column that is identified in the column-name list.

ON table-name
Designates the subject table of the BEFORE trigger or AFTER trigger definition.
The name must specify a base table or an alias that resolves to a base table
(SQLSTATE 42704 or 42809). The name must not specify a catalog table
(SQLSTATE 42832), a materialized query table (SQLSTATE 42997), a created
temporary table, a declared temporary table (SQLSTATE 42995), or a nickname
(SQLSTATE 42809).

REFERENCING
Specifies the correlation names for the transition variables and the table names
for the transition tables. Correlation names identify a specific row in the set of
rows affected by the triggering SQL operation. Table names identify the
complete set of affected rows. Each row affected by the triggering SQL
operation is available to the triggered action by qualifying columns with
correlation-names specified as follows.

OLD AS correlation-name
Specifies a correlation name that identifies the row state prior to the
triggering SQL operation.

NEW AS correlation-name
Specifies a correlation name that identifies the row state as modified by the
triggering SQL operation and by any SET statement in a BEFORE trigger
that has already executed.

FOR EACH ROW
Specifies that the triggered action is to be applied once for each row of the
subject table that is affected by the triggering SQL operation.

WHEN

(search-condition)
Specifies a condition that is true, false, or unknown. The search-condition
provides a capability to determine whether or not a certain triggered action
should be executed. The associated action is performed only if the
specified search condition evaluates as true.

declaration
Specifies a variable declaration.

statement or handler-statement
Specifies a PL/SQL program statement. The trigger body can contain nested
blocks.

Chapter 2. PL/SQL support 181

condition
Specifies an exception condition name, such as NO_DATA_FOUND.

Example

The following example shows a before row-level trigger that calculates the
commission of every new employee belonging to department 30 before a record for
that employee is inserted into the EMP table:
CREATE TABLE emp (

name VARCHAR2(10),
deptno NUMBER,
sal NUMBER,
comm NUMBER

)
/

CREATE OR REPLACE TRIGGER emp_comm_trig
BEFORE INSERT ON emp
FOR EACH ROW

BEGIN
IF :NEW.deptno = 30 THEN

:NEW.comm := :NEW.sal * .4;
END IF;

END
/

Dropping triggers (PL/SQL)
You can remove a trigger from the database by using the DROP TRIGGER
statement.

Syntax

�� DROP TRIGGER trigger-name ��

Description

trigger-name
Specifies the name of the trigger that is to be dropped.

Examples: Triggers (PL/SQL)
PL/SQL trigger definitions can be compiled by the DB2 data server. These
examples will help you to create valid triggers and to troubleshoot PL/SQL trigger
compilation errors.

Before row-level triggers

The following example shows a before row-level trigger that calculates the
commission of every new employee belonging to department 30 before a record for
that employee is inserted into the EMP table:
CREATE OR REPLACE TRIGGER emp_comm_trig

BEFORE INSERT ON emp
FOR EACH ROW

BEGIN
IF :NEW.deptno = 30 THEN

:NEW.comm := :NEW.sal * .4;
END IF;

END;

182 SQL Procedural Languages: Application Enablement and Support

The trigger computes the commissions for two new employees and inserts those
values as part of the new employee rows:
INSERT INTO emp VALUES (9005,'ROBERS','SALESMAN',7782,SYSDATE,3000.00,NULL,30);

INSERT INTO emp VALUES (9006,'ALLEN','SALESMAN',7782,SYSDATE,4500.00,NULL,30);

SELECT * FROM emp WHERE empno IN (9005, 9006);

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------

9005 ROBERS SALESMAN 7782 01-APR-05 3000 1200 30
9006 ALLEN SALESMAN 7782 01-APR-05 4500 1800 30

After row-level triggers

The following example shows three after row-level triggers.
v When a new employee row is inserted into the EMP table, one trigger

(EMP_INS_TRIG) adds a new row to the JOBHIST table for that employee and
adds a row to the EMPCHGLOG table with a description of the action.

v When an existing employee row is updated, the second trigger
(EMP_CHG_TRIG) sets the ENDDATE column of the latest JOBHIST row
(assumed to be the one with a null ENDDATE) to the current date and inserts a
new JOBHIST row with the employee's new information. This trigger also adds
a row to the EMPCHGLOG table with a description of the action

v When an employee row is deleted from the EMP table, the third trigger
(EMP_DEL_TRIG) adds a row to the EMPCHGLOG table with a description of
the action.

CREATE TABLE empchglog (
chg_date DATE,
chg_desc VARCHAR2(30)

);
CREATE OR REPLACE TRIGGER emp_ins_trig

AFTER INSERT ON emp
FOR EACH ROW

DECLARE
v_empno emp.empno%TYPE;
v_deptno emp.deptno%TYPE;
v_dname dept.dname%TYPE;
v_action VARCHAR2(7);
v_chgdesc jobhist.chgdesc%TYPE;

BEGIN
v_action := 'Added';
v_empno := :NEW.empno;
v_deptno := :NEW.deptno;
INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,

:NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, 'New Hire');

INSERT INTO empchglog VALUES (SYSDATE,
v_action || ' employee # ' || v_empno);

END;

CREATE OR REPLACE TRIGGER emp_chg_trig
AFTER UPDATE ON emp
FOR EACH ROW

DECLARE
v_empno emp.empno%TYPE;
v_deptno emp.deptno%TYPE;
v_dname dept.dname%TYPE;
v_action VARCHAR2(7);
v_chgdesc jobhist.chgdesc%TYPE;

BEGIN
v_action := 'Updated';
v_empno := :NEW.empno;
v_deptno := :NEW.deptno;

Chapter 2. PL/SQL support 183

v_chgdesc := '';
IF NVL(:OLD.ename, '-null-') != NVL(:NEW.ename, '-null-') THEN

v_chgdesc := v_chgdesc || 'name, ';
END IF;
IF NVL(:OLD.job, '-null-') != NVL(:NEW.job, '-null-') THEN

v_chgdesc := v_chgdesc || 'job, ';
END IF;
IF NVL(:OLD.sal, -1) != NVL(:NEW.sal, -1) THEN

v_chgdesc := v_chgdesc || 'salary, ';
END IF;
IF NVL(:OLD.comm, -1) != NVL(:NEW.comm, -1) THEN

v_chgdesc := v_chgdesc || 'commission, ';
END IF;
IF NVL(:OLD.deptno, -1) != NVL(:NEW.deptno, -1) THEN

v_chgdesc := v_chgdesc || 'department, ';
END IF;
v_chgdesc := 'Changed ' || RTRIM(v_chgdesc, ', ');
UPDATE jobhist SET enddate = SYSDATE WHERE empno = :OLD.empno

AND enddate IS NULL;
INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,

:NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, v_chgdesc);

INSERT INTO empchglog VALUES (SYSDATE,
v_action || ' employee # ' || v_empno);

END;

CREATE OR REPLACE TRIGGER emp_del_trig
AFTER DELETE ON emp
FOR EACH ROW

DECLARE
v_empno emp.empno%TYPE;
v_deptno emp.deptno%TYPE;
v_dname dept.dname%TYPE;
v_action VARCHAR2(7);
v_chgdesc jobhist.chgdesc%TYPE;

BEGIN
v_action := 'Deleted';
v_empno := :OLD.empno;
v_deptno := :OLD.deptno;

INSERT INTO empchglog VALUES (SYSDATE,
v_action || ' employee # ' || v_empno);

END;

In the following example, two employee rows are added using two separate
INSERT statements, and then both rows are updated using a single UPDATE
statement. The JOBHIST table shows the action of the trigger for each affected row:
two new hire entries for the two new employees and two changed commission
records. The EMPCHGLOG table also shows that the trigger was fired a total of
four times, once for each action against the two rows.
INSERT INTO emp VALUES (9003,'PETERS','ANALYST',7782,SYSDATE,5000.00,NULL,40);

INSERT INTO emp VALUES (9004,'AIKENS','ANALYST',7782,SYSDATE,4500.00,NULL,40);

UPDATE emp SET comm = sal * 1.1 WHERE empno IN (9003, 9004);

SELECT * FROM jobhist WHERE empno IN (9003, 9004);

EMPNO STARTDATE ENDDATE JOB SAL COMM DEPTNO CHGDESC
---------- --------- --------- --------- ---------- ---------- ---------- ------------------

9003 31-MAR-05 31-MAR-05 ANALYST 5000 40 New Hire
9004 31-MAR-05 31-MAR-05 ANALYST 4500 40 New Hire
9003 31-MAR-05 ANALYST 5000 5500 40 Changed commission
9004 31-MAR-05 ANALYST 4500 4950 40 Changed commission

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------

184 SQL Procedural Languages: Application Enablement and Support

31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004

After both employees are deleted with a single DELETE statement, the
EMPCHGLOG table shows that the trigger was fired twice, once for each deleted
employee:
DELETE FROM emp WHERE empno IN (9003, 9004);

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004
31-MAR-05 Deleted employee # 9003
31-MAR-05 Deleted employee # 9004

Packages (PL/SQL)
PL/SQL package definitions are supported by the DB2 data server. A PL/SQL
package is a named collection of functions, procedures, variables, cursors,
user-defined types, and records that are referenced using a common qualifier, the
package name.

Packages have the following characteristics:
v Packages provide a convenient way of organizing the functions and procedures

that have a related purpose. Permission to use the package functions and
procedures is dependent upon one privilege that is granted to the entire
package.

v Certain items in a package can be declared public. Public entities are visible and
can be referenced by other programs that hold the EXECUTE privilege on the
package. In the case of public functions and procedures, only their signatures are
visible. The PL/SQL code for these function and procedures is not accessible to
others; therefore, applications that utilize such a package are dependent upon
only the information that is available in the signatures.

v Other items in a package can be declared private. Private entities can be
referenced and used by functions and procedures within the package, but not by
external applications.

Package components (PL/SQL)
Packages consist of two main components: the package specification and the
package body.
v The package specification is the public interface, comprising the elements that can

be referenced outside of the package. A package specification is created by
executing the CREATE PACKAGE statement.

v The package body contains the actual implementation of all of the procedures and
functions that are declared within the package specification, as well as any
declaration of private types, variables, and cursors. A package body is created by
executing the CREATE PACKAGE BODY statement.

Creating packages (PL/SQL)
Creating a package specification enables you to encapsulate related data type,
procedure, and function definitions within a single context in the database.

Chapter 2. PL/SQL support 185

Packages are extensions of schemas that provide namespace support for the objects
that they reference. They are repositories in which executable code can be defined.
Using a package involves referencing or executing objects that are defined in the
package specification and implemented within the package.

Creating package specifications (PL/SQL)
A package specification establishes which package objects can be referenced from
outside of the package. Objects that can be referenced from outside of a package
are called the public elements of that package.

The following example shows how to create a package specification named
EMP_ADMIN, consisting of two functions and two stored procedures.
CREATE OR REPLACE PACKAGE emp_admin
IS

FUNCTION get_dept_name (
p_deptno NUMBER DEFAULT 10

)
RETURN VARCHAR2;
FUNCTION update_emp_sal (

p_empno NUMBER,
p_raise NUMBER

)
RETURN NUMBER;
PROCEDURE hire_emp (

p_empno NUMBER,
p_ename VARCHAR2,
p_job VARCHAR2,
p_sal NUMBER,
p_hiredate DATE DEFAULT sysdate,
p_comm NUMBER DEFAULT 0,
p_mgr NUMBER,
p_deptno NUMBER DEFAULT 10

);
PROCEDURE fire_emp (

p_empno NUMBER
);

END emp_admin;

CREATE PACKAGE statement (PL/SQL)
The CREATE PACKAGE statement creates a package specification, which defines
the interface to a package.

Syntax

�� CREATE PACKAGE package-name
OR REPLACE

IS
AS

�

,

declaration
�

186 SQL Procedural Languages: Application Enablement and Support

�

�

�

�

�

PROCEDURE procedure-name
,

()
procedure-parameter

FUNCTION function-name RETURN return-type
,

()
function-parameter

�

� END package-name ��

Description

package-name
Specifies an identifier for the package.

declaration
Specifies an identifier for a public item. The public item can be accessed from
outside of the package using the syntax package-name.item-name. There can be
zero or more public items. Public item declarations must come before
procedure or function declarations. The declaration can be any of the following:
v Collection declaration
v EXCEPTION declaration
v Record declaration
v REF CURSOR and cursor variable declaration
v TYPE definition for a collection, record, or REF CURSOR type variable
v Variable declaration

procedure-name
Specifies an identifier for a public procedure. The public procedure can be
invoked from outside of the package using the syntax package-
name.procedure-name().

procedure-parameter
Specifies an identifier for a formal parameter of the procedure.

function-name
Specifies an identifier for a public function. The public function can be invoked
from outside of the package using the syntax package-name.function-name().

function-parameter
Specifies an identifier for a formal parameter of the function. Input (IN mode)
parameters can be initialized with a default value.

return-type
Specifies a data type for the value that is returned by the function.

Notes

The CREATE PACKAGE statement can be submitted in obfuscated form. In an
obfuscated statement, only the package name is readable. The rest of the statement
is encoded in such a way that it is not readable, but can be decoded by the

Chapter 2. PL/SQL support 187

database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

Creating the package body (PL/SQL)
A package body contains the implementation of all of the procedures and functions
that are declared within the package specification.

The following example shows how to create a package body for the EMP_ADMIN
package specification.
--
-- Package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS

--
-- Function that queries the 'dept' table based on the department
-- number and returns the corresponding department name.
--
FUNCTION get_dept_name (

p_deptno IN NUMBER DEFAULT 10
)
RETURN VARCHAR2
IS

v_dname VARCHAR2(14);
BEGIN

SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
RETURN v_dname;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
RETURN '';

END;
--
-- Function that updates an employee's salary based on the
-- employee number and salary increment/decrement passed
-- as IN parameters. Upon successful completion the function
-- returns the new updated salary.
--
FUNCTION update_emp_sal (

p_empno IN NUMBER,
p_raise IN NUMBER

)
RETURN NUMBER
IS

v_sal NUMBER := 0;
BEGIN

SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
v_sal := v_sal + p_raise;
UPDATE emp SET sal = v_sal WHERE empno = p_empno;
RETURN v_sal;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
RETURN -1;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
DBMS_OUTPUT.PUT_LINE(SQLERRM);
DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
DBMS_OUTPUT.PUT_LINE(SQLCODE);
RETURN -1;

END;
--
-- Procedure that inserts a new employee record into the 'emp' table.
--
PROCEDURE hire_emp (

188 SQL Procedural Languages: Application Enablement and Support

p_empno NUMBER,
p_ename VARCHAR2,
p_job VARCHAR2,
p_sal NUMBER,
p_hiredate DATE DEFAULT sysdate,
p_comm NUMBER DEFAULT 0,
p_mgr NUMBER,
p_deptno NUMBER DEFAULT 10

)
AS
BEGIN

INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
VALUES(p_empno, p_ename, p_job, p_sal,

p_hiredate, p_comm, p_mgr, p_deptno);
END;
--
-- Procedure that deletes an employee record from the 'emp' table based
-- on the employee number.
--
PROCEDURE fire_emp (

p_empno NUMBER
)
AS
BEGIN

DELETE FROM emp WHERE empno = p_empno;
END;

END;

CREATE PACKAGE BODY statement (PL/SQL)
The CREATE PACKAGE BODY statement creates a package body, which contains
the implementation of all of the procedures and functions that are declared within
the package specification, as well as any declaration of private types, variables, and
cursors.

Syntax

�� CREATE PACKAGE BODY package-name
OR REPLACE

IS
AS

�

� �

private-declaration

�

procedure-specification
�

� �

function-specification

�BEGIN initialization-statement

�

� END ��

procedure-specification:

Chapter 2. PL/SQL support 189

PROCEDURE procedure-name

�

,

(parameter)

IS
AS

�

�
procedure-declaration

BEGIN statement �

�

� �EXCEPTION WHEN condition THEN handler-statement
OR

END

function-specification:

FUNCTION function-name

�

,

(parameter)

RETURN return-type �

� IS
AS function-declaration

BEGIN statement �

�

� �EXCEPTION WHEN condition THEN handler-statement
OR

END

Description

package-name
Specifies the name of the package whose body is to be created. A package
specification with the same name must exist.

private-declaration
Specifies the name of a private variable that can be accessed by any procedure
or function within the package. There can be zero or more private variables.
The private-declaration can be any of the following:
v Variable declaration
v Record declaration
v Collection declaration
v REF CURSOR and cursor variable declaration
v TYPE definitions for records, collections, or variables of the REF CURSOR

type

procedure-name
Specifies the name of a public procedure that is declared in the package
specification and its signature. The signature can specify any one of the
following: the formal parameter names, data types, parameter modes, the order
of the formal parameters, or the number of formal parameters. When the
procedure name and package specification exactly match the signature of the
public procedure's declaration, procedure-name defines the body of this public
procedure.

If none of these conditions is true, procedure-name defines a new private
procedure.

190 SQL Procedural Languages: Application Enablement and Support

parameter
Specifies a formal parameter of the procedure.

procedure-declaration
Specifies a declaration that can be accessed only from within procedure
procedure-name. This is a PL/SQL statement.

statement
Specifies a PL/SQL program statement.

function-name
Specifies the name of a public function that is declared in the package
specification and its signature. The signature can specify any one of the
following: the formal parameter names, data types, parameter modes, the order
of the formal parameters, or the number of formal parameters. When the
function name and package specification exactly match the signature of the
public function's declaration, function-name defines the body of this public
function.

If none of these conditions is true, function-name defines a new private
function.

parameter
Specifies a formal parameter of the function.

return-type
Specifies the data type of the value that is returned by the function.

function-declaration
Specifies a declaration that can be accessed only from within function
function-name. This is a PL/SQL statement.

statement
Specifies a PL/SQL program statement.

initialization-statement
Specifies a statement in the initialization section of the package body. The
initialization section, if specified, must contain at least one statement. The
statements in the initialization section are executed once per user session when
the package is first referenced.

Notes

The CREATE PACKAGE BODY statement can be submitted in obfuscated form. In
an obfuscated statement, only the package name is readable. The rest of the
statement is encoded in such a way that it is not readable, but can be decoded by
the database server. Obfuscated statements can be produced by calling the
DBMS_DDL.WRAP function.

Referencing package objects (PL/SQL)
References to objects that are defined within a package must sometimes be
qualified with the package name.

To reference the objects that are declared in a package specification, specify the
package name, a period character, and then the name of the object. If the package
is not defined in the current schema, specify the schema name as well. For
example:

Chapter 2. PL/SQL support 191

package_name.type_name
package_name.item_name
package_name.subprogram_name
schema.package_name.subprogram_name

Example

The following example contains a reference to a function named
GET_DEPT_NAME that is defined in a package named EMP_ADMIN:

select emp_admin.get_dept_name(10) from dept

Packages with user-defined types (PL/SQL)
User-defined types can be declared and referenced in packages.

The following example shows a package specification for the EMP_RPT package.
This definition includes the following declarations:
v A publicly accessible record type, EMPREC_TYP
v A publicly accessible weakly-typed REF CURSOR type, EMP_REFCUR
v Two functions, GET_DEPT_NAME and OPEN_EMP_BY_DEPT; the latter

function returns the REF CURSOR type EMP_REFCUR
v Two procedures, FETCH_EMP and CLOSE_REFCUR; both declare a

weakly-typed REF CURSOR type as a formal parameter
CREATE OR REPLACE PACKAGE emp_rpt
IS

TYPE emprec_typ IS RECORD (
empno NUMBER(4),
ename VARCHAR(10)

);
TYPE emp_refcur IS REF CURSOR;

FUNCTION get_dept_name (
p_deptno IN NUMBER

) RETURN VARCHAR2;
FUNCTION open_emp_by_dept (

p_deptno IN emp.deptno%TYPE
) RETURN EMP_REFCUR;
PROCEDURE fetch_emp (

p_refcur IN OUT SYS_REFCURSOR
);
PROCEDURE close_refcur (

p_refcur IN OUT SYS_REFCURSOR
);

END emp_rpt;

The definition of the associated package body includes the following private
variable declarations:
v A static cursor, DEPT_CUR
v An associative array type, DEPTTAB_TYP
v An associative array variable, T_DEPT
v An integer variable, T_DEPT_MAX
v A record variable, R_EMP
CREATE OR REPLACE PACKAGE BODY emp_rpt
IS

CURSOR dept_cur IS SELECT * FROM dept;
TYPE depttab_typ IS TABLE of dept%ROWTYPE

INDEX BY BINARY_INTEGER;
t_dept DEPTTAB_TYP;
t_dept_max INTEGER := 1;

192 SQL Procedural Languages: Application Enablement and Support

r_emp EMPREC_TYP;

FUNCTION get_dept_name (
p_deptno IN NUMBER

) RETURN VARCHAR2
IS
BEGIN

FOR i IN 1..t_dept_max LOOP
IF p_deptno = t_dept(i).deptno THEN

RETURN t_dept(i).dname;
END IF;

END LOOP;
RETURN 'Unknown';

END;

FUNCTION open_emp_by_dept(
p_deptno IN emp.deptno%TYPE

) RETURN EMP_REFCUR
IS

emp_by_dept EMP_REFCUR;
BEGIN

OPEN emp_by_dept FOR SELECT empno, ename FROM emp
WHERE deptno = p_deptno;

RETURN emp_by_dept;
END;

PROCEDURE fetch_emp (
p_refcur IN OUT SYS_REFCURSOR

)
IS
BEGIN

DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH p_refcur INTO r_emp;
EXIT WHEN p_refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' || r_emp.ename);

END LOOP;
END;

PROCEDURE close_refcur (
p_refcur IN OUT SYS_REFCURSOR

)
IS
BEGIN

CLOSE p_refcur;
END;

BEGIN
OPEN dept_cur;
LOOP

FETCH dept_cur INTO t_dept(t_dept_max);
EXIT WHEN dept_cur%NOTFOUND;
t_dept_max := t_dept_max + 1;

END LOOP;
CLOSE dept_cur;
t_dept_max := t_dept_max - 1;

END emp_rpt;

This package contains an initialization section that loads the private associative
array variable T_DEPT, using the private static cursor DEPT_CUR. T_DEPT serves
as a department name lookup table in function GET_DEPT_NAME. The function
OPEN_EMP_BY_DEPT returns a REF CURSOR variable for the result set of
employee numbers and names for a given department. This REF CURSOR variable
can then be passed to procedure FETCH_EMP to retrieve and list the individual

Chapter 2. PL/SQL support 193

rows of the result set. Finally, procedure CLOSE_REFCUR can be used to close the
REF CURSOR variable that is associated with this result set.

The following anonymous block runs the package functions and procedures. The
declaration section includes the declaration of cursor variable V_EMP_CUR, using
the public REF CURSOR type, EMP_REFCUR. V_EMP_CUR contains a pointer to
the result set that is passed between the package function and procedures.
DECLARE

v_deptno dept.deptno%TYPE DEFAULT 30;
v_emp_cur emp_rpt.EMP_REFCUR;

BEGIN
v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||

': ' || emp_rpt.get_dept_name(v_deptno));
emp_rpt.fetch_emp(v_emp_cur);
DBMS_OUTPUT.PUT_LINE('**********************');
DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
emp_rpt.close_refcur(v_emp_cur);

END;

This anonymous block produces the following sample output:
EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

The following anonymous block shows another way of achieving the same result.
Instead of using the package procedures FETCH_EMP and CLOSE_REFCUR, the
logic is coded directly into the anonymous block. Note the declaration of record
variable R_EMP, using the public record type EMPREC_TYP.
DECLARE

v_deptno dept.deptno%TYPE DEFAULT 30;
v_emp_cur emp_rpt.EMP_REFCUR;
r_emp emp_rpt.EMPREC_TYP;

BEGIN
v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||

': ' || emp_rpt.get_dept_name(v_deptno));
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH v_emp_cur INTO r_emp;
EXIT WHEN v_emp_cur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' ||

r_emp.ename);
END LOOP;
DBMS_OUTPUT.PUT_LINE('**********************');
DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
CLOSE v_emp_cur;

END;

This anonymous block produces the following sample output:
EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------

194 SQL Procedural Languages: Application Enablement and Support

7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

Dropping packages (PL/SQL)
You can drop a package if it is no longer needed. Alternatively, if you want to
reuse the package, you have the option to drop only the package body.

Syntax

�� DROP PACKAGE package-name
BODY

��

Description

BODY
Specifies that only the package body is to be dropped. If this keyword is
omitted, both the package specification and the package body are dropped.

package-name
Specifies the name of a package.

Examples

The following example shows how to drop only the body of a package named
EMP_ADMIN:
DROP PACKAGE BODY emp_admin

The following example shows how to drop both the specification and the body of
the package:
DROP PACKAGE emp_admin

Chapter 2. PL/SQL support 195

196 SQL Procedural Languages: Application Enablement and Support

Chapter 3. System-defined modules

The system-defined modules provide an easy-to-use programmatic interface for
performing a variety of useful operations.

For example, you can use system-defined modules to perform the following
functions:
v Send and receive messages and alerts across connections.
v Write to and read from files and directories on the operating system's file

system.
v Generate reports containing a variety of monitor information.

System-defined modules can be invoked from an SQL-based application, a DB2
command line, or a command script.

System-defined modules are not supported for the following product editions:
v DB2 Express®

v DB2 Express-C
v DB2 Personal Edition

DBMS_ALERT module
The DBMS_ALERT module provides a set of procedures for registering for alerts,
sending alerts, and receiving alerts.

Alerts are stored in SYSTOOLS.DBMS_ALERT_INFO, which is created in the
SYSTOOLSPACE when you first reference this module for each database.

The schema for this module is SYSIBMADM.

The DBMS_ALERT module includes the following system-defined routines.

Table 11. System-defined routines available in the DBMS_ALERT module

Routine name Description

REGISTER procedure Registers the current session to receive a
specified alert.

REMOVE procedure Removes registration for a specified alert.

REMOVEALL procedure Removes registration for all alerts.

SIGNAL procedure Signals the occurrence of a specified alert.

SET_DEFAULTS procedure Sets the polling interval for the WAITONE
and WAITANY procedures.

WAITANY procedure Waits for any registered alert to occur.

WAITONE procedure Waits for a specified alert to occur.

Usage notes

The procedures in the DBMS_ALERT module are useful when you want to send an
alert for a specific event. For example, you might want to send an alert when a
trigger is activated as the result of changes to one or more tables.

© Copyright IBM Corp. 1993, 2010 197

The DBMS_ALERT module requires that the database configuration parameter
CUR_COMMIT is set to ON

Example

When a trigger, TRIG1, is activated, send an alert from connection 1 to connection
2 . First, create the table and the trigger.
CREATE TABLE T1 (C1 INT)@

CREATE TRIGGER TRIG1
AFTER INSERT ON T1
REFERENCING NEW AS NEW
FOR EACH ROW
BEGIN ATOMIC
CALL DBMS_ALERT.SIGNAL('trig1', NEW.C1);
END@

From connection 1, issue an INSERT statement.
INSERT INTO T1 values (10)@
-- Commit to send messages to the listeners (required in early program)
CALL DBMS_ALERT.COMMIT()@

From connection 2, register to receive the alert called trig1 and wait for the alert.
CALL DBMS_ALERT.REGISTER('trig1')@
CALL DBMS_ALERT.WAITONE('trig1', ?, ?, 5)@

This example results in the following output:
Value of output parameters

Parameter Name : MESSAGE
Parameter Value : -

Parameter Name : STATUS
Parameter Value : 1

Return Status = 0

REGISTER procedure - Register to receive a specified alert
The REGISTER procedure registers the current session to receive a specified alert.

Syntax

�� DBMS_ALERT.REGISTER (name) ��

Procedure parameters

name
An input argument of type VARCHAR(128) that specifies the name of the alert.

Authorization

EXECUTE privilege on the DBMS_ALERT module.

Example

Use the REGISTER procedure to register for an alert named alert_test, and then
wait for the signal.

198 SQL Procedural Languages: Application Enablement and Support

SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_name VARCHAR(30) DEFAULT 'alert_test';
DECLARE v_msg VARCHAR(80);
DECLARE v_status INTEGER;
DECLARE v_timeout INTEGER DEFAULT 5;
CALL DBMS_ALERT.REGISTER(v_name);
CALL DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
CALL DBMS_ALERT.WAITONE(v_name , v_msg , v_status , v_timeout);
CALL DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
CALL DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
CALL DBMS_ALERT.REMOVE(v_name);

END@

CALL proc1@

This example results in the following output:
Waiting for signal...
Alert name : alert_test
Alert status : 1

REMOVE procedure - Remove registration for a specified alert
The REMOVE procedure removes registration from the current session for a
specified alert.

Syntax

�� DBMS_ALERT.REMOVE (name) ��

Procedure parameters

name
An input argument of type VARCHAR(128) that specifies the name of the alert.

Authorization

EXECUTE privilege on the DBMS_ALERT module.

Example

Use the REMOVE procedure to remove an alert named alert_test.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_name VARCHAR(30) DEFAULT 'alert_test';
DECLARE v_msg VARCHAR(80);
DECLARE v_status INTEGER;
DECLARE v_timeout INTEGER DEFAULT 5;
CALL DBMS_ALERT.REGISTER(v_name);
CALL DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
CALL DBMS_ALERT.WAITONE(v_name , v_msg , v_status , v_timeout);
CALL DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
CALL DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
CALL DBMS_ALERT.REMOVE(v_name);

END@

CALL proc1@

Chapter 3. System-defined modules 199

This example results in the following output:
Waiting for signal...
Alert name : alert_test
Alert status : 1

REMOVEALL procedure - Remove registration for all alerts
The REMOVEALL procedure removes registration from the current session for all
alerts.

Syntax

�� DBMS_ALERT.REMOVEALL ��

Authorization

EXECUTE privilege on the DBMS_ALERT module.

Example

Use the REMOVEALL procedure to remove registration for all alerts.
CALL DBMS_ALERT.REMOVEALL@

SET_DEFAULTS - Set the polling interval for WAITONE and
WAITANY

The SET_DEFAULTS procedure sets the polling interval that is used by the
WAITONE and WAITANY procedures.

Syntax

�� DBMS_ALERT.SET_DEFAULTS (sensitivity) ��

Procedure parameters

sensitivity
An input argument of type INTEGER that specifies an interval in seconds for
the WAITONE and WAITANY procedures to check for signals. If a value is not
specified, then the interval is 1 second by default.

Authorization

EXECUTE privilege on the DBMS_ALERT module.

Example

Use the SET_DEFAULTS procedure to specify the polling interval for the
WAITONE and WAITANY procedures.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_name VARCHAR(30) DEFAULT 'alert_test';
DECLARE v_msg VARCHAR(80);
DECLARE v_status INTEGER;
DECLARE v_timeout INTEGER DEFAULT 20;

200 SQL Procedural Languages: Application Enablement and Support

DECLARE v_polling INTEGER DEFAULT 3;
CALL DBMS_ALERT.REGISTER(v_name);
CALL DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
CALL DBMS_ALERT.SET_DEFAULTS(v_polling);
CALL DBMS_OUTPUT.PUT_LINE('Polling interval: ' || v_polling);
CALL DBMS_ALERT.WAITONE(v_name , v_msg , v_status , v_timeout);
CALL DBMS_ALERT.REMOVE(v_name);

END@

CALL proc1@

This example results in the following output:
Polling interval : 3

SIGNAL procedure - Signal occurrence of a specified alert
The SIGNAL procedure signals the occurrence of a specified alert. The signal
includes a message that is passed with the alert. The message is distributed to the
listeners (processes that have registered for the alert) when the SIGNAL call is
issued.

Syntax

�� DBMS_ALERT.SIGNAL (name , message) ��

Procedure parameters

name
An input argument of type VARCHAR(128) that specifies the name of the alert.

message
An input argument of type VARCHAR(32672) that specifies the information to
pass with this alert. This message can be returned by the WAITANY or
WAITONE procedures when an alert occurs.

Authorization

EXECUTE privilege on the DBMS_ALERT module.

Example

Use the SIGNAL procedure to signal the occurrence of an alert named alert_test.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_name VARCHAR(30) DEFAULT 'alert_test';
CALL DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
CALL DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);

END@

CALL proc1@

This example results in the following output:
Issued alert for alert_test

WAITANY procedure - Wait for any registered alerts
The WAITANY procedure waits for any registered alerts to occur.

Chapter 3. System-defined modules 201

Syntax

�� DBMS_ALERT.WAITANY (name , message , status , timeout) ��

Procedure parameters

name
An output argument of type VARCHAR(128) that contains the name of the
alert.

message
An output argument of type VARCHAR(32672) that contains the message sent
by the SIGNAL procedure.

status
An output argument of type INTEGER that contains the status code returned
by the procedure. The following values are possible

0 An alert occurred.

1 A timeout occurred.

timeout
An input argument of type INTEGER that specifies the amount of time in
seconds to wait for an alert.

Authorization

EXECUTE privilege on the DBMS_ALERT module.

Example

From one connection, run a CLP script called waitany.clp to receive any registered
alerts.
waitany.clp:

SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_name VARCHAR(30);
DECLARE v_msg VARCHAR(80);
DECLARE v_status INTEGER;
DECLARE v_timeout INTEGER DEFAULT 20;
CALL DBMS_ALERT.REGISTER('alert_test');
CALL DBMS_ALERT.REGISTER('any_alert');
CALL DBMS_OUTPUT.PUT_LINE('Registered for alert alert_test and any_alert');
CALL DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
CALL DBMS_ALERT.WAITANY(v_name , v_msg , v_status , v_timeout);
CALL DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
CALL DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
CALL DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
CALL DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
CALL DBMS_ALERT.REMOVEALL;

END@

call proc1@

From another connection, run a script called signal.clp to issue a signal for an
alert named any_alert.

202 SQL Procedural Languages: Application Enablement and Support

signal.clp:

SET SERVEROUTPUT ON@

CREATE PROCEDURE proc2
BEGIN
DECLARE v_name VARCHAR(30) DEFAULT 'any_alert';
CALL DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
CALL DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);

END@

CALL proc2@

The script signal.clp results in the following output:
Issued alert for any_alert

The script waitany.clp results in the following output:
Registered for alert alert_test and any_alert
Waiting for signal...
Alert name : any_alert
Alert msg : This is the message from any_alert
Alert status : 0
Alert timeout: 20 seconds

Usage notes

If no alerts are registered when the WAITANY procedure is called, the procedure
returns SQL0443N.

WAITONE procedure - Wait for a specified alert
The WAITONE procedure waits for a specified alert to occur.

Syntax

�� DBMS_ALERT.WAITONE (name , message , status , timeout) ��

Procedure parameters

name
An input argument of type VARCHAR(128) that specifies the name of the alert.

message
An output argument of type VARCHAR(32672) that contains the message sent
by the SIGNAL procedure.

status
An output argument of type INTEGER that contains the status code returned
by the procedure. The following values are possible

0 An alert occurred.

1 A timeout occurred.

timeout
An input argument of type INTEGER that specifies the amount of time in
seconds to wait for the specified alert.

Authorization

EXECUTE privilege on the DBMS_ALERT module.

Chapter 3. System-defined modules 203

Example

Run a CLP script named waitone.clp to receive an alert named alert_test.
waitone.clp:

SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_name VARCHAR(30) DEFAULT 'alert_test';
DECLARE v_msg VARCHAR(80);
DECLARE v_status INTEGER;
DECLARE v_timeout INTEGER DEFAULT 20;
CALL DBMS_ALERT.REGISTER(v_name);
CALL DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
CALL DBMS_ALERT.WAITONE(v_name , v_msg , v_status , v_timeout);
CALL DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
CALL DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
CALL DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
CALL DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
CALL DBMS_ALERT.REMOVE(v_name);

END@

CALL proc1@

From a different connection, run a script named signalalert.clp to issue a signal
for an alert named alert_test.
signalalert.clp:

SET SERVEROUTPUT ON@

CREATE PROCEDURE proc2
BEGIN

DECLARE v_name VARCHAR(30) DEFAULT 'alert_test';
CALL DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
CALL DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);

END@

CALL proc2@

The script signalalert.clp results in the following output:
Issued alert for alert_test

The script waitone.clp results in the following output:
Waiting for signal...
Alert name : alert_test
Alert msg : This is the message from alert_test
Alert status : 0
Alert timeout: 20 seconds

DBMS_DDL Module
The DBMS_DDL module provides the capability to obfuscate DDL objects such as
routines, triggers, views or PL/SQL packages. Obfuscation allows the deployment
of SQL objects to a database without exposing the procedural logic.

The DDL statements for these objects are obfuscated both in vendor-provided
install scripts as well as in the DB2 catalogs.

The schema for this module is SYSIBMADM.

204 SQL Procedural Languages: Application Enablement and Support

Table 12. The DBMS_DDL module includes the following routines.

Routine name Description

WRAP function Produces an obfuscated version of the DDL
statement provided as argument.

CREATE_WRAPPED procedure Deploys a DDL statement in the database in
an obfuscated format.

WRAP function – Obfuscate a DDL statement
The WRAP function transforms a readable DDL statement into an obfuscated DDL
statement.

Syntax

In an obfuscated DDL statement, the procedural logic and embedded SQL
statements are scrambled in such a way that any intellectual property in the logic
cannot be easily extracted. If the DDL statement corresponds to an external routine
definition, the portion following the parameter list is encoded.

�� WRAP (object-definition-string) ��

Parameters

object-definition-string
A string of type CLOB(2M) containing a DDL statement text which can be one
of the following (SQLSTATE 5UA0O):
v create procedure
v create function
v create package (PL/SQL)
v create package body (PL/SQL)
v create trigger
v create view
v alter module add function
v alter module publish function
v alter module add procedure
v alter module publish procedure

The result is a string of type CLOB(2M) which contains an encoded version of
the input statement. The encoding consists of a prefix of the original statement
up to and including the routine signature or the trigger, view or package
name, followed by the keyword WRAPPED. This keyword is followed by
information about the application server that executes the function. The
information has the form pppvvrrm, where:
v ppp identifies the product as DB2 Database for Linux®, UNIX®, and

Windows® using the letters SQL
v vv is a two-digit version identifier, such as '09'
v rr is a two-digit release identifier, such as '07'
v m is a one-character modification level identifier, such as '0'.

For example, Fixpack 2 of Version 9.7 is identified as 'SQL09072'. This
application server information is followed by a string of letters (a-z, and A-Z),

Chapter 3. System-defined modules 205

digits (0-9), underscores and colons. No syntax checking is done on the input
statement beyond the prefix that remains readable after obfuscation.

The encoded DDL statement is typically longer than the plain text form of the
statement. If the result exceeds the maximum length for SQL statements an
error is raised (SQLSTATE 54001).

Note: The encoding of the statement is meant to obfuscate the content and should
not be considered as a form of strong encryption.

Authorization

EXECUTE privilege on the DBMS_DDL module

Example

1. Produce an obfuscated version of a function that computes a yearly salary from
an hourly wage given a 40 hour workweek
VALUES(DDL.WRAP('CREATE FUNCTION ' ||

'salary(wage DECFLOAT) ' ||
'RETURNS DECFLOAT ' ||
'RETURN wage * 40 * 52'))

The result of the previous statement would be something of the form:

CREATE FUNCTION salary(wage DECFLOAT) WRAPPED SQL09072 obfuscated-text

2. Produce an obfuscated form of a trigger setting a complex default
VALUES(DBMS_DDL.WRAP('CREATE OR REPLACE TRIGGER ' ||

'trg1 BEFORE INSERT ON emp ' ||
'REFERENCING NEW AS n ' ||
'FOR EACH ROW ' ||
'WHEN (n.bonus IS NULL) ' ||
'SET n.bonus = n.salary * .04'))

The result of the previous statement would be something of the form:

CREATE OR REPLACE TRIGGER trg1 WRAPPED SQL09072 obfuscated-text

CREATE_WRAPPED procedure – Deploy an obfuscated object
The CREATE_WRAPPED procedure transforms a plain text DDL object definition
into an obfuscated DDL object definition and then deploys the object in the
database.

Syntax

In an obfuscated DDL statement, the procedural logic and embedded SQL
statements are encoded in such a way that any intellectual property in the logic
cannot be easily extracted.

�� CREATE_WRAPPED (object-definition-string) ��

Parameters

object-definition-string
A string of type CLOB(2M) containing a DDL statement text which can be one
of the following (SQLSTATE 5UA0O):
v create procedure

206 SQL Procedural Languages: Application Enablement and Support

v create function
v create package (PL/SQL)
v create package body (PL/SQL)
v create trigger
v create view
v alter module add function
v alter module publish function
v alter module add procedure
v alter module publish procedure

The procedure transforms the input into an obfuscated DDL statement string
and then dynamically executes that DDL statement. Special register values
such as PATH and CURRENT SCHEMA in effect at invocation as well as the
current invoker's rights are being used.

The encoding consists of a prefix of the original statement up to and including
the routine signature or the trigger, view or package name, followed by the
keyword WRAPPED. This keyword is followed by information about the
application server that executes the procedure. The information has the form
"pppvvrrm," where:
v ppp identifies the product as DB2 Database for Linux®, UNIX®, and

Windows® using the letters SQL
v vv is a two-digit version identifier, such as '09'
v rr is a two-digit release identifier, such as '07'
v m is a one-character modification level identifier, such as '0'.

For example, Fixpack 2 of Version 9.7 is identified as 'SQL09072'. This
application server information is followed by a string of letters (a-z, and A-Z),
digits (0-9), underscores and colons. No syntax checking is done on the input
statement beyond the prefix that remains readable after obfuscation.

The encoded DDL statement is typically longer than the plain text form of the
statement. If the result exceeds the maximum length for SQL statements an
error is raised (SQLSTATE 54001).

Note: The encoding of the statement is meant to obfuscate the content and should
not be considered as a form of strong encryption.

Authorization

EXECUTE privilege on the DBMS_DDL module.

Example

1. Create an obfuscated function computing a yearly salary from an hourly wage
given a 40 hour workweek
CALL DBMS_DDL.CREATE_WRAPPED('CREATE FUNCTION ' ||

'salary(wage DECFLOAT) ' ||
'RETURNS DECFLOAT ' ||
'RETURN wage * 40 * 52');

SELECT text FROM SYSCAT.ROUTINES
WHERE routinename = 'SALARY'

AND routineschema = CURRENT SCHEMA;

Chapter 3. System-defined modules 207

Upon successful execution of the CALL statement, The SYSCAT.ROUTINES.TEXT
column for the row corresponding to routine ‘SALARY' would be something
of the form:
CREATE FUNCTION salary(wage DECFLOAT) WRAPPED SQL09072 obfuscated-text

2. Create an obfuscated trigger setting a complex default
CALL DBMS_DDL.CREATE_WRAPPED('CREATE OR REPLACE TRIGGER ' ||

'trg1 BEFORE INSERT ON emp ' ||
'REFERENCING NEW AS n ' ||
'FOR EACH ROW ' ||
'WHEN (n.bonus IS NULL) ' ||
'SET n.bonus = n.salary * .04');

SELECT text FROM SYSCAT.TRIGGERS
WHERE trigname = 'TRG1'

AND trigschema = CURRENT SCHEMA;

Upon successful execution of the CALL statement, The SYSCAT.TRIGGERS.TEXT
column for the row corresponding to trigger 'TRG1' would be something of the
form:
CREATE OR REPLACE TRIGGER trg1 WRAPPED SQL09072 obfuscated-text

DBMS_JOB module
The DBMS_JOB module provides procedures for the creation, scheduling, and
managing of jobs.

The DBMS_JOB module provides an alternate interface for the Administrative Task
Scheduler (ATS). A job is created by adding a task to the ATS. The actual task
name is constructed by concatenating the DBMS_JOB.TASK_NAME_PREFIX procedure
name with the assigned job identifier, such as SAMPLE_JOB_TASK_1 where 1 is the
job identifier.

A job runs a stored procedure which has been previously stored in the database.
The SUBMIT procedure is used to create and store a job definition. A job identifier
is assigned to every job, along with its associated stored procedure and the
attributes describing when and how often the job is run.

On first run of the SUBMIT procedure in a database, the SYSTOOLSPACE table
space is created if necessary.

To enable job scheduling for the DBMS_JOB routines, run:
db2set DB2_ATS_ENABLE=1

When and how often a job runs depends upon two interacting parameters –
next_date and interval. The next_date parameter is a datetime value that specifies
the next date and time when the job is to be executed. The interval parameter is a
string that contains a date function that evaluates to a datetime value. Just prior to
any execution of the job, the expression in the interval parameter is evaluated, and
the resulting value replaces the next_date value stored with the job. The job is then
executed. In this manner, the expression in interval is re-evaluated prior to each
job execution, supplying the next_date date and time for the next execution.

The first run of a scheduled job, as specified by the next_date parameter, should be
set at least 5 minutes after the current time, and the interval between running each
job should also be at least 5 minutes.

The schema for this module is SYSIBMADM.

208 SQL Procedural Languages: Application Enablement and Support

The DBMS_JOB module includes the following system-defined routines.

Table 13. System-defined routines available in the DBMS_JOB module

Routine name Description

BROKEN procedure Specify that a given job is either broken or
not broken.

CHANGE procedure Change the parameters of the job.

INTERVAL procedure Set the execution frequency by means of a
date function that is recalculated each time
the job runs. This value becomes the next
date and time for execution.

NEXT_DATE procedure Set the next date and time when the job is to
be run.

REMOVE procedure Delete the job definition from the database.

RUN procedure Force execution of a job even if it is marked
as broken.

SUBMIT procedure Create a job and store the job definition in
the database.

WHAT procedure Change the stored procedure run by a job.

Table 14. System-defined constants available in the DBMS_JOB module

Constant name Description

ANY_INSTANCE The only supported value for the instance
argument for the DBMS_JOB routines.

TASK_NAME_PREFIX This constant contains the string that is used
as the prefix for constructing the task name
for the administrative task scheduler.

Usage notes

When the first job is submitted through the DBMS_JOB module for each database,
the Administrative Task Scheduler setup is performed:
1. Create the SYSTOOLSPACE table space if it does not exist;
2. Create the ATS table and views, such as SYSTOOLS.ADMIN_TASK_LIST.

To list the scheduled jobs, run:
db2 SELECT * FROM systools.admin_task_list

WHERE name LIKE DBMS_JOB.TASK_NAME_PREFIX || '_%'

To view the status of the job execution, run:
db2 SELECT * FROM systools.admin_task_status

WHERE name LIKE DBMS_JOB.TASK_NAME_PREFIX || '_%'

Examples

Example 1: The following example uses the stored procedure, job_proc. This stored
procedure simply inserts a timestamp into the jobrun table, which contains a single
VARCHAR column.
CREATE TABLE jobrun (

runtime VARCHAR(40)
)@

Chapter 3. System-defined modules 209

CREATE OR REPLACE PROCEDURE job_proc
BEGIN

INSERT INTO jobrun VALUES ('job_proc run at ' || TO_CHAR(SYSDATE,
'yyyy-mm-dd hh24:mi:ss'));

END@

This example results in the following output:
CREATE TABLE jobrun (runtime VARCHAR(40))
DB20000I The SQL command completed successfully.

CREATE OR REPLACE PROCEDURE job_proc
BEGIN

INSERT INTO jobrun VALUES ('job_proc run at ' || TO_CHAR(SYSDATE,
'yyyy-mm-dd hh24:mi:ss'));

END
DB20000I The SQL command completed successfully.

BROKEN procedure - Set the state of a job to either broken or
not broken

The BROKEN procedure sets the state of a job to either broken or not broken.

A broken job cannot be executed except by using the RUN procedure.

Syntax

�� BROKEN (job , broken
, next_date

) ��

Parameters

job An input argument of type DECIMAL(20) that specifies the identifier of the job
to be set as broken or not broken.

broken
An input argument of type BOOLEAN that specifies the job status. If set to
"true", the job state is set to broken. If set to "false", the job state is set to not
broken. Broken jobs cannot be run except through the RUN procedure.

next_date
An optional input argument of type DATE that specifies the date and time
when the job runs. The default is SYSDATE.

Authorization

EXECUTE privilege on the DBMS_JOB module.

Examples

Example 1: Set the state of a job with job identifier 104 to broken:
CALL DBMS_JOB.BROKEN(104,true);

Example 2: Change the state back to not broken:
CALL DBMS_JOB.BROKEN(104,false);

CHANGE procedure - Modify job attributes
The CHANGE procedure modifies certain job attributes, including the executable
SQL statement, the next date and time the job is run, and how often it is run.

210 SQL Procedural Languages: Application Enablement and Support

Syntax

�� CHANGE (job , what , next_date , interval) ��

Parameters

job An input argument of type DECIMAL(20) that specifies the identifier of the job
with the attributes to modify.

what
An input argument of type VARCHAR(1024) that specifies the executable SQL
statement. Set this argument to NULL if the existing value is to remain
unchanged.

next_date
An input argument of type TIMESTAMP(0) that specifies the next date and
time when the job is to run. Set this argument to NULL if the existing value is
to remain unchanged.

interval
An input argument of type VARCHAR(1024) that specifies the date function
that, when evaluated, provides the next date and time the job is to run. Set this
argument to NULL if the existing value is to remain unchanged.

Authorization

EXECUTE privilege on the DBMS_JOB module.

Examples

Example 1: Change the job to run next on December 13, 2009. Leave other
parameters unchanged.

CALL DBMS_JOB.CHANGE(104,NULL,TO_DATE('13-DEC-09','DD-MON-YY'),NULL);

INTERVAL procedure - Set run frequency
The INTERVAL procedure sets the frequency of how often a job is run.

Syntax

�� INTERVAL (job , interval) ��

Parameters

job An input argument of type DECIMAL(20) that specifies the identifier of the job
whose frequency is being changed.

interval
An input argument of type VARCHAR(1024) that specifies the date function
that, when evaluated, provides the next date and time the job is to run.

Authorization

EXECUTE privilege on the DBMS_JOB module.

Chapter 3. System-defined modules 211

Examples

Example 1: Change the job to run once a week:
CALL DBMS_JOB.INTERVAL(104,'SYSDATE + 7');

NEXT_DATE procedure - Set the date and time when a job is
run

The NEXT_DATE procedure sets the next date and time of when the job is to run.

Syntax

�� NEXT_DATE (job , next_date) ��

Parameters

job An input argument of type DECIMAL(20) that specifies the identifier of the job
whose next run date is to be modified.

next_date
An input argument of type TIMESTAMP(0) that specifies the date and time
when the job is to be run next.

Authorization

EXECUTE privilege on the DBMS_JOB module.

Examples

Example 1: Change the job to run next on December 14, 2009:
CALL DBMS_JOB.NEXT_DATE(104, TO_DATE('14-DEC-09','DD-MON-YY'));

REMOVE procedure - Delete the job definition from the
database

The REMOVE procedure deletes the specified job from the database.

In order to have it executed again in the future, the job must be resubmitted using
the SUBMIT procedure.

Note: The stored procedure associated with the job is not deleted when the job is
removed.

Syntax

�� REMOVE (job) ��

Parameters

job An input argument of type DECIMAL(20) that specifies the identifier of the job
to be removed from the database.

Authorization

EXECUTE privilege on the DBMS_JOB module.

212 SQL Procedural Languages: Application Enablement and Support

Examples

Example 1: Remove a job from the database:
CALL DBMS_JOB.REMOVE(104);

RUN procedure - Force a broken job to run
The RUN procedure forces a job to run, even if it has a broken state.

Syntax

�� RUN (job) ��

Parameters

job An input argument of type DECIMAL(20) that specifies the identifier of the job
to run.

Authorization

EXECUTE privilege on the DBMS_JOB module.

Examples

Example 1: Force a job to run.
CALL DBMS_JOB.RUN(104);

SUBMIT procedure - Create a job definition and store it in the
database

The SUBMIT procedure creates a job definition and stores it in the database.

A job consists of a job identifier, the stored procedure to be executed, when the job
is first executed, and a date function that calculates the next date and time for the
job to be run.

Syntax

�� SUBMIT (job , what �

�
, next_date

, interval
, no_parse

) ��

Parameters

job An output argument of type DECIMAL(20) that specifies the identifier
assigned to the job.

what
An input argument of type VARCHAR(1024) that specifies the name of the
dynamically executable SQL statement.

next_date
An optional input argument of type TIMESTAMP(0) that specifies the next
date and time when the job is to be run. The default is SYSDATE.

Chapter 3. System-defined modules 213

interval
An optional input argument of type VARCHAR(1024) that specifies a date
function that, when evaluated, provides the date and time of the execution
after the next execution. If interval is set to NULL, then the job is run only
once. NULL is the default.

no_parse
An optional input argument of type BOOLEAN. If set to true, do not
syntax-check the SQL statement at job creation; instead, perform syntax
checking only when the job first executes. If set to false, syntax check the SQL
statement at job creation. The default is false.

Authorization

EXECUTE privilege on the DBMS_JOB module.

Examples

Example 1: The following example creates a job using the stored procedure,
job_proc. The job will first execute in about 5 minutes, and runs once a day
thereafter as set by the interval argument, SYSDATE + 1.
SET SERVEROUTPUT ON@

BEGIN
DECLARE jobid INTEGER;
CALL DBMS_JOB.SUBMIT(jobid,'CALL job_proc();',SYSDATE + 5 minutes, 'SYSDATE + 1');
CALL DBMS_OUTPUT.PUT_LINE('jobid: ' || jobid);

END@

The output from this command is as follows:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

BEGIN
DECLARE jobid INTEGER;
CALL DBMS_JOB.SUBMIT(jobid,'CALL job_proc();',SYSDATE + 5 minutes, 'SYSDATE + 1');
CALL DBMS_OUTPUT.PUT_LINE('jobid: ' || jobid);

END
DB20000I The SQL command completed successfully.

jobid: 1

WHAT procedure - Change the SQL statement run by a job
The WHAT procedure changes the SQL statement run by a specified job.

Syntax

�� WHAT (job , what) ��

Parameters

job An input argument of type DECIMAL(20) that specifies the job identifier for
which the dynamically executable SQL statement is to be changed.

what
An input argument of type VARCHAR(1024) that specifies the dynamically
executed SQL statement.

214 SQL Procedural Languages: Application Enablement and Support

Authorization

EXECUTE privilege on the DBMS_JOB module.

Examples

Example 1: Change the job to run the list_emp procedure:
CALL DBMS_JOB.WHAT(104,'list_emp;');

DBMS_LOB module
The DBMS_LOB module provides the capability to operate on large objects.

In the following sections describing the individual procedures and functions,
lengths and offsets are measured in bytes if the large objects are BLOBs. Lengths
and offsets are measured in characters if the large objects are CLOBs.

The DBMS_LOB module supports LOB data up to 10M bytes.

The schema for this module is SYSIBMADM.

The DBMS_LOB module includes the following routines.

Table 15. System-defined routines available in the DBMS_LOB module

Routine Name Description

APPEND procedure Appends one large object to another.

CLOSE procedure Close an open large object.

COMPARE function Compares two large objects.

CONVERTTOBLOB procedure Converts character data to binary.

CONVERTTOCLOB procedure Converts binary data to character.

COPY procedure Copies one large object to another.

ERASE procedure Erase a large object.

GET_STORAGE_LIMIT function Get the storage limit for large objects.

GETLENGTH function Get the length of the large object.

INSTR function Get the position of the nth occurrence of a
pattern in the large object starting at offset.

ISOPEN function Check if the large object is open.

OPEN procedure Open a large object.

READ procedure Read a large object.

SUBSTR function Get part of a large object.

TRIM procedure Trim a large object to the specified length.

WRITE procedure Write data to a large object.

WRITEAPPEND procedure Write data from the buffer to the end of a
large object.

The following table lists the public variables available in the module.

Chapter 3. System-defined modules 215

Table 16. DBMS_LOB public variables

Public variables Data type Value

lob_readonly INTEGER 0

lob_readwrite INTEGER 1

APPEND procedures - Append one large object to another
The APPEND procedures provide the capability to append one large object to
another.

Note: Both large objects must be of the same type.

Syntax

�� APPEND_BLOB (dest_lob , src_lob) ��

�� APPEND_CLOB (dest_lob , src_lob) ��

Parameters

dest_lob
An input or output argument of type BLOB(10M) or CLOB(10M) that specifies
the large object locator for the destination object. Must be the same data type
as src_lob.

src_lob
An input argument of type BLOB(10M) or CLOB(10M) that specifies the large
object locator for the source object. Must be the same data type as dest_lob.

Authorization

EXECUTE privilege on the DBMS_LOB module.

CLOSE procedures - Close an open large object
The CLOSE procedures are a no-op.

Syntax

�� CLOSE_BLOB (lob_loc) ��

�� CLOSE_CLOB (lob_loc) ��

Parameters

lob_loc
An input or output argument of type BLOB(10M) or CLOB(10M) that specifies
the large object locator of the large object to be closed.

Authorization

EXECUTE privilege on the DBMS_LOB module.

216 SQL Procedural Languages: Application Enablement and Support

Examples

Example 1:

COMPARE function - Compare two large objects
The COMPARE function performs an exact byte-by-byte comparison of two large
objects for a given length at given offsets.

The function returns:
v Zero if both large objects are exactly the same for the specified length for the

specified offsets
v Non-zero if the objects are not the same
v Null if amount, offset_1, or offset_2 are less than zero.

Note: The large objects being compared must be the same data type.

Syntax

�� COMPARE (lob_1 , lob_2 �

�
, amount

, offset_1
, offset_2

) ��

Parameters

lob_1
An input argument of type BLOB(10M) or CLOB(10M) that specifies the large
object locator of the first large object to be compared. Must be the same data
type as lob_2.

lob_2
An input argument of type BLOB(10M) or CLOB(10M) that specifies the large
object locator of the second large object to be compared. Must be the same data
type as lob_1.

amount
An optional input argument of type INTEGER. If the data type of the large
objects is BLOB, then the comparison is made for amount bytes. If the data type
of the large objects is CLOB, then the comparison is made for amount
characters. The default is the maximum size of a large object.

offset_1
An optional input argument of type INTEGER that specifies the position
within the first large object to begin the comparison. The first byte (or
character) is offset 1. The default is 1.

offset_2
An optional input argument of type INTEGER that specifies the position
within the second large object to begin the comparison. The first byte (or
character) is offset 1. The default is 1.

Authorization

EXECUTE privilege on the DBMS_LOB module.

Chapter 3. System-defined modules 217

CONVERTTOBLOB procedure - Convert character data to
binary

The CONVERTTOBLOB procedure provides the capability to convert character
data to binary.

Syntax

�� CONVERTTOBLOB (dest_lob , src_clob , amount , �

� dest_offset , src_offset , blob_csid , lang_context , warning) ��

Parameters

dest_lob
An input or output argument of type BLOB(10M) that specifies the large object
locator into which the character data is to be converted.

src_clob
An input argument of type CLOB(10M) that specifies the large object locator of
the character data to be converted.

amount
An input argument of type INTEGER that specifies the number of characters of
src_clob to be converted.

dest_offset
An input or output argument of type INTEGER that specifies the position (in
bytes) in the destination BLOB where writing of the source CLOB should
begin. The first byte is offset 1.

src_offset
An input or output argument of type INTEGER that specifies the position (in
characters) in the source CLOB where conversion to the destination BLOB
should begin. The first character is offset 1.

blob_csid
An input argument of type INTEGER that specifies the character set ID of the
destination BLOB. This value must match the database codepage.

lang_context
An input argument of type INTEGER that specifies the language context for
the conversion. This value must be 0.

warning
An output argument of type INTEGER that always returns 0.

Authorization

EXECUTE privilege on the DBMS_LOB module.

CONVERTTOCLOB procedure - Convert binary data to
character

The CONVERTTOCLOB procedure provides the capability to convert binary data
to character.

218 SQL Procedural Languages: Application Enablement and Support

Syntax

�� CONVERTTOCLOB (dest_lob , src_blob , amount , �

� dest_offset , src_offset , blob_csid , lang_context , warning) ��

Parameters

dest_lob
An input or output argument of type CLOB(10M) that specifies the large object
locator into which the binary data is to be converted.

src_clob
An input argument of type BLOB(10M) that specifies the large object locator of
the binary data to be converted.

amount
An input argument of type INTEGER that specifies the number of characters of
src_blob to be converted.

dest_offset
An input or output argument of type INTEGER that specifies the position (in
characters) in the destination CLOB where writing of the source BLOB should
begin. The first byte is offset 1.

src_offset
An input or output argument of type INTEGER that specifies the position (in
bytes) in the source BLOB where conversion to the destination CLOB should
begin. The first character is offset 1.

blob_csid
An input argument of type INTEGER that specifies the character set ID of the
source BLOB. This value must match the database codepage.

lang_context
An input argument of type INTEGER that specifies the language context for
the conversion. This value must be 0.

warning
An output argument of type INTEGER that always returns 0.

Authorization

EXECUTE privilege on the DBMS_LOB module.

COPY procedures - Copy one large object to another
The COPY procedures provide the capability to copy one large object to another.

Note: The source and destination large objects must be the same data type.

Syntax

�� COPY_BLOB (dest_lob , src_lob , amount �

�
, dest_offset

, src_offset

) ��

Chapter 3. System-defined modules 219

�� COPY_CLOB (dest_lob , src_lob , amount �

�
, dest_offset

, src_offset

) ��

Parameters

dest_lob
An input or output argument of type BLOB(10M) or CLOB(10M) that specifies
the large object locator of the large object to which src_lob is to be copied. Must
be the same data type as src_lob.

src_lob
An input argument of type BLOB(10M) or CLOB(10M) that specifies the large
object locator of the large object from which dest_lob is to be copied. Must be
the same data type as dest_lob.

amount
An input argument of type INTEGER that specifies the number of bytes or
characters of src_lob to be copied.

dest_offset
An optional input argument of type INTEGER that specifies the position in the
destination large object where writing of the source large object should begin.
The first position is offset 1. The default is 1.

src_offset
An optional input argument of type INTEGER that specifies the position in the
source large object where copying to the destination large object should begin.
The first position is offset 1. The default is 1.

Authorization

EXECUTE privilege on the DBMS_LOB module.

ERASE procedures - Erase a portion of a large object
The ERASE procedures provide the capability to erase a portion of a large object.

To erase a large object means to replace the specified portion with zero-byte fillers
for BLOBs or with spaces for CLOBs. The actual size of the large object is not
altered.

Syntax

�� ERASE_BLOB (lob_loc , amount
, offset

) ��

�� ERASE_CLOB (lob_loc , amount
, offset

) ��

Parameters

lob_loc
An input or output argument of type BLOB(10M) or CLOB(10M) that specifies
the large object locator of the large object to be erased.

220 SQL Procedural Languages: Application Enablement and Support

amount
An input or output argument of type INTEGER that specifies the number of
bytes or characters to be erased.

offset
An optional input argument of type INTEGER that specifies the position in the
large object where erasing is to begin. The first byte or character is at position
1. The default is 1.

Authorization

EXECUTE privilege on the DBMS_LOB module.

GET_STORAGE_LIMIT function - Return the limit on the
largest allowable large object

The GET_STORAGE_LIMIT function returns the limit on the largest allowable
large object.

The function returns an INTEGER value that reflects the maximum allowable size
of a large object in this database.

Syntax

�� GET_STORAGE_LIMIT () ��

Authorization

EXECUTE privilege on the DBMS_LOB module.

GETLENGTH function - Return the length of the large object
The GETLENGTH function returns the length of a large object.

The function returns an INTEGER value that reflects the length of the large object
in bytes (for a BLOB) or characters (for a CLOB).

Syntax

�� GETLENGTH (lob_loc) ��

Parameters

lob_loc
An input argument of type BLOB(10M) or CLOB(10M) that specifies the large
object locator of the large object whose length is to be obtained.

Authorization

EXECUTE privilege on the DBMS_LOB module.

INSTR function - Return the location of the nth occurrence of
a given pattern

The INSTR function returns the location of the nth occurrence of a given pattern
within a large object.

Chapter 3. System-defined modules 221

The function returns an INTEGER value of the position within the large object
where the pattern appears for the nth time, as specified by nth. This value starts
from the position given by offset.

Syntax

�� INSTR (lob_loc , pattern
, offset

, nth

) ��

Parameters

lob_loc
An input argument of type BLOB or CLOB that specifies the large object
locator of the large object in which to search for the pattern.

pattern
An input argument of type BLOB(32767) or VARCHAR(32672) that specifies
the pattern of bytes or characters to match against the large object. Note that
pattern must be BLOB if lob_loc is a BLOB; and pattern must be VARCHAR if
lob_loc is a CLOB.

offset
An optional input argument of type INTEGER that specifies the position
within lob_loc to start searching for the pattern. The first byte or character is at
position 1. The default value is 1.

nth
An optional argument of type INTEGER that specifies the number of times to
search for the pattern, starting at the position given by offset. The default value
is 1.

Authorization

EXECUTE privilege on the DBMS_LOB module.

ISOPEN function - Test if the large object is open
The ISOPEN function always returns an INTEGER value of 1..

Syntax

�� ISOPEN (lob_loc) ��

Parameters

lob_loc
An input argument of type BLOB(10M) or CLOB(10M) that specifies the large
object locator of the large object to be tested by the function.

Authorization

EXECUTE privilege on the DBMS_LOB module.

OPEN procedures - Open a large object
The OPEN procedures are a no-op.

222 SQL Procedural Languages: Application Enablement and Support

Syntax

�� OPEN_BLOB (lob_loc , open_mode) ��

�� OPEN_CLOB (lob_loc , open_mode) ��

Parameters

lob_loc
An input or output argument of type BLOB(10M) or CLOB(10M) that specifies
the large object locator of the large object to be opened.

open_mode
An input argument of type INTEGER that specifies the mode in which to open
the large object. Set to 0 (lob_readonly) for read-only mode. Set to 1
(lob_readwrite) for read-write mode.

Authorization

EXECUTE privilege on the DBMS_LOB module.

READ procedures - Read a portion of a large object
The READ procedures provide the capability to read a portion of a large object
into a buffer.

Syntax

�� READ_BLOB (lob_loc , amount , offset , buffer) ��

�� READ_CLOB (lob_loc , amount , offset , buffer) ��

Parameters

lob_loc
An input argument of type BLOB(10M) or CLOB(10M) that specifies the large
object locator of the large object to be read.

amount
An input or output argument of type INTEGER that specifies the number of
bytes or characters to read.

offset
An input argument of type INTEGER that specifies the position to begin
reading. The first byte or character is at position 1.

buffer
An output argument of type BLOB(32762) or VARCHAR(32672) that specifies
the variable to receive the large object. If lob_loc is a BLOB, then buffer must be
BLOB. If lob_loc is a CLOB, then buffer must be VARCHAR.

Authorization

EXECUTE privilege on the DBMS_LOB module.

Chapter 3. System-defined modules 223

SUBSTR function - Return a portion of a large object
The SUBSTR function provides the capability to return a portion of a large object.

The function returns a BLOB(32767) (for a BLOB) or VARCHAR (for a CLOB)
value for the returned portion of the large object read by the function.

Syntax

�� SUBSTR (lob_loc
, amount

, offset

) ��

Parameters

lob_loc
An input argument of type BLOB(10M) or CLOB(10M) that specifies the large
object locator of the large object to be read.

amount
An optional input argument of type INTEGER that specifies the number of
bytes or characters to be returned. The default value is 32,767.

offset
An optional input argument of type INTEGER that specifies the position
within the large object to begin returning data. The first byte or character is at
position 1. The default value is 1.

Authorization

EXECUTE privilege on the DBMS_LOB module.

TRIM procedures - Truncate a large object to the specified
length

The TRIM procedures provide the capability to truncate a large object to the
specified length.

Syntax

�� TRIM_BLOB (lob_loc , newlen) ��

�� TRIM_CLOB (lob_loc , newlen) ��

Parameters

lob_loc
An input or output argument of type BLOB(10M) or CLOB(10M) that specifies
the large object locator of the large object to be trimmed.

newlen
An input argument of type INTEGER that specifies the new number of bytes
or characters to which the large object is to be trimmed.

224 SQL Procedural Languages: Application Enablement and Support

Authorization

EXECUTE privilege on the DBMS_LOB module.

WRITE procedures - Write data to a large object
The WRITE procedures provide the capability to write data into a large object.

Any existing data in the large object at the specified offset for the given length is
overwritten by data given in the buffer.

Syntax

�� WRITE_BLOB (lob_loc , amount , offset , buffer) ��

�� WRITE_CLOB (lob_loc , amount , offset , buffer) ��

Parameters

lob_loc
An input or output argument of type BLOB(10M) or CLOB(10M) that specifies
the large object locator of the large object to be written.

amount
An input argument of type INTEGER that specifies the number of bytes or
characters in buffer to be written to the large object.

offset
An input argument of type INTEGER that specifies the offset in bytes or
characters from the beginning of the large object for the write operation to
begin. The start value of the large object is 1.

buffer
An input argument of type BLOB(32767) or VARCHAR(32672) that contains the
data to be written to the large object. If lob_loc is a BLOB, then buffer must be
BLOB. If lob_loc is a CLOB, then buffer must be VARCHAR.

Authorization

EXECUTE privilege on the DBMS_LOB module.

WRITEAPPEND procedures - Append data to the end of a
large object

The WRITEAPPEND procedures provide the capability to add data to the end of a
large object.

Syntax

�� WRITEAPPEND_BLOB (lob_loc , amount , buffer) ��

�� WRITEAPPEND_CLOB (lob_loc , amount , buffer) ��

Chapter 3. System-defined modules 225

Parameters

lob_loc
An input or output argument of type BLOB or CLOB that specifies the large
object locator of the large object to which data is to appended.

amount
An input argument of type INTEGER that specifies the number of bytes or
characters from buffer to be appended to the large object.

buffer
An input argument of type BLOB(32767) or VARCHAR(32672) that contains the
data to be appended to the large object. If lob_loc is a BLOB, then buffer must
be BLOB. If lob_loc is a CLOB, then buffer must be VARCHAR.

Authorization

EXECUTE privilege on the DBMS_LOB module.

DBMS_OUTPUT module
The DBMS_OUTPUT module provides a set of procedures for putting messages
(lines of text) in a message buffer and getting messages from the message buffer.
These procedures are useful during application debugging when you need to write
messages to standard output.

The schema for this module is SYSIBMADM.

The DBMS_OUTPUT module includes the following system-defined routines.

Table 17. System-defined routines available in the DBMS_OUTPUT module

Routine name Description

DISABLE procedure Disables the message buffer.

ENABLE procedure Enables the message buffer

GET_LINE procedure Gets a line of text from the message buffer.

GET_LINES procedure Gets one or more lines of text from the
message buffer and places the text into a
collection

NEW_LINE procedure Puts an end-of-line character sequence in the
message buffer.

PUT procedure Puts a string that includes no end-of-line
character sequence in the message buffer.

PUT_LINE procedure Puts a single line that includes an
end-of-line character sequence in the
message buffer.

The procedures in this module allow you to work with the message buffer. Use the
command line processor (CLP) command SET SERVEROUTPUT ON to redirect the
output to standard output.

Example

In proc1 use the PUT and PUT_LINE procedures to put a line of text in the
message buffer. When proc1 runs for the first time, SET SERVEROUTPUT ON is
specified, and the line in the message buffer is printed to the CLP window. When

226 SQL Procedural Languages: Application Enablement and Support

proc1 runs a second time, SET SERVEROUTPUT OFF is specified, and no lines
from the message buffer are printed to the CLP window.
CREATE PROCEDURE proc1(P1 VARCHAR(10))
BEGIN

CALL DBMS_OUTPUT.PUT('P1 = ');
CALL DBMS_OUTPUT.PUT_LINE(P1);

END@

SET SERVEROUTPUT ON@

CALL proc1('10')@

SET SERVEROUTPUT OFF@

CALL proc1('20')@

The example results in the following output:
CALL proc1('10')

Return Status = 0

P1 = 10

SET SERVEROUTPUT OFF
DB20000I The SET SERVEROUTPUT command completed successfully.

CALL proc1('20')

Return Status = 0

DISABLE procedure - Disable the message buffer
The DISABLE procedure disables the message buffer.

After this procedure runs, any messages that are in the message buffer are
discarded. Calls to the PUT, PUT_LINE, or NEW_LINE procedures are ignored,
and no error is returned to the sender.

Syntax

�� DBMS_OUTPUT.DISABLE ��

Authorization

EXECUTE privilege on the DBMS_OUTPUT module.

Example

The following example disables the message buffer for the current session:
CALL DBMS_OUTPUT.DISABLE@

Usage notes

To send and receive messages after the message buffer has been disabled, use the
ENABLE procedure.

Chapter 3. System-defined modules 227

ENABLE procedure - Enable the message buffer
The ENABLE procedure enables the message buffer. During a single session,
applications can put messages in the message buffer and get messages from the
message buffer.

Syntax

�� DBMS_OUTPUT.ENABLE (buffer_size) ��

Procedure parameters

buffer_size
An input argument of type INTEGER that specifies the maximum length of the
message buffer in bytes. If you specify a value of less than 2000 for buffer_size,
the buffer size is set to 2000. If the value is NULL, then the default buffer size
is 20000.

Authorization

EXECUTE privilege on the DBMS_OUTPUT module.

Example

The following example enables the message buffer:
CALL DBMS_OUTPUT.ENABLE(NULL)@

Usage notes

You can call the ENABLE procedure to increase the size of an existing message
buffer. Any messages in the old buffer are copied to the enlarged buffer.

GET_LINE procedure - Get a line from the message buffer
The GET_LINE procedure gets a line of text from the message buffer. The text
must be terminated by an end-of-line character sequence.

Tip: To add an end-of-line character sequence to the message buffer, use the
PUT_LINE procedure, or, after a series of calls to the PUT procedure, use the
NEW_LINE procedure.

Syntax

�� DBMS_OUTPUT.GET_LINE (line , status) ��

Procedure parameters

line
An output argument of type VARCHAR(32672) that returns a line of text from
the message buffer.

status
An output argument of type INTEGER that indicates whether a line was
returned from the message buffer:
v 0 indicates that a line was returned
v 1 indicates that there was no line to return

228 SQL Procedural Languages: Application Enablement and Support

Authorization

EXECUTE privilege on the DBMS_OUTPUT module.

Example

Use the GET_LINE procedure to get a line of text from the message buffer. In this
example, proc1 puts a line of text in the message buffer. proc3 gets the text from
the message buffer and inserts it into a table named messages. proc2 then runs, but
because the message buffer is disabled, no text is added to the message buffer.
When the select statement runs, it returns only the text added by proc1.
CALL DBMS_OUTPUT.ENABLE(NULL)@

CREATE PROCEDURE proc1()
BEGIN

CALL DBMS_OUTPUT.PUT_LINE('PROC1 put this line in the message buffer.');
END@

CREATE PROCEDURE proc2()
BEGIN

CALL DBMS_OUTPUT.PUT_LINE('PROC2 put this line in the message buffer.');
END@

CREATE TABLE messages (msg VARCHAR(100))@

CREATE PROCEDURE proc3()
BEGIN

DECLARE line VARCHAR(32672);
DECLARE status INT;

CALL DBMS_OUTPUT.GET_LINE(line, status);
while status = 0 do

INSERT INTO messages VALUES (line);
CALL DBMS_OUTPUT.GET_LINE(line, status);

end while;
END@

CALL proc1@

CALL proc3@

CALL DBMS_OUTPUT.DISABLE@

CALL proc2@

CALL proc3@

SELECT * FROM messages@

This example results in the following output:
MSG
--
PROC1 put this line in the message buffer.

1 record(s) selected.

GET_LINES procedure - Get multiple lines from the message
buffer

The GET_LINES procedure gets one or more lines of text from the message buffer
and stores the text in a collection. Each line of text must be terminated by an
end-of-line character sequence.

Chapter 3. System-defined modules 229

Tip: To add an end-of-line character sequence to the message buffer, use the
PUT_LINE procedure, or, after a series of calls to the PUT procedure, use the
NEW_LINE procedure.

Syntax

�� DBMS_OUTPUT.GET_LINES (lines , numlines) ��

Procedure parameters

lines
An output argument of type DBMS_OUTPUT.CHARARR that returns the lines
of text from the message buffer. The type DBMS_OUTPUT.CHARARR is
internally defined as a VARCHAR(32672) ARRAY[2147483647] array.

numlines
An input and output argument of type INTEGER. When used as input,
specifies the number of lines to retrieve from the message buffer. When used as
output, indicates the actual number of lines that were retrieved from the
message buffer. If the output value of numlines is less than the input value,
then there are no more lines remaining in the message buffer.

Authorization

EXECUTE privilege on the DBMS_OUTPUT module.

Example

Use the GET_LINES procedure to get lines of text from the message buffer and
store the text in an array. The text in the array can be inserted into a table and
queried.
CALL DBMS_OUTPUT.ENABLE(NULL)@

CREATE PROCEDURE proc1()
BEGIN

CALL DBMS_OUTPUT.PUT_LINE('PROC1 put this line in the message buffer.');
CALL DBMS_OUTPUT.PUT_LINE('PROC1 put this line in the message buffer.');

END@

CREATE PROCEDURE proc2()
BEGIN

CALL DBMS_OUTPUT.PUT_LINE('PROC2 put this line in the message buffer.');
END@

CREATE TABLE messages (msg VARCHAR(100))@

CREATE PROCEDURE proc3()
BEGIN

DECLARE lines DBMS_OUTPUT.CHARARR;
DECLARE numlines INT;
DECLARE i INT;

CALL DBMS_OUTPUT.GET_LINES(lines, numlines);
SET i = 1;
WHILE i <= numlines DO

INSERT INTO messages VALUES (lines[i]);
SET i = i + 1;

END WHILE;
END@

CALL proc1@

230 SQL Procedural Languages: Application Enablement and Support

CALL proc3@

CALL DBMS_OUTPUT.DISABLE@

CALL proc2@

CALL proc3@

SELECT * FROM messages@

This example results in the following output:
MSG
--
PROC1 put this line in the message buffer.
PROC1 put this line in the message buffer

2 record(s) selected.

NEW_LINE procedure - Put an end-of-line character sequence
in the message buffer

The NEW_LINE procedure puts an end-of-line character sequence in the message
buffer.

Syntax

�� DBMS_OUTPUT.NEW_LINE ��

Authorization

EXECUTE privilege on the DBMS_OUTPUT module.

Example

Use the NEW_LINE procedure to write an end-of-line character sequence to the
message buffer. In this example, the text that is followed by an end-of-line
character sequence displays as output because SET SERVEROUTPUT ON is
specified. However, the text that is in the message buffer, but is not followed by an
end-of-line character, does not display.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

CALL DBMS_OUTPUT.PUT('T');
CALL DBMS_OUTPUT.PUT('h');
CALL DBMS_OUTPUT.PUT('i');
CALL DBMS_OUTPUT.PUT('s');
CALL DBMS_OUTPUT.NEW_LINE;
CALL DBMS_OUTPUT.PUT('T');
CALL DBMS_OUTPUT.PUT('h');
CALL DBMS_OUTPUT.PUT('a');
CALL DBMS_OUTPUT.PUT('t');

END@

CALL proc1@

SET SERVEROUTPUT OFF@

This example results in the following output:

Chapter 3. System-defined modules 231

This

PUT procedure - Put a partial line in the message buffer
The PUT procedure puts a string in the message buffer. No end-of-line character
sequence is written at the end of the string.

Syntax

�� DBMS_OUTPUT.PUT (item) ��

Procedure parameters

item
An input argument of type VARCHAR(32672) that specifies the text to write to
the message buffer.

Authorization

EXECUTE privilege on the DBMS_OUTPUT module.

Example

Use the PUT procedure to put a partial line in the message buffer. In this example,
the NEW_LINE procedure adds an end-of-line character sequence to the message
buffer. When proc1 runs, because SET SERVEROUTPUT ON is specified, a line of
text is returned.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

CALL DBMS_OUTPUT.PUT('H');
CALL DBMS_OUTPUT.PUT('e');
CALL DBMS_OUTPUT.PUT('l');
CALL DBMS_OUTPUT.PUT('l');
CALL DBMS_OUTPUT.PUT('o');
CALL DBMS_OUTPUT.PUT('.');
CALL DBMS_OUTPUT.NEW_LINE;

END@

CALL proc1@

SET SERVEROUTPUT OFF@

This example results in the following output:
Hello.

Usage notes

After using the PUT procedure to add text to the message buffer, use the
NEW_LINE procedure to add an end-of-line character sequence to the message
buffer. Otherwise, the text is not returned by the GET_LINE and GET_LINES
procedures because it is not a complete line.

232 SQL Procedural Languages: Application Enablement and Support

PUT_LINE procedure - Put a complete line in the message
buffer

The PUT_LINE procedure puts a single line that includes an end-of-line character
sequence in the message buffer.

Syntax

�� DBMS_OUTPUT.PUT_LINE (item) ��

Procedure parameters

item
An input argument of type VARCHAR(32672) that specifies the text to write to
the message buffer.

Authorization

EXECUTE privilege on the PUT_LINE procedure.

Example

Use the PUT_LINE procedure to write a line that includes an end-of-line character
sequence to the message buffer.
SET SERVEROUTPUT ON@

CREATE PROCEDURE PROC1()
BEGIN

CALL DBMS_OUTPUT.PUT('a');
CALL DBMS_OUTPUT.NEW_LINE;
CALL DBMS_OUTPUT.PUT_LINE('b');

END@

CALL PROC1@

SET SERVEROUTPUT OFF@

This example results in the following output:
a
b

DBMS_PIPE module
The DBMS_PIPE module provides a set of routines for sending messages through a
pipe within or between sessions that are connected to the same database.

The schema for this module is SYSIBMADM.

The DBMS_PIPE module includes the following system-defined routines.

Table 18. System-defined routines available in the DBMS_PIPE module

Routine name Description

CREATE_PIPE function Explicitly creates a private or public pipe.

NEXT_ITEM_TYPE function Determines the data type of the next item in
a received message.

Chapter 3. System-defined modules 233

Table 18. System-defined routines available in the DBMS_PIPE module (continued)

Routine name Description

PACK_MESSAGE function Puts an item in the session’s local message
buffer.

PACK_MESSAGE_RAW procedure Puts an item of type RAW in the session's
local message buffer.

PURGE procedure Removes unreceived messages in the
specified pipe.

RECEIVE_MESSAGE function Gets a message from the specified pipe.

REMOVE_PIPE function Deletes an explicitly created pipe.

RESET_BUFFER procedure Resets the local message buffer.

SEND_MESSAGE procedure Sends a message on the specified pipe.

UNIQUE_SESSION_NAME function Returns a unique session name.

UNPACK_MESSAGE procedures Retrieves the next data item from a message
and assigns it to a variable.

Usage notes

Pipes are created either implicitly or explicitly during procedure calls. An implicit
pipe is created when a procedure call contains a reference to a pipe name that does
not exist. For example, if a pipe named "mailbox" is passed to the
SEND_MESSAGE procedure and that pipe does not already exist, a new pipe
named "mailbox" is created. An explicit pipe is created by calling the CREATE_PIPE
function and specifying the name of the pipe.

Pipes can be private or public. A private pipe can only be accessed by the user who
created the pipe. Even an administrator cannot access a private pipe that was
created by another user. A public pipe can be accessed by any user who has access
to the DBMS_PIPE module. To specify the access level for a pipe, use the
CREATE_PIPE function and specify a value for the private parameter: "false"
specifies that the pipe is public; "true" specifies that the pipe is private. If no value
is specified, the default is to create a private pipe. All implicit pipes are private.

To send a message through a pipe, call the PACK_MESSAGE function to put
individual data items (lines) in a local message buffer that is unique to the current
session. Then, call the SEND_MESSAGE procedure to send the message through
the pipe.

To receive a message, call the RECEIVE_MESSAGE function to get a message from
the specified pipe. The message is written to the receiving session’s local message
buffer. Then, call the UNPACK_MESSAGE procedure to retrieve the next data item
from the local message buffer and assign it to a specified program variable. If a
pipe contains multiple messages, the RECEIVE_MESSAGE function gets the
messages in FIFO (first-in-first-out) order.

Each session maintains separate message buffers for messages that are created by
the PACK_MESSAGE function and messages that are retrieved by the
RECEIVE_MESSAGE function. The separate message buffers allow you to build
and receive messages in the same session. However, when consecutive calls are
made to the RECEIVE_MESSAGE function, only the message from the last
RECEIVE_MESSAGE call is preserved in the local message buffer.

234 SQL Procedural Languages: Application Enablement and Support

Example

In connection 1, create a pipe that is named pipe1. Put a message in the session's
local message buffer, and send the message through pipe1.
BEGIN

DECLARE status INT;
SET status = DBMS_PIPE.CREATE_PIPE('pipe1');
SET status = DBMS_PIPE.PACK_MESSAGE('message1');
SET status = DBMS_PIPE.SEND_MESSAGE('pipe1');

END@

In connection 2, receive the message, unpack it, and display it to standard output.
SET SERVEROUTPUT ON@

BEGIN
DECLARE status INT;
DECLARE int1 INTEGER;
DECLARE date1 DATE;
DECLARE raw1 BLOB(100);
DECLARE varchar1 VARCHAR(100);
DECLARE itemType INTEGER;

SET status = DBMS_PIPE.RECEIVE_MESSAGE('pipe1');
IF(status = 0) THEN

SET itemType = DBMS_PIPE.NEXT_ITEM_TYPE();
CASE itemType

WHEN 6 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_INT(int1);
CALL DBMS_OUTPUT.PUT_LINE('int1: ' || int1);

WHEN 9 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_CHAR(varchar1);
CALL DBMS_OUTPUT.PUT_LINE('varchar1: ' || varchar1);

WHEN 12 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_DATE(date1);
CALL DBMS_OUTPUT.PUT_LINE('date1:' || date1);

WHEN 23 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_RAW(raw1);
CALL DBMS_OUTPUT.PUT_LINE('raw1: ' || VARCHAR(raw1));

ELSE
CALL DBMS_OUTPUT.PUT_LINE('Unexpected value');

END CASE;
END IF;
SET status = DBMS_PIPE.REMOVE_PIPE('pipe1');

END@

This example results in the following output:
varchar1: message1

CREATE_PIPE function - Create a pipe
The CREATE_PIPE function explicitly creates a public or private pipe with the
specified name.

For more information about explicit public and private pipes, see the topic about
the DBMS_PIPE module.

Syntax

�� DBMS_PIPE.CREATE_PIPE (pipename , ,)
maxpipesize private

��

Chapter 3. System-defined modules 235

Return value

This function returns the status code 0 if the pipe is created successfully.

Function parameters

pipename
An input argument of type VARCHAR(128) that specifies the name of the pipe.
For more information about pipes, see “DBMS_PIPE module” on page 233.

maxpipesize
An optional input argument of type INTEGER that specifies the maximum
capacity of the pipe in bytes. The default is 8192 bytes.

private
An optional input argument that specifies the access level of the pipe:

For non-partitioned database environments
A value of "0" or "FALSE" creates a public pipe.

A value of "1" or "TRUE creates a private pipe. This is the default.

In a partitioned database environment
A value of "0" creates a public pipe.

A value of "1" creates a private pipe. This is the default.

Authorization

EXECUTE privilege on the DBMS_PIPE module.

Example

Example 1: Create a private pipe that is named messages:
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_status INTEGER;
SET v_status = DBMS_PIPE.CREATE_PIPE('messages');
DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);

END@

CALL proc1@

This example results in the following output:
CREATE_PIPE status: 0

Example 2: Create a public pipe that is named mailbox:
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc2()
BEGIN

DECLARE v_status INTEGER;
SET v_status = DBMS_PIPE.CREATE_PIPE('mailbox',0);
DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);

END@

CALL proc2@

This example results in the following output:
CREATE_PIPE status: 0

236 SQL Procedural Languages: Application Enablement and Support

NEXT_ITEM_TYPE function - Return the data type code of the
next item

The NEXT_ITEM_TYPE function returns an integer code that identifies the data
type of the next data item in a received message.

The received message is stored in the session’s local message buffer. Use the
UNPACK_MESSAGE procedure to move each item off of the local message buffer,
and then use the NEXT_ITEM_TYPE function to return the data type code for the
next available item. A code of 0 is returned when there are no more items left in
the message.

Syntax

�� DBMS_PIPE.NEXT_ITEM_TYPE ��

Return value

This function returns one of the following codes that represents a data type.

Table 19. NEXT_ITEM_TYPE data type codes

Type code Data type

0 No more data items

6 INTEGER

9 VARCHAR

12 DATE

23 BLOB

Authorization

EXECUTE privilege on the DBMS_PIPE module.

Example

In proc1, pack and send a message. In proc2, receive the message and then unpack
it by using the NEXT_ITEM_TYPE function to determine its type.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE status INT;
SET status = DBMS_PIPE.CREATE_PIPE('pipe1');
SET status = DBMS_PIPE.PACK_MESSAGE('message1');
SET status = DBMS_PIPE.SEND_MESSAGE('pipe1');

END@

CREATE PROCEDURE proc2()
BEGIN

DECLARE status INT;
DECLARE num1 DECFLOAT;
DECLARE date1 DATE;
DECLARE raw1 BLOB(100);
DECLARE varchar1 VARCHAR(100);
DECLARE itemType INTEGER;

SET status = DBMS_PIPE.RECEIVE_MESSAGE('pipe1');

Chapter 3. System-defined modules 237

IF(status = 0) THEN
SET itemType = DBMS_PIPE.NEXT_ITEM_TYPE();
CASE itemType

WHEN 6 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_NUMBER(num1);
CALL DBMS_OUTPUT.PUT_LINE('num1: ' || num1);

WHEN 9 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_CHAR(varchar1);
CALL DBMS_OUTPUT.PUT_LINE('varchar1: ' || varchar1);

WHEN 12 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_DATE(date1);
CALL DBMS_OUTPUT.PUT_LINE('date1:' || date1);

WHEN 23 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_RAW(raw1);
CALL DBMS_OUTPUT.PUT_LINE('raw1: ' || VARCHAR(raw1));

ELSE
CALL DBMS_OUTPUT.PUT_LINE('Unexpected value');

END CASE;
END IF;
SET status = DBMS_PIPE.REMOVE_PIPE('pipe1');

END@

CALL proc1@

CALL proc2@

This example results in the following output:
varchar1: message1

PACK_MESSAGE function - Put a data item in the local
message buffer

The PACK_MESSAGE function puts a data item in the session's local message
buffer.

Syntax

�� DBMS_PIPE.PACK_MESSAGE (item) ��

Procedure parameters

item
An input argument of type VARCHAR(4096), DATE, or DECFLOAT that
contains an expression. The value returned by this expression is added to the
local message buffer of the session.

Tip: To put data items of type RAW in the local message buffer, use the
PACK_MESSAGE_RAW procedure.

Authorization

EXECUTE privilege on the DBMS_PIPE module.

Example

Use the PACK_MESSAGE function to put a message for Sujata in the local message
buffer, and then use the SEND_MESSAGE procedure to send the message on a
pipe.

238 SQL Procedural Languages: Application Enablement and Support

SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_status INTEGER;
DECLARE status INTEGER;
SET status = DBMS_PIPE.PACK_MESSAGE('Hi, Sujata');
SET status = DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 3:00, today?');
SET status = DBMS_PIPE.PACK_MESSAGE('If not, is tomorrow at 8:30 ok with you?');
SET v_status = DBMS_PIPE.SEND_MESSAGE('pipe');
CALL DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

END@

CALL proc1@

This example results in the following output:
SEND_MESSAGE status: 0

Usage notes

The PACK_MESSAGE function or PACK_MESSAGE_RAW procedure must be
called at least once before issuing a SEND_MESSAGE call.

PACK_MESSAGE_RAW procedure - Put a data item of type
RAW in the local message buffer

The PACK_MESSAGE_RAW procedure puts a data item of type RAW in the
session’s local message buffer.

Syntax

�� DBMS_PIPE.PACK_MESSAGE_RAW (item) ��

Procedure parameters

item
An input argument of type BLOB(4096) that specifies an expression. The value
returned by this expression is added to the session’s local message buffer.

Authorization

EXECUTE privilege on the DBMS_PIPE module.

Example

Use the PACK_MESSAGE_RAW procedure to put a data item of type RAW in the
local message buffer.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_raw BLOB(100);
DECLARE v_raw2 BLOB(100);
DECLARE v_status INTEGER;
SET v_raw = BLOB('21222324');
SET v_raw2 = BLOB('30000392');
CALL DBMS_PIPE.PACK_MESSAGE_RAW(v_raw);
CALL DBMS_PIPE.PACK_MESSAGE_RAW(v_raw2);
SET v_status = DBMS_PIPE.SEND_MESSAGE('datatypes');

Chapter 3. System-defined modules 239

CALL DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END@

CALL proc1@

This example results in the following output:
SEND_MESSAGE status: 0

Usage notes

The PACK_MESSAGE function or PACK_MESSAGE_RAW procedure must be
called at least once before issuing a SEND_MESSAGE call.

PURGE procedure - Remove unreceived messages from a
pipe

The PURGE procedure removes unreceived messages in the specified implicit pipe.

Tip: Use the REMOVE_PIPE function to delete an explicit pipe.

Syntax

�� DBMS_PIPE.PURGE (pipename) ��

Procedure parameters

pipename
An input argument of type VARCHAR(128) that specifies the name of the
implicit pipe.

Authorization

EXECUTE privilege on the DBMS_PIPE module.

Example

In proc1 send two messages on a pipe: Message #1 and Message #2. In proc2,
receive the first message, unpack it, and then purge the pipe. When proc3 runs, the
call to the RECEIVE_MESSAGE function times out and returns the status code 1
because no message is available.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_status INTEGER;
DECLARE status INTEGER;
SET status = DBMS_PIPE.PACK_MESSAGE('Message #1');
SET v_status = DBMS_PIPE.SEND_MESSAGE('pipe');
CALL DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
SET status = DBMS_PIPE.PACK_MESSAGE('Message #2');
SET v_status = DBMS_PIPE.SEND_MESSAGE('pipe');
CALL DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

END@

CREATE PROCEDURE proc2()
BEGIN

DECLARE v_item VARCHAR(80);
DECLARE v_status INTEGER;
SET v_status = DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);

240 SQL Procedural Languages: Application Enablement and Support

CALL DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
CALL DBMS_PIPE.UNPACK_MESSAGE_CHAR(v_item);
CALL DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
CALL DBMS_PIPE.PURGE('pipe');

END@

CREATE PROCEDURE proc3()
BEGIN

DECLARE v_item VARCHAR(80);
DECLARE v_status INTEGER;
SET v_status = DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
CALL DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);

END@

CALL proc1@

CALL proc2@

CALL proc3@

This example results in the following output.

From proc1:
SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

From proc2:
RECEIVE_MESSAGE status: 0
Item: Hi, Sujata

From proc3:
RECEIVE_MESSAGE status: 1

RECEIVE_MESSAGE function - Get a message from a
specified pipe

The RECEIVE_MESSAGE function gets a message from a specified pipe.

Syntax

�� DBMS_PIPE.RECEIVE_MESSAGE (pipename)
, timeout

��

Return value

The RECEIVE_MESSAGE function returns one of the following status codes of
type INTEGER.

Table 20. RECEIVE_MESSAGE status codes

Status code Description

0 Success

1 Time out

Function parameters

pipename
An input argument of type VARCHAR(128) that specifies the name of the pipe.

Chapter 3. System-defined modules 241

If the specified pipe does not exist, the pipe is created implicitly. For more
information about pipes, see “DBMS_PIPE module” on page 233.

timeout
An optional input argument of type INTEGER that specifies the wait time in
seconds. The default is 86400000 (1000 days).

Authorization

EXECUTE privilege on the DBMS_PIPE module.

Example

In proc1, send a message. In proc2, receive and unpack the message. Timeout if the
message is not received within 1 second.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE status INTEGER;
SET status = DBMS_PIPE.CREATE_PIPE('pipe1');
SET status = DBMS_PIPE.PACK_MESSAGE('message1');
SET status = DBMS_PIPE.SEND_MESSAGE('pipe1');

END@

CREATE PROCEDURE proc2()
BEGIN

DECLARE v_item VARCHAR(80);
DECLARE v_status INTEGER;
SET v_status = DBMS_PIPE.RECEIVE_MESSAGE('pipe1',1);
CALL DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
CALL DBMS_PIPE.UNPACK_MESSAGE(v_item);
CALL DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);

END@

CALL proc1@
CALL proc2@

This example results in the following output:
RECEIVE_MESSAGE status: 0
Item: message1

REMOVE_PIPE function - Delete a pipe
The REMOVE_PIPE function deletes an explicitly created pipe. Use this function to
delete any public or private pipe that was created by the CREATE_PIPE function.

Syntax

�� DBMS_PIPE.REMOVE_PIPE (pipename) ��

Return value

This function returns one of the following status codes of type INTEGER.

Table 21. REMOVE_PIPE status codes

Status code Description

0 Pipe successfully removed or does not exist

242 SQL Procedural Languages: Application Enablement and Support

Table 21. REMOVE_PIPE status codes (continued)

Status code Description

NULL An exception is thrown

Function parameters

pipename
An input argument of type VARCHAR(128) that specifies the name of the pipe.

Authorization

EXECUTE privilege on the DBMS_PIPE module.

Example

In proc1 send two messages on a pipe: Message #1 and Message #2. In proc2,
receive the first message, unpack it, and then delete the pipe. When proc3 runs, the
call to the RECEIVE_MESSAGE function times out and returns the status code 1
because the pipe no longer exists.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_status INTEGER;
DECLARE status INTEGER;
SET v_status = DBMS_PIPE.CREATE_PIPE('pipe1');
CALL DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status : ' || v_status);

SET status = DBMS_PIPE.PACK_MESSAGE('Message #1');
SET v_status = DBMS_PIPE.SEND_MESSAGE('pipe1');
CALL DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

SET status = DBMS_PIPE.PACK_MESSAGE('Message #2');
SET v_status = DBMS_PIPE.SEND_MESSAGE('pipe1');
CALL DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

END@

CREATE PROCEDURE proc2()
BEGIN

DECLARE v_item VARCHAR(80);
DECLARE v_status INTEGER;
DECLARE status INTEGER;
SET v_status = DBMS_PIPE.RECEIVE_MESSAGE('pipe1',1);
CALL DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
CALL DBMS_PIPE.UNPACK_MESSAGE(v_item);
CALL DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
SET status = DBMS_PIPE.REMOVE_PIPE('pipe1');

END@

CREATE PROCEDURE proc3()
BEGIN

DECLARE v_item VARCHAR(80);
DECLARE v_status INTEGER;
SET v_status = DBMS_PIPE.RECEIVE_MESSAGE('pipe1',1);
CALL DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);

END@

CALL proc1@

CALL proc2@

CALL proc3@

Chapter 3. System-defined modules 243

This example results in the following output.

From proc1:
CREATE_PIPE status : 0
SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

From proc2:
RECEIVE_MESSAGE status: 0
Item: Message #1

From proc3:
RECEIVE_MESSAGE status: 1

RESET_BUFFER procedure - Reset the local message buffer
The RESET_BUFFER procedure resets a pointer to the session's local message
buffer back to the beginning of the buffer. Resetting the buffer causes subsequent
PACK_MESSAGE calls to overwrite any data items that existed in the message
buffer prior to the RESET_BUFFER call.

Syntax

�� DBMS_PIPE.RESET_BUFFER ��

Authorization

EXECUTE privilege on the DBMS_PIPE module.

Example

In proc1, use the PACK_MESSAGE function to put a message for an employee
named Sujata in the local message buffer. Call the RESET_BUFFER procedure to
replace the message with a message for Bing, and then send the message on a
pipe. In proc2, receive and unpack the message for Bing.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN
DECLARE v_status INTEGER;
DECLARE status INTEGER;
SET status = DBMS_PIPE.PACK_MESSAGE('Hi, Sujata');
SET status = DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 3:00, today?');
SET status = DBMS_PIPE.PACK_MESSAGE('If not, is tomorrow at 8:30 ok with you?');
CALL DBMS_PIPE.RESET_BUFFER;
SET status = DBMS_PIPE.PACK_MESSAGE('Hi, Bing');
SET status = DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 9:30, tomorrow?');
SET v_status = DBMS_PIPE.SEND_MESSAGE('pipe');
CALL DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

END@

CREATE PROCEDURE proc2()
BEGIN
DECLARE v_item VARCHAR(80);
DECLARE v_status INTEGER;
SET v_status = DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
CALL DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
CALL DBMS_PIPE.UNPACK_MESSAGE_CHAR(v_item);
CALL DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
CALL DBMS_PIPE.UNPACK_MESSAGE(v_item);
CALL DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);

244 SQL Procedural Languages: Application Enablement and Support

END@

CALL proc1@

CALL proc2@

This example results in the following output:

From proc1:
SEND_MESSAGE status: 0

From proc2:
RECEIVE_MESSAGE status: 0
Item: Hi, Bing
Item: Can you attend a meeting at 9:30, tomorrow?

SEND_MESSAGE procedure - Send a message to a specified
pipe

The SEND_MESSAGE procedure sends a message from the session’s local message
buffer to a specified pipe.

Syntax

�� DBMS_PIPE.SEND_MESSAGE (pipename)
, timeout , maxpipesize

��

Return value

This procedure returns one of the following status codes of type INTEGER.

Table 22. SEND_MESSAGE status codes

Status code Description

0 Success

1 Time out

Procedure parameters

pipename
An input argument of type VARCHAR(128) that specifies the name of the pipe.
If the specified pipe does not exist, the pipe is created implicitly. For more
information about pipes, see “DBMS_PIPE module” on page 233.

timeout
An optional input argument of type INTEGER that specifies the wait time in
seconds. The default is 86400000 (1000 days).

maxpipesize
An optional input argument of type INTEGER that specifies the maximum
capacity of the pipe in bytes. The default is 8192 bytes.

Authorization

EXECUTE privilege on the DBMS_PIPE module.

Chapter 3. System-defined modules 245

Example

In proc1, send a message. In proc2, receive and unpack the message. Timeout if the
message is not received within 1 second.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE status INTEGER;
SET status = DBMS_PIPE.CREATE_PIPE('pipe1');
SET status = DBMS_PIPE.PACK_MESSAGE('message1');
SET status = DBMS_PIPE.SEND_MESSAGE('pipe1');

END@

CREATE PROCEDURE proc2()
BEGIN

DECLARE v_item VARCHAR(80);
DECLARE v_status INTEGER;
SET v_status = DBMS_PIPE.RECEIVE_MESSAGE('pipe1',1);
CALL DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
CALL DBMS_PIPE.UNPACK_MESSAGE(v_item);
CALL DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);

END@

CALL proc1@
CALL proc2@

This example results in the following output:
RECEIVE_MESSAGE status: 0
Item: message1

UNIQUE_SESSION_NAME function - Return a unique session
name

The UNIQUE_SESSION_NAME function returns a unique name for the current
session.

You can use this function to create a pipe that has the same name as the current
session. To create this pipe, pass the value returned by the
UNIQUE_SESSION_NAME function to the SEND_MESSAGE procedure as the
pipe name. An implicit pipe is created that has the same name as the current
session.

Syntax

�� DBMS_PIPE.UNIQUE_SESSION_NAME ��

Return value

This function returns a value of type VARCHAR(128) that represents the unique
name for the current session.

Authorization

EXECUTE privilege on the DBMS_PIPE module.

246 SQL Procedural Languages: Application Enablement and Support

Example

Create a pipe that has the same name as the current session.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE status INTEGER;
DECLARE v_session VARCHAR(30);
SET v_session = DBMS_PIPE.UNIQUE_SESSION_NAME;
SET status = DBMS_PIPE.PACK_MESSAGE('message1');
SET status = DBMS_PIPE.SEND_MESSAGE(v_session);
CALL DBMS_OUTPUT.PUT_LINE('Sent message on pipe ' || v_session);

END@

CALL proc1@

This example results in the following output:
Sent message on pipe *LOCAL.myschema.080522010048

UNPACK_MESSAGE procedures - Get a data item from the
local message buffer

The UNPACK_MESSAGE procedures retrieve the next data item from a message
and assign it to a variable.

Before calling one of the UNPACK_MESSAGE procedures, use the
RECEIVE_MESSAGE procedure to place the message in the local message buffer.

Syntax

�� DBMS_PIPE.UNPACK_MESSAGE_NUMBER (item) ��

�� DBMS_PIPE.UNPACK_MESSAGE_CHAR (item) ��

�� DBMS_PIPE.UNPACK_MESSAGE_DATE (item) ��

�� DBMS_PIPE.UNPACK_MESSAGE_RAW (item) ��

Procedure parameters

item
An output argument of one of the following types that specifies a variable to
receive data items from the local message buffer.

Routine Data type

UNPACK_MESSAGE_NUMBER DECFLOAT

UNPACK_MESSAGE_CHAR VARCHAR(4096)

UNPACK_MESSAGE_DATE DATE

UNPACK_MESSAGE_RAW BLOB(4096)

Chapter 3. System-defined modules 247

Authorization

EXECUTE privilege on the DBMS_PIPE module.

Example

In proc1, pack and send a message. In proc2, receive the message, unpack it using
the appropriate procedure based on the item's type, and display the message to
standard output.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE status INT;
SET status = DBMS_PIPE.CREATE_PIPE('pipe1');
SET status = DBMS_PIPE.PACK_MESSAGE('message1');
SET status = DBMS_PIPE.SEND_MESSAGE('pipe1');

END@

CREATE PROCEDURE proc2()
BEGIN

DECLARE status INT;
DECLARE num1 DECFLOAT;
DECLARE date1 DATE;
DECLARE raw1 BLOB(100);
DECLARE varchar1 VARCHAR(100);
DECLARE itemType INTEGER;

SET status = DBMS_PIPE.RECEIVE_MESSAGE('pipe1');
IF(status = 0) THEN

SET itemType = DBMS_PIPE.NEXT_ITEM_TYPE();
CASE itemType

WHEN 6 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_NUMBER(num1);
CALL DBMS_OUTPUT.PUT_LINE('num1: ' || num1);

WHEN 9 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_CHAR(varchar1);
CALL DBMS_OUTPUT.PUT_LINE('varchar1: ' || varchar1);

WHEN 12 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_DATE(date1);
CALL DBMS_OUTPUT.PUT_LINE('date1:' || date1);

WHEN 23 THEN
CALL DBMS_PIPE.UNPACK_MESSAGE_RAW(raw1);
CALL DBMS_OUTPUT.PUT_LINE('raw1: ' || VARCHAR(raw1));

ELSE
CALL DBMS_OUTPUT.PUT_LINE('Unexpected value');

END CASE;
END IF;
SET status = DBMS_PIPE.REMOVE_PIPE('pipe1');

END@

CALL proc1@

CALL proc2@

This example results in the following output:
varchar1: message1

248 SQL Procedural Languages: Application Enablement and Support

DBMS_SQL module
The DBMS_SQL module provides a set of procedures for executing dynamic SQL,
and therefore supports various data manipulation language (DML) or data
definition language (DDL) statement.

The schema for this module is SYSIBMADM.

The DBMS_SQL module includes the following system-defined routines.

Table 23. System-defined routines available in the DBMS_SQL module

Procedure name Description

BIND_VARIABLE_BLOB procedure Provides the input BLOB value for the IN or
INOUT parameter; and defines the data type
of the output value to be BLOB for the
INOUT or OUT parameter.

BIND_VARIABLE_CHAR procedure Provides the input CHAR value for the IN
or INOUT parameter; and defines the data
type of the output value to be CHAR for the
INOUT or OUT parameter.

BIND_VARIABLE_CLOB procedure Provides the input CLOB value for the IN or
INOUT parameter; and defines the data type
of the output value to be CLOB for the
INOUT or OUT parameter.

BIND_VARIABLE_DATE procedure Provides the input DATE value for the IN or
INOUT parameter; and defines the data type
of the output value to be DATE for the
INOUT or OUT parameter.

BIND_VARIABLE_DOUBLE procedure Provides the input DOUBLE value for the
IN or INOUT parameter; and defines the
data type of the output value to be DOUBLE
for the INOUT or OUT parameter.

BIND_VARIABLE_INT procedure Provides the input INTEGER value for the
IN or INOUT parameter; and defines the
data type of the output value to be
INTEGER for the INOUT or OUT parameter.

BIND_VARIABLE_NUMBER procedure Provides the input DECFLOAT value for the
IN or INOUT parameter; and defines the
data type of the output value to be
DECFLOAT for the INOUT or OUT
parameter.

BIND_VARIABLE_RAW procedure Provides the input BLOB(32767) value for
the IN or INOUT parameter; and defines the
data type of the output value to be
BLOB(32767) for the INOUT or OUT
parameter.

BIND_VARIABLE_TIMESTAMP procedure Provides the input TIMESTAMP value for
the IN or INOUT parameter; and defines the
data type of the output value to be
TIMESTAMP for the INOUT or OUT
parameter.

Chapter 3. System-defined modules 249

Table 23. System-defined routines available in the DBMS_SQL module (continued)

Procedure name Description

BIND_VARIABLE_VARCHAR procedure Provides the input VARCHAR value for the
IN or INOUT parameter; and defines the
data type of the output value to be
VARCHAR for the INOUT or OUT
parameter.

CLOSE_CURSOR procedure Closes a cursor.

COLUMN_VALUE_BLOB procedure Retrieves the value of column of type BLOB.

COLUMN_VALUE_CHAR procedure Retrieves the value of column of type
CHAR.

COLUMN_VALUE_CLOB procedure Retrieves the value of column of type CLOB.

COLUMN_VALUE_DATE procedure Retrieves the value of column of type DATE.

COLUMN_VALUE_DOUBLE procedure Retrieves the value of column of type
DOUBLE.

COLUMN_VALUE_INT procedure Retrieves the value of column of type
INTEGER.

COLUMN_VALUE_LONG procedure Retrieves the value of column of type
CLOB(32767).

COLUMN_VALUE_NUMBER procedure Retrieves the value of column of type
DECFLOAT.

COLUMN_VALUE_RAW procedure Retrieves the value of column of type
BLOB(32767).

COLUMN_VALUE_TIMESTAMP procedure Retrieves the value of column of type
TIMESTAMP

COLUMN_VALUE_VARCHAR procedure Retrieves the value of column of type
VARCHAR.

DEFINE_COLUMN_BLOB procedure Defines the data type of the column to be
BLOB.

DEFINE_COLUMN_CHAR procedure Defines the data type of the column to be
CHAR.

DEFINE_COLUMN_CLOB procedure Defines the data type of the column to be
CLOB.

DEFINE_COLUMN_DATE procedure Defines the data type of the column to be
DATE.

DEFINE_COLUMN_DOUBLE procedure Defines the data type of the column to be
DOUBLE.

DEFINE_COLUMN_INT procedure Defines the data type of the column to be
INTEGER.

DEFINE_COLUMN_LONG procedure Defines the data type of the column to be
CLOB(32767).

DEFINE_COLUMN_NUMBER procedure Defines the data type of the column to be
DECFLOAT.

DEFINE_COLUMN_RAW procedure Defines the data type of the column to be
BLOB(32767).

DEFINE_COLUMN_TIMESTAMP procedure Defines the data type of the column to be
TIMESTAMP.

DEFINE_COLUMN_VARCHAR procedure Defines the data type of the column to be
VARCHAR.

250 SQL Procedural Languages: Application Enablement and Support

Table 23. System-defined routines available in the DBMS_SQL module (continued)

Procedure name Description

DESCRIBE_COLUMNS procedure Return a description of the columns
retrieved by a cursor.

DESCRIBE_COLUMNS2 procedure Identical to DESCRIBE_COLUMNS, but
allows for column names greater than 32
characters.

EXECUTE procedure Executes a cursor.

EXECUTE_AND_FETCH procedure Executes a cursor and fetch one row.

FETCH_ROWS procedure Fetches rows from a cursor.

IS_OPEN procedure Checks if a cursor is open.

LAST_ROW_COUNT procedure Returns the total number of rows fetched.

OPEN_CURSOR procedure Opens a cursor.

PARSE procedure Parses a DDL statement.

VARIABLE_VALUE_BLOB procedure Retrieves the value of INOUT or OUT
parameters as BLOB.

VARIABLE_VALUE_CHAR procedure Retrieves the value of INOUT or OUT
parameters as CHAR.

VARIABLE_VALUE_CLOB procedure Retrieves the value of INOUT or OUT
parameters as CLOB.

VARIABLE_VALUE_DATE procedure Retrieves the value of INOUT or OUT
parameters as DATE.

VARIABLE_VALUE_DOUBLE procedure Retrieves the value of INOUT or OUT
parameters as DOUBLE.

VARIABLE_VALUE_INT procedure Retrieves the value of INOUT or OUT
parameters as INTEGER.

VARIABLE_VALUE_NUMBER procedure Retrieves the value of INOUT or OUT
parameters as DECFLOAT.

VARIABLE_VALUE_RAW procedure Retrieves the value of INOUT or OUT
parameters as BLOB(32767).

VARIABLE_VALUE_TIMESTAMP procedure Retrieves the value of INOUT or OUT
parameters as TIMESTAMP.

VARIABLE_VALUE_VARCHAR procedure Retrieves the value of INOUT or OUT
parameters as VARCHAR.

The following table lists the system-defined types and constants available in the
DBMS_SQL module.

Table 24. DBMS_SQL system-defined types and constants

Name Type or constant Description

DESC_REC Type A record of column
information.

DESC_REC2 Type A record of column
information.

DESC_TAB Type An array of records of type
DESC_REC.

DESC_TAB2 Type An array of records of type
DESC_REC2.

Chapter 3. System-defined modules 251

Table 24. DBMS_SQL system-defined types and constants (continued)

Name Type or constant Description

NATIVE Constant The only value supported for
language_flag parameter of
the PARSE procedure.

Usage notes

The routines in the DBMS_SQL module are useful when you want to construct and
run dynamic SQL statements. For example, you might want execute DDL or DML
statements such as "ALTER TABLE" or "DROP TABLE", construct and execute SQL
statements on the fly, or call a function which uses dynamic SQL from within a
SQL statement.

BIND_VARIABLE_BLOB procedure - Bind a BLOB value to a
variable

The BIND_VARIABLE_BLOB procedure provides the capability to associate a
BLOB value with an IN, INOUT, or OUT argument in an SQL command.

Syntax

�� BIND_VARIABLE_BLOB (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID for the SQL
command with bind variables.

name
An input argument of type VARCHAR(128) that specifies the name of the bind
variable in the SQL command.

value
An input argument of type BLOB(2G) that specifies the value to be assigned.

Authorization

EXECUTE privilege on the DBMS_SQL module.

BIND_VARIABLE_CHAR procedure - Bind a CHAR value to a
variable

The BIND_VARIABLE_CHAR procedure provides the capability to associate a
CHAR value with an IN, INOUT, or OUT argument in an SQL command.

Syntax

�� BIND_VARIABLE_CHAR (c , name , value
, out_value_size

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID for the SQL
command with bind variables.

252 SQL Procedural Languages: Application Enablement and Support

name
An input argument of type VARCHAR(128) that specifies the name of the bind
variable in the SQL command.

value
An input argument of type CHAR(254) that specifies the value to be assigned.

out_value_size
An optional input argument of type INTEGER that specifies the length limit
for the IN or INOUT argument, and the maximum length of the output value
for the INOUT or OUT argument. If it is not specified, the length of value is
assumed.

Authorization

EXECUTE privilege on the DBMS_SQL module.

BIND_VARIABLE_CLOB procedure - Bind a CLOB value to a
variable

The BIND_VARIABLE_CLOB procedure provides the capability to associate a
CLOB value with an IN, INOUT, or OUT argument in an SQL command.

Syntax

�� BIND_VARIABLE_CLOB (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID for the SQL
command with bind variables.

name
An input argument of type VARCHAR(128) that specifies the name of the bind
variable in the SQL command.

value
An input argument of type CLOB(2G) that specifies the value to be assigned.

Authorization

EXECUTE privilege on the DBMS_SQL module.

BIND_VARIABLE_DATE procedure - Bind a DATE value to a
variable

The BIND_VARIABLE_DATE procedure provides the capability to associate a
DATE value with an IN, INOUT, or OUT argument in an SQL command.

Syntax

�� BIND_VARIABLE_DATE (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID for the SQL
command with bind variables.

Chapter 3. System-defined modules 253

name
An input argument of type VARCHAR(128) that specifies the name of the bind
variable in the SQL command.

value
An input argument of type DATE that specifies the value to be assigned.

Authorization

EXECUTE privilege on the DBMS_SQL module.

BIND_VARIABLE_DOUBLE procedure - Bind a DOUBLE value
to a variable

The BIND_VARIABLE_DOUBLE procedure provides the capability to associate a
DOUBLE value with an IN, INOUT, or OUT argument in an SQL command.

Syntax

�� BIND_VARIABLE_DOUBLE (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID for the SQL
command with bind variables.

name
An input argument of type VARCHAR(128) that specifies the name of the bind
variable in the SQL command.

value
An input argument of type DOUBLE that specifies the value to be assigned.

Authorization

EXECUTE privilege on the DBMS_SQL module.

BIND_VARIABLE_INT procedure - Bind an INTEGER value to a
variable

The BIND_VARIABLE_INT procedure provides the capability to associate an
INTEGER value with an IN or INOUT bind variable in an SQL command.

Syntax

�� BIND_VARIABLE_INT (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID for the SQL
command with bind variables.

name
An input argument of type VARCHAR(128) that specifies the name of the bind
variable in the SQL command.

value
An input argument of type INTEGER that specifies the value to be assigned.

254 SQL Procedural Languages: Application Enablement and Support

Authorization

EXECUTE privilege on the DBMS_SQL module.

BIND_VARIABLE_NUMBER procedure - Bind a NUMBER value
to a variable

The BIND_VARIABLE_NUMBER procedure provides the capability to associate a
NUMBER value with an IN, INOUT, or OUT argument in an SQL command.

Syntax

�� BIND_VARIABLE_NUMBER (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID for the SQL
command with bind variables.

name
An input argument of type VARCHAR(128) that specifies the name of the bind
variable in the SQL command.

value
An input argument of type DECFLOAT that specifies the value to be assigned.

Authorization

EXECUTE privilege on the DBMS_SQL module.

BIND_VARIABLE_RAW procedure - Bind a RAW value to a
variable

The BIND_VARIABLE_RAW procedure provides the capability to associate a RAW
value with an IN, INOUT, or OUT argument in an SQL command.

Syntax

�� BIND_VARIABLE_RAW (c , name , value
, out_value_size

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID for the SQL
command with bind variables.

name
An input argument of type VARCHAR(128) that specifies the name of the bind
variable in the SQL command.

value
An input argument of type BLOB(32767) that specifies the value to be
assigned.

out_value_size
An optional input argument of type INTEGER that specifies the length limit

Chapter 3. System-defined modules 255

for the IN or INOUT argument, and the maximum length of the output value
for the INOUT or OUT argument. If it is not specified, the length of value is
assumed.

Authorization

EXECUTE privilege on the DBMS_SQL module.

BIND_VARIABLE_TIMESTAMP procedure - Bind a TIMESTAMP
value to a variable

The BIND_VARIABLE_TIMESTAMP procedure provides the capability to associate
a TIMESTAMP value with an IN, INOUT, or OUT argument in an SQL command.

Syntax

�� BIND_VARIABLE_TIMESTAMP (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID for the SQL
command with bind variables.

name
An input argument of type VARCHAR(128) that specifies the name of the bind
variable in the SQL command.

value
An input argument of type TIMESTAMP that specifies the value to be
assigned.

Authorization

EXECUTE privilege on the DBMS_SQL module.

BIND_VARIABLE_VARCHAR procedure - Bind a VARCHAR
value to a variable

The BIND_VARIABLE_VARCHAR procedure provides the capability to associate a
VARCHAR value with an IN, INOUT, or OUT argument in an SQL command.

Syntax

�� BIND_VARIABLE_VARCHAR (c , name , value
, out_value_size

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID for the SQL
command with bind variables.

name
An input argument of type VARCHAR(128) that specifies the name of the bind
variable in the SQL command.

256 SQL Procedural Languages: Application Enablement and Support

value
An input argument of type VARCHAR(32672) that specifies the value to be
assigned.

out_value_size
An input argument of type INTEGER that specifies the length limit for the IN
or INOUT argument, and the maximum length of the output value for the
INOUT or OUT argument. If it is not specified, the length of value is assumed.

Authorization

EXECUTE privilege on the DBMS_SQL module.

CLOSE_CURSOR procedure - Close a cursor
The CLOSE_CURSOR procedure closes an open cursor. The resources allocated to
the cursor are released and it cannot no longer be used.

Syntax

�� CLOSE_CURSOR (c) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
to be closed.

Authorization

EXECUTE privilege on the DBMS_SQL module.

Examples

Example 1: This example illustrates closing a previously opened cursor.
DECLARE

curid INTEGER;
BEGIN

curid := DBMS_SQL.OPEN_CURSOR;
.
.
.

DBMS_SQL.CLOSE_CURSOR(curid);
END;

COLUMN_VALUE_BLOB procedure - Return a BLOB column
value into a variable

The COLUMN_VALUE_BLOB procedure defines a variable that will receive a
BLOB value from a cursor.

Syntax

�� COLUMN_VALUE_BLOB (c , position , value ��

Chapter 3. System-defined modules 257

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

value
An output argument of type BLOB(2G) that specifies the variable receiving the
data returned by the cursor in a prior fetch call.

Authorization

EXECUTE privilege on the DBMS_SQL module.

COLUMN_VALUE_CHAR procedure - Return a CHAR column
value into a variable

The COLUMN_VALUE_CHAR procedure defines a variable to receive a CHAR
value from a cursor.

Syntax

�� COLUMN_VALUE_CHAR (c , position , value �

�
, column_error

, actual_length

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

value
An output argument of type CHAR that specifies the variable receiving the
data returned by the cursor in a prior fetch call.

column_error
An optional output argument of type INTEGER that returns the SQLCODE, if
any, associated with the column.

actual_length
An optional output argument of type INTEGER that returns the actual length
of the data, prior to any truncation.

Authorization

EXECUTE privilege on the DBMS_SQL module.

258 SQL Procedural Languages: Application Enablement and Support

COLUMN_VALUE_CLOB procedure - Return a CLOB column
value into a variable

The COLUMN_VALUE_CLOB procedure defines a variable that will receive a
CLOB value from a cursor.

Syntax

�� COLUMN_VALUE_CLOB (c , position , value ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

value
An output argument of type CLOB(2G) that specifies the variable receiving the
data returned by the cursor in a prior fetch call.

Authorization

EXECUTE privilege on the DBMS_SQL module.

COLUMN_VALUE_DATE procedure - Return a DATE column
value into a variable

The COLUMN_VALUE_DATE procedure defines a variable that will receive a
DATE value from a cursor.

Syntax

�� COLUMN_VALUE_DATE (c , position , value �

�
, column_error

, actual_length

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

value
An output argument of type DATE that specifies the variable receiving the
data returned by the cursor in a prior fetch call.

column_error
An output argument of type INTEGER that returns the SQLCODE, if any,
associated with the column.

Chapter 3. System-defined modules 259

actual_length
An output argument of type INTEGER that returns the actual length of the
data, prior to any truncation.

Authorization

EXECUTE privilege on the DBMS_SQL module.

COLUMN_VALUE_DOUBLE procedure - Return a DOUBLE
column value into a variable

The COLUMN_VALUE_DOUBLE procedure defines a variable that will receive a
DOUBLE value from a cursor.

Syntax

�� COLUMN_VALUE_DOUBLE (c , position , value �

�
, column_error

, actual_length

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

value
An output argument of type DOUBLE that specifies the variable receiving the
data returned by the cursor in a prior fetch call.

column_error
An output argument of type INTEGER that returns the SQLCODE, if any,
associated with the column.

actual_length
An output argument of type INTEGER that returns the actual length of the
data, prior to any truncation.

Authorization

EXECUTE privilege on the DBMS_SQL module.

COLUMN_VALUE_INT procedure - Return an INTEGER column
value into a variable

The COLUMN_VALUE_INT procedure defines a variable that will receive a
INTEGER value from a cursor.

Syntax

�� COLUMN_VALUE_INT (c , position , value �

260 SQL Procedural Languages: Application Enablement and Support

�
, column_error

, actual_length

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

value
An output argument of type INTEGER that specifies the variable receiving the
data returned by the cursor in a prior fetch call.

column_error
An output argument of type INTEGER that returns the SQLCODE, if any,
associated with the column.

actual_length
An output argument of type INTEGER that returns the actual length of the
data, prior to any truncation.

Authorization

EXECUTE privilege on the DBMS_SQL module.

COLUMN_VALUE_LONG procedure - Return a LONG column
value into a variable

The COLUMN_VALUE_LONG procedure defines a variable that will receive a
portion of a LONG value from a cursor.

Syntax

�� COLUMN_VALUE_LONG (c , position , length , �

� offset , value , value_length) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

length
An input argument of type INTEGER that specifies the desired number of
bytes of the LONG data to retrieve beginning at offset.

offset
An input argument of type INTEGER that specifies the position within the
LONG value to start data retrieval.

Chapter 3. System-defined modules 261

value
An output argument of type CLOB(32760) that specifies the variable receiving
the data returned by the cursor in a prior fetch call.

value_length
An output argument of type INTEGER that returns the actual length of the
data returned.

Authorization

EXECUTE privilege on the DBMS_SQL module.

COLUMN_VALUE_NUMBER procedure - Return a DECFLOAT
column value into a variable

The COLUMN_VALUE_NUMBER procedure defines a variable that will receive a
DECFLOAT value from a cursor.

Syntax

�� COLUMN_VALUE_NUMBER (c , position , value �

�
, column_error

, actual_length

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

value
An output argument of type DECFLOAT that specifies the variable receiving
the data returned by the cursor in a prior fetch call.

column_error
An optional output argument of type INTEGER that returns the SQLCODE, if
any, associated with the column.

actual_length
An optional output argument of type INTEGER that returns the actual length
of the data, prior to any truncation.

Authorization

EXECUTE privilege on the DBMS_SQL module.

COLUMN_VALUE_RAW procedure - Return a RAW column
value into a variable

The COLUMN_VALUE_RAW procedure defines a variable that will receive a RAW
value from a cursor.

262 SQL Procedural Languages: Application Enablement and Support

Syntax

�� COLUMN_VALUE_RAW (c , position , value �

�
, column_error

, actual_length

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

value
An output argument of type BLOB(32767) that specifies the variable receiving
the data returned by the cursor in a prior fetch call.

column_error
An optional output argument of type INTEGER that returns the SQLCODE, if
any, associated with the column.

actual_length
An optional output argument of type INTEGER that returns the actual length
of the data, prior to any truncation.

Authorization

EXECUTE privilege on the DBMS_SQL module.

COLUMN_VALUE_TIMESTAMP procedure - Return a
TIMESTAMP column value into a variable

The COLUMN_VALUE_TIMESTAMP procedure defines a variable that will receive
a TIMESTAMP value from a cursor.

Syntax

�� COLUMN_VALUE_TIMESTAMP (c , position , value �

�
, column_error

, actual_length

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

value
An output argument of type TIMESTAMP that specifies the variable receiving
the data returned by the cursor in a prior fetch call.

Chapter 3. System-defined modules 263

column_error
An output argument of type INTEGER that returns the SQLCODE, if any,
associated with the column.

actual_length
An output argument of type INTEGER that returns the actual length of the
data, prior to any truncation.

Authorization

EXECUTE privilege on the DBMS_SQL module.

COLUMN_VALUE_VARCHAR procedure - Return a VARCHAR
column value into a variable

The COLUMN_VALUE_VARCHAR procedure defines a variable that will receive a
VARCHAR value from a cursor.

Syntax

�� COLUMN_VALUE_VARCHAR (c , position , value �

�
, column_error

, actual_length

) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
that is returning data to the variable being defined.

position
An input argument of type INTEGER that specifies the position of the returned
data within the cursor. The first value in the cursor is position 1.

value
An output argument of type VARCHAR(32672) that specifies the variable
receiving the data returned by the cursor in a prior fetch call.

column_error
An output argument of type INTEGER that returns the SQLCODE, if any,
associated with the column.

actual_length
An output argument of type INTEGER that returns the actual length of the
data, prior to any truncation.

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_BLOB- Define a BLOB column in the
SELECT list

The DEFINE_COLUMN_BLOB procedure defines a BLOB column or expression in
the SELECT list that is to be returned and retrieved in a cursor.

264 SQL Procedural Languages: Application Enablement and Support

Syntax

�� DEFINE_COLUMN_BLOB (c , position , column) ��

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

column
An input argument of type BLOB(2G).

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_CHAR procedure - Define a CHAR column
in the SELECT list

The DEFINE_COLUMN_CHAR procedure defines a CHAR column or expression
in the SELECT list that is to be returned and retrieved in a cursor.

Syntax

�� DEFINE_COLUMN_CHAR (c , position , column , column_size) ��

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

column
An input argument of type CHAR(254).

column_size
An input argument of type INTEGER that specifies the maximum length of the
returned data. Returned data exceeding column_size is truncated to column_size
characters.

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_CLOB - Define a CLOB column in the
SELECT list

The DEFINE_COLUMN_CLOB procedure defines a CLOB column or expression in
the SELECT list that is to be returned and retrieved in a cursor.

Chapter 3. System-defined modules 265

Syntax

�� DEFINE_COLUMN_CLOB (c , position , column) ��

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

column
An input argument of type CLOB(2G).

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_DATE - Define a DATE column in the
SELECT list

The DEFINE_COLUMN_DATE procedure defines a DATE column or expression in
the SELECT list that is to be returned and retrieved in a cursor.

Syntax

�� DEFINE_COLUMN_DATE (c , position , column) ��

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

column
An input argument of type DATE.

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_DOUBLE - Define a DOUBLE column in the
SELECT list

The DEFINE_COLUMN_DOUBLE procedure defines a DOUBLE column or
expression in the SELECT list that is to be returned and retrieved in a cursor.

Syntax

�� DEFINE_COLUMN_DOUBLE (c , position , column) ��

266 SQL Procedural Languages: Application Enablement and Support

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

column
An input argument of type DOUBLE.

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_INT- Define an INTEGER column in the
SELECT list

The DEFINE_COLUMN_INT procedure defines an INTEGER column or expression
in the SELECT list that is to be returned and retrieved in a cursor.

Syntax

�� DEFINE_COLUMN_INT (c , position , column) ��

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

column
An input argument of type INTEGER.

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_LONG procedure - Define a LONG column
in the SELECT list

The DEFINE_COLUMN_LONG procedure defines a LONG column or expression
in the SELECT list that is to be returned and retrieved in a cursor.

Syntax

�� DEFINE_COLUMN_LONG (c , position ��

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

Chapter 3. System-defined modules 267

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_NUMBER procedure - Define a DECFLOAT
column in the SELECT list

The DEFINE_COLUMN_NUMBER procedure defines a DECFLOAT column or
expression in the SELECT list that is to be returned and retrieved in a cursor.

Syntax

�� DEFINE_COLUMN_NUMBER (c , position , column) ��

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

column
An input argument of type DECFLOAT.

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_RAW procedure - Define a RAW column or
expression in the SELECT list

The DEFINE_COLUMN_RAW procedure defines a RAW column or expression in
the SELECT list that is to be returned and retrieved in a cursor.

Syntax

�� DEFINE_COLUMN_RAW (c , position , column , column_size) ��

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

column
An input argument of type BLOB(32767).

268 SQL Procedural Languages: Application Enablement and Support

column_size
An input argument of type INTEGER that specifies the maximum length of the
returned data. Returned data exceeding column_size is truncated to column_size
characters.

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_TIMESTAMP - Define a TIMESTAMP column
in the SELECT list

The DEFINE_COLUMN_TIMESTAMP procedure defines a TIMESTAMP column or
expression in the SELECT list that is to be returned and retrieved in a cursor.

Syntax

�� DEFINE_COLUMN_TIMESTAMP (c , position , column) ��

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

column
An input argument of type TIMESTAMP.

Authorization

EXECUTE privilege on the DBMS_SQL module.

DEFINE_COLUMN_VARCHAR procedure - Define a VARCHAR
column in the SELECT list

The DEFINE_COLUMN_VARCHAR procedure defines a VARCHAR column or
expression in the SELECT list that is to be returned and retrieved in a cursor.

Syntax

�� DEFINE_COLUMN_VARCHAR (c , position , column , column_size) ��

Parameters

c An input argument of type INTEGER that specifies the cursor handle
associated with the SELECT command.

position
An input argument of type INTEGER that specifies the position of the column
or expression in the SELECT list that is being defined.

column
An input argument of type VARCHAR(32672).

Chapter 3. System-defined modules 269

column_size
An input argument of type INTEGER that specifies the maximum length of the
returned data. Returned data exceeding column_size is truncated to column_size
characters.

Authorization

EXECUTE privilege on the DBMS_SQL module.

DESCRIBE_COLUMNS procedure - Retrieve a description of
the columns in a SELECT list

The DESCRIBE_COLUMNS procedure provides the capability to retrieve a
description of the columns in a SELECT list from a cursor.

Syntax

�� DESCRIBE_COLUMNS (c , col_cnt , desc_tab) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
whose columns are to be described.

col_cnt
An output argument of type INTEGER that returns the number of columns in
the SELECT list of the cursor.

desc_tab
An output argument of type DESC_TAB that describes the column metadata.
The DESC_TAB array provides information on each column in the specified
cursor.

Authorization

EXECUTE privilege on the DBMS_SQL module.

Usage notes

This procedure requires a user temporary table space with a page size of 4K;
otherwise it returns an SQL0286N error. You can create the user temporary table
space with this command:
CREATE USER TEMPORARY TABLESPACE DBMS_SQL_TEMP_TBS

DESC_TAB is an array of DESC_REC records of column information:

Table 25. DESC_TAB definition through DESC_REC records

Record name Description

col_type SQL data type as defined in Supported SQL
data types in C and C++ embedded SQL
applications.

col_max_len Maximum length of the column.

col_name Column name.

col_name_len Length of the column name.

col_schema Always NULL.

270 SQL Procedural Languages: Application Enablement and Support

Table 25. DESC_TAB definition through DESC_REC records (continued)

Record name Description

col_schema_name_len Always NULL.

col_precision Precision of the column as defined in the
database. If col_type denotes a graphic or
DBCLOB SQL data type, then this variable
indicates the maximum number of
double-byte characters the column can hold.

col_scale Scale of the column as defined in the
database (only applies to DECIMAL,
NUMERIC, TIMESTAMP).

col_charsetid Always NULL.

col_charsetform Always NULL.

col_null_ok Nullable indicator. This has a value of 1 if
the column is nullable, otherwise, 0.

ALTER MODULE SYSIBMADM.DBMS_SQL PUBLISH TYPE DESC_REC AS ROW
(

col_type INTEGER,
col_max_len INTEGER,
col_name VARCHAR(128),
col_name_len INTEGER,
col_schema_name VARCHAR(128),
col_schema_name_len INTEGER,
col_precision INTEGER,
col_scale INTEGER,
col_charsetid INTEGER,
col_charsetform INTEGER,
col_null_ok INTEGER

);

ALTER MODULE SYSIBMADM.DBMS_SQL PUBLISH TYPE DESC_TAB AS DESC_REC ARRAY[INTEGER];

Examples

Example 1: The following example describes the empno, ename, hiredate, and sal
columns from the "EMP" table.

SET SERVEROUTPUT ON@

BEGIN
DECLARE handle INTEGER;
DECLARE col_cnt INTEGER;
DECLARE col DBMS_SQL.DESC_TAB;
DECLARE i INTEGER DEFAULT 1;
DECLARE CUR1 CURSOR FOR S1;

CALL DBMS_SQL.OPEN_CURSOR(handle);
CALL DBMS_SQL.PARSE(handle,

'SELECT empno, firstnme, lastname, salary
FROM employee', DBMS_SQL.NATIVE);

CALL DBMS_SQL.DESCRIBE_COLUMNS(handle, col_cnt, col);

IF col_cnt > 0 THEN
CALL DBMS_OUTPUT.PUT_LINE('col_cnt = ' || col_cnt);
CALL DBMS_OUTPUT.NEW_LINE();
fetchLoop: LOOP

IF i > col_cnt THEN
LEAVE fetchLoop;

END IF;

Chapter 3. System-defined modules 271

CALL DBMS_OUTPUT.PUT_LINE('i = ' || i);
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_name = ' || col[i].col_name);
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_name_len = ' ||

NVL(col[i].col_name_len, 'NULL'));
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_schema_name = ' ||

NVL(col[i].col_schema_name, 'NULL'));

IF col[i].col_schema_name_len IS NULL THEN
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_schema_name_len = NULL');

ELSE
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_schema_name_len = ' ||

col[i].col_schema_name_len);
END IF;

CALL DBMS_OUTPUT.PUT_LINE('col[i].col_type = ' || col[i].col_type);
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_max_len = ' || col[i].col_max_len);
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_precision = ' || col[i].col_precision);
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_scale = ' || col[i].col_scale);

IF col[i].col_charsetid IS NULL THEN
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_charsetid = NULL');

ELSE
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_charsetid = ' || col[i].col_charsetid);

END IF;

IF col[i].col_charsetform IS NULL THEN
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_charsetform = NULL');

ELSE
CALL DBMS_OUTPUT.PUT_LINE('col[i].col_charsetform = ' || col[i].col_charsetform);

END IF;

CALL DBMS_OUTPUT.PUT_LINE('col[i].col_null_ok = ' || col[i].col_null_ok);
CALL DBMS_OUTPUT.NEW_LINE();
SET i = i + 1;

END LOOP;
END IF;

END@

Output:
col_cnt = 4

i = 1
col[i].col_name = EMPNO
col[i].col_name_len = 5
col[i].col_schema_name = NULL
col[i].col_schema_name_len = NULL
col[i].col_type = 452
col[i].col_max_len = 6
col[i].col_precision = 6
col[i].col_scale = 0
col[i].col_charsetid = NULL
col[i].col_charsetform = NULL
col[i].col_null_ok = 0

i = 2
col[i].col_name = FIRSTNME
col[i].col_name_len = 8
col[i].col_schema_name = NULL
col[i].col_schema_name_len = NULL
col[i].col_type = 448
col[i].col_max_len = 12
col[i].col_precision = 12
col[i].col_scale = 0
col[i].col_charsetid = NULL
col[i].col_charsetform = NULL
col[i].col_null_ok = 0

272 SQL Procedural Languages: Application Enablement and Support

i = 3
col[i].col_name = LASTNAME
col[i].col_name_len = 8
col[i].col_schema_name = NULL
col[i].col_schema_name_len = NULL
col[i].col_type = 448
col[i].col_max_len = 15
col[i].col_precision = 15
col[i].col_scale = 0
col[i].col_charsetid = NULL
col[i].col_charsetform = NULL
col[i].col_null_ok = 0

i = 4
col[i].col_name = SALARY
col[i].col_name_len = 6
col[i].col_schema_name = NULL
col[i].col_schema_name_len = NULL
col[i].col_type = 484
col[i].col_max_len = 5
col[i].col_precision = 9
col[i].col_scale = 2
col[i].col_charsetid = NULL
col[i].col_charsetform = NULL
col[i].col_null_ok = 1

DESCRIBE_COLUMNS2 procedure - Retrieve a description of
column names in a SELECT list

The DESCRIBE_COLUMNS2 procedure provides the capability to retrieve a
description of the columns in a SELECT list from a cursor.

Syntax

�� DESCRIBE_COLUMNS (c , col_cnt , desc_tab2) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
whose columns are to be described.

col_cnt
An output argument of type INTEGER that returns the number of columns in
the SELECT list of the cursor.

desc_tab
An output argument of type DESC_TAB2 that describes the column metadata.
The DESC_TAB2 array provides information on each column in the specified
cursor

Authorization

EXECUTE privilege on the DBMS_SQL module.

Usage notes

This procedure requires a user temporary table space with a page size of 4K;
otherwise it returns an SQL0286N error. You can create the user temporary table
space with this command:
CREATE USER TEMPORARY TABLESPACE DBMS_SQL_TEMP_TBS

Chapter 3. System-defined modules 273

DESC_TAB2 is an array of DESC_REC2 records of column information:

Table 26. DESC_TAB2 definition through DESC_REC2 records

Record name Description

col_type SQL data type as defined in Supported SQL
data types in C and C++ embedded SQL
applications.

col_max_len Maximum length of the column.

col_name Column name.

col_name_len Length of the column name.

col_schema Always NULL.

col_schema_name_len Always NULL.

col_precision Precision of the column as defined in the
database. If col_type denotes a graphic or
DBCLOB SQL data type, then this variable
indicates the maximum number of
double-byte characters the column can hold.

col_scale Scale of the column as defined in the
database (only applies to DECIMAL,
NUMERIC, TIMESTAMP).

col_charsetid Always NULL.

col_charsetform Always NULL.

col_null_ok Nullable indicator. This has a value of 1 if
the column is nullable, otherwise, 0.

ALTER MODULE SYSIBMADM.DBMS_SQL PUBLISH TYPE DESC_REC2 AS ROW
(
col_type INTEGER,
col_max_len INTEGER,
col_name VARCHAR(128),
col_name_len INTEGER,
col_schema_name VARCHAR(128),
col_schema_name_len INTEGER,
col_precision INTEGER,
col_scale INTEGER,
col_charsetid INTEGER,
col_charsetform INTEGER,
col_null_ok INTEGER
);

ALTER MODULE SYSIBMADM.DBMS_SQL PUBLISH TYPE DESC_TAB2 AS DESC_REC2 ARRAY[INTEGER];

EXECUTE procedure - Run a parsed SQL statement
The EXECUTE function executes a parsed SQL statement.

Syntax

�� EXECUTE (c , ret) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the parsed
SQL statement to be executed.

274 SQL Procedural Languages: Application Enablement and Support

ret An output argument of type INTEGER that returns the number of rows
processed if the SQL command is DELETE, INSERT, or UPDATE; otherwise it
returns 0.

Authorization

EXECUTE privilege on the DBMS_SQL module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

Examples

Example 1: The following anonymous block inserts a row into the "DEPT" table.
SET SERVEROUTPUT ON@

CREATE TABLE dept (
deptno DECIMAL(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
dname VARCHAR(14) NOT NULL,
loc VARCHAR(13),
CONSTRAINT dept_dname_uq UNIQUE(deptno, dname)

)@

BEGIN
DECLARE curid INTEGER;
DECLARE v_sql VARCHAR(50);
DECLARE v_status INTEGER;

CALL DBMS_SQL.OPEN_CURSOR(curid);
SET v_sql = 'INSERT INTO dept VALUES (50, ''HR'', ''LOS ANGELES'')';
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.EXECUTE(curid, v_status);
CALL DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

CREATE TABLE dept
(deptno DECIMAL(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

dname VARCHAR(14) NOT NULL,
loc VARCHAR(13),
CONSTRAINT dept_dname_uq UNIQUE(deptno, dname))

DB20000I The SQL command completed successfully.

BEGIN
DECLARE curid INTEGER;
DECLARE v_sql VARCHAR(50);
DECLARE v_status INTEGER;

CALL DBMS_SQL.OPEN_CURSOR(curid);
SET v_sql = 'INSERT INTO dept VALUES (50, ''HR'', ''LOS ANGELES'')';
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.EXECUTE(curid, v_status);
CALL DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

Chapter 3. System-defined modules 275

END
DB20000I The SQL command completed successfully.

Number of rows processed: 1

EXECUTE_AND_FETCH procedure - Run a parsed SELECT
command and fetch one row

The EXECUTE_AND_FETCH procedure executes a parsed SELECT command and
fetches one row.

Syntax

�� EXECUTE_AND_FETCH (c
, exact

, ret) ��

Parameters

c An input argument of type INTEGER that specifies the cursor id of the cursor
for the SELECT command to be executed.

exact
An optional argument of type INTEGER. If set to 1, an exception is thrown if
the number of rows in the result set is not exactly equal to 1. If set to 0, no
exception is thrown. The default is 0. A NO_DATA_FOUND (SQL0100W)
exception is thrown if exact is set to 1 and there are no rows in the result set. A
TOO_MANY_ROWS (SQL0811N) exception is thrown if exact is set to 1 and
there is more than one row in the result set.

ret An output argument of type INTEGER that returns 1 if a row was fetched
successfully, 0 if there are no rows to fetch.

Authorization

EXECUTE privilege on the DBMS_SQL module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

Examples

Example 1: The following stored procedure uses the EXECUTE_AND_FETCH
function to retrieve one employee using the employee's name. An exception will be
thrown if the employee is not found, or there is more than one employee with the
same name.
SET SERVEROUTPUT ON@

CREATE TABLE emp (
empno DECIMAL(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR(10),
job VARCHAR(9),
mgr DECIMAL(4),
hiredate TIMESTAMP(0),
sal DECIMAL(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
comm DECIMAL(7,2))@

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'1980-12-17',800,NULL)@

276 SQL Procedural Languages: Application Enablement and Support

INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'1981-02-20',1600,300)@
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'1981-02-22',1250,500)@
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'1981-04-02',2975,NULL)@
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'1981-09-28',1250,1400)@

CREATE OR REPLACE PROCEDURE select_by_name(
IN p_ename ANCHOR TO emp.ename)
BEGIN

DECLARE curid INTEGER;
DECLARE v_empno ANCHOR TO emp.empno;
DECLARE v_hiredate ANCHOR TO emp.hiredate;
DECLARE v_sal ANCHOR TO emp.sal;
DECLARE v_comm ANCHOR TO emp.comm;
DECLARE v_disp_date VARCHAR(10);
DECLARE v_sql VARCHAR(120);
DECLARE v_status INTEGER;
SET v_sql = 'SELECT empno, hiredate, sal, NVL(comm, 0)

FROM emp e WHERE ename = :p_ename ';
CALL DBMS_SQL.OPEN_CURSOR(curid);
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.BIND_VARIABLE_VARCHAR(curid, ':p_ename', UPPER(p_ename));
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.DEFINE_COLUMN_DATE(curid, 2, v_hiredate);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 3, v_sal);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 4, v_comm);
CALL DBMS_SQL.EXECUTE_AND_FETCH(curid, 1 /*True*/, v_status);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.COLUMN_VALUE_DATE(curid, 2, v_hiredate);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 3, v_sal);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 4, v_comm);
SET v_disp_date = TO_CHAR(v_hiredate, 'MM/DD/YYYY');
CALL DBMS_OUTPUT.PUT_LINE('Number : ' || v_empno);
CALL DBMS_OUTPUT.PUT_LINE('Name : ' || UPPER(p_ename));
CALL DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
CALL DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
CALL DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END@

CALL select_by_name('MARTIN')@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

CREATE TABLE emp
(empno DECIMAL(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,

ename VARCHAR(10),
job VARCHAR(9),
mgr DECIMAL(4),
hiredate TIMESTAMP(0),
sal DECIMAL(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
comm DECIMAL(7,2))

DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'1980-12-17',800,NULL)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'1981-02-20',1600,300)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'1981-02-22',1250,500)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'1981-04-02',2975,NULL)
DB20000I The SQL command completed successfully.

Chapter 3. System-defined modules 277

INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'1981-09-28',1250,1400)
DB20000I The SQL command completed successfully.

CREATE OR REPLACE PROCEDURE select_by_name(
IN p_ename ANCHOR TO emp.ename)
BEGIN

DECLARE curid INTEGER;
DECLARE v_empno ANCHOR TO emp.empno;
DECLARE v_hiredate ANCHOR TO emp.hiredate;
DECLARE v_sal ANCHOR TO emp.sal;
DECLARE v_comm ANCHOR TO emp.comm;
DECLARE v_disp_date VARCHAR(10);
DECLARE v_sql VARCHAR(120);
DECLARE v_status INTEGER;
SET v_sql = 'SELECT empno, hiredate, sal, NVL(comm, 0)

FROM emp e WHERE ename = :p_ename ';
CALL DBMS_SQL.OPEN_CURSOR(curid);
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.BIND_VARIABLE_VARCHAR(curid, ':p_ename', UPPER(p_ename));
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.DEFINE_COLUMN_DATE(curid, 2, v_hiredate);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 3, v_sal);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 4, v_comm);
CALL DBMS_SQL.EXECUTE_AND_FETCH(curid, 1 /*True*/, v_status);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.COLUMN_VALUE_DATE(curid, 2, v_hiredate);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 3, v_sal);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 4, v_comm);
SET v_disp_date = TO_CHAR(v_hiredate, 'MM/DD/YYYY');
CALL DBMS_OUTPUT.PUT_LINE('Number : ' || v_empno);
CALL DBMS_OUTPUT.PUT_LINE('Name : ' || UPPER(p_ename));
CALL DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
CALL DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
CALL DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END
DB20000I The SQL command completed successfully.

CALL select_by_name('MARTIN')

Return Status = 0

Number : 7654
Name : MARTIN
Hire Date : 09/28/1981
Salary : 1250.00
Commission: 1400.00

FETCH_ROWS procedure - Retrieve a row from a cursor
The FETCH_ROWS function retrieves a row from a cursor

Syntax

�� FETCH_ROWS (c , ret) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
from which to fetch a row.

ret An output argument of type INTEGER that returns 1 if a row was fetched
successfully, 0 if there are no rows to fetch.

278 SQL Procedural Languages: Application Enablement and Support

Authorization

EXECUTE privilege on the DBMS_SQL module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

Examples

Example 1: The following examples fetches the rows from the "EMP" table and
displays the results.
SET SERVEROUTPUT ON@

CREATE TABLE emp (
empno DECIMAL(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR(10),
job VARCHAR(9),
mgr DECIMAL(4),
hiredate TIMESTAMP(0),
sal DECIMAL(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
comm DECIMAL(7,2))@

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'1980-12-17',800,NULL)@
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'1981-02-20',1600,300)@
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'1981-02-22',1250,500)@
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'1981-04-02',2975,NULL)@
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'1981-09-28',1250,1400)@

BEGIN
DECLARE curid INTEGER;
DECLARE v_empno DECIMAL(4);
DECLARE v_ename VARCHAR(10);
DECLARE v_hiredate DATE;
DECLARE v_sal DECIMAL(7, 2);
DECLARE v_comm DECIMAL(7, 2);
DECLARE v_sql VARCHAR(50);
DECLARE v_status INTEGER;
DECLARE v_rowcount INTEGER;

SET v_sql = 'SELECT empno, ename, hiredate, sal, ' || 'comm FROM emp';

CALL DBMS_SQL.OPEN_CURSOR(curid);
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.DEFINE_COLUMN_VARCHAR(curid, 2, v_ename, 10);
CALL DBMS_SQL.DEFINE_COLUMN_DATE(curid, 3, v_hiredate);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 4, v_sal);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 5, v_comm);
CALL DBMS_SQL.EXECUTE(curid, v_status);
CALL DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL

COMM');
CALL DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- --------

' || '--------');

FETCH_LOOP: LOOP
CALL DBMS_SQL.FETCH_ROWS(curid, v_status);

IF v_status = 0 THEN
LEAVE FETCH_LOOP;

END IF;

CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 1, v_empno);

Chapter 3. System-defined modules 279

CALL DBMS_SQL.COLUMN_VALUE_VARCHAR(curid, 2, v_ename);
CALL DBMS_SQL.COLUMN_VALUE_DATE(curid, 3, v_hiredate);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 4, v_sal);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 5, v_comm);
CALL DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

RPAD(v_ename, 10) || ' ' || TO_CHAR(v_hiredate,
'yyyy-mm-dd') || ' ' || TO_CHAR(v_sal,
'9,999.99') || ' ' || TO_CHAR(NVL(v_comm, 0),
'9,999.99'));

END LOOP FETCH_LOOP;

CALL DBMS_SQL.CLOSE_CURSOR(curid);
END@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

CREATE TABLE emp (empno DECIMAL(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR(10), job VARCHAR(9), mgr DECIMAL(4),
hiredate TIMESTAMP(0),
sal DECIMAL(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
comm DECIMAL(7,2))

DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'1980-12-17',800,NULL)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'1981-02-20',1600,300)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'1981-02-22',1250,500)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'1981-04-02',2975,NULL)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'1981-09-28',1250,1400)
DB20000I The SQL command completed successfully.

BEGIN
DECLARE curid INTEGER;
DECLARE v_empno DECIMAL(4);
DECLARE v_ename VARCHAR(10);
DECLARE v_hiredate DATE;
DECLARE v_sal DECIMAL(7, 2);
DECLARE v_comm DECIMAL(7, 2);
DECLARE v_sql VARCHAR(50);
DECLARE v_status INTEGER;
DECLARE v_rowcount INTEGER;

SET v_sql = 'SELECT empno, ename, hiredate, sal, ' || 'comm FROM emp';

CALL DBMS_SQL.OPEN_CURSOR(curid);
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.DEFINE_COLUMN_VARCHAR(curid, 2, v_ename, 10);
CALL DBMS_SQL.DEFINE_COLUMN_DATE(curid, 3, v_hiredate);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 4, v_sal);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 5, v_comm);
CALL DBMS_SQL.EXECUTE(curid, v_status);
CALL DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL

COMM');
CALL DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- --------

' || '--------');

280 SQL Procedural Languages: Application Enablement and Support

FETCH_LOOP: LOOP
CALL DBMS_SQL.FETCH_ROWS(curid, v_status);

IF v_status = 0 THEN
LEAVE FETCH_LOOP;

END IF;

CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.COLUMN_VALUE_VARCHAR(curid, 2, v_ename);
CALL DBMS_SQL.COLUMN_VALUE_DATE(curid, 3, v_hiredate);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 4, v_sal);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 5, v_comm);
CALL DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,

10) || ' ' || TO_CHAR(v_hiredate,
'yyyy-mm-dd') || ' ' || TO_CHAR(v_sal,
'9,999.99') || ' ' || TO_CHAR(NVL(v_comm,
0), '9,999.99'));

END LOOP FETCH_LOOP;

CALL DBMS_SQL.CLOSE_CURSOR(curid);
END
DB20000I The SQL command completed successfully.

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 0.00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 0.00
7654 MARTIN 1981-09-28 1,250.00 1,400.00

IS_OPEN procedure - Check if a cursor is open
The IS_OPEN function provides the capability to test if the given cursor is open.

Syntax

�� IS_OPEN (c , ret) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
to be tested.

ret An output argument of type BOOLEAN that indicates if the specified file is
open (TRUE) or closed (FALSE).

Authorization

EXECUTE privilege on the DBMS_SQL module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

LAST_ROW_COUNT procedure - return the cumulative
number of rows fetched

The LAST_ROW_COUNT procedure returns the number of rows that have been
fetched.

Chapter 3. System-defined modules 281

Syntax

�� LAST_ROW_COUNT (ret) ��

Parameters

ret An output argument of type INTEGER that returns the number of rows that
have been fetched so far in the current session. A call to DBMS_SQL.PARSE
resets the counter.

Authorization

EXECUTE privilege on the DBMS_SQL module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

Examples

Example 1: The following example uses the LAST_ROW_COUNT procedure to
display the total number of rows fetched in the query.
SET SERVEROUTPUT ON@

CREATE TABLE emp (
empno DECIMAL(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR(10),
job VARCHAR(9),
mgr DECIMAL(4),
hiredate TIMESTAMP(0),
sal DECIMAL(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
comm DECIMAL(7,2))@

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'1980-12-17',800,NULL)@
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'1981-02-20',1600,300)@
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'1981-02-22',1250,500)@
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'1981-04-02',2975,NULL)@
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'1981-09-28',1250,1400)@

BEGIN
DECLARE curid INTEGER;
DECLARE v_empno DECIMAL(4);
DECLARE v_ename VARCHAR(10);
DECLARE v_hiredate DATE;
DECLARE v_sal DECIMAL(7, 2);
DECLARE v_comm DECIMAL(7, 2);
DECLARE v_sql VARCHAR(50);
DECLARE v_status INTEGER;
DECLARE v_rowcount INTEGER;

SET v_sql = 'SELECT empno, ename, hiredate, sal, ' || 'comm FROM emp';

CALL DBMS_SQL.OPEN_CURSOR(curid);
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.DEFINE_COLUMN_VARCHAR(curid, 2, v_ename, 10);
CALL DBMS_SQL.DEFINE_COLUMN_DATE(curid, 3, v_hiredate);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 4, v_sal);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 5, v_comm);
CALL DBMS_SQL.EXECUTE(curid, v_status);
CALL DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL

282 SQL Procedural Languages: Application Enablement and Support

COMM');
CALL DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- --------

' || '--------');

FETCH_LOOP: LOOP
CALL DBMS_SQL.FETCH_ROWS(curid, v_status);

IF v_status = 0 THEN
LEAVE FETCH_LOOP;

END IF;

CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.COLUMN_VALUE_VARCHAR(curid, 2, v_ename);
CALL DBMS_SQL.COLUMN_VALUE_DATE(curid, 3, v_hiredate);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 4, v_sal);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 5, v_comm);
CALL DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,

10) || ' ' || TO_CHAR(v_hiredate,
'yyyy-mm-dd') || ' ' || TO_CHAR(v_sal,
'9,999.99') || ' ' || TO_CHAR(NVL(v_comm,
0), '9,999.99'));

END LOOP FETCH_LOOP;

CALL DBMS_SQL.LAST_ROW_COUNT(v_rowcount);
CALL DBMS_OUTPUT.PUT_LINE('Number of rows: ' || v_rowcount);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

CREATE TABLE emp (empno DECIMAL(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR(10), job VARCHAR(9),
mgr DECIMAL(4),
hiredate TIMESTAMP(0),
sal DECIMAL(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
comm DECIMAL(7,2))

DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'1980-12-17',800,NULL)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'1981-02-20',1600,300)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'1981-02-22',1250,500)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'1981-04-02',2975,NULL)
DB20000I The SQL command completed successfully.

INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'1981-09-28',1250,1400)
DB20000I The SQL command completed successfully.

BEGIN
DECLARE curid INTEGER;
DECLARE v_empno DECIMAL(4);
DECLARE v_ename VARCHAR(10);
DECLARE v_hiredate DATE;
DECLARE v_sal DECIMAL(7, 2);
DECLARE v_comm DECIMAL(7, 2);
DECLARE v_sql VARCHAR(50);
DECLARE v_status INTEGER;
DECLARE v_rowcount INTEGER;

Chapter 3. System-defined modules 283

SET v_sql = 'SELECT empno, ename, hiredate, sal, ' || 'comm FROM emp';

CALL DBMS_SQL.OPEN_CURSOR(curid);
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.DEFINE_COLUMN_VARCHAR(curid, 2, v_ename, 10);
CALL DBMS_SQL.DEFINE_COLUMN_DATE(curid, 3, v_hiredate);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 4, v_sal);
CALL DBMS_SQL.DEFINE_COLUMN_NUMBER(curid, 5, v_comm);
CALL DBMS_SQL.EXECUTE(curid, v_status);
CALL DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL

COMM');
CALL DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- --------

' || '--------');

FETCH_LOOP: LOOP
CALL DBMS_SQL.FETCH_ROWS(curid, v_status);

IF v_status = 0 THEN
LEAVE FETCH_LOOP;

END IF;

CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 1, v_empno);
CALL DBMS_SQL.COLUMN_VALUE_VARCHAR(curid, 2, v_ename);
CALL DBMS_SQL.COLUMN_VALUE_DATE(curid, 3, v_hiredate);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 4, v_sal);
CALL DBMS_SQL.COLUMN_VALUE_NUMBER(curid, 5, v_comm);
CALL DBMS_OUTPUT.PUT_LINE(

v_empno || ' ' || RPAD(v_ename, 10) || ' ' || TO_CHAR(v_hiredate,
'yyyy-mm-dd') || ' ' || TO_CHAR(v_sal,
'9,999.99') || ' ' || TO_CHAR(NVL(v_comm,
0), '9,999.99'));

END LOOP FETCH_LOOP;

CALL DBMS_SQL.LAST_ROW_COUNT(v_rowcount);
CALL DBMS_OUTPUT.PUT_LINE('Number of rows: ' || v_rowcount);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END
DB20000I The SQL command completed successfully.

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 0.00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 0.00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
Number of rows: 5

OPEN_CURSOR procedure - Open a cursor
The OPEN_CURSOR procedure creates a new cursor.

A cursor must be used to parse and execute any dynamic SQL statement. Once a
cursor has been opened, it can be used again with the same or different SQL
statements. The cursor does not have to be closed and reopened in order to be
used again.

Syntax

�� OPEN_CURSOR (c) ��

284 SQL Procedural Languages: Application Enablement and Support

Parameters

c An output argument of type INTEGER that specifies the cursor ID of the
newly created cursor.

Authorization

EXECUTE privilege on the DBMS_SQL module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

Examples

Example 1: The following example creates a new cursor:
DECLARE

curid INTEGER;
BEGIN

curid := DBMS_SQL.OPEN_CURSOR;
.
.
.

END;

PARSE procedure - Parse an SQL statement
The PARSE procedure parses an SQL statement.

If the SQL command is a DDL command, it is immediately executed and does not
require running the EXECUTE procedure.

Syntax

�� PARSE (c , statement , language_flag) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of an open
cursor.

statement
The SQL statement to be parsed.

language_flag
This argument is provided for Oracle syntax compatibility. Use a value of 1 or
DBMS_SQL.native.

Authorization

EXECUTE privilege on the DBMS_SQL module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

Chapter 3. System-defined modules 285

Examples

Example 1: The following anonymous block creates a table named job. Note that
DDL statements are executed immediately by the PARSE procedure and do not
require a separate EXECUTE step.
SET SERVEROUTPUT ON@

BEGIN
DECLARE curid INTEGER;
CALL DBMS_SQL.OPEN_CURSOR(curid);
CALL DBMS_SQL.PARSE(curid, 'CREATE TABLE job (jobno DECIMAL(3),

' || 'jname VARCHAR(9))', DBMS_SQL.native);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

BEGIN
DECLARE curid INTEGER;
CALL DBMS_SQL.OPEN_CURSOR(curid);
CALL DBMS_SQL.PARSE(curid, 'CREATE TABLE job (jobno DECIMAL(3), ' ||

'jname VARCHAR(9))', DBMS_SQL.native);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END
DB20000I The SQL command completed successfully.

Example 2: The following inserts two rows into the job table.
BEGIN

DECLARE curid INTEGER;
DECLARE v_sql VARCHAR(50);
DECLARE v_status INTEGER;

CALL DBMS_SQL.OPEN_CURSOR(curid);
SET v_sql = 'INSERT INTO job VALUES (100, ''ANALYST'')';
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.EXECUTE(curid, v_status);
CALL DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
SET v_sql = 'INSERT INTO job VALUES (200, ''CLERK'')';
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.EXECUTE(curid, v_status);
CALL DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END@

This example results in the following output:
BEGIN

DECLARE curid INTEGER;
DECLARE v_sql VARCHAR(50);
DECLARE v_status INTEGER;

CALL DBMS_SQL.OPEN_CURSOR(curid);
SET v_sql = 'INSERT INTO job VALUES (100, ''ANALYST'')';
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.EXECUTE(curid, v_status);
CALL DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
SET v_sql = 'INSERT INTO job VALUES (200, ''CLERK'')';
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.EXECUTE(curid, v_status);
CALL DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END

286 SQL Procedural Languages: Application Enablement and Support

DB20000I The SQL command completed successfully.

Number of rows processed: 1
Number of rows processed: 1

Example 3: The following anonymous block uses the DBMS_SQL module to execute
a block containing two INSERT statements. Note that the end of the block contains
a terminating semicolon, whereas in the prior examples, the individual INSERT
statements did not have a terminating semicolon.
BEGIN

DECLARE curid INTEGER;
DECLARE v_sql VARCHAR(100);
DECLARE v_status INTEGER;

CALL DBMS_SQL.OPEN_CURSOR(curid);
SET v_sql = 'BEGIN ' || 'INSERT INTO job VALUES (300, ''MANAGER''); '

|| 'INSERT INTO job VALUES (400, ''SALESMAN''); ' || 'END;';
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END@

This example results in the following output:
BEGIN

DECLARE curid INTEGER;
DECLARE v_sql VARCHAR(100);
DECLARE v_status INTEGER;

CALL DBMS_SQL.OPEN_CURSOR(curid);
SET v_sql = 'BEGIN ' || 'INSERT INTO job VALUES (300, ''MANAGER''); ' ||

'INSERT INTO job VALUES (400, ''SALESMAN''); ' || 'END;';
CALL DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
CALL DBMS_SQL.CLOSE_CURSOR(curid);

END
DB20000I The SQL command completed successfully.

VARIABLE_VALUE_BLOB procedure - Return the value of a
BLOB INOUT or OUT parameter

The VARIABLE_VALUE_BLOB procedure provides the capability to return the
value of a BLOB INOUT or OUT parameter.

Syntax

�� VARIABLE_VALUE_BLOB (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
returning a bind variable.

name
An input argument that specifies the name of the bind variable.

value
An output argument of type BLOB(2G) that specifies the variable receiving the
value.

Authorization

EXECUTE privilege on the DBMS_SQL module.

Chapter 3. System-defined modules 287

VARIABLE_VALUE_CHAR procedure - Return the value of a
CHAR INOUT or OUT parameter

The VARIABLE_VALUE_CHAR procedure provides the capability to return the
value of a CHAR INOUT or OUT parameter.

Syntax

�� VARIABLE_VALUE_CHAR (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
returning a bind variable.

name
An input argument that specifies the name of the bind variable.

value
An output argument of type CHAR(254) that specifies the variable receiving
the value.

Authorization

EXECUTE privilege on the DBMS_SQL module.

VARIABLE_VALUE_CLOB procedure - Return the value of a
CLOB INOUT or OUT parameter

The VARIABLE_VALUE_CLOB procedure provides the capability to return the
value of a CLOB INOUT or OUT parameter.

Syntax

�� VARIABLE_VALUE_CLOB (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
returning a bind variable.

name
An input argument that specifies the name of the bind variable.

value
An output argument of type CLOB(2G) that specifies the variable receiving the
value.

Authorization

EXECUTE privilege on the DBMS_SQL module.

VARIABLE_VALUE_DATE procedure - Return the value of a
DATE INOUT or OUT parameter

The VARIABLE_VALUE_DATE procedure provides the capability to return the
value of a DATE INOUT or OUT parameter.

288 SQL Procedural Languages: Application Enablement and Support

Syntax

�� VARIABLE_VALUE_DATE (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
returning a bind variable.

name
An input argument that specifies the name of the bind variable.

value
An output argument of type DATE that specifies the variable receiving the
value.

Authorization

EXECUTE privilege on the DBMS_SQL module.

VARIABLE_VALUE_DOUBLE procedure - Return the value of a
DOUBLE INOUT or OUT parameter

The VARIABLE_VALUE_DOUBLE procedure provides the capability to return the
value of a DOUBLE INOUT or OUT parameter.

Syntax

�� VARIABLE_VALUE_DOUBLE (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
returning a bind variable.

name
An input argument that specifies the name of the bind variable.

value
An output argument of type DOUBLE that specifies the variable receiving the
value.

Authorization

EXECUTE privilege on the DBMS_SQL module.

VARIABLE_VALUE_INT procedure - Return the value of an
INTEGER INOUT or OUT parameter

The VARIABLE_VALUE_INT procedure provides the capability to return the value
of a INTEGER INOUT or OUT parameter.

Syntax

�� VARIABLE_VALUE_INT (c , name , value) ��

Chapter 3. System-defined modules 289

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
returning a bind variable.

name
An input argument that specifies the name of the bind variable.

value
An output argument of type INTEGER that specifies the variable receiving the
value.

Authorization

EXECUTE privilege on the DBMS_SQL module.

VARIABLE_VALUE_NUMBER procedure - Return the value of a
DECFLOAT INOUT or OUT parameter

The VARIABLE_VALUE_NUMBER procedure provides the capability to return the
value of a DECFLOAT INOUT or OUT parameter.

Syntax

�� VARIABLE_VALUE_NUMBER (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
returning a bind variable.

name
An input argument that specifies the name of the bind variable.

value
An output argument of type DECFLOAT that specifies the variable receiving
the value.

Authorization

EXECUTE privilege on the DBMS_SQL module.

VARIABLE_VALUE_RAW procedure - Return the value of a
BLOB(32767) INOUT or OUT parameter

The VARIABLE_VALUE_RAW procedure provides the capability to return the
value of a BLOB(32767) INOUT or OUT parameter.

Syntax

�� VARIABLE_VALUE_RAW (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
returning a bind variable.

290 SQL Procedural Languages: Application Enablement and Support

name
An input argument that specifies the name of the bind variable.

value
An output argument of type BLOB(32767) that specifies the variable receiving
the value.

Authorization

EXECUTE privilege on the DBMS_SQL module.

VARIABLE_VALUE_TIMESTAMP procedure - Return the value
of a TIMESTAMP INOUT or OUT parameter

The VARIABLE_VALUE_TIMESTAMP procedure provides the capability to return
the value of a TIMESTAMP INOUT or OUT parameter.

Syntax

�� VARIABLE_VALUE_TIMESTAMP (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
returning a bind variable.

name
An input argument that specifies the name of the bind variable.

value
An output argument of type TIMESTAMP that specifies the variable receiving
the value.

Authorization

EXECUTE privilege on the DBMS_SQL module.

VARIABLE_VALUE_VARCHAR procedure - Return the value of
a VARCHAR INOUT or OUT parameter

The VARIABLE_VALUE_VARCHAR procedure provides the capability to return
the value of a VARCHAR INOUT or OUT parameter.

Syntax

�� VARIABLE_VALUE_VARCHAR (c , name , value) ��

Parameters

c An input argument of type INTEGER that specifies the cursor ID of the cursor
returning a bind variable.

name
An input argument that specifies the name of the bind variable.

value
An output argument of type VARCHAR(32672) that specifies the variable
receiving the value.

Chapter 3. System-defined modules 291

Authorization

EXECUTE privilege on the DBMS_SQL module.

DBMS_UTILITY module
The DBMS_UTILITY module provides various utility programs.

The schema for this module is SYSIBMADM.

The DBMS_UTILITY module includes the following routines.

Table 27. System-defined routines available in the DBMS_UTILITY module

Routine Name Description

ANALYZE_DATABASE procedure Analyze database tables, clusters, and
indexes.

ANALYZE_PART_OBJECT procedure Analyze a partitioned table or partitioned
index.

ANALYZE_SCHEMA procedure Analyze schema tables, clusters, and
indexes.

CANONICALIZE procedure Canonicalizes a string (for example, strips
off white space).

COMMA_TO_TABLE procedure Convert a comma-delimited list of names to
a table of names.

COMPILE_SCHEMA procedure Compile programs in a schema.

DB_VERSION procedure Get the database version.

EXEC_DDL_STATEMENT procedure Execute a DDL statement.

GET_CPU_TIME function Get the current CPU time.

GET_DEPENDENCY procedure Get objects that depend on the given object.

GET_HASH_VALUE function Compute a hash value.

GET_TIME function Get the current time.

NAME_RESOLVE procedure Resolve the given name.

NAME_TOKENIZE procedure Parse the given name into its component
parts.

TABLE_TO_COMMA procedure Convert a table of names to a
comma-delimited list.

VALIDATE procedure Make an invalid database object valid.

The following table lists the system-defined variables and types available in the
DBMS_UTILITY module.

Table 28. DBMS_UTILITY public variables

Public variables Data type Description

lname_array TABLE For lists of long names.

uncl_array TABLE For lists of users and names.

The LNAME_ARRAY is for storing lists of long names including fully-qualified
names.

ALTER MODULE SYSIBMADM.DBMS_UTILITY PUBLISH TYPE LNAME_ARRAY AS VARCHAR(4000) ARRAY[];

292 SQL Procedural Languages: Application Enablement and Support

The UNCL_ARRAY is for storing lists of users and names.
ALTER MODULE SYSIBMADM.DBMS_UTILITY PUBLISH TYPE UNCL_ARRAY AS VARCHAR(227) ARRAY[];

ANALYZE_DATABASE procedure - Gather statistics on tables,
clusters, and indexes

The ANALYZE_DATABASE procedure provides the capability to gather statistics
on tables, clusters, and indexes in the database.

Syntax

�� ANALYZE_DATABASE (method �

�
, estimate_rows

, estimate_percent
, method_opt

) ��

Parameters

method
An input argument of type VARCHAR(128) that specifies the type of analyze
functionality to perform. Valid values are:
v ESTIMATE - gather estimated statistics based upon on either a specified

number of rows in estimate_rows or a percentage of rows in estimate_percent;
v COMPUTE - compute exact statistics; or
v DELETE – delete statistics from the data dictionary.

estimate_rows
An optional input argument of type INTEGER that specifies the number of
rows on which to base estimated statistics. One of estimate_rows or
estimate_percent must be specified if the method is ESTIMATE. The default value
is NULL.

estimate_percent
An optional input argument of type INTEGER that specifies the percentage of
rows upon which to base estimated statistics. One of estimate_rows or
estimate_percent must be specified if the method is ESTIMATE. The default value
is NULL.

method_opt
An optional input argument of type VARCHAR(1024) that specifies the object
types to be analyzed. Any combination of the following keywords are valid:
v [FOR TABLE]
v [FOR ALL [INDEXED] COLUMNS] [SIZE n]
v [FOR ALL INDEXES]

The default is NULL.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Chapter 3. System-defined modules 293

ANALYZE_PART_OBJECT procedure - Gather statistics on a
partitioned table or partitioned index

The ANALYZE_PART_OBJECT procedure provides the capability to gather
statistics on a partitioned table or index.

Syntax

�� ANALYZE_PART_OBJECT (schema , object_name �

�
, object_type

, command_type
, command_opt

, sample_clause

) ��

Parameters

schema
An input argument of type VARCHAR(128) that specifies the schema name of
the schema whose objects are to be analyzed.

object_name
An input argument of type VARCHAR(128) that specifies the name of the
partitioned object to be analyzed.

object_type
An optional input argument of type CHAR that specifies the type of object to
be analyzed. Valid values are:
v T – table;
v I – index.

The default is T.

command_type
An optional input argument of type CHAR that specifies the type of analyze
functionality to perform. Valid values are:
v E - gather estimated statistics based upon on a specified number of rows or

a percentage of rows in the sample_clause clause;
v C - compute exact statistics; or
v V - validate the structure and integrity of the partitions.

The default value is E.

command_opt
An optional input argument of type VARCHAR(1024) that specifies the options
for the statistics calculation. For command_type E or C, this argument can be
any combination of:
v [FOR TABLE]
v [FOR ALL COLUMNS]
v [FOR ALL LOCAL INDEXES]

For command_type V, this argument can be CASCADE if object_type is T. The
default value is NULL.

sample_clause
An optional input argument of type VARCHAR(128). If command_type is E, this
argument contains the following clause to specify the number of rows or
percentage of rows on which to base the estimate.

294 SQL Procedural Languages: Application Enablement and Support

SAMPLE n { ROWS | PERCENT }

The default value is SAMPLE 5 PERCENT.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

ANALYZE_SCHEMA procedure - Gather statistics on schema
tables, clusters, and indexes

The ANALYZE_SCHEMA procedure provides the capability to gather statistics on
tables, clusters, and indexes in the specified schema.

Syntax

�� ANALYZE_SCHEMA (schema , method �

�
, estimate_rows

, estimate_percent
, method_opt

) ��

Parameters

schema
An input argument of type VARCHAR(128) that specifies the schema name of
the schema whose objects are to be analyzed.

method
An input argument of type VARCHAR(128) that specifies the type of analyze
functionality to perform. Valid values are:
v ESTIMATE - gather estimated statistics based upon on either a specified

number of rows in estimate_rows or a percentage of rows in estimate_percent;
v COMPUTE - compute exact statistics; or
v DELETE – delete statistics from the data dictionary.

estimate_rows
An optional input argument of type INTEGER that specifies the number of
rows on which to base estimated statistics. One of estimate_rows or
estimate_percent must be specified if the method is ESTIMATE. The default value
is NULL.

estimate_percent
An optional input argument of type INTEGER that specifies the percentage of
rows upon which to base estimated statistics. One of estimate_rows or
estimate_percent must be specified if the method is ESTIMATE. The default value
is NULL.

method_opt
An optional input argument of type VARCHAR(1024) that specifies the object
types to be analyzed. Any combination of the following keywords are valid:
v [FOR TABLE]
v [FOR ALL [INDEXED] COLUMNS] [SIZE n]
v [FOR ALL INDEXES]

The default is NULL.

Chapter 3. System-defined modules 295

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

CANONICALIZE procedure - Canonicalize a string
The CANONICALIZE procedure performs various operations on an input string.

The CANONICALIZE procedure performs the following operations on an input
string:
v If the string is not double-quoted, verifies that it uses the characters of a legal

identifier. If not, an exception is thrown. If the string is double-quoted, all
characters are allowed.

v If the string is not double-quoted and does not contain periods, puts all
alphabetic characters into uppercase and eliminates leading and trailing spaces.

v If the string is double-quoted and does not contain periods, strips off the double
quotes.

v If the string contains periods and no portion of the string is double-quoted, puts
each portion of the string into uppercase and encloses each portion in double
quotes.

v If the string contains periods and portions of the string are double-quoted,
returns the double-quoted portions unchanged, including the double quotes, and
returns the non-double-quoted portions in uppercase and enclosed in double
quotes.

Syntax

�� CANONICALIZE (name , canon_name , canon_len) ��

Parameters

name
An input argument of type VARCHAR(1024) that specifies the string to be
canonicalized.

canon_name
An output argument of type VARCHAR(1024) that returns the canonicalized
string.

canon_len
An input argument of type INTEGER that specifies the number of bytes in
name to canonicalize starting from the first character.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Examples

Example 1: The following procedure applies the CANONICALIZE procedure on its
input parameter and displays the results.
SET SERVEROUTPUT ON@

CREATE OR REPLACE PROCEDURE canonicalize(
IN p_name VARCHAR(4096),
IN p_length INTEGER DEFAULT 30)

296 SQL Procedural Languages: Application Enablement and Support

BEGIN
DECLARE v_canon VARCHAR(100);

CALL DBMS_UTILITY.CANONICALIZE(p_name, v_canon, p_length);
CALL DBMS_OUTPUT.PUT_LINE('Canonicalized name ==>' || v_canon || '<==');
CALL DBMS_OUTPUT.PUT_LINE('Length: ' || LENGTH(v_canon));

END@

CALL canonicalize('Identifier')@
CALL canonicalize('"Identifier"')@
CALL canonicalize('"_+142%"')@
CALL canonicalize('abc.def.ghi')@
CALL canonicalize('"abc.def.ghi"')@
CALL canonicalize('"abc".def."ghi"')@
CALL canonicalize('"abc.def".ghi')@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

CREATE OR REPLACE PROCEDURE canonicalize(
IN p_name VARCHAR(4096),
IN p_length INTEGER DEFAULT 30)

BEGIN
DECLARE v_canon VARCHAR(100);

CALL DBMS_UTILITY.CANONICALIZE(p_name, v_canon, p_length);
CALL DBMS_OUTPUT.PUT_LINE('Canonicalized name ==>' || v_canon || '<==');
CALL DBMS_OUTPUT.PUT_LINE('Length: ' || LENGTH(v_canon));

END
DB20000I The SQL command completed successfully.

CALL canonicalize('Identifier')

Return Status = 0

Canonicalized name ==>IDENTIFIER<==
Length: 10

CALL canonicalize('"Identifier"')

Return Status = 0

Canonicalized name ==>Identifier<==
Length: 10

CALL canonicalize('"_+142%"')

Return Status = 0

Canonicalized name ==>_+142%<==
Length: 6

CALL canonicalize('abc.def.ghi')

Return Status = 0

Canonicalized name ==>"ABC"."DEF"."GHI"<==
Length: 17

CALL canonicalize('"abc.def.ghi"')

Return Status = 0

Canonicalized name ==>abc.def.ghi<==
Length: 11

Chapter 3. System-defined modules 297

CALL canonicalize('"abc".def."ghi"')

Return Status = 0

Canonicalized name ==>"abc"."DEF"."ghi"<==
Length: 17

CALL canonicalize('"abc.def".ghi')

Return Status = 0

Canonicalized name ==>"abc.def"."GHI"<==
Length: 15

COMMA_TO_TABLE procedures - Convert a comma-delimited
list of names into a table of names

The COMMA_TO_TABLE procedure converts a comma-delimited list of names
into an array of names. Each entry in the list becomes an element in the array.

Note: The names must be formatted as valid identifiers.

Syntax

�� COMMA_TO_TABLE_LNAME (list , tablen , tab) ��

�� COMMA_TO_TABLE_UNCL (list , tablen , tab) ��

Parameters

list
An input argument of type VARCHAR(32672) that specifies a comma-delimited
list of names.

tablen
An output argument of type INTEGER that specifies the number of entries in
tab.

tab An output argument of type LNAME_ARRAY or UNCL_ARRAY that contains
a table of the individual names in list. See LNAME_ARRAY or UNCL_ARRAY
for a description of tab.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Examples

Example 1: The following procedure uses the COMMA_TO_TABLE_LNAME
procedure to convert a list of names to a table. The table entries are then
displayed.
SET SERVEROUTPUT ON@

CREATE OR REPLACE PROCEDURE comma_to_table(
IN p_list VARCHAR(4096))

BEGIN
DECLARE r_lname DBMS_UTILITY.LNAME_ARRAY;
DECLARE v_length INTEGER;

298 SQL Procedural Languages: Application Enablement and Support

CALL DBMS_UTILITY.COMMA_TO_TABLE_LNAME(p_list, v_length, r_lname);
BEGIN

DECLARE i INTEGER DEFAULT 1;
DECLARE loop_limit INTEGER;

SET loop_limit = v_length;
WHILE i <= loop_limit DO

CALL DBMS_OUTPUT.PUT_LINE(r_lname[i]);
SET i = i + 1;

END WHILE;
END;

END@

CALL comma_to_table('sample_schema.dept,sample_schema.emp,sample_schema.jobhist')@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

CREATE OR REPLACE PROCEDURE comma_to_table(
IN p_list VARCHAR(4096))

BEGIN
DECLARE r_lname DBMS_UTILITY.LNAME_ARRAY;
DECLARE v_length INTEGER;
CALL DBMS_UTILITY.COMMA_TO_TABLE_LNAME(p_list, v_length, r_lname);
BEGIN

DECLARE i INTEGER DEFAULT 1;
DECLARE loop_limit INTEGER;

SET loop_limit = v_length;
WHILE i <= loop_limit DO

CALL DBMS_OUTPUT.PUT_LINE(r_lname[i]);
SET i = i + 1;

END WHILE;
END;

END
DB20000I The SQL command completed successfully.

CALL comma_to_table('sample_schema.dept,sample_schema.emp,sample_schema.jobhist')

Return Status = 0

sample_schema.dept
sample_schema.emp
sample_schema.jobhist

COMPILE_SCHEMA procedure - Compile all functions,
procedures, triggers, and packages in a schema

The COMPILE_SCHEMA procedure provides the capability to recompile all
functions, procedures, triggers, and packages in a schema.

Syntax

�� COMPILE_SCHEMA (schema
, compile_all

, reuse_settings

) ��

Chapter 3. System-defined modules 299

Parameters

schema
An input argument of type VARCHAR(128) that specifies the schema in which
the programs are to be recompiled.

compile_all
An optional input argument of type BOOLEAN that must be set to false,
meaning that the procedure only recompiles programs currently in invalid
state.

reuse_settings
An optional input argument of type BOOLEAN that must be set to false,
meaning that the procedure uses the current session settings.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

DB_VERSION procedure - Retrieve the database version
The DB_VERSION procedure returns the version number of the database.

Syntax

�� DB_VERSION (version , compatibility) ��

Parameters

version
An output argument of type VARCHAR(1024) that returns the database
version number.

compatibility
An output argument of type VARCHAR(1024) that returns the compatibility
setting of the database.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Examples

Example 1: The following anonymous block displays the database version
information.
SET SERVEROUTPUT ON@

BEGIN
DECLARE v_version VARCHAR(80);
DECLARE v_compat VARCHAR(80);

CALL DBMS_UTILITY.DB_VERSION(v_version, v_compat);
CALL DBMS_OUTPUT.PUT_LINE('Version: ' || v_version);
CALL DBMS_OUTPUT.PUT_LINE('Compatibility: ' || v_compat);

END@

This example results in the following output:

300 SQL Procedural Languages: Application Enablement and Support

SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

BEGIN
DECLARE v_version VARCHAR(80);
DECLARE v_compat VARCHAR(80);

CALL DBMS_UTILITY.DB_VERSION(v_version, v_compat);
CALL DBMS_OUTPUT.PUT_LINE('Version: ' || v_version);
CALL DBMS_OUTPUT.PUT_LINE('Compatibility: ' || v_compat);

END
DB20000I The SQL command completed successfully.

Version: DB2 v9.7.0.0
Compatibility: DB2 v9.7.0.0

EXEC_DDL_STATEMENT procedure - Run a DDL statement
The EXEC_DDL_STATEMENT procedure provides the capability to execute a DDL
command.

Syntax

�� EXEC_DDL_STATEMENT (parse_string) ��

Parameters

parse_string
An input argument of type VARCHAR(1024) that specifies the DDL command
to execute.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Examples

Example 1: The following anonymous block creates the job table.
BEGIN

CALL DBMS_UTILITY.EXEC_DDL_STATEMENT(
'CREATE TABLE job (' ||
'jobno DECIMAL(3),' ||
'jname VARCHAR(9))');

END@

GET_CPU_TIME function - Retrieve the current CPU time
The GET_CPU_TIME function returns the CPU time in hundredths of a second
from some arbitrary point in time.

Syntax

�� GET_CPU_TIME () ��

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Chapter 3. System-defined modules 301

Examples

Example 1: The following SELECT command retrieves the current CPU time.
SELECT DBMS_UTILITY.GET_CPU_TIME FROM DUAL;

get_cpu_time

603

GET_DEPENDENCY procedure - List objects dependent on the
given object

The GET_DEPENDENCY procedure provides the capability to list all objects that
are dependent upon the given object.

Syntax

�� GET_DEPENDENCY (type , schema , name) ��

Parameters

type
An input argument of type VARCHAR(128) that specifies the object type of
name. Valid values are FUNCTION, INDEX, LOB, PACKAGE, PACKAGE
BODY, PROCEDURE, SEQUENCE, TABLE, TRIGGER, and VIEW.

schema
An input argument of type VARCHAR(128) that specifies the name of the
schema in which name exists.

name
An input argument of type VARCHAR(128) that specifies the name of the
object for which dependencies are to be obtained.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Examples

Example 1: The following anonymous block finds dependencies on the table T1,
and the function FUNC1.
SET SERVEROUTPUT ON@

CREATE TABLE SCHEMA1.T1 (C1 INTEGER)@

CREATE OR REPLACE FUNCTION SCHEMA2.FUNC1(parm1 INTEGER)
SPECIFIC FUNC1
RETURNS INTEGER
BEGIN

RETURN parm1;
END@

CREATE OR REPLACE FUNCTION SCHEMA3.FUNC2()
SPECIFIC FUNC2
RETURNS INTEGER
BEGIN

DECLARE retVal INTEGER;
SELECT SCHEMA2.FUNC1(1) INTO retVal FROM SCHEMA1.T1;

END@

302 SQL Procedural Languages: Application Enablement and Support

CALL DBMS_UTILITY.GET_DEPENDENCY('FUNCTION', 'SCHEMA2', 'FUNC1')@
CALL DBMS_UTILITY.GET_DEPENDENCY('TABLE', 'SCHEMA1', 'T1')@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

CREATE TABLE SCHEMA1.T1 (C1 INTEGER)
DB20000I The SQL command completed successfully.

CREATE OR REPLACE FUNCTION SCHEMA2.FUNC1(parm1 INTEGER)
SPECIFIC FUNC1
RETURNS INTEGER
BEGIN

RETURN parm1;
END
DB20000I The SQL command completed successfully.

CREATE OR REPLACE FUNCTION SCHEMA3.FUNC2()
SPECIFIC FUNC2
RETURNS INTEGER
BEGIN

DECLARE retVal INTEGER;
SELECT SCHEMA2.FUNC1(1) INTO retVal FROM SCHEMA1.T1;

END
DB20000I The SQL command completed successfully.

CALL DBMS_UTILITY.GET_DEPENDENCY('FUNCTION', 'SCHEMA2', 'FUNC1')

Return Status = 0

DEPENDENCIES ON SCHEMA2.FUNC1
--
*FUNCTION SCHEMA2.FUNC1()
* FUNCTION SCHEMA3 .FUNC2()

CALL DBMS_UTILITY.GET_DEPENDENCY('TABLE', 'SCHEMA1', 'T1')

Return Status = 0

DEPENDENCIES ON SCHEMA1.T1
--
*TABLE SCHEMA1.T1()
* FUNCTION SCHEMA3 .FUNC2()

GET_HASH_VALUE function - Compute a hash value for a
given string

The GET_HASH_VALUE function provides the capability to compute a hash value
for a given string.

The function returns a generated hash value of type INTEGER, and the value is
platform-dependent.

Syntax

�� GET_HASH_VALUE (name , base , hash_size) ��

Chapter 3. System-defined modules 303

Parameters

name
An input argument of type VARCHAR(32672) that specifies the string for
which a hash value is to be computed.

base
An input argument of type INTEGER that specifies the starting value at which
hash values are to be generated.

hash_size
An input argument of type INTEGER that specifies the number of hash values
for the desired hash table.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Examples

Example 1: The following example returns hash values for two strings. The starting
value for the hash values is 100, with a maximum of 1024 distinct values.
SELECT DBMS_UTILITY.GET_HASH_VALUE('Peter',100,1024) AS HASH_VALUE FROM SYSIBM.SYSDUMMY1@
SELECT DBMS_UTILITY.GET_HASH_VALUE('Mary',100,1024) AS HASH_VALUE FROM SYSIBM.SYSDUMMY1@

This example results in the following output:
SELECT DBMS_UTILITY.GET_HASH_VALUE('Peter',100,1024) AS HASH_VALUE FROM SYSIBM.SYSDUMMY1

HASH_VALUE

343

1 record(s) selected.

SELECT DBMS_UTILITY.GET_HASH_VALUE('Mary',100,1024) AS HASH_VALUE FROM SYSIBM.SYSDUMMY1

HASH_VALUE

760

1 record(s) selected.

GET_TIME function - Return the current time
The GET_TIME function provides the capability to return the current time in
hundredths of a second.

Syntax

�� GET_TIME () ��

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Examples

Example 1: The following example shows calls to the GET_TIME function.

304 SQL Procedural Languages: Application Enablement and Support

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

get_time

1555860

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

get_time

1556037

NAME_RESOLVE procedure - Obtain the schema and other
membership information for a database object

The NAME_RESOLVE procedure provides the capability to obtain the schema and
other membership information of a database object. Synonyms are resolved to their
base objects.

Syntax

�� NAME_RESOLVE (name , context , schema , part1 , �

� part2 , dblink , part1_type , object_number) ��

Parameters

name
An input argument of type VARCHAR(1024) that specifies the name of the
database object to resolve. Can be specified in the format:
[[a.]b.]c[@dblink]

context
An input argument of type INTEGER. Set to the following values:
v 1 - to resolve a function, procedure, or module name;
v 2 - to resolve a table, view, sequence, or synonym name; or
v 3 - to resolve a trigger name.

schema
An output argument of type VARCHAR(128) that specifies the name of the
schema containing the object specified by name.

part1
An output argument of type VARCHAR(128) that specifies the name of the
resolved table, view, sequence, trigger, or module.

part2
An output argument of type VARCHAR(128) that specifies the name of the
resolved function or procedure (including functions and procedures within a
module).

dblink
An output argument of type VARCHAR(128) that specifies name of the
database link (if @dblink is specified in name).

part1_type
An output argument of type INTEGER. Returns the following values:
v 2 - resolved object is a table;
v 4 - resolved object is a view;

Chapter 3. System-defined modules 305

v 6 - resolved object is a sequence;
v 7 - resolved object is a stored procedure;
v 8 - resolved object is a stored function;
v 9 - resolved object is a module or a function or procedure within a module;

or
v 12 - resolved object is a trigger.

object_number
An output argument of type INTEGER that specifies the object identifier of the
resolved database object.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Examples

Example 1: The following stored procedure is used to display the returned values of
the NAME_RESOLVE procedure for various database objects.
SET SERVEROUTPUT ON@

CREATE OR REPLACE PROCEDURE name_resolve(
IN p_name VARCHAR(4096),
IN p_context DECFLOAT)

BEGIN
DECLARE v_schema VARCHAR(30);
DECLARE v_part1 VARCHAR(30);
DECLARE v_part2 VARCHAR(30);
DECLARE v_dblink VARCHAR(30);
DECLARE v_part1_type DECFLOAT;
DECLARE v_objectid DECFLOAT;

CALL DBMS_UTILITY.NAME_RESOLVE(p_name, p_context, v_schema, v_part1, v_part2,
v_dblink, v_part1_type, v_objectid);

CALL DBMS_OUTPUT.PUT_LINE('name : ' || p_name);
CALL DBMS_OUTPUT.PUT_LINE('context : ' || p_context);
CALL DBMS_OUTPUT.PUT_LINE('schema : ' || v_schema);
IF v_part1 IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('part1 : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('part1 : ' || v_part1);
END IF;
IF v_part2 IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('part2 : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('part2 : ' || v_part2);
END IF;
IF v_dblink IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('dblink : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('dblink : ' || v_dblink);
END IF;
CALL DBMS_OUTPUT.PUT_LINE('part1 type: ' || v_part1_type);
CALL DBMS_OUTPUT.PUT_LINE('object id : ' || v_objectid);

END@

DROP TABLE S1.T1@
CREATE TABLE S1.T1 (C1 INT)@

CREATE OR REPLACE PROCEDURE S2.PROC1
BEGIN
END@

306 SQL Procedural Languages: Application Enablement and Support

CREATE OR REPLACE MODULE S3.M1@
ALTER MODULE S3.M1 PUBLISH FUNCTION F1() RETURNS BOOLEAN
BEGIN

RETURN TRUE;
END@

CALL NAME_RESOLVE('S1.T1', 2)@
CALL NAME_RESOLVE('S2.PROC1', 2)@
CALL NAME_RESOLVE('S2.PROC1', 1)@
CALL NAME_RESOLVE('PROC1', 1)@
CALL NAME_RESOLVE('M1', 1)@
CALL NAME_RESOLVE('S3.M1.F1', 1)@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

CREATE OR REPLACE PROCEDURE name_resolve(
IN p_name VARCHAR(4096),
IN p_context DECFLOAT)

BEGIN
DECLARE v_schema VARCHAR(30);
DECLARE v_part1 VARCHAR(30);
DECLARE v_part2 VARCHAR(30);
DECLARE v_dblink VARCHAR(30);
DECLARE v_part1_type DECFLOAT;
DECLARE v_objectid DECFLOAT;

CALL DBMS_UTILITY.NAME_RESOLVE(p_name, p_context, v_schema, v_part1, v_part2,
v_dblink, v_part1_type, v_objectid);

CALL DBMS_OUTPUT.PUT_LINE('name : ' || p_name);
CALL DBMS_OUTPUT.PUT_LINE('context : ' || p_context);
CALL DBMS_OUTPUT.PUT_LINE('schema : ' || v_schema);
IF v_part1 IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('part1 : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('part1 : ' || v_part1);
END IF;
IF v_part2 IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('part2 : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('part2 : ' || v_part2);
END IF;
IF v_dblink IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('dblink : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('dblink : ' || v_dblink);
END IF;
CALL DBMS_OUTPUT.PUT_LINE('part1 type: ' || v_part1_type);
CALL DBMS_OUTPUT.PUT_LINE('object id : ' || v_objectid);

END
DB20000I The SQL command completed successfully.

DROP TABLE S1.T1
DB20000I The SQL command completed successfully.

CREATE TABLE S1.T1 (C1 INT)
DB20000I The SQL command completed successfully.

CREATE OR REPLACE PROCEDURE S2.PROC1
BEGIN
END
DB20000I The SQL command completed successfully.

CREATE OR REPLACE MODULE S3.M1

Chapter 3. System-defined modules 307

DB20000I The SQL command completed successfully.

ALTER MODULE S3.M1 PUBLISH FUNCTION F1() RETURNS BOOLEAN
BEGIN

RETURN TRUE;
END
DB20000I The SQL command completed successfully.

CALL NAME_RESOLVE('S1.T1', 2)

Return Status = 0

name : S1.T1
context : 2
schema : S1
part1 : T1
part2 : NULL
dblink : NULL
part1 type: 2
object id : 8

CALL NAME_RESOLVE('S2.PROC1', 2)
SQL0204N "S2.PROC1" is an undefined name. SQLSTATE=42704

CALL NAME_RESOLVE('S2.PROC1', 1)

Return Status = 0

name : S2.PROC1
context : 1
schema : S2
part1 : PROC1
part2 : NULL
dblink : NULL
part1 type: 7
object id : 66611

CALL NAME_RESOLVE('PROC1', 1)

Return Status = 0

name : PROC1
context : 1
schema : S2
part1 : NULL
part2 : PROC1
dblink : NULL
part1 type: 7
object id : 66611

CALL NAME_RESOLVE('M1', 1)

Return Status = 0

name : M1
context : 1
schema : S3
part1 : NULL
part2 : M1
dblink : NULL
part1 type: 9
object id : 16

CALL NAME_RESOLVE('S3.M1.F1', 1)

Return Status = 0

308 SQL Procedural Languages: Application Enablement and Support

name : S3.M1.F1
context : 1
schema : S3
part1 : M1
part2 : F1
dblink : NULL
part1 type: 9
object id : 16

Example 2: Resolve a table accessed by a database link. Note that NAME_RESOLVE
does not check the validity of the database object on the remote database. It merely
echoes back the components specified in the name argument.
BEGIN

name_resolve('sample_schema.emp@sample_schema_link',2);
END;

name : sample_schema.emp@sample_schema_link
context : 2
schema : SAMPLE_SCHEMA
part1 : EMP
part2 :
dblink : SAMPLE_SCHEMA_LINK
part1 type: 0
object id : 0

NAME_TOKENIZE procedure - Parse the given name into its
component parts

The NAME_TOKENIZE procedure parses a name into its component parts. Names
without double quotes are put into uppercase, and double quotes are stripped
from names with double quotes.

Syntax

�� NAME_TOKENIZE (name , a , b , c , dblink , nextpos) ��

Parameters

name
An input argument of type VARCHAR(1024) that specifies the string
containing a name in the following format:
a[.b[.c]][@dblink]

a An output argument of type VARCHAR(128) that returns the leftmost
component.

b An output argument of type VARCHAR(128) that returns the second
component, if any.

c An output argument of type VARCHAR(128) that returns the third component,
if any.

dblink
An output argument of type VARCHAR(32672) that returns the database link
name.

nextpos
An output argument of type INTEGER that specifies the position of the last
character parsed in name.

Chapter 3. System-defined modules 309

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Examples

Example 1: The following stored procedure is used to display the returned values of
the NAME_TOKENIZE procedure for various names.
SET SERVEROUTPUT ON@

CREATE OR REPLACE PROCEDURE name_tokenize(
IN p_name VARCHAR(100))

BEGIN
DECLARE v_a VARCHAR(30);
DECLARE v_b VARCHAR(30);
DECLARE v_c VARCHAR(30);
DECLARE v_dblink VARCHAR(30);
DECLARE v_nextpos INTEGER;

CALL DBMS_UTILITY.NAME_TOKENIZE(p_name, v_a, v_b, v_c, v_dblink, v_nextpos);
CALL DBMS_OUTPUT.PUT_LINE('name : ' || p_name);
IF v_a IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('a : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('a : ' || v_a);
END IF;
IF v_b IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('b : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('b : ' || v_b);
END IF;
IF v_c IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('c : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('c : ' || v_c);
END IF;
IF v_dblink IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('dblink : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('dblink : ' || v_dblink);
END IF;
IF v_nextpos IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('nextpos: NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('nextpos: ' || v_nextpos);
END IF;

END@

CALL name_tokenize('b')@
CALL name_tokenize('a.b')@
CALL name_tokenize('"a".b.c')@
CALL name_tokenize('a.b.c@d')@
CALL name_tokenize('a.b."c"@"d"')@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

CREATE OR REPLACE PROCEDURE name_tokenize(
IN p_name VARCHAR(100))

BEGIN
DECLARE v_a VARCHAR(30);
DECLARE v_b VARCHAR(30);
DECLARE v_c VARCHAR(30);

310 SQL Procedural Languages: Application Enablement and Support

DECLARE v_dblink VARCHAR(30);
DECLARE v_nextpos INTEGER;

CALL DBMS_UTILITY.NAME_TOKENIZE(p_name, v_a, v_b, v_c, v_dblink, v_nextpos);
CALL DBMS_OUTPUT.PUT_LINE('name : ' || p_name);
IF v_a IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('a : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('a : ' || v_a);
END IF;
IF v_b IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('b : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('b : ' || v_b);
END IF;
IF v_c IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('c : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('c : ' || v_c);
END IF;
IF v_dblink IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('dblink : NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('dblink : ' || v_dblink);
END IF;
IF v_nextpos IS NULL THEN

CALL DBMS_OUTPUT.PUT_LINE('nextpos: NULL');
ELSE

CALL DBMS_OUTPUT.PUT_LINE('nextpos: ' || v_nextpos);
END IF;

END
DB20000I The SQL command completed successfully.

CALL name_tokenize('b')

Return Status = 0

name : b
a : B
b : NULL
c : NULL
dblink : NULL
nextpos: 1

CALL name_tokenize('a.b')

Return Status = 0

name : a.b
a : A
b : B
c : NULL
dblink : NULL
nextpos: 3

CALL name_tokenize('"a".b.c')

Return Status = 0

name : "a".b.c
a : a
b : B
c : C
dblink : NULL
nextpos: 7

CALL name_tokenize('a.b.c@d')

Chapter 3. System-defined modules 311

Return Status = 0

name : a.b.c@d
a : A
b : B
c : C
dblink : D
nextpos: 7

CALL name_tokenize('a.b."c"@"d"')

Return Status = 0

name : a.b."c"@"d"
a : A
b : B
c : c
dblink : d
nextpos: 11

TABLE_TO_COMMA procedures - Convert a table of names
into a comma-delimited list of names

The TABLE_TO_COMMA procedures convert an array of names into a
comma-delimited list of names. Each array element becomes a list entry.

Note: The names must be formatted as valid identifiers.

Syntax

�� TABLE_TO_COMMA_LNAME (tab , tablen , list) ��

�� TABLE_TO_COMMA_UNCL (tab , tablen , list) ��

Parameters

tab An input argument of type LNAME_ARRAY or UNCL_ARRAY that specifies
the array containing names. See LNAME_ARRAY or UNCL_ARRAY for a
description of tab.

tablen
An output argument of type INTEGER that returns the number of entries in
list.

list
An output argument of type VARCHAR(32672) that returns the
comma-delimited list of names from tab.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

Examples

Example 1: The following example first uses the COMMA_TO_TABLE_LNAME
procedure to convert a comma-delimited list to a table. The
TABLE_TO_COMMA_LNAME procedure then converts the table back to a
comma-delimited list which is displayed.

312 SQL Procedural Languages: Application Enablement and Support

SET SERVEROUTPUT ON@

CREATE OR REPLACE PROCEDURE table_to_comma(
IN p_list VARCHAR(100))

BEGIN
DECLARE r_lname DBMS_UTILITY.LNAME_ARRAY;
DECLARE v_length INTEGER;
DECLARE v_listlen INTEGER;
DECLARE v_list VARCHAR(80);

CALL DBMS_UTILITY.COMMA_TO_TABLE_LNAME(p_list, v_length, r_lname);
CALL DBMS_OUTPUT.PUT_LINE('Table Entries');
CALL DBMS_OUTPUT.PUT_LINE('-------------');
BEGIN

DECLARE i INTEGER DEFAULT 1;
DECLARE LOOP_LIMIT INTEGER;
SET LOOP_LIMIT = v_length;

WHILE i <= LOOP_LIMIT DO
CALL DBMS_OUTPUT.PUT_LINE(r_lname(i));
SET i = i + 1;

END WHILE;
END;
CALL DBMS_OUTPUT.PUT_LINE('-------------');
CALL DBMS_UTILITY.TABLE_TO_COMMA_LNAME(r_lname, v_listlen, v_list);
CALL DBMS_OUTPUT.PUT_LINE('Comma-Delimited List: ' || v_list);

END@

CALL table_to_comma('sample_schema.dept,sample_schema.emp,sample_schema.jobhist')@

This example results in the following output:
SET SERVEROUTPUT ON
DB20000I The SET SERVEROUTPUT command completed successfully.

CREATE OR REPLACE PROCEDURE table_to_comma(
IN p_list VARCHAR(100))

BEGIN
DECLARE r_lname DBMS_UTILITY.LNAME_ARRAY;
DECLARE v_length INTEGER;
DECLARE v_listlen INTEGER;
DECLARE v_list VARCHAR(80);

CALL DBMS_UTILITY.COMMA_TO_TABLE_LNAME(p_list, v_length, r_lname);
CALL DBMS_OUTPUT.PUT_LINE('Table Entries');
CALL DBMS_OUTPUT.PUT_LINE('-------------');
BEGIN

DECLARE i INTEGER DEFAULT 1;
DECLARE LOOP_LIMIT INTEGER;
SET LOOP_LIMIT = v_length;

WHILE i <= LOOP_LIMIT DO
CALL DBMS_OUTPUT.PUT_LINE(r_lname(i));
SET i = i + 1;

END WHILE;
END;
CALL DBMS_OUTPUT.PUT_LINE('-------------');
CALL DBMS_UTILITY.TABLE_TO_COMMA_LNAME(r_lname, v_listlen, v_list);
CALL DBMS_OUTPUT.PUT_LINE('Comma-Delimited List: ' || v_list);

END
DB20000I The SQL command completed successfully.

CALL table_to_comma('sample_schema.dept,sample_schema.emp,sample_schema.jobhist')

Return Status = 0

Table Entries

Chapter 3. System-defined modules 313

sample_schema.dept
sample_schema.emp
sample_schema.jobhist

Comma-Delimited List: sample_schema.dept,sample_schema.emp,sample_schema.jobhist

VALIDATE procedure - Change an invalid routine into a valid
routine

The VALIDATE procedure provides the capability to change the state of an invalid
routine to valid.

Syntax

�� VALIDATE (object_id) ��

Parameters

object_id
An input argument of type INTEGER that specifies the identifier of the routine
to be changed to a valid state. The ROUTINEID column of the
SYSCAT.ROUTINES view contains all the routine identifiers.

Authorization

EXECUTE privilege on the DBMS_UTILITY module.

MONREPORT module
The MONREPORT module provides a set of procedures for retrieving a variety of
monitoring data and generating text reports.

The schema for this module is SYSIBMADM.

The MONREPORT module includes the following system-defined routines.

Table 29. System-defined routines available in the MONREPORT module

Routine name Description

“CONNECTION procedure - generate a
report on connection metrics” on page 316

The Connection report presents monitor data
for each connection.

“CURRENTAPPS procedure - generate a
report of point-in-time application
processing metrics” on page 317

The Current Applications report presents the
current instantaneous state of processing of
units of work, agents, and activities for each
connection. The report starts with state
information summed across connections,
followed by a section for details for each
connection.

“CURRENTSQL procedure - generate a
report that summarizes activities” on page
317

The Current SQL report lists the top
activities currently running, as measured by
various metrics.

“DBSUMMARY procedure - generate a
summary report of system and application
performance metrics” on page 318

The Summary report contains in-depth
monitor data for the entire database, as well
as key performance indicators for each
connection, workload, service class, and
database member.

314 SQL Procedural Languages: Application Enablement and Support

Table 29. System-defined routines available in the MONREPORT module (continued)

Routine name Description

“LOCKWAIT procedure - generate a report
of current lock waits” on page 319

The Lock Waits report contains information
about each lock wait currently in progress.
Details include lock holder and requestor
details, plus characteristics of the lock held
and the lock requested.

“PKGCACHE procedure - generate a
summary report of package cache metrics”
on page 321

The Package Cache report lists the top
statements accumulated in the package
cache as measured by various metrics.

Usage notes

Monitor element names are displayed in upper case (for example,
TOTAL_CPU_TIME). To find out more information about a monitor element,
search the DB2 Information Center for the monitor name.

For reports with a monitoring_interval input, negative values in a report are
inaccurate. This may occur during a rollover of source data counters. To determine
accurate values, re-run the report after the rollover is complete.

Note: The reports are implemented using SQL procedures within modules, and as
such can be impacted by the package cache configuration. If you observe slow
performance when running the reports, inspect your package cache configuration
to ensure it is sufficient for your workload. For further information, see
“pckcachesz - Package cache size configuration parameter”.

The following examples demonstrate various ways to call the MONREPORT
routines. The examples show the MONREPORT.CONNECTION(monitoring_interval,
application_handle) procedure. You can handle optional parameters for which you
do not want to enter a value in the following ways:
v You can always specify null or DEFAULT.
v For character inputs, you can specify an empty string (' ').
v If it is the last parameter, you can omit it.

To generate a report that includes a section for each connection, with the default
monitoring interval of 10 seconds, make the following call to the
MONREPORT.CONNECTION procedure:
call monreport.connection()

To generate a report that includes a section only for the connection with
application handle 32, with the default monitoring interval of 10 seconds, you can
make either of the following calls to the MONREPORT.CONNECTION procedure:
call monreport.connection(DEFAULT, 32)

call monreport.connection(10, 32)

To generate a report that includes a section for each connection, with a monitoring
interval of 60 seconds, you can make either of the following calls to the
MONREPORT.CONNECTION procedure:
call monreport.connection(60)

call monreport.connection(60, null)

Chapter 3. System-defined modules 315

By default, the reports in this module are generated in English. To change the
language in which the reports are generated, change the CURRENT LOCALE
LC_MESSAGES special register. For example, to generate the CONNECTION
report in French, issue the following commands:
SET CURRENT LOCALE LC_MESSAGES = 'CLDR 1.5:fr_FR'
CALL MONREPORT.CONNECTION

CONNECTION procedure - generate a report on connection
metrics

The CONNECTION procedure gathers monitor data for each connection and
produces a text-formatted report.

The CONNECTION procedure is available starting with DB2 Version 9.7 Fix Pack
1.

Syntax

�� CONNECTION (monitoring_interval , application_handle) ��

Parameters

monitoring_interval
An optional input argument of type INTEGER that specifies the duration in
seconds that monitoring data is collected before it is reported. For example, if
you specify a monitoring interval of 30, the routine calls table functions, waits
30 seconds and calls the table functions again. The routine then calculates the
difference, which reflects changes during the interval. If the monitoring_interval
argument is not specified (or if null is specified), the default value is 10. The
range of valid inputs are the integer values 0-3600 (that is, up to 1 hour).

application_handle
An optional input argument of type BIGINT that specifies an application
handle that identifies a connection. If the application_handle argument is not
specified (or if null is specified), the report includes a section for each
connection. The default is null.

Authorization

The following privilege is required:
v EXECUTE privilege on the MONREPORT module

The following examples demonstrate various ways to call the CONNECTION
procedure. The first example produces a report for all connections with data
displayed corresponding to an interval of 10 seconds:
call monreport.connection;

The next example produces a report for all connections with data displayed
corresponding to interval of 30 seconds:
call monreport.connection(30);

The next example produces a report for a connection with an application handle of
34. Data is displayed based on absolute totals accumulated in the source table
functions (rather than based on the current interval).
call monreport.connection(0, 34);

316 SQL Procedural Languages: Application Enablement and Support

The next example produces a report for a connection with an application handle of
34. Data is displayed corresponding to an interval of 10 seconds.
call monreport.connection(DEFAULT, 34);

CURRENTAPPS procedure - generate a report of point-in-time
application processing metrics

The CURRENTAPPS procedure gathers information about the current
instantaneous state of processing of units or work, agents, and activities for each
connection.

The CURRENTAPPS procedure is available starting with DB2 Version 9.7 Fix Pack
1.

Syntax

�� CURRENTAPPS () ��

Authorization

The following privilege is required:
v EXECUTE privilege on the MONREPORT module

The following examples demonstrate ways to call the CURRENTAPPS procedure:
call monreport.currentapps;

call monreport.currentapps();

CURRENTSQL procedure - generate a report that summarizes
activities

The CURRENTSQL procedure generates a text-formatted report that summarizes
currently running activities.

The CURRENTSQL procedure is available starting with DB2 Version 9.7 Fix Pack 1.

Syntax

�� CURRENTSQL (member) ��

Parameters

member
An input argument of type SMALLINT that determines whether to show data
for a particular member or partition, or to show data summed across all
members. If this argument is not specified (or if null is specified), the report
shows values summed across all members. If a valid member number is
specified, the report shows values for that member.

Authorization

The following privilege is required:
v EXECUTE privilege on the MONREPORT module

Chapter 3. System-defined modules 317

The following examples demonstrate various ways to call the CURRENTSQL
procedure. The first example produces a report that shows activity metrics
aggregated across all members:
call monreport.currentsql;

The next example produces a report that shows activity metrics specific to the
activity performance on member number 4.
call monreport.currentsql(4);

DBSUMMARY procedure - generate a summary report of
system and application performance metrics

The DBSUMMARY procedure generates a text-formatted monitoring report that
summarizes system and application performance metrics.

The DBSUMMARY procedure is available starting with DB2 Version 9.7 Fix Pack 1.

The DB Summary report contains in-depth monitor data for the entire database as
well as key performance indicators for each connection, workload, service class,
and database member.

Syntax

�� DBSUMMARY (monitoring_interval) ��

Parameters

monitoring_interval
An optional input argument of type INTEGER that specifies the duration in
seconds that monitoring data is collected before it is reported. For example, if
you specify a monitoring interval of 30, the routine calls the table functions,
waits 30 seconds and then calls the table functions again. The DBSUMMARY
procedure then calculates the difference, which reflects changes during the
interval. If the monitoring_interval argument is not specified (or if null is
specified), the default value is 10. The range of valid inputs are the integer
values 0-3600 (that is, up to 1 hour).

Authorization

The following privilege is required:
v EXECUTE privilege on the MONREPORT module

The following examples demonstrate various ways to call the DBSUMMARY
procedure. The first example produces a report that displays data corresponding to
an interval of 10 seconds:
call monreport.dbsummary;

The next example produces a report that displays data corresponding to an
interval of 30 seconds.
call monreport.dbsummary(30);

318 SQL Procedural Languages: Application Enablement and Support

LOCKWAIT procedure - generate a report of current lock waits
The Lock Waits report contains information about each lock wait currently in
progress. Details include information about the lock holder and requestor and
characteristics of the lock held and the lock requested.

The LOCKWAIT procedure is available starting with DB2 Version 9.7 Fix Pack 1.

Syntax

�� LOCKWAIT () ��

Authorization

The following privilege is required:
v EXECUTE privilege on the MONREPORT module

The following examples demonstrate various ways to call the LOCKWAIT
procedure:
call monreport.lockwait;

call monreport.lockwait();

--
--
Monitoring report - current lock waits
--
Database: SAMPLE
Generated: 08/28/2009 07:16:26

==
Part 1 - Summary of current lock waits

--

REQ_APPLICATION LOCK_MODE HLD_APPLICATION LOCK_ LOCK_OBJECT_TYPE
HANDLE REQUESTED _HANDLE MODE
---- --------------- --------- --------------- ----- ----------------------
1 26 U 21 U ROW
2 25 U 21 U ROW
3 24 U 21 U ROW
4 23 U 21 U ROW
5 22 U 21 U ROW
6 27 U 21 U ROW

==

...

390 record(s) selected.

Return Status = 0

Figure 1. Sample MONREPORT.LOCKWAIT output - summary section

Chapter 3. System-defined modules 319

==
Part 2: Details for each current lock wait

lock wait #:1
--

-- Lock details --

LOCK_NAME = 04000500040000000000000052
LOCK_WAIT_START_TIME = 2009-08-28-07.15.31.013802
LOCK_OBJECT_TYPE = ROW
TABSCHEMA = TRIPATHY
TABNAME = INVENTORY
ROWID = 4
LOCK_STATUS = W
LOCK_ATTRIBUTES = 0000000000000000
ESCALATION = N

-- Requestor and holder application details --

Attributes Requestor Holder
------------------- ----------------------------- ----------------------------
APPLICATION_HANDLE 26 21
APPLICATION_ID *LOCAL.tripathy.090828111531 *LOCAL.tripathy.090828111435
APPLICATION_NAME java java
SESSION_AUTHID TRIPATHY TRIPATHY
MEMBER 0 0
LOCK_MODE - U
LOCK_MODE_REQUESTED U -

-- Lock holder current agents --

AGENT_TID = 41
REQUEST_TYPE = FETCH
EVENT_STATE = IDLE
EVENT_OBJECT = REQUEST
EVENT_TYPE = WAIT
ACTIVITY_ID =
UOW_ID =

-- Lock holder current activities --

ACTIVITY_ID = 1
UOW_ID = 1
LOCAL_START_TIME = 2009-08-28-07.14.31.079757
ACTIVITY_TYPE = READ_DML
ACTIVITY_STATE = IDLE

STMT_TEXT =
select * from inventory for update

-- Lock requestor waiting agent and activity --

AGENT_TID = 39
REQUEST_TYPE = FETCH
ACTIVITY_ID = 1
UOW_ID = 1
LOCAL_START_TIME = 2009-08-28-07.15.31.012935
ACTIVITY_TYPE = READ_DML
ACTIVITY_STATE = EXECUTING

STMT_TEXT =
select * from inventory for update

Figure 2. Sample MONREPORT.LOCKWAIT output - details section

320 SQL Procedural Languages: Application Enablement and Support

PKGCACHE procedure - generate a summary report of
package cache metrics

The Package Cache Summary report lists the top statements accumulated in the
package cache as measured by various metrics.

The PKGCACHE procedure is available starting with DB2 Version 9.7 Fix Pack 1.

Syntax

�� PKGCACHE (cache_interval , section_type , member) ��

Parameters

cache_interval
An optional input argument of type INTEGER that specifies the report should
only include data for package cache entries that have been updated in the past
number of minutes specified by the cache_interval value. For example a
cache_interval value of 60 produces a report based on package cache entries that
have been updated in the past 60 minutes. Valid values are integers between 0
and 10080, which supports an interval of up to 7 days. If the argument is not
specified (or if null is specified), the report includes data for package cache
entries regardless of when they were added or updated.

section_type
An optional input argument of type CHAR(1) that specifies whether the report
should include data for static SQL, dynamic SQL, or both. If the argument is
not specified (or if null is specified), the report includes data for both types of
SQL. Valid values are: d or D (for dynamic) and s or S (for static).

member
An optional input argument of type SMALLINT that determines whether to
show data for a particular member or partition, or to show data summed
across all members. If this argument is not specified (or if null is specified), the
report shows values summed across all members. If a valid member number is
specified, the report shows values for that member.

Authorization

The following privilege is required:
v EXECUTE privilege on the MONREPORT module

The following examples demonstrate various ways to call the PKGCACHE
procedure. The first example produces a report based on all statements in the
package cache, with data aggregated across all members:
call monreport.pkgcache;

The next example produces a report based on both dynamic and static statements
in the package cache for which metrics have been updated within the last 30
minutes, with data aggregated across all members:
call monreport.pkgcache(30);

The next example produces a report based on all dynamic statements in the
package cache, with data aggregated across all members:
call monreport.pkgcache(DEFAULT, 'd');

Chapter 3. System-defined modules 321

The next example produces a report based on both dynamic and static statements
in the package cache for which metrics have been updated within the last 30
minutes, with data specific to a member number 4:
call db2monreport.pkgcache(30, DEFAULT, 4);

UTL_DIR module
The UTL_DIR module provides a set of routines for maintaining directory aliases
that are used with the UTL_FILE module.

Note: The UTL_DIR module does not issue any direct operating system calls, for
example, the mkdir or rmdir commands. Maintenance of the physical directories is
outside the scope of this module.

The schema for this module is SYSIBMADM.

The UTL_DIR module includes the following system-defined routines.

Table 30. System-defined routines available in the UTL_DIR module

Routine name Description

CREATE_DIRECTORY procedure Creates a directory alias for the specified
path.

CREATE_OR_REPLACE_DIRECTORY
procedure

Creates or replaces a directory alias for the
specified path.

DROP_DIRECTORY procedure Drops the specified directory alias.

GET_DIRECTORY_PATH procedure Gets the corresponding path for the
specified directory alias.

CREATE_DIRECTORY procedure - Create a directory alias
The CREATE_DIRECTORY procedure creates a directory alias for the specified
path.

Directory information is stored in SYSTOOLS.DIRECTORIES, which is created in
the SYSTOOLSPACE when you first reference this module for each database.

Syntax

�� UTL_DIR.CREATE_DIRECTORY (alias , path) ��

Procedure parameters

alias
An input argument of type VARCHAR(128) that specifies the directory alias.

path
An input argument of type VARCHAR(1024) that specifies the path.

Authorization

EXECUTE privilege on the UTL_DIR module.

322 SQL Procedural Languages: Application Enablement and Support

Example

Create a directory alias, and use it in a call to the UTL_FILE.FOPEN function.
SET SERVEROUTPUT ON@

CREATE OR REPLACE PROCEDURE proc1()
BEGIN

DECLARE v_filehandle UTL_FILE.FILE_TYPE;
DECLARE isOpen BOOLEAN;
DECLARE v_filename VARCHAR(20) DEFAULT 'myfile.csv';
CALL UTL_DIR.CREATE_DIRECTORY('mydir', '/home/user/temp/mydir');
SET v_filehandle = UTL_FILE.FOPEN('mydir',v_filename,'w');
SET isOpen = UTL_FILE.IS_OPEN(v_filehandle);

IF isOpen != TRUE THEN
RETURN -1;

END IF;
CALL DBMS_OUTPUT.PUT_LINE('Opened file: ' || v_filename);
CALL UTL_FILE.FCLOSE(v_filehandle);

END@

CALL proc1@

This example results in the following output:
Opened file: myfile.csv

CREATE_OR_REPLACE_DIRECTORY procedure - Create or
replace a directory alias

The CREATE_OR_REPLACE_DIRECTORY procedure creates or replaces a
directory alias for the specified path.

Directory information is stored in SYSTOOLS.DIRECTORIES, which is created in
the SYSTOOLSPACE when you first reference this module for each database.

Syntax

�� UTL_DIR.CREATE_OR_REPLACE_DIRECTORY (alias , path) ��

Procedure parameters

alias
An input argument of type VARCHAR(128) that specifies the directory alias.

path
An input argument of type VARCHAR(1024) that specifies the path.

Authorization

EXECUTE privilege on the UTL_DIR module.

Example

Example 1: Create a directory alias. Because the directory already exists, an error
occurs.
CALL UTL_DIR.CREATE_DIRECTORY('mydir', 'home/user/temp/empdir')@

This example results in the following output:

Chapter 3. System-defined modules 323

SQL0438N Application raised error or warning with diagnostic text: "directory
alias already defined". SQLSTATE=23505

Example 2: Create or replace a directory alias.
CALL UTL_DIR.CREATE_OR_REPLACE_DIRECTORY('mydir', 'home/user/temp/empdir')@

This example results in the following output:
Return Status = 0

DROP_DIRECTORY procedure - Drop a directory alias
The DROP_DIRECTORY procedure drops the specified directory alias.

Syntax

�� UTL_DIR.DROP_DIRECTORY (alias) ��

Procedure parameters

alias
An input argument of type VARCHAR(128) that specifies the directory alias.

Authorization

EXECUTE privilege on the UTL_DIR module.

Example

Drop the specified directory alias.
CALL UTL_DIR.DROP_DIRECTORY('mydir')@

This example results in the following output:
Return Status = 0

GET_DIRECTORY_PATH procedure - Get the path for a
directory alias

The GET_DIRECTORY_PATH procedure returns the corresponding path for a
directory alias.

Syntax

�� UTL_DIR.GET_DIRECTORY_PATH (alias , path) ��

Procedure parameters

alias
An input argument of type VARCHAR(128) that specifies the directory alias.

path
An output argument of type VARCHAR(1024) that specifies the path that is
defined for a directory alias.

Authorization

EXECUTE privilege on the UTL_DIR module.

324 SQL Procedural Languages: Application Enablement and Support

Example

Get the path that is defined for a directory alias.
CALL UTL_DIR.GET_DIRECTORY_PATH('mydir', ?)@

This example results in the following output:
Value of output parameters

Parameter Name : PATH
Parameter Value : home/rhoda/temp/mydir

Return Status = 0

UTL_FILE module
The UTL_FILE module provides a set of routines for reading from and writing to
files on the database server's file system.

The schema for this module is SYSIBMADM.

The UTL_FILE module includes the following system-defined routines and types.

Table 31. System-defined routines available in the UTL_FILE module

Routine name Description

FCLOSE procedure Closes a specified file.

FCLOSE_ALL procedure Closes all open files.

FCOPY procedure Copies text from one file to another.

FFLUSH procedure Flushes unwritten data to a file

FOPEN function Opens a file.

FREMOVE procedure Removes a file.

FRENAME procedure Renames a file.

GET_LINE procedure Gets a line from a file.

IS_OPEN function Determines whether a specified file is open.

NEW_LINE procedure Writes an end-of-line character sequence to a
file.

PUT procedure Writes a string to a file.

PUT_LINE procedure Writes a single line to a file.

PUTF procedure Writes a formatted string to a file.

UTL_FILE.FILE_TYPE Stores a file handle.

The following is a list of named conditions (these are called "exceptions" by Oracle)
that an application can receive.

Table 32. Named conditions for an application

Condition Name Description

access_denied Access to the file is denied by the operating
system.

charsetmismatch A file was opened using FOPEN_NCHAR,
but later I/O operations used non-CHAR
functions such as PUTF or GET_LINE.

Chapter 3. System-defined modules 325

Table 32. Named conditions for an application (continued)

Condition Name Description

delete_failed Unable to delete file.

file_open File is already open.

internal_error Unhandled internal error in the UTL_FILE
module.

invalid_filehandle File handle does not exist.

invalid_filename A file with the specified name does not exist
in the path.

invalid_maxlinesize The MAX_LINESIZE value for FOPEN is
invalid. It must be between 1 and 32672.

invalid_mode The open_mode argument in FOPEN is
invalid.

invalid_offset The ABSOLUTE_OFFSET argument for
FSEEK is invalid. It must be greater than 0
and less than the total number of bytes in
the file.

invalid_operation File could not be opened or operated on as
requested.

invalid_path The specified path does not exist or is not
visible to the database

read_error Unable to read the file.

rename_failed Unable to rename the file.

write_error Unable to write to the file.

Usage notes

To reference directories on the file system, use a directory alias. You can create a
directory alias by calling the UTL_DIR.CREATE_DIRECTORY or
UTL_DIR.CREATE_OR_REPLACE_DIRECTORY procedures. For example, CALL
UTL_DIR.CREATE_DIRECTORY('mydir', 'home/user/temp/mydir')@.

The UTL_FILE module executes file operations by using the DB2 instance ID.
Therefore, if you are opening a file, verify that the DB2 instance ID has the
appropriate operating system permissions.

The UTL_FILE module is supported only in a non-partitioned database
environment.

FCLOSE procedure - Close an open file
The FCLOSE procedure closes a specified file.

Syntax

�� UTL_FILE.FCLOSE (file) ��

Procedure parameters

file An input or output argument of type UTL_FILE.FILE_TYPE that contains the
file handle. When the file is closed, this value is set to 0.

326 SQL Procedural Languages: Application Enablement and Support

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Open a file, write some text to the file, and then close the file.
SET SERVEROUTPUT ON@

CREATE OR REPLACE PROCEDURE proc1()
BEGIN

DECLARE v_filehandle UTL_FILE.FILE_TYPE;
DECLARE isOpen BOOLEAN;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'mydir';
DECLARE v_filename VARCHAR(20) DEFAULT 'myfile.csv';
SET v_filehandle = UTL_FILE.FOPEN(v_dirAlias,v_filename,'w');
SET isOpen = UTL_FILE.IS_OPEN(v_filehandle);

IF isOpen != TRUE THEN
RETURN -1;

END IF;
CALL UTL_FILE.PUT_LINE(v_filehandle,'Some text to write to the file.');
CALL UTL_FILE.FCLOSE(v_filehandle);
SET isOpen = UTL_FILE.IS_OPEN(v_filehandle);

IF isOpen != TRUE THEN
CALL DBMS_OUTPUT.PUT_LINE('Closed file: ' || v_filename);

END IF;
END@

CALL proc1@

This example results in the following output:
Closed file: myfile.csv

FCLOSE_ALL procedure - Close all open files
The FCLOSE_ALL procedure closes all open files. The procedure runs successfully
even if there are no open files to close.

Syntax

�� UTL_FILE.FCLOSE_ALL ��

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Open a couple of files, write some text to the files, and then close all open files.
SET SERVEROUTPUT ON@

CREATE OR REPLACE PROCEDURE proc1()
BEGIN

DECLARE v_filehandle UTL_FILE.FILE_TYPE;
DECLARE v_filehandle2 UTL_FILE.FILE_TYPE;
DECLARE isOpen BOOLEAN;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'mydir';
DECLARE v_filename VARCHAR(20) DEFAULT 'myfile.csv';
DECLARE v_filename2 VARCHAR(20) DEFAULT 'myfile2.csv';
SET v_filehandle = UTL_FILE.FOPEN(v_dirAlias,v_filename,'w');

Chapter 3. System-defined modules 327

SET isOpen = UTL_FILE.IS_OPEN(v_filehandle);
IF isOpen != TRUE THEN

RETURN -1;
END IF;

CALL UTL_FILE.PUT_LINE(v_filehandle,'Some text to write to a file.');
SET v_filehandle2 = UTL_FILE.FOPEN(v_dirAlias,v_filename2,'w');
SET isOpen = UTL_FILE.IS_OPEN(v_filehandle2);

IF isOpen != TRUE THEN
RETURN -1;

END IF;
CALL UTL_FILE.PUT_LINE(v_filehandle2,'Some text to write to another file.');
CALL UTL_FILE.FCLOSE_ALL;
SET isOpen = UTL_FILE.IS_OPEN(v_filehandle);

IF isOpen != TRUE THEN
CALL DBMS_OUTPUT.PUT_LINE(v_filename || ' is now closed.');

END IF;
SET isOpen = UTL_FILE.IS_OPEN(v_filehandle2);

IF isOpen != TRUE THEN
CALL DBMS_OUTPUT.PUT_LINE(v_filename2 || ' is now closed.');

END IF;
END@

CALL proc1@

This example results in the following output:
myfile.csv is now closed.
myfile2.csv is now closed.

FCOPY procedure - Copy text from one file to another
The FCOPY procedure copies text from one file to another.

Syntax

�� UTL_FILE.FCOPY (location , filename , dest_dir , dest_file �

�)
, start_line

, end_line

��

Procedure parameters

location
An input argument of type VARCHAR(128) that specifies the alias of the
directory that contains the source file.

filename
An input argument of type VARCHAR(255) that specifies the name of the
source file.

dest_dir
An input argument of type VARCHAR(128) that specifies the alias of the
destination directory.

dest_file
An input argument of type VARCHAR(255) that specifies the name of the
destination file.

start_line
An optional input argument of type INTEGER that specifies the line number of
the first line of text to copy in the source file. The default is 1.

328 SQL Procedural Languages: Application Enablement and Support

end_line
An optional input argument of type INTEGER that specifies the line number of
the last line of text to copy in the source file. If this argument is omitted or
null, the procedure continues copying all text through the end of the file.

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Make a copy of a file, empfile.csv, that contains a comma-delimited list of
employees from the emp table.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_empfile UTL_FILE.FILE_TYPE;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'empdir';
DECLARE v_src_file VARCHAR(20) DEFAULT 'empfile.csv';
DECLARE v_dest_file VARCHAR(20) DEFAULT 'empcopy.csv';
DECLARE v_empline VARCHAR(200);
CALL UTL_FILE.FCOPY(v_dirAlias,v_src_file,v_dirAlias,v_dest_file);

END@

CALL proc1@

This example results in the following output:
Return Status = 0

The file copy, empcopy.csv, contains the following data:
10,CHRISTINE,I,HAAS,A00,3978,1/1/1965,PRES,18,F,8/24/1933,52750,1000,4220
20,MICHAEL,L,THOMPSON,B01,3476,10/10/1973,MANAGER,18,M,2/2/1948,41250,800,3300
30,SALLY,A,KWAN,C01,4738,4/5/1975,MANAGER,20,F,5/11/1941,38250,800,3060
50,JOHN,B,GEYER,E01,6789,8/17/1949,MANAGER,16,M,9/15/1925,40175,800,3214
60,IRVING,F,STERN,D11,6423,9/14/1973,MANAGER,16,M,7/7/1945,32250,500,2580
70,EVA,D,PULASKI,D21,7831,9/30/1980,MANAGER,16,F,5/26/1953,36170,700,2893
90,EILEEN,W,HENDERSON,E11,5498,8/15/1970,MANAGER,16,F,5/15/1941,29750,600,2380
100,THEODORE,Q,SPENSER,E21,972,6/19/1980,MANAGER,14,M,12/18/1956,26150,500,2092

FFLUSH procedure - Flush unwritten data to a file
The FFLUSH procedure forces unwritten data in the write buffer to be written to a
file.

Syntax

�� UTL_FILE.FFLUSH (file) ��

Procedure parameters

file An input argument of type UTL_FILE.FILE_TYPE that contains the file handle.

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Flush each line after calling the NEW_LINE procedure.

Chapter 3. System-defined modules 329

SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_empfile_src UTL_FILE.FILE_TYPE;
DECLARE v_empfile_tgt UTL_FILE.FILE_TYPE;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'empdir';
DECLARE v_src_file VARCHAR(20) DEFAULT 'empfile.csv';
DECLARE v_dest_file VARCHAR(20) DEFAULT 'empfilenew.csv';
DECLARE v_empline VARCHAR(200);
DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLSTATE1 CHAR(5) DEFAULT '00000';
DECLARE CONTINUE HANDLER FOR SQLSTATE '02000'SET SQLSTATE1 = SQLSTATE;

SET v_empfile_src = UTL_FILE.FOPEN(v_dirAlias,v_src_file,'r');
SET v_empfile_tgt = UTL_FILE.FOPEN(v_dirAlias,v_dest_file,'w');

loop1: LOOP
CALL UTL_FILE.GET_LINE(v_empfile_src,v_empline);
IF SQLSTATE1 = '02000' THEN -- NO DATA FOUND

LEAVE loop1;
END IF;
CALL UTL_FILE.PUT(v_empfile_tgt,v_empline);
CALL UTL_FILE.NEW_LINE(v_empfile_tgt);
CALL UTL_FILE.FFLUSH(v_empfile_tgt);

END LOOP;
CALL DBMS_OUTPUT.PUT_LINE('Updated file: ' || v_dest_file);
CALL UTL_FILE.FCLOSE_ALL;

END@

CALL proc1@

This example results in the following output:
Updated file: empfilenew.csv

The updated file, empfilenew.csv, contains the following data:
10,CHRISTINE,I,HAAS,A00,3978,1/1/1965,PRES,18,F,8/24/1933,52750,1000,4220

20,MICHAEL,L,THOMPSON,B01,3476,10/10/1973,MANAGER,18,M,2/2/1948,41250,800,3300

30,SALLY,A,KWAN,C01,4738,4/5/1975,MANAGER,20,F,5/11/1941,38250,800,3060

50,JOHN,B,GEYER,E01,6789,8/17/1949,MANAGER,16,M,9/15/1925,40175,800,3214

60,IRVING,F,STERN,D11,6423,9/14/1973,MANAGER,16,M,7/7/1945,32250,500,2580

70,EVA,D,PULASKI,D21,7831,9/30/1980,MANAGER,16,F,5/26/1953,36170,700,2893

90,EILEEN,W,HENDERSON,E11,5498,8/15/1970,MANAGER,16,F,5/15/1941,29750,600,2380

100,THEODORE,Q,SPENSER,E21,972,6/19/1980,MANAGER,14,M,12/18/1956,26150,500,2092

FOPEN function - Open a file
The FOPEN function opens a file for I/O.

Syntax

�� UTL_FILE.FOPEN (location , filename , open_mode)
, max_linesize

��

330 SQL Procedural Languages: Application Enablement and Support

Return value

This function returns a value of type UTL_FILE.FILE_TYPE that indicates the file
handle of the opened file.

Function parameters

location
An input argument of type VARCHAR(128) that specifies the alias of the
directory that contains the file.

filename
An input argument of type VARCHAR(255) that specifies the name of the file.

open_mode
An input argument of type VARCHAR(10) that specifies the mode in which
the file is opened:

a append to file

r read from file

w write to file

max_linesize
An optional input argument of type INTEGER that specifies the maximum size
of a line in characters. The default value is 1024 bytes. In read mode, an
exception is thrown if an attempt is made to read a line that exceeds
max_linesize. In write and append modes, an exception is thrown if an attempt
is made to write a line that exceeds max_linesize. End-of-line character(s) do not
count towards the line size.

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Open a file, write some text to the file, and then close the file.
SET SERVEROUTPUT ON@

CREATE OR REPLACE PROCEDURE proc1()
BEGIN

DECLARE v_filehandle UTL_FILE.FILE_TYPE;
DECLARE isOpen BOOLEAN;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'mydir';
DECLARE v_filename VARCHAR(20) DEFAULT 'myfile.csv';
SET v_filehandle = UTL_FILE.FOPEN(v_dirAlias,v_filename,'w');
SET isOpen = UTL_FILE.IS_OPEN(v_filehandle);

IF isOpen != TRUE THEN
RETURN -1;

END IF;
CALL DBMS_OUTPUT.PUT_LINE('Opened file: ' || v_filename);
CALL UTL_FILE.PUT_LINE(v_filehandle,'Some text to write to the file.');
CALL UTL_FILE.FCLOSE(v_filehandle);

END@

CALL proc1@

This example results in the following output.
Opened file: myfile.csv

Chapter 3. System-defined modules 331

FREMOVE procedure - Remove a file
The FREMOVE procedure removes a specified file from the system. If the file does
not exist, this procedure throws an exception.

Syntax

�� UTL_FILE.FREMOVE (location , filename) ��

Procedure parameters

location
An input argument of type VARCHAR(128) that specifies the alias of the
directory that contains the file.

filename
An input argument of type VARCHAR(255) that specifies the name of the file.

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Remove the file myfile.csv from the system.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_dirAlias VARCHAR(50) DEFAULT 'mydir';
DECLARE v_filename VARCHAR(20) DEFAULT 'myfile.csv';
CALL UTL_FILE.FREMOVE(v_dirAlias,v_filename);
CALL DBMS_OUTPUT.PUT_LINE('Removed file: ' || v_filename);

END@

CALL proc1@

This example results in the following output:
Removed file: myfile.csv

FRENAME procedure - Rename a file
The FRENAME procedure renames a specified file. Renaming a file effectively
moves a file from one location to another.

Syntax

�� UTL_FILE.FRENAME (location , filename , dest_dir , dest_file)
, replace

��

Procedure parameters

location
An input argument of type VARCHAR(128) that specifies the alias of the
directory that contains the file that you want to rename.

filename
An input argument of type VARCHAR(255) that specifies the name of the file
that you want to rename.

332 SQL Procedural Languages: Application Enablement and Support

dest_dir
An input argument of type VARCHAR(128) that specifies the alias of the
destination directory.

dest_file
An input argument of type VARCHAR(255) that specifies the new name of the
file.

replace
An optional input argument of type INTEGER that specifies whether to replace
the file dest_file in the directory dest_dir if the file already exists:

1 Replaces existing file.

0 Throws an exception if the file already exists. This is the default if no
value is specified for replace.

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Rename a file, empfile.csv, that contains a comma-delimited list of employees from
the emp table.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_dirAlias VARCHAR(50) DEFAULT 'empdir';
DECLARE v_src_file VARCHAR(20) DEFAULT 'oldemp.csv';
DECLARE v_dest_file VARCHAR(20) DEFAULT 'newemp.csv';
DECLARE v_replace INTEGER DEFAULT 1;
CALL UTL_FILE.FRENAME(v_dirAlias,v_src_file,v_dirAlias,

v_dest_file,v_replace);
CALL DBMS_OUTPUT.PUT_LINE('The file ' || v_src_file ||

' has been renamed to ' || v_dest_file);
END@

CALL proc1@

This example results in the following output:
The file oldemp.csv has been renamed to newemp.csv

GET_LINE procedure - Get a line from a file
The GET_LINE procedure gets a line of text from a specified file. The line of text
does not include the end-of-line terminator. When there are no more lines to read,
the procedure throws a NO_DATA_FOUND exception.

Syntax

�� UTL_FILE.GET_LINE (file , buffer) ��

Procedure parameters

file An input argument of type UTL_FILE.FILE_TYPE that contains the file handle
of the opened file.

Chapter 3. System-defined modules 333

buffer
An output argument of type VARCHAR(32672) that contains a line of text from
the file.

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Read through and display the records in the file empfile.csv.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_empfile UTL_FILE.FILE_TYPE;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'empdir';
DECLARE v_filename VARCHAR(20) DEFAULT 'empfile.csv';
DECLARE v_empline VARCHAR(200);
DECLARE v_count INTEGER DEFAULT 0;
DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLSTATE1 CHAR(5) DEFAULT '00000';
DECLARE CONTINUE HANDLER FOR SQLSTATE 'ORANF'SET SQLSTATE1 = SQLSTATE;

SET v_empfile = UTL_FILE.FOPEN(v_dirAlias,v_filename,'r');

loop1: LOOP
CALL UTL_FILE.GET_LINE(v_empfile, v_empline);
IF SQLSTATE1 = 'ORANF' THEN -- NO DATA FOUND

LEAVE loop1;
END IF;
CALL DBMS_OUTPUT.PUT_LINE(v_empline);
SET v_count = v_count + 1;

END LOOP;
CALL DBMS_OUTPUT.PUT_LINE('End of file ' || v_filename || ' - ' || v_count

|| ' records retrieved');
CALL UTL_FILE.FCLOSE(v_empfile);

END@

CALL proc1@

This example results in the following output:
10,CHRISTINE,I,HAAS,A00,3978,1/1/1965,PRES,18,F,8/24/1933,52750,1000,4220

20,MICHAEL,L,THOMPSON,B01,3476,10/10/1973,MANAGER,18,M,2/2/1948,41250,800,3300

30,SALLY,A,KWAN,C01,4738,4/5/1975,MANAGER,20,F,5/11/1941,38250,800,3060

50,JOHN,B,GEYER,E01,6789,8/17/1949,MANAGER,16,M,9/15/1925,40175,800,3214

60,IRVING,F,STERN,D11,6423,9/14/1973,MANAGER,16,M,7/7/1945,32250,500,2580

70,EVA,D,PULASKI,D21,7831,9/30/1980,MANAGER,16,F,5/26/1953,36170,700,2893

90,EILEEN,W,HENDERSON,E11,5498,8/15/1970,MANAGER,16,F,5/15/1941,29750,600,2380

100,THEODORE,Q,SPENSER,E21,972,6/19/1980,MANAGER,14,M,12/18/1956,26150,500,2092

End of file empfile.csv - 8 records retrieved

IS_OPEN function - Determine whether a specified file is open
The IS_OPEN function determines whether a specified file is open.

334 SQL Procedural Languages: Application Enablement and Support

Syntax

�� UTL_FILE.IS_OPEN (file) ��

Return value

This function returns a value of type BOOLEAN that indicates if the specified file
is open (TRUE) or closed (FALSE).

Function parameters

file An input argument of type UTL_FILE.FILE_TYPE that contains the file handle.

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

The following example demonstrates that before writing text to a file, you can call
the IS_OPEN function to check if the file is open.
SET SERVEROUTPUT ON@

CREATE OR REPLACE PROCEDURE proc1()
BEGIN

DECLARE v_filehandle UTL_FILE.FILE_TYPE;
DECLARE isOpen BOOLEAN;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'mydir';
DECLARE v_filename VARCHAR(20) DEFAULT 'myfile.csv';
SET v_filehandle = UTL_FILE.FOPEN(v_dirAlias,v_filename,'w');
SET isOpen = UTL_FILE.IS_OPEN(v_filehandle);

IF isOpen != TRUE THEN
RETURN -1;

END IF;
CALL UTL_FILE.PUT_LINE(v_filehandle,'Some text to write to the file.');
CALL DBMS_OUTPUT.PUT_LINE('Updated file: ' || v_filename);
CALL UTL_FILE.FCLOSE(v_filehandle);

END@

CALL proc1@

This example results in the following output.
Updated file: myfile.csv

NEW_LINE procedure - Write an end-of-line character
sequence to a file

The NEW_LINE procedure writes an end-of-line character sequence to a specified
file.

Syntax

�� UTL_FILE.NEW_LINE (file)
, lines

��

Procedure parameters

file An input argument of type UTL_FILE.FILE_TYPE that contains the file handle.

Chapter 3. System-defined modules 335

lines
An optional input argument of type INTEGER that specifies the number of
end-of-line character sequences to write to the file. The default is 1.

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Write a file that contains a triple-spaced list of employee records.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_empfile_src UTL_FILE.FILE_TYPE;
DECLARE v_empfile_tgt UTL_FILE.FILE_TYPE;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'empdir';
DECLARE v_src_file VARCHAR(20) DEFAULT 'empfile.csv';
DECLARE v_dest_file VARCHAR(20) DEFAULT 'empfilenew.csv';
DECLARE v_empline VARCHAR(200);
DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLSTATE1 CHAR(5) DEFAULT '00000';
DECLARE CONTINUE HANDLER FOR SQLSTATE '02000'SET SQLSTATE1 = SQLSTATE;

SET v_empfile_src = UTL_FILE.FOPEN(v_dirAlias,v_src_file,'r');
SET v_empfile_tgt = UTL_FILE.FOPEN(v_dirAlias,v_dest_file,'w');

loop1: LOOP
CALL UTL_FILE.GET_LINE(v_empfile_src,v_empline);
IF SQLSTATE1 = '02000' THEN -- NO DATA FOUND

LEAVE loop1;
END IF;
CALL UTL_FILE.PUT(v_empfile_tgt,v_empline);
CALL UTL_FILE.NEW_LINE(v_empfile_tgt, 2);

END LOOP;

CALL DBMS_OUTPUT.PUT_LINE('Wrote to file: ' || v_dest_file);
CALL UTL_FILE.FCLOSE_ALL;

END@

CALL proc1@

This example results in the following output:
Wrote to file: empfilenew.csv

The file that is updated, empfilenew.csv, contains the following data:
10,CHRISTINE,I,HAAS,A00,3978,1/1/1965,PRES,18,F,8/24/1933,52750,1000,4220

20,MICHAEL,L,THOMPSON,B01,3476,10/10/1973,MANAGER,18,M,2/2/1948,41250,800,3300

30,SALLY,A,KWAN,C01,4738,4/5/1975,MANAGER,20,F,5/11/1941,38250,800,3060

50,JOHN,B,GEYER,E01,6789,8/17/1949,MANAGER,16,M,9/15/1925,40175,800,3214

60,IRVING,F,STERN,D11,6423,9/14/1973,MANAGER,16,M,7/7/1945,32250,500,2580

336 SQL Procedural Languages: Application Enablement and Support

70,EVA,D,PULASKI,D21,7831,9/30/1980,MANAGER,16,F,5/26/1953,36170,700,2893

90,EILEEN,W,HENDERSON,E11,5498,8/15/1970,MANAGER,16,F,5/15/1941,29750,600,2380

100,THEODORE,Q,SPENSER,E21,972,6/19/1980,MANAGER,14,M,12/18/1956,26150,500,2092

PUT procedure - Write a string to a file
The PUT procedure writes a string to a specified file. No end-of-line character
sequence is written at the end of the string.

Syntax

�� UTL_FILE.PUT (file , buffer) ��

Procedure parameters

file An input argument of type UTL_FILE.FILE_TYPE that contains the file handle.

buffer
An input argument of type VARCHAR(32672) that specifies the text to write to
the file.

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Use the PUT procedure to add a string to a file and then use the NEW_LINE
procedure to add an end-of-line character sequence.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_empfile_src UTL_FILE.FILE_TYPE;
DECLARE v_empfile_tgt UTL_FILE.FILE_TYPE;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'empdir';
DECLARE v_src_file VARCHAR(20) DEFAULT 'empfile.csv';
DECLARE v_dest_file VARCHAR(20) DEFAULT 'empfilenew.csv';
DECLARE v_empline VARCHAR(200);
DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLSTATE1 CHAR(5) DEFAULT '00000';
DECLARE CONTINUE HANDLER FOR SQLSTATE '02000'SET SQLSTATE1 = SQLSTATE;

SET v_empfile_src = UTL_FILE.FOPEN(v_dirAlias,v_src_file,'r');
SET v_empfile_tgt = UTL_FILE.FOPEN(v_dirAlias,v_dest_file,'w');

loop1: LOOP
CALL UTL_FILE.GET_LINE(v_empfile_src,v_empline);
IF SQLSTATE1 = '02000' THEN -- NO DATA FOUND

LEAVE loop1;
END IF;
CALL UTL_FILE.PUT(v_empfile_tgt,v_empline);
CALL UTL_FILE.NEW_LINE(v_empfile_tgt, 2);

END LOOP;

CALL DBMS_OUTPUT.PUT_LINE('Wrote to file: ' || v_dest_file);

Chapter 3. System-defined modules 337

CALL UTL_FILE.FCLOSE_ALL;
END@

CALL proc1@

This example results in the following output:
Wrote to file: empfilenew.csv

The updated file, empfilenew.csv, contains the following data:
10,CHRISTINE,I,HAAS,A00,3978,1/1/1965,PRES,18,F,8/24/1933,52750,1000,4220

20,MICHAEL,L,THOMPSON,B01,3476,10/10/1973,MANAGER,18,M,2/2/1948,41250,800,3300

30,SALLY,A,KWAN,C01,4738,4/5/1975,MANAGER,20,F,5/11/1941,38250,800,3060

50,JOHN,B,GEYER,E01,6789,8/17/1949,MANAGER,16,M,9/15/1925,40175,800,3214

60,IRVING,F,STERN,D11,6423,9/14/1973,MANAGER,16,M,7/7/1945,32250,500,2580

70,EVA,D,PULASKI,D21,7831,9/30/1980,MANAGER,16,F,5/26/1953,36170,700,2893

90,EILEEN,W,HENDERSON,E11,5498,8/15/1970,MANAGER,16,F,5/15/1941,29750,600,2380

100,THEODORE,Q,SPENSER,E21,972,6/19/1980,MANAGER,14,M,12/18/1956,26150,500,2092

Usage notes

After using the PUT procedure to add a string to a file, use the NEW_LINE
procedure to add an end-of-line character sequence to the file.

PUT_LINE procedure - Write a line of text to a file
The PUT_LINE procedure writes a line of text, including an end-of-line character
sequence, to a specified file.

Syntax

�� UTL_FILE.PUT_LINE (file , buffer) ��

Procedure parameters

file An input argument of type UTL_FILE.FILE_TYPE that contains the file handle
of file to which the line is to be written.

buffer
An input argument of type VARCHAR(32672) that specifies the text to write to
the file.

Authorization

EXECUTE privilege on the UTL_FILE module.

338 SQL Procedural Languages: Application Enablement and Support

Example

Use the PUT_LINE procedure to write lines of text to a file.
CALL proc1@
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_empfile_src UTL_FILE.FILE_TYPE;
DECLARE v_empfile_tgt UTL_FILE.FILE_TYPE;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'empdir';
DECLARE v_src_file VARCHAR(20) DEFAULT 'empfile.csv';
DECLARE v_dest_file VARCHAR(20) DEFAULT 'empfilenew2.csv';
DECLARE v_empline VARCHAR(200);
DECLARE v_count INTEGER DEFAULT 0;
DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT '00000';
DECLARE SQLSTATE1 CHAR(5) DEFAULT '00000';
DECLARE CONTINUE HANDLER FOR SQLSTATE '02000'SET SQLSTATE1 = SQLSTATE;

SET v_empfile_src = UTL_FILE.FOPEN(v_dirAlias,v_src_file,'r');
SET v_empfile_tgt = UTL_FILE.FOPEN(v_dirAlias,v_dest_file,'w');

loop1: LOOP
CALL UTL_FILE.GET_LINE(v_empfile_src,v_empline);
IF SQLSTATE1 = '02000' THEN -- NO DATA FOUND

LEAVE loop1;
END IF;
SET v_count = v_count + 1;
CALL UTL_FILE.PUT(v_empfile_tgt,'Record ' || v_count || ': ');
CALL UTL_FILE.PUT_LINE(v_empfile_tgt,v_empline);

END LOOP;
CALL DBMS_OUTPUT.PUT_LINE('End of file ' || v_src_file || ' - ' || v_count

|| ' records retrieved');
CALL UTL_FILE.FCLOSE_ALL;

END@

CALL proc1@

This example results in the following output:
End of file empfile.csv - 8 records retrieved

The file that is updated, empfilenew2.csv, contains the following data:
Record 1: 10,CHRISTINE,I,HAAS,A00,3978,1/1/1965,PRES,18,F,8/24/1933,52750,1000,4220

Record 2: 20,MICHAEL,L,THOMPSON,B01,3476,10/10/1973,MANAGER,18,M,2/2/1948,41250,800,3300

Record 3: 30,SALLY,A,KWAN,C01,4738,4/5/1975,MANAGER,20,F,5/11/1941,38250,800,3060

Record 4: 50,JOHN,B,GEYER,E01,6789,8/17/1949,MANAGER,16,M,9/15/1925,40175,800,3214

Record 5: 60,IRVING,F,STERN,D11,6423,9/14/1973,MANAGER,16,M,7/7/1945,32250,500,2580

Record 6: 70,EVA,D,PULASKI,D21,7831,9/30/1980,MANAGER,16,F,5/26/1953,36170,700,2893

Record 7: 90,EILEEN,W,HENDERSON,E11,5498,8/15/1970,MANAGER,16,F,5/15/1941,29750,600,2380

Record 8: 100,THEODORE,Q,SPENSER,E21,972,6/19/1980,MANAGER,14,M,12/18/1956,26150,500,2092

PUTF procedure - Write a formatted string to a file
The PUTF procedure writes a formatted string to a specified file.

Chapter 3. System-defined modules 339

Syntax

�� �

,

UTL_FILE.PUTF (file , format ,)
argN

��

Procedure parameters

file An input argument of type UTL_FILE.FILE_TYPE that contains the file handle.

format
An input argument of type VARCHAR(1024) the specifies the string to use for
formatting the text. The special character sequence, %s, is substituted by the
value of argN. The special character sequence, \n, indicates a new line.

argN
An optional input argument of type VARCHAR(1024) that specifies a value to
substitute in the format string for the corresponding occurrence of the special
character sequence %s. Up to five arguments, arg1 through arg5, can be
specified. arg1 is substituted for the first occurrence of %s, arg2 is substituted
for the second occurrence of %s, and so on.

Authorization

EXECUTE privilege on the UTL_FILE module.

Example

Format employee data.
SET SERVEROUTPUT ON@

CREATE PROCEDURE proc1()
BEGIN

DECLARE v_filehandle UTL_FILE.FILE_TYPE;
DECLARE v_dirAlias VARCHAR(50) DEFAULT 'mydir';
DECLARE v_filename VARCHAR(20) DEFAULT 'myfile.csv';
DECLARE v_format VARCHAR(200);
SET v_format = '%s %s, %s\nSalary: $%s Commission: $%s\n\n';
SET v_filehandle = UTL_FILE.FOPEN(v_dirAlias,v_filename,'w');
CALL UTL_FILE.PUTF(v_filehandle,v_format,'000030','SALLY','KWAN','40175','3214');
CALL DBMS_OUTPUT.PUT_LINE('Wrote to file: ' || v_filename);
CALL UTL_FILE.FCLOSE(v_filehandle);

END@

CALL proc1@

This example results in the following output:
Wrote formatted text to file: myfile.csv

The formatted file, myfile.csv, contains the following data:
000030 SALLY, KWAN
Salary: $40175 Commission: $3214

UTL_FILE.FILE_TYPE
UTL_FILE.FILE_TYPE is a file handle type that is used by routines in the
UTL_FILE module.

340 SQL Procedural Languages: Application Enablement and Support

Example

Declare a variable of type UTL_FILE.FILE_TYPE.
DECLARE v_filehandle UTL_FILE.FILE_TYPE;

UTL_MAIL module
The UTL_MAIL module provides the capability to send e-mail.

The schema for this module is SYSIBMADM.

The UTL_MAIL module includes the following routines.

Table 33. System-defined routines available in the UTL_MAIL module

Routine name Description

SEND procedure Packages and sends an e-mail to an SMTP
server.

SEND_ATTACH_RAW procedure Same as the SEND procedure, but with
BLOB attachments.

SEND_ATTACH_VARCHAR2 Same as the SEND procedure, but with
VARCHAR attachments

Usage notes

In order to successfully send an e-mail using the UTL_MAIL module, the database
configuration parameter SMTP_SERVER must contain one or more valid SMTP
server addresses.

Examples

Example 1: To set up a single SMTP server with the default port 25:
db2 update db cfg using smtp_server 'smtp.ibm.com'

Example 2: To set up a single SMTP server that uses port 2000, rather than the
default port 25:
db2 update db cfg using smtp_server 'smtp2.ibm.com:2000'

Example 3: To set a list of SMTP servers:
db2 update db cfg using smtp_server

'smtp.example.com,smtp1.example.com:23,smtp2.example.com:2000'

Note: The e-mail is sent to each of the SMTP servers, in the order listed, until a
successful reply is received from one of the SMTP servers.

SEND procedure - Send an e-mail to an SMTP server
The SEND procedure provides the capability to send an e-mail to an SMTP server.

Syntax

�� SEND (sender , recipients , cc , bcc , subject , message �

Chapter 3. System-defined modules 341

�
, mime_type

, priority

) ��

Parameters

sender
An input argument of type VARCHAR(256) that specifies the e-mail address of
the sender.

recipients
An input argument of type VARCHAR(32672) that specifies the
comma-separated e-mail addresses of the recipients.

cc An input argument of type VARCHAR(32672) that specifies the
comma-separated e-mail addresses of copy recipients.

bcc
An input argument of type VARCHAR(32672) that specifies the
comma-separated e-mail addresses of blind copy recipients.

subject
An input argument of type VARCHAR(32672) that specifies the subject line of
the e-mail.

message
An input argument of type VARCHAR(32672) that specifies the body of the
e-mail.

mime_type
An optional input argument of type VARCHAR(1024) that specifies the MIME
type of the message. The default is 'text/plain; charset=us-ascii'.

priority
An optional argument of type INTEGER that specifies the priority of the e-mail
The default value is 3.

Authorization

EXECUTE privilege on the UTL_MAIL module.

Examples

Example 1: The following anonymous block sends a simple e-mail message.
BEGIN

DECLARE v_sender VARCHAR(30);
DECLARE v_recipients VARCHAR(60);
DECLARE v_subj VARCHAR(20);
DECLARE v_msg VARCHAR(200);

SET v_sender = 'kkent@mycorp.com';
SET v_recipients = 'bwayne@mycorp.com,pparker@mycorp.com';
SET v_subj = 'Holiday Party';
SET v_msg = 'This year''s party is scheduled for Friday, Dec. 21 at ' ||

'6:00 PM. Please RSVP by Dec. 15th.';
CALL UTL_MAIL.SEND(v_sender, v_recipients, NULL, NULL, v_subj, v_msg);

END@

This example results in the following output:

342 SQL Procedural Languages: Application Enablement and Support

BEGIN
DECLARE v_sender VARCHAR(30);
DECLARE v_recipients VARCHAR(60);
DECLARE v_subj VARCHAR(20);
DECLARE v_msg VARCHAR(200);

SET v_sender = 'kkent@mycorp.com';
SET v_recipients = 'bwayne@mycorp.com,pparker@mycorp.com';
SET v_subj = 'Holiday Party';
SET v_msg = 'This year''s party is scheduled for Friday, Dec. 21 at ' ||

'6:00 PM. Please RSVP by Dec. 15th.';
CALL UTL_MAIL.SEND(v_sender, v_recipients, NULL, NULL, v_subj, v_msg);

END
DB20000I The SQL command completed successfully.

SEND_ATTACH_RAW procedure - Send an e-mail with a BLOB
attachment to an SMTP server

The SEND_ATTACH_RAW procedure provides the capability to send an e-mail to
an SMTP server with a binary attachment.

Syntax

�� SEND_ATTACH_RAW (sender , recipients , cc , bcc , subject , �

� message , mime_type , priority , attachment �

�
, att_inline

, att_mime_type
, att_filename

) ��

Parameters

sender
An input argument of type VARCHAR(256) that specifies the e-mail address of
the sender.

recipients
An input argument of type VARCHAR(32672) that specifies the
comma-separated e-mail addresses of the recipients.

cc An input argument of type VARCHAR(32672) that specifies the
comma-separated e-mail addresses of copy recipients.

bcc
An input argument of type VARCHAR(32672) that specifies the
comma-separated e-mail addresses of blind copy recipients.

subject
An input argument of type VARCHAR(32672) that specifies the subject line of
the e-mail.

message
An input argument of type VARCHAR(32672) that specifies the body of the
e-mail.

mime_type
An input argument of type VARCHAR(1024) that specifies the MIME type of
the message. The default is 'text/plain; charset=us-ascii'.

Chapter 3. System-defined modules 343

priority
An input argument of type INTEGER that specifies the priority of the e-mail
The default value is 3.

attachment
An input argument of type BLOB(10M) that contains the attachment.

att_inline
An optional input argument of type BOOLEAN that specifies whether the
attachment is viewable inline. If set to "true", then the attachment is viewable
inline, "false" otherwise. The default value is "true".

att_mime_type
An optional input argument of type VARCHAR(1024) that specifies the MIME
type of the attachment. The default value is application/octet.

att_filename
An optional input argument of type VARCHAR(512) that specifies the file
name containing the attachment. The default value is NULL.

Authorization

EXECUTE privilege on the UTL_MAIL module.

SEND_ATTACH_VARCHAR2 procedure - Send an e-mail with a
VARCHAR attachment to an SMTP server

The SEND_ATTACH_VARCHAR2 procedure provides the capability to send an
e-mail to an SMTP server with a text attachment.

Syntax

�� SEND_ATTACH_VARCHAR2 (sender , recipients , cc , bcc , subject , �

� message , mime_type , priority , attachment �

�
, att_inline

, att_mime_type
, att_filename

) ��

Parameters

sender
An input argument of type VARCHAR(256) that specifies the e-mail address of
the sender.

recipients
An input argument of type VARCHAR(32672) that specifies the
comma-separated e-mail addresses of the recipients.

cc An input argument of type VARCHAR(32672) that specifies the
comma-separated e-mail addresses of copy recipients.

bcc
An input argument of type VARCHAR(32672) that specifies the
comma-separated e-mail addresses of blind copy recipients.

subject
An input argument of type VARCHAR(32672) that specifies the subject line of
the e-mail.

344 SQL Procedural Languages: Application Enablement and Support

message
An input argument of type VARCHAR(32672) that specifies the body of the
e-mail.

mime_type
An input argument of type VARCHAR(1024) that specifies the MIME type of
the message. The default is 'text/plain; charset=us-ascii'.

priority
An input argument of type INTEGER that specifies the priority of the e-mail
The default value is 3.

attachment
An input argument of type VARCHAR(32000) that contains the attachment.

att_inline
An optional input argument of type BOOLEAN that specifies whether the
attachment is viewable inline. If set to "true", then the attachment is viewable
inline, "false" otherwise. The default value is "true".

att_mime_type
An optional input argument of type VARCHAR(1024) that specifies the MIME
type of the attachment. The default value is 'text/plain; charset=us-ascii'.

att_filename
An optional input argument of type VARCHAR(512) that specifies the file
name containing the attachment. The default value is NULL.

Authorization

EXECUTE privilege on the UTL_MAIL module.

UTL_SMTP module
The UTL_SMTP module provides the capability to send e-mail over the Simple
Mail Transfer Protocol (SMTP).

The UTL_SMTP module includes the following routines.

Table 34. System-defined routines available in the UTL_SMTP module

Routine Name Description

CLOSE_DATA procedure Ends an e-mail message.

COMMAND procedure Execute an SMTP command.

COMMAND_REPLIES procedure Execute an SMTP command where multiple
reply lines are expected.

DATA procedure Specify the body of an e-mail message.

EHLO procedure Perform initial handshaking with an SMTP
server and return extended information.

HELO procedure Perform initial handshaking with an SMTP
server.

HELP procedure Send the HELP command.

MAIL procedure Start a mail transaction.

NOOP procedure Send the null command.

OPEN_CONNECTION function Open a connection.

OPEN_CONNECTION procedure Open a connection.

Chapter 3. System-defined modules 345

Table 34. System-defined routines available in the UTL_SMTP module (continued)

Routine Name Description

OPEN_DATA procedure Send the DATA command.

QUIT procedure Terminate the SMTP session and disconnect.

RCPT procedure Specify the recipient of an e-mail message.

RSET procedure Terminate the current mail transaction.

VRFY procedure Validate an e-mail address.

WRITE_DATA procedure Write a portion of the e-mail message.

WRITE_RAW_DATA procedure Write a portion of the e-mail message
consisting of RAW data.

The following table lists the public variables available in the module.

Table 35. System-defined types available in the UTL_SMTP module

Public variable Data type Description

connection RECORD Description of an SMTP
connection.

reply RECORD SMTP reply line.

The CONNECTION record type provides a description of an SMTP connection.
ALTER MODULE SYSIBMADM.UTL_SMTP PUBLISH TYPE connection AS ROW
(

/* name or IP address of the remote host running SMTP server */
host VARCHAR(255),

/* SMTP server port number */
port INTEGER,

/* transfer timeout in seconds */
tx_timeout INTEGER,

);

The REPLY record type provides a description of an SMTP reply line. REPLIES is
an array of SMTP reply lines.
ALTER MODULE SYSIBMADM.UTL_SMTP PUBLISH TYPE reply AS ROW
(

/* 3 digit reply code received from the SMTP server */
code INTEGER,

/* the text of the message received from the SMTP server */
text VARCHAR(508)

);

Examples

Example 1: The following procedure constructs and sends a text e-mail message
using the UTL_SMTP module.
CREATE OR REPLACE PROCEDURE send_mail(
IN p_sender VARCHAR(4096),
IN p_recipient VARCHAR(4096),
IN p_subj VARCHAR(4096),
IN p_msg VARCHAR(4096),
IN p_mailhost VARCHAR(4096))
SPECIFIC send_mail
LANGUAGE SQL
BEGIN

DECLARE v_conn UTL_SMTP.CONNECTION;
DECLARE v_crlf VARCHAR(2);

346 SQL Procedural Languages: Application Enablement and Support

DECLARE v_port INTEGER CONSTANT 25;

SET v_crlf = CHR(13) || CHR(10);
SET v_conn = UTL_SMTP.OPEN_CONNECTION(p_mailhost, v_port, 10);
CALL UTL_SMTP.HELO(v_conn, p_mailhost);
CALL UTL_SMTP.MAIL(v_conn, p_sender);
CALL UTL_SMTP.RCPT(v_conn, p_recipient);
CALL UTL_SMTP.DATA(

v_conn,
'Date: ' || TO_CHAR(SYSDATE, 'Dy, DD Mon YYYY HH24:MI:SS') || v_crlf ||
'From: ' || p_sender || v_crlf ||
'To: ' || p_recipient || v_crlf ||
'Subject: ' || p_subj || v_crlf ||
p_msg);

CALL UTL_SMTP.QUIT(v_conn);
END@

CALL send_mail('bwayne@mycorp.com','pparker@mycorp.com','Holiday Party',
'Are you planning to attend?','smtp.mycorp.com')@

Example 2: The following example uses the OPEN_DATA, WRITE_DATA, and
CLOSE_DATA procedures instead of the DATA procedure.
CREATE OR REPLACE PROCEDURE send_mail_2(
IN p_sender VARCHAR(4096),
IN p_recipient VARCHAR(4096),
IN p_subj VARCHAR(4096),
IN p_msg VARCHAR(4096),
IN p_mailhost VARCHAR(4096)) SPECIFIC send_mail_2
LANGUAGE SQL
BEGIN

DECLARE v_conn UTL_SMTP.CONNECTION;
DECLARE v_crlf VARCHAR(2);
DECLARE v_port INTEGER CONSTANT 25;

SET v_crlf = CHR(13) || CHR(10);
SET v_conn = UTL_SMTP.OPEN_CONNECTION(p_mailhost, v_port, 10);
CALL UTL_SMTP.HELO(v_conn, p_mailhost);
CALL UTL_SMTP.MAIL(v_conn, p_sender);
CALL UTL_SMTP.RCPT(v_conn, p_recipient);
CALL UTL_SMTP.OPEN_DATA(v_conn);
CALL UTL_SMTP.WRITE_DATA(v_conn, 'From: ' || p_sender || v_crlf);
CALL UTL_SMTP.WRITE_DATA(v_conn, 'To: ' || p_recipient || v_crlf);
CALL UTL_SMTP.WRITE_DATA(v_conn, 'Subject: ' || p_subj || v_crlf);
CALL UTL_SMTP.WRITE_DATA(v_conn, v_crlf || p_msg);
CALL UTL_SMTP.CLOSE_DATA(v_conn);
CALL UTL_SMTP.QUIT(v_conn);

END@

CALL send_mail_2('bwayne@mycorp.com','pparker@mycorp.com','Holiday Party',
'Are you planning to attend?','smtp.mycorp.com')@

CLOSE_DATA procedure - End an e-mail message
The CLOSE_DATA procedure terminates an e-mail message

The procedure terminates an e-mail message by sending the following sequence:
<CR><LF>.<CR><LF>

This is a single period at the beginning of a line.

Syntax

Chapter 3. System-defined modules 347

�� CLOSE_DATA (c
, reply

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection to be closed.

reply
An optional output argument of type REPLY that returns a single reply line
from the SMTP server. It is the last reply line if multiple reply lines are
returned by the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

COMMAND procedure - Run an SMTP command
The COMMAND procedure provides the capability to execute an SMTP command.

Note: Use COMMAND_REPLIES if multiple reply lines are expected to be
returned.

Syntax

�� COMMAND (c , cmd ,
arg , reply

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection to which the command is to be sent.

cmd
An input argument of type VARCHAR(510) that specifies the SMTP command
to process.

arg
An optional input argument of type VARCHAR(32672) that specifies an
argument to the SMTP command. The default is NULL.

reply
An optional output argument of type REPLY that returns a single reply line
from the SMTP server. It is the last reply line if multiple reply lines are
returned by the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

348 SQL Procedural Languages: Application Enablement and Support

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

COMMAND_REPLIES procedure - Run an SMTP command
where multiple reply lines are expected

The COMMAND_REPLIES function processes an SMTP command that returns
multiple reply lines.

Note: Use COMMAND if only a single reply line is expected.

Syntax

�� COMMAND_REPLIES (c , cmd ,
arg , replies

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection to which the command is to be sent.

cmd
An input argument of type VARCHAR(510) that specifies the SMTP command
to process.

arg
An optional input argument of type VARCHAR(32672) that specifies an
argument to the SMTP command. The default is NULL.

replies
An optional output argument of type REPLIES that returns multiple reply lines
from the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

DATA procedure - Specify the body of an e-mail message
The DATA procedure provides the capability to specify the body of the e-mail
message.

The message is terminated with a <CR><LF>.<CR><LF> sequence.

Syntax

�� DATA (c , body
, reply

) ��

Chapter 3. System-defined modules 349

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection to which the command is to be sent.

body
An input argument of type VARCHAR(32000) that specifies the body of the
e-mail message to be sent.

reply
An optional output argument of type REPLY that returns a single reply line
from the SMTP server. It is the last reply line if multiple reply lines are
returned by the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

EHLO procedure - Perform initial handshaking with an SMTP
server and return extended information

The EHLO procedure performs initial handshaking with the SMTP server after
establishing the connection.

The EHLO procedure allows the client to identify itself to the SMTP server. The
HELO procedure performs the equivalent functionality, but returns less
information about the server.

Syntax

�� EHLO (c , domain
, replies

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the
connection to the SMTP server over which to perform handshaking.

domain
An input argument of type VARCHAR(255) that specifies the domain name of
the sending host.

replies
An optional output argument of type REPLIES that return multiple reply lines
from the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

350 SQL Procedural Languages: Application Enablement and Support

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

HELO procedure - Perform initial handshaking with an SMTP
server

The HELO procedure performs initial handshaking with the SMTP server after
establishing the connection.

The HELO procedure allows the client to identify itself to the SMTP server. The
EHLO procedure performs the equivalent functionality, but returns more
information about the server.

Syntax

�� HELO (c , domain
, reply

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the
connection to the SMTP server over which to perform handshaking.

domain
An input argument of type VARCHAR(255) that specifies the domain name of
the sending host.

reply
An optional output argument of type REPLY that returns a single reply line
from the SMTP server. It is the last reply line if multiple reply lines are
returned by the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

HELP procedure - Send the HELP command
The HELP function provides the capability to send the HELP command to the
SMTP server.

Syntax

�� HELP (c
command , replies

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection to which the command is to be sent.

Chapter 3. System-defined modules 351

command
An optional input argument of type VARCHAR(510) that specifies the
command about which help is requested.

replies
An optional output argument of type REPLIES that returns multiple reply lines
from the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

MAIL procedure - Start a mail transaction

Syntax

�� MAIL (c , sender
, parameters , reply

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the
connection to the SMTP server on which to start a mail transaction.

sender
An input argument of type VARCHAR(256) that specifies the e-mail address of
the sender.

parameters
An optional input argument of type VARCHAR(32672) that specifies the
optional mail command parameters in the format key=value.

reply
An optional output argument of type REPLY that returns a single reply line
from the SMTP server. It is the last reply line if multiple reply lines are
returned by the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

NOOP procedure - Send the null command
The NOOP procedure sends a null command to the SMTP server. The NOOP has
no effect on the server except to obtain a successful response.

352 SQL Procedural Languages: Application Enablement and Support

Syntax

�� NOOP (c
, reply

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection on which to send the command.

reply
An optional output argument of type REPLY that returns a single reply line
from the SMTP server. It is the last reply line if multiple reply lines are
returned by the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

OPEN_CONNECTION function - Return a connection handle to
an SMTP server

The OPEN_CONNECTION function returns a connection handle to an SMTP
server.

The function returns a connection handle to the SMTP server.

Syntax

�� OPEN_CONNECTION (host , port , tx_timeout) ��

Parameters

host
An input argument of type VARCHAR(255) that specifies the name of the
SMTP server.

port
An input argument of type INTEGER that specifies the port number on which
the SMTP server is listening.

tx_timeout
An input argument of type INTEGER that specifies the time out value, in
seconds. To instruct the procedure not to wait, set this value to 0. To instruct
the procedure to wait indefinitely, set this value to NULL.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Chapter 3. System-defined modules 353

OPEN_CONNECTION procedure - Open a connection to an
SMTP server

The OPEN_CONNECTION procedure opens a connection to an SMTP server.

Syntax

�� OPEN_CONNECTION (host , port , connection , tx_timeout , reply) ��

Parameters

host
An input argument of type VARCHAR(255) that specifies the name of the
SMTP server.

port
An input argument of type INTEGER that specifies the port number on which
the SMTP server is listening.

connection
An output argument of type CONNECTION that returns a connection handle
to the SMTP server.

tx_timeout
An optional input argument of type INTEGER that specifies the time out
value, in seconds. To instruct the procedure not to wait, set this value to 0. To
instruct the procedure to wait indefinitely, set this value to NULL.

reply
An output argument of type REPLY that returns a single reply line from the
SMTP server. It is the last reply line if multiple reply lines are returned by the
SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

OPEN_DATA procedure - Send the DATA command to the
SMTP server

The OPEN_DATA procedure sends the DATA command to the SMTP server.

Syntax

�� OPEN_DATA (c
, reply

) ��

Parameters

c An input argument of type CONNECTION that specifies the SMTP connection
on which to send the command

reply
An optional output argument of type REPLY that returns a single reply line
from the SMTP server. It is the last reply line if multiple reply lines are
returned by the SMTP server.

354 SQL Procedural Languages: Application Enablement and Support

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

QUIT procedure - Close the session with the SMTP server
The QUIT procedure closes the session with an SMTP server.

Syntax

�� QUIT (c
, reply

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection to terminate.

reply
An optional output argument of type REPLY that returns a single reply line
from the SMTP server. It is the last reply line if multiple reply lines are
returned by the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

RCPT procedure - Provide the e-mail address of the recipient
The RCPT procedure provides the e-mail address of the recipient.

Note: To schedule multiple recipients, invoke the RCPT procedure multiple times.

Syntax

�� RCPT (c , recipient
, parameters , reply

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection on which to add a recipient.

recipient
An input argument of type VARCHAR(256) that specifies the e-mail address of
the recipient.

Chapter 3. System-defined modules 355

parameters
An optional input argument of type VARCHAR(32672) that specifies the mail
command parameters in the format key=value.

reply
An optional output argument of type REPLY that returns a single reply line
from the SMTP server. It is the last reply line if multiple reply lines are
returned by the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

RSET procedure - End the current mail transaction
The RSET procedure provides the capability to terminate the current mail
transaction.

Syntax

�� RSET (c
, reply

) ��

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection on which to cancel the mail transaction.

reply
An optional output argument of type REPLY that returns a single reply line
from the SMTP server. It is the last reply line if multiple reply lines are
returned by the SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

VRFY procedure - Validate and verify the recipient's e-mail
address

The VRFY function provides the capability to validate and verify a recipient e-mail
address. If valid, the recipient’s full name and fully qualified mailbox is returned.

Syntax

�� VRFY (c , recipient , reply) ��

356 SQL Procedural Languages: Application Enablement and Support

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection on which to verify the e-mail address.

recipient
An input argument of type VARCHAR(256) that specifies the e-mail address to
be verified.

reply
An output argument of type REPLY that returns a single reply line from the
SMTP server. It is the last reply line if multiple reply lines are returned by the
SMTP server.

Authorization

EXECUTE privilege on the UTL_SMTP module.

Usage notes

This procedure can be invoked using function invocation syntax in a PL/SQL
assignment statement.

WRITE_DATA procedure - Write a portion of an e-mail
message

The WRITE_DATA procedure provides the capability to add data to an e-mail
message. The WRITE_DATA procedure may be called repeatedly to add data.

Syntax

�� WRITE_DATA (c , data) ��

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection on which to add data.

data
An input argument of type VARCHAR(32000) that specifies the data to be
added to the e-mail message.

Authorization

EXECUTE privilege on the UTL_SMTP module.

WRITE_RAW_DATA procedure - Add RAW data to an e-mail
message

The WRITE_RAW_DATA procedure provides the capability to add data to an
e-mail message. The WRITE_RAW_DATA procedure may be called repeatedly to
add data.

Syntax

�� WRITE_RAW_DATA (c , data) ��

Chapter 3. System-defined modules 357

Parameters

c An input or output argument of type CONNECTION that specifies the SMTP
connection on which to add data.

data
An input argument of type BLOB(15M) that specifies the data to be added to
the e-mail message.

Authorization

EXECUTE privilege on the UTL_SMTP module.

358 SQL Procedural Languages: Application Enablement and Support

Chapter 4. DB2 compatibility features

Introduction to DB2 compatibility features
DB2 Version 9.5 introduced a number of features that greatly simplify the task of
enabling some applications written for different relational database products to run
on DB2. DB2 Version 9.7 introduces additional features that reduce this complexity
and the time required to enable existing applications even further.

Some of these features, including the following, are enabled by default.
v Implicit casting (weak typing), which reduces the amount of SQL that needs to

be modified when applications that currently run on other data servers are
enabled for DB2

v New scalar functions. For details, see “Supported functions and administrative
SQL routines and views”.

v Major improvements to the TIMESTAMP_FORMAT and VARCHAR_FORMAT
scalar functions. (TO_DATE and TO_TIMESTAMP are synonyms for
TIMESTAMP_FORMAT, and TO_CHAR is a synonym for VARCHAR_FORMAT.)
– TIMESTAMP_FORMAT – This function returns a timestamp that is based on

the interpretation of the input string using the specified format.
– VARCHAR_FORMAT – This function returns a string representation of an

input expression that has been formatted according to a specified character
template.

v The lifting of several SQL language restrictions, resulting in compatible syntax
between products; for example, the use of correlation names in subqueries and
table functions is now optional

v Synonyms for syntax used by other database products; for example:
– UNIQUE is a synonym for DISTINCT in the context of column functions and

the select list of a query
– MINUS is a synonym for the EXCEPT set operator
– seqname.NEXTVAL and seqname.CURRVAL can be used in place of the SQL

standard syntax NEXT VALUE FOR seqname and PREVIOUS VALUE FOR
seqname

v Global variables, which can be used to easily map package variables, emulate
@@nested, @@level, or @errorlevel global variables, or pass information from
DB2 applications down to triggers, functions, or procedures

v An ARRAY collection data type that can be used to easily map to VARRAY
constructs in SQL procedures

v Increased identifier length limits that facilitate the enablement of applications
from other DBMS vendors on DB2

v The pseudocolumn ROWID that can be used to refer to the RID; an unqualified
ROWID reference is equivalent to RID_BIT() and a qualified ROWID, such as
EMPLOYEE.ROWID, is equivalent to RID_BIT(EMPLOYEE)

Other features can be selectively enabled by setting a new DB2 registry variable
named DB2_COMPATIBILITY_VECTOR. These features are disabled by default.
v An implementation of hierarchical queries using CONNECT BY PRIOR syntax
v Support for outer joins using the outer join operator, (+)
v Use of the DATE data type as TIMESTAMP(0), a combined date and time value

© Copyright IBM Corp. 1993, 2010 359

v Syntax and semantics to support the NUMBER data type
v Syntax and semantics to support the VARCHAR2 data type
v A pseudocolumn named ROWNUM is a synonym for ROW_NUMBER()

OVER(), but ROWNUM is allowed in the SELECT LIST and in the WHERE
clause

v A dummy table named DUAL provides a capability that is similar to
SYSIBM.SYSDUMMY1

v Alternate semantics for the TRUNCATE TABLE statement, under which
IMMEDIATE is an optional keyword that is assumed to be the default if not
specified. An implicit commit operation is performed before the TRUNCATE
statement executes if the TRUNCATE statement is not the first statement in the
logical unit of work.

v Support for assignment of the CHAR or GRAPHIC data type (instead of the
VARCHAR or VARGRAPHIC data type) to character and graphic string
constants whose byte length is less than or equal to 254

v Use of collection methods to perform operations on arrays, such as first, last,
next, and previous

v Support for the creation of Oracle data dictionary-compatible views
v Support for the compilation and execution of PL/SQL statements and language

elements
v Support for making cursors insensitive to subsequent statements by

materializing the cursor at OPEN time.
v Support for INOUT parameters in procedures that are defined with defaults and

can be invoked without specifying the arguments for those parameters.

Additional resources

For more information, see DB2 Viper 2 compatibility features.

For information about the IBM Migration Toolkit (MTK), see Migrate Now!.

For information on the DB2 Oracle database compatibility features, see Oracle to
DB2 Conversion Guide: Compatibility Made Easy.

DB2_COMPATIBILITY_VECTOR registry variable
The DB2_COMPATIBILITY_VECTOR registry variable is used to enable one or
more DB2 compatibility features introduced since DB2 Version 9.5.

These features ease the task of migrating applications written for other relational
database vendors to DB2 Version 9.5 or later.

Important: Enable these features only if they are required for a specific
compatibility purpose. If DB2 compatibility features are enabled, some SQL
behavior is changed from what is documented in the SQL reference information. To
determine the potential impacts on your SQL applications, see the documentation
that is associated with each compatibility setting.

This DB2 registry variable is represented as a hexadecimal value, and each bit in
the variable enables one of the DB2 compatibility features.
v Operating systems: All

360 SQL Procedural Languages: Application Enablement and Support

http://www.ibm.com/developerworks/data/library/techarticle/dm-0707rielau/index.html
http://www-306.ibm.com/software/data/db2/migration/mtk/
http://www.redbooks.ibm.com/abstracts/sg247736.html?Open
http://www.redbooks.ibm.com/abstracts/sg247736.html?Open

v Default: NULL; Values: NULL or 00 to 3FFF. To take full advantage of these DB2
compatibility features, set the value to ORA for Oracle applications and SYB for
Sybase applications. These are the recommended settings.

Registry variable settings

Table 36. DB2_COMPATIBILITY_VECTOR values

Bit position Compatibility feature Description

1 (0x01) ROWNUM Enables the use of ROWNUM as a
synonym for ROW_NUMBER()
OVER(), and permits ROWNUM to
appear in the WHERE clause of SQL
statements.

2 (0x02) DUAL Resolves unqualified table references
to 'DUAL' as SYSIBM.DUAL.

3 (0x04) Outer join operator Enables support for the outer join
operator (+).

4 (0x08) Hierarchical queries Enables support for hierarchical
queries using the CONNECT BY
clause.

5 (0x10) NUMBER data type 1 Enables the NUMBER data type and
associated numeric processing.

6 (0x20) VARCHAR2 data type 1 Enables the VARCHAR2 and
NVARCHAR2 data types and
associated character string processing.

7 (0x40) DATE data type 1 Enables use of the DATE data type as
TIMESTAMP(0), a combined date and
time value.

8 (0x80) TRUNCATE TABLE Enables alternate semantics for the
TRUNCATE statement, under which
IMMEDIATE is an optional keyword
that is assumed to be the default if not
specified. An implicit commit
operation is performed before the
TRUNCATE statement executes if the
TRUNCATE statement is not the first
statement in the logical unit of work.

9 (0x100) Character literals Enables the assignment of the CHAR
or GRAPHIC data type (instead of the
VARCHAR or VARGRAPHIC data
type) to character and graphic string
constants whose byte length is less
than or equal to 254.

10 (0x200) Collection methods Enables the use of methods to perform
operations on arrays, such as first, last,
next, and previous. Also enables the
use of parentheses in place of square
brackets in references to specific
elements in an array; for example,
array1(i) refers to element i of array1.

11 (0x400) Data dictionary-compatible
views 1

Enables the creation of data
dictionary-compatible views.

12 (0x800) PL/SQL compilation 2 Enables the compilation and execution
of PL/SQL statements and language
elements.

Chapter 4. DB2 compatibility features 361

Table 36. DB2_COMPATIBILITY_VECTOR values (continued)

Bit position Compatibility feature Description

13 (0x1000) Insensitive cursor Enables cursors defined WITH
RETURN to be insensitive if the
select-statement does not explicitly
specify FOR UPDATE

14 (0x2000) “INOUT parameter” on page
385

Enables the specification of DEFAULT
for INOUT parameter declarations

1. Applicable only during database creation. Enabling or disabling this feature only affects
subsequently created databases.

2. See “Restrictions on PL/SQL support”.

Usage

The DB2_COMPATIBILITY_VECTOR registry variable is set and updated using
the db2set command:
v To enable all of the supported Oracle compatibility features, set the registry

variable to the value ORA (equivalent to the hexadecimal value FFF).
v To enable all of the supported Sybase compatibility features, set the registry

variable to the value SYB (equivalent to the hexadecimal value 3004).

When the DB2_COMPATIBILITY_VECTOR registry variable is set, all databases
created should be created as UNICODE databases.

A new setting for the registry variable does not take effect until after the instance
has been stopped and then restarted. Existing DB2 packages must be rebound for
the change to take effect; packages that are not rebound explicitly will pick up the
change on the next implicit rebind.

Example 1

This example sets the registry variable to enable all of the supported Oracle
compatibility features:
db2set DB2_COMPATIBILITY_VECTOR=ORA
db2stop
db2start

Example 2

This example shows how to disable all compatibility features by resetting the
DB2_COMPATIBILITY_VECTOR registry variable:
db2set DB2_COMPATIBILITY_VECTOR=
db2stop
db2start

Note that if a database has been created with the NUMBER data type or the
VARCHAR2 data type enabled, use of the DATE data type as TIMESTAMP(0)
enabled, or the creation of Oracle data dictionary-compatible views enabled, the
database will still be enabled for these features after this db2set command
executes.

362 SQL Procedural Languages: Application Enablement and Support

Setting up DB2 for Oracle application enablement
Oracle applications can be enabled to work with DB2 data servers when the DB2
environment is set up appropriately.
v A DB2 data server product must be installed.
v You require the authority to issue the db2set command.
v You require the authority to issue the CREATE DATABASE command.

Note: The Control Center tools, which have been deprecated in DB2 Version 9.7
and might be discontinued in a future release, are not supported in an
environment that is enabled for the DB2 compatibility features.

Perform this task if you want to enable Oracle applications in DB2 environments.
A DB2 environment will support many commonly referenced features from other
database vendors. This task is a prerequisite for executing PL/SQL statements or
SQL statements that reference Oracle data types from DB2 interfaces, or for any
other SQL compatibility features. DB2 compatibility features are enabled at the
database level and cannot be disabled.
1. Open a DB2 command window.
2. Start the DB2 database manager.

db2start

3. Set the DB2_COMPATIBILITY_VECTOR registry variable to the hexadecimal
value that enables the compatibility features that you want to use. To take full
advantage of these DB2 compatibility features, set the value to ORA. This is the
recommended setting.
db2set DB2_COMPATIBILITY_VECTOR=ORA

4. Set the DB2_DEFERRED_PREPARE_SEMANTICS registry variable to YES to
enable deferred prepare support. If the DB2_COMPATIBILITY_VECTOR
registry variable is set to ORA, and the
DB2_DEFERRED_PREPARE_SEMANTICS registry variable is not set, a
default value of YES is used. However, it is recommended that the
DB2_DEFERRED_PREPARE_SEMANTICS registry variable be explicitly set to
YES.
db2set DB2_DEFERRED_PREPARE_SEMANTICS=YES

5. Issue the db2stop command and the db2start command to stop and then restart
the database manager.
db2stop
db2start

6. Create your DB2 database by issuing the CREATE DATABASE command. The
database should be created as a UNICODE database, which is the default. For
example, to create a database named DB, issue the following command:
db2 CREATE DATABASE DB

7. Optional: Run a CLPPlus or command line processor (CLP) script (script.sql)
to verify that the database supports PL/SQL statements and data types. The
following CLPPlus script creates a simple procedure and then calls that
procedure.
CONNECT user@hostname:port/dbname;

CREATE TABLE t1 (c1 NUMBER);

CREATE OR REPLACE PROCEDURE testdb(num IN NUMBER, message OUT VARCHAR2)
AS
BEGIN
INSERT INTO t1 VALUES (num);

Chapter 4. DB2 compatibility features 363

message := 'The number you passed is: ' || TO_CHAR(num);
END;
/

CALL testdb(100, ?);

DISCONNECT;
EXIT;

To run the CLPPlus script, issue the following command:
clpplus @script.sql

The following example shows the CLP version of the same script. This script
uses the SET SQLCOMPAT PLSQL command to enable recognition of the
forward slash character (/) on a new line as a PL/SQL statement termination
character.
CONNECT TO DB;

SET SQLCOMPAT PLSQL;

-- Semicolon is used to terminate
-- the CREATE TABLE statement:
CREATE TABLE t1 (c1 NUMBER);

-- Forward slash on a new line is used to terminate
-- the CREATE PROCEDURE statement:
CREATE OR REPLACE PROCEDURE testdb(num IN NUMBER, message OUT VARCHAR2)
AS
BEGIN
INSERT INTO t1 VALUES (num);

message := 'The number you passed is: ' || TO_CHAR(num);
END;
/

CALL testdb(100, ?);

SET SQLCOMPAT DB2;

CONNECT RESET;

To run the CLP script, issue the following command:
db2 -tvf script.sql

The DB2 database that you created is enabled for Oracle applications. The
compatibility features that you enabled can now be used.
v Start using the CLPPlus interface.
v Execute PL/SQL scripts and statements.
v Transfer database object definitions.
v Enable database applications.

Sybase application migration
IBM DB2 SQL Skin Feature 1.0 for applications compatible with Sybase ASE (IBM
DB2 SSacSA) helps you migrate your Sybase Adaptive Server Enterprise (ASE)
applications to run against DB2 databases. This migration is accomplished with
little or no change to your existing source code.

364 SQL Procedural Languages: Application Enablement and Support

With IBM DB2 SSacSA, your Sybase application behaves as if it was still accessing
a Sybase database, even though the new target is a DB2 database. Your
tried-and-true application code runs unchanged on DB2 stored data. In most cases
all that is required is resetting your connection parameters so that your application
connects to IBM DB2 SSacSA instead of your Sybase server. Compared to a manual
migration, IBM DB2 SSacSA saves you significant time and effort. Because little or
no change is required for your existing applications, you can experience the
following benefits:
v You will require fewer resources, because developers are not needed to rewrite

code.
v You can reduce test time, because fewer code changes means less opportunity to

introduce new bugs.
v You can focus on the database, because this is where most of the migration work

occurs.

In addition, you can use the IBM Migration Toolkit to migrate your database
schema and data from your source Sybase databases to DB2 databases. When all
your information is stored in the same database, migrated Sybase applications and
native DB2 applications can share DB2 instances, native triggers and procedures,
and DB2 enhanced security.

Additional resources

For IBM DB2 SSacSA documentation, see the Sybase application migration guides.

For information about the IBM Migration Toolkit (MTK), see Migrate Now!

Data types

DATE data type based on TIMESTAMP(0)
The DATE data type is changed to support applications that use the Oracle DATE
data type expecting that the values include time information (for example,
'2009-04-01-09.43.05').

Support for DATE to mean TIMESTAMP(0) is at the database level, and must be
enabled before creating the database where support is required. This is achieved by
setting the DB2_COMPATIBILITY_VECTOR registry variable to the appropriate
value. When a database is created with DATE as TIMESTAMP(0) enabled, the
database configuration parameter date_compat is set to ON. After a database is
created with DATE as TIMESTAMP(0) support enabled, it cannot be disabled for
that database, even if the DB2_COMPATIBILITY_VECTOR registry variable is
reset. Similarly, all databases created with DATE as TIMESTAMP(0) support
disabled cannot have this support enabled, even by setting the
DB2_COMPATIBILITY_VECTOR registry variable.

Enablement

DATE as TIMESTAMP(0) support is enabled by setting bit position number 7
(0x40) of the DB2_COMPATIBILITY_VECTOR registry variable before creating a
database. A new setting for the registry variable does not take effect until after the
instance has been stopped and then restarted.

Chapter 4. DB2 compatibility features 365

http://www.ants.com/ResourceCenter
http://www-306.ibm.com/software/data/db2/migration/mtk/

Usage

The following support is enabled for a DB2 database that has the date_compat
database configuration parameter set to ON.

When the DATE data type is explicitly encountered in SQL statements, it is
implicitly mapped to TIMESTAMP(0). An exception is the specification of SQL
DATE in the xml-index-specification clause of a CREATE INDEX statement. As a
result of this implicit mapping, messages refer to the TIMESTAMP data type
instead of DATE, and any operations that describe data types for columns or
routines return TIMESTAMP instead of DATE.

Datetime literal support is unchanged in a DB2 database that has the date_compat
database configuration parameter set to ON, except in the following cases:
v The value of an explicit DATE literal returns a TIMESTAMP(0) value in which

the time portion is all zeros. For example, DATE '2008-04-28' actually represents
the timestamp value '2008-04-28-00.00.00'.

v The database manager supports additional formats for the string representation
of a date, which correspond to 'DD-MON-YYYY' and 'DD-MON-RR' in English
only (see “TIMESTAMP_FORMAT scalar function” for a description of the
format elements). For example, '28-APR-2008' or '28-APR-08' can be used as
string representations of a date, which actually represents the TIMESTAMP(0)
value '2008-04-28-00.00.00'.

The CURRENT_DATE (and CURRENT DATE) special register returns a
TIMESTAMP(0) value that is the same as CURRENT_TIMESTAMP(0).

Adding a numeric value to a TIMESTAMP value or subtracting a numeric value
from a TIMESTAMP value assumes that the numeric value represents a number of
days. The numeric value can have any numeric data type, and any fractional value
is considered to be a fractional portion of a day. For example, TIMESTAMP
'2008-03-28 12:00:00' + 1.3 adds 1 day, 7 hours, and 12 minutes to the
TIMESTAMP value, resulting in '2008-03-29 19:12:00'. If you are using expressions
for partial days, such as 1/24 (1 hour) or 1/24/60 (1 minute), ensure that the
number_compat database configuration parameter is set to ON so that the division
is performed using DECFLOAT arithmetic.

The results of some functions are changed under date_compat mode:
v The ADD_MONTHS scalar function with a string argument returns

TIMESTAMP(0).
v The DATE scalar function returns TIMESTAMP(0) for all input types.
v The LAST_DAY scalar function with a string argument returns TIMESTAMP(0).
v Other scalar functions that returned DATE based on a DATE input argument

(ADD_MONTHS, LAST_DAY, NEXT_DAY, ROUND, and TRUNCATE) return
TIMESTAMP, because DATE is always a TIMESTAMP(0) under date_compat
mode.

v Addition of date values returns TIMESTAMP(0), because date values are really
TIMESTAMP(0).

v Subtraction of timestamp values returns DECFLOAT(34), representing the
difference as a number of days. Similarly, subtraction of date values returns
DECFLOAT(34), which also represents a number of days, because date values
are really TIMESTAMP(0).

366 SQL Procedural Languages: Application Enablement and Support

For databases that have DATE as TIMESTAMP(0) support enabled, if you use the
import or load utility to input data into a DATE column (which is based on
TIMESTAMP(0)), you must use the TIMESTAMPFORMAT modifier instead of the
DATEFORMAT modifier.

NUMBER data type
The NUMBER data type is introduced to support applications that use the Oracle
NUMBER data type.

Support for NUMBER is at the database level, and must be enabled before creating
the database where support is required. This is achieved by setting the
DB2_COMPATIBILITY_VECTOR registry variable to the appropriate value. When
a database is created with NUMBER enabled, the database configuration parameter
number_compat is set to ON. After a database is created with NUMBER support
enabled, it cannot be disabled for that database, even if the
DB2_COMPATIBILITY_VECTOR registry variable is reset. Similarly, all databases
created without NUMBER support enabled cannot have NUMBER support
enabled, even by setting the DB2_COMPATIBILITY_VECTOR registry variable.

Enablement

NUMBER data type support is enabled by setting bit position number 5 (0x10) of
the DB2_COMPATIBILITY_VECTOR registry variable before creating a database.
To take full advantage of these DB2 compatibility features, set the value to ORA.
This is the recommended setting. A new setting for the registry variable does not
take effect until after the instance has been stopped and then restarted.

Usage

The following support is enabled for a DB2 database that has the number_compat
database configuration parameter set to ON.

When the NUMBER data type is explicitly encountered in SQL statements, it is
implicitly mapped as follows:
v If NUMBER is specified without precision and scale attributes, it is mapped to

DECFLOAT(16).
v If NUMBER(p) is specified, it is mapped to DECIMAL(p)
v If NUMBER(p,s) is specified, it is mapped to DECIMAL(p,s)

The maximum supported precision is 31, and the scale must be a positive value no
greater than the precision. As a result of this implicit mapping, messages will refer
to data types DECFLOAT and DECIMAL instead of NUMBER, and any operations
that describe data types for columns or routines will return either DECIMAL or
DECFLOAT instead of NUMBER. Note that DECFLOAT(16) provides a lower
maximum precision than the Oracle NUMBER data type. If more than 16 digits of
precision are needed for storing numbers in tables, the columns with this
requirement should be defined explicitly as DECFLOAT(34).

Numeric literal support is unchanged in a DB2 database that has the
number_compat configuration parameter set to ON. The rules for integer, decimal,
and floating-point constants continue to apply. This limits decimal literals to 31
digits and floating-point literals to the range of binary double-precision
floating-point values. A string to DECFLOAT(34) cast (using the CAST specification
or the DECFLOAT function) can be used for values beyond the ranges of
DECIMAL or DOUBLE up to the range of DECFLOAT(34).

Chapter 4. DB2 compatibility features 367

When NUMBER data values are cast to character strings (using either the CAST
specification or the VARCHAR or CHAR scalar function), all leading zeros are
stripped from the result.

There is currently no support for a numeric literal that ends in either D or F,
representing 64-bit binary floating-point and 32-bit binary floating-point values,
respectively. A numeric literal that includes an E has the data type of DOUBLE and
can be cast to REAL using the CAST specification or the cast function REAL.

In a DB2 database that has the number_compat configuration parameter set to ON,
the default data type that is used for a sequence value in the CREATE SEQUENCE
statement is DECIMAL(27) instead of INTEGER.

In a DB2 database that has the number_compat configuration parameter set to ON,
all arithmetic operations and arithmetic or mathematical functions involving
DECIMAL or DECFLOAT data types are effectively performed using decimal
floating-point arithmetic and return a value with a data type of DECFLOAT(34).
This also applies to arithmetic operations where both operands have DECIMAL or
DECFLOAT(16) data types, which differs from the description of decimal
arithmetic in the DB2 SQL Reference. (See “Expressions with arithmetic operators”
in “Expressions”.) Additionally, all division operations involving only integer data
types (SMALLINT, INTEGER, or BIGINT) are effectively performed using decimal
floating-point arithmetic and return a value with a data type of DECFLOAT(34)
instead of an integer data type (division by zero with integer operands returns
infinity and a warning instead of an error).

Function resolution is also changed, such that an argument of data type DECIMAL
is considered to be a DECFLOAT value during the resolution process. For purposes
of function resolution, this effectively treats functions with arguments that
correspond to the NUMBER(p[,s]) data type as if the argument data type were
NUMBER.

This change in function resolution does not apply to the set of functions that have
a variable number of arguments and base their result data type on the set of data
types of the arguments. The functions included in this set are:
v COALESCE
v DECODE
v GREATEST
v LEAST
v MAX (scalar)
v MIN (scalar)
v NVL
v VALUE

When the number_compat configuration parameter is set to ON, the rules for
result data types are extended to make DECFLOAT(34) the result data type if the
precision of a DECIMAL result data type would have exceeded 31. These rules also
apply to corresponding columns in set operations (UNION, EXCEPT(MINUS), and
INTERSECT), expression values in the IN list of an IN predicate, and
corresponding expressions of a multiple row VALUES clause.

The rounding mode used for assignments and casts that happen on the database
server depends on the data types that are involved. In some cases, truncation is
used. In cases where the target is a binary floating-point (REAL or DOUBLE)

368 SQL Procedural Languages: Application Enablement and Support

value, round-half-even is used, as usual. In other cases (usually involving a
DECIMAL or DECFLOAT value), the rounding is based on the value of the
decflt_rounding database configuration parameter. This parameter defaults to
round-half-even, but can be set to round-half-up to match the Oracle rounding
mode. The following table summarizes the rounding that is used for various
numeric assignments and casts.

Table 37. Rounding for numeric assignments and casts

Source Data
Type

Target Data Type

integer types DECIMAL DECFLOAT REAL/DOUBLE

integer types not applicable not applicable decflt_rounding round_half_even

DECIMAL decflt_rounding decflt_rounding decflt_rounding round_half_even

DECFLOAT decflt_rounding decflt_rounding decflt_rounding round_half_even

REAL/DOUBLE truncate truncate decflt_rounding round_half_even

string (cast only) not applicable decflt_rounding decflt_rounding round_half_even

The DB2 decimal floating-point values are based on the IEEE 754R standard.
Retrieval of DECFLOAT data and casting of DECFLOAT data to character strings
removes any trailing zeros after the decimal point.

Client-server compatibility considerations
v Client applications working with a DB2 database server that is enabled for

NUMBER data type support never see a NUMBER data type from the server.
Any column or expression that might have reported NUMBER from an Oracle
server will report either DECIMAL or DECFLOAT from a DB2 server.

v Because an Oracle environment expects the rounding mode to be round-half-up,
it is important that the client rounding mode match the server rounding mode.
This means that the db2cli.ini setting should match the value of the
decflt_rounding database configuration parameter. ROUND_HALF_UP should
be specified to most closely match the Oracle rounding mode.

Restrictions

NUMBER data type support has the following restrictions:
v There is no support for the NUMBER data type with a precision attribute greater

than 31, a precision attribute of asterisk (*), a scale attribute that exceeds the
precision attribute, or a negative scale attribute. There is no corresponding
DECIMAL precision and scale support for such data type specifications.

v The trigonometric functions and the DIGITS scalar function cannot be invoked
with arguments of data type NUMBER without a precision (DECFLOAT).

v A distinct type cannot be created with the name NUMBER.

VARCHAR2 and NVARCHAR2 data types
The VARCHAR2 and NVARCHAR2 data types are introduced to support
applications that use the Oracle VARCHAR2 and NVARCHAR2 data type.

Support for VARCHAR2 and NVARCHAR2 (subsequently jointly referred to as
VARCHAR2) is at the database level, and must be enabled before creating the
database where support is required. This is achieved by setting the
DB2_COMPATIBILITY_VECTOR registry variable to the appropriate value. When
a database is created with VARCHAR2 support enabled, the database configuration

Chapter 4. DB2 compatibility features 369

parameter varchar2_compat is set to ON. After a database is created with
VARCHAR2 support enabled, it cannot be disabled for that database, even if the
DB2_COMPATIBILITY_VECTOR registry variable is reset. Similarly, all databases
created with VARCHAR2 support disabled cannot have VARCHAR2 support
enabled, even by setting the DB2_COMPATIBILITY_VECTOR registry variable.

Enablement

VARCHAR2 data type support is enabled by setting bit position number 6 (0x20)
of the DB2_COMPATIBILITY_VECTOR registry variable before creating a
database. A new setting for the registry variable does not take effect until after the
instance has been stopped and then restarted.

To make use of the NVARCHAR2 data type, the database must be a Unicode
database.

Usage

The following support is enabled for a DB2 database that has the varchar2_compat
database configuration parameter set to ON.

When the VARCHAR2 data type is explicitly encountered in SQL statements, it is
implicitly mapped to the VARCHAR data type. The maximum length for
VARCHAR2 is the same as the maximum length for VARCHAR (that is, 32 672).

When the NVARCHAR2 data type is explicitly encountered in SQL statements, it is
implicitly mapped to the VARGRAPHIC data type. The maximum length for
NVARCHAR2 is the same as the maximum length for VARGRAPHIC (that is, 16
336).

Character string literals up to 254 bytes in length have a data type of CHAR.
Character string literals longer than 254 bytes have a data type of VARCHAR.

Any comparisons involving varying-length string types use non-padded
comparison semantics, and comparisons with only fixed-length string types
continue to use blank-padded comparison semantics, with two exceptions:
v Comparisons involving any string column information from catalog views

always use the IDENTITY collation with blank-padded comparison semantics,
regardless of the database collation.

v String comparisons involving a data type with the FOR BIT DATA attribute
always use the IDENTITY collation with blank-padded comparison semantics.

If the result type for the IN list of an IN predicate would resolve to a fixed-length
string data type and the left operand of the IN predicate is a varying-length string
data type, the IN list expressions are treated as having a varying-length string data
type.

Character string values (other than LOB values) with a length of zero are generally
treated as null values. An assignment or cast of an empty string value to CHAR,
NCHAR, VARCHAR, or NVARCHAR produces a null value.

The functions that return character string arguments, or that are based on
parameters with character string data types, also treat empty string CHAR,
NCHAR, VARCHAR, or NVARCHAR values as null values. Special considerations
apply for some functions when the varchar2_compat database configuration
parameter is set to ON, and these are listed here.

370 SQL Procedural Languages: Application Enablement and Support

v CONCAT and the concatenation operator. A null or empty string value is
ignored in the concatenated result. The result type of the concatenation is shown
in the following table.

Table 38. Data Type and lengths of concatenated operands

Operands

Combined
length
attributes Result

CHAR(A) CHAR(B) <255 CHAR(A+B)

CHAR(A) CHAR(B) >254 VARCHAR(A+B)

CHAR(A) VARCHAR(B) - VARCHAR(MIN(A+B,32672))

VARCHAR(A) VARCHAR(B) - VARCHAR(MIN(A+B,32672))

CLOB(A) CHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) VARCHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) CLOB(B) CLOB(MIN(A+B, 2G))

GRAPHIC(A) GRAPHIC(B) <128 GRAPHIC(A+B)

GRAPHIC(A) GRAPHIC(B) >128 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) - VARGRAPHIC(MIN(A+B,16336))

VARGRAPHIC(A)
VARGRAPHIC(B)

- VARGRAPHIC(MIN(A+B,16336))

DBCLOB(A) CHAR(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(A) VARCHAR(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(A) CLOB(B) DBCLOB(MIN(A+B, 1G))

BLOB(A) BLOB(B) - BLOB(MIN(A+B, 2G))

v INSERT. A null value or empty string as the fourth argument results in deletion
of the number of bytes indicated by the third argument, beginning at the byte
position indicated by the second argument from the first argument.

v LENGTH. The value returned by the LENGTH function is the number of bytes
in the character string. An empty string value returns the null value.

v REPLACE. If all of the argument values have a data type of CHAR, VARCHAR,
GRAPHIC, or VARGRAPHIC, then:
– A null value or empty string as the second argument is treated as an empty

string, and consequently the first argument is returned as the result
– A null value or empty string as the third argument is treated as an empty

string, and nothing replaces the string that is removed from the source string
by the second argument.

If any argument value has a data type of CLOB or BLOB and any argument is
the null value, the result is the null value. All three arguments of the REPLACE
function must be specified.

v SUBSTR: References to SUBSTR which have a character string input for the first
argument will be replaced with an invocation to SUBSTRB. References to
SUBSTR which have a graphic string input for the first argument are left
unchanged. In this case, there is no support for second argument values less
than 1, or third argument values less than zero.

v TRANSLATE. The from-string-exp is the second argument, and the to-string-exp is
the third argument. If the to-string-exp is shorter than the from-string-exp, the
extra characters in the from-string-exp that are found in the char-string-exp (the

Chapter 4. DB2 compatibility features 371

first argument) are removed; that is, the default pad-char argument is effectively
an empty string, unless a different pad character is specified in the fourth
argument.

v TRIM. If the trim character argument of a TRIM function invocation is a null
value or an empty string, the function returns a null value.

In the ALTER TABLE statement or the CREATE TABLE statement, when a
DEFAULT clause is specified without an explicit value for a column defined with
the VARCHAR or the VARGRAPHIC data type, the default value is a blank
character.

Empty strings are converted to a blank character when the database configuration
parameter varchar2_compat is set to ON. For example:
v SYSCAT.DATAPARTITIONS.STATUS has a single blank character when the data

partition is visible.
v SYSCAT.PACKAGES.PKGVERSION has a single blank character when the

package version has not been explicitly set.
v SYSCAT.ROUTINES.COMPILE_OPTIONS has a null value when compile

options have not been set.

Note: If SQL statements use parameter markers, a data type conversion that affects
VARCHAR2 usage can occur. For example, if the input value is a VARCHAR of
length zero and it is converted to a LOB, the result will be a null value. However,
if the input value is a LOB of length zero and it is converted to a LOB, the result
will be a LOB of length zero. The data type of the input value can be affected by
deferred prepare.

Restrictions

The VARCHAR2 data type and associated character string processing support have
the following restrictions:
v The VARCHAR2 length attribute qualifier CHAR is not accepted.
v The LONG VARCHAR and LONG VARGRAPHIC data types are not supported

(but are not explicitly blocked) when the varchar2_compat database
configuration parameter is set to ON.

Character and graphic constant handling
An alternate way to parse character or graphic constants is introduced to support
applications that expect these constants to be assigned the data types CHAR and
GRAPHIC, respectively.

Enablement

This support is enabled by setting bit position number 9 (0x100) of the
DB2_COMPATIBILITY_VECTOR registry variable. The recommended setting for
DB2_COMPATIBILITY_VECTOR is ORA, which sets all of the compatibility bits.

After this support is enabled, character or graphic string constants whose length is
less than or equal to 254 bytes have a data type of CHAR or GRAPHIC,
respectively. Character or graphic string constants whose length is greater than 254
bytes have a data type of VARCHAR or VARGRAPHIC, respectively. Because this
data type assignment can change the result types of some SQL statements, it is

372 SQL Procedural Languages: Application Enablement and Support

strongly recommended that this registry variable setting for a database not be
toggled.

Outer join operator
When the DB2_COMPATIBILITY_VECTOR registry variable is set to support the
outer join operator, (+), queries can use this alternative syntax within predicates of
the WHERE clause.

The outer join syntax should be used wherever possible, and the outer join
operator should be used only when enabling applications from other relational
database vendors on DB2.

The outer join operator, (+), is applied following a column name within predicates
that generally refer to columns from two table-references.
v To write a query that performs a left outer join of tables T1 and T2, include both

tables in the FROM clause separated by a comma, and apply the outer join
operator to all columns of T2 in predicates that also reference T1. For example:

SELECT * FROM T1
LEFT OUTER JOIN T2 ON T1.PK1 = T2.FK1

AND T1.PK2 = T2.FK2

is equivalent to:
SELECT * FROM T1, T2

WHERE T1.PK1 = T2.FK1(+)
AND T1.PK2 = T2.FK2(+)

v To write a query that performs a right outer join of tables T1 and T2, include
both tables in the FROM clause separated by a comma, and apply the outer join
operator to all columns of T1 in predicates that also reference T2. For example:

SELECT * FROM T1
RIGHT OUTER JOIN T2 ON T1.FK1 = T2.PK1
AND T1.FK2 = T2.PK2

is equivalent to:
SELECT * FROM T1, T2

WHERE T1.FK1(+) = T2.PK1
AND T1.FK2(+) = T2.PK2

A table-reference that has columns marked with the outer join operator is
sometimes referred to as a NULL-producer.

A set of predicates separated by AND operators is known as an AND-factor. If
there are no AND operators in a WHERE clause, the set of predicates in the
WHERE clause is considered to be the only AND-factor.

The following rules apply to the use of the outer join operator.
v The WHERE predicate is considered on a granularity of ANDed Boolean factors.
v Each Boolean term can refer to at most two table-references; that is, T1.C11 +

T2.C21 = T3.C3(+) is not allowed.
v Each table can be the null producer with respect to at most one other table. If a

table is joined to a third table, it must be the outer.
v Local predicates, such as T1.A(+) = 5, can exist, but they are executed with the

join. A local predicate without (+) is executed after the join.
v Correlation for outer join Boolean terms is not allowed.

Chapter 4. DB2 compatibility features 373

v The outer join operator cannot be specified in the same subselect as the explicit
JOIN syntax.

v The outer join operator can be specified only in the WHERE clause on columns
associated with table-references that are specified in the FROM clause of the
same subselect.

v An AND-factor can have only one table-reference as a NULL-producer. Each
column reference followed by the outer join operator must be from the same
table-reference.

v An AND-factor that includes an outer join operator can reference at most two
table-references.

v If multiple AND-factors are required for the outer join between two tables, the
outer join operator must be specified in all of these AND-factors. If an
AND-factor does not specify the outer join operator, it is processed on the result
of the outer join.

v The outer join operator cannot be applied to an entire expression. Within an
AND-factor, each column reference from the same table must be followed by the
outer join operator (for example, T1.COL1 (+) - T1.COL2 (+) = T2.COL1).

v An AND-factor with predicates that involve only one table-reference can specify
the outer join operator if there is at least one other AND-factor that involves the
same table-reference as the NULL-producer and involves another table-reference
as the outer table.

v An AND-factor with predicates involving only one table-reference and without
an outer join operator is processed on the result of the join.

v A table-reference can be used only once as the NULL-producer for one other
table-reference within a query.

v The same table-reference cannot be used as both the outer table and the
NULL-producer in separate outer joins that form a cycle. A cycle can be formed
across multiple joins when the chain of predicates comes back to an earlier
table-reference. For example:
SELECT ... FROM T1,T2,T3

WHERE T1.a1 = T2.b2(+)
AND T2.b2 = T3.c3(+)
AND T3.c3 = T1.a1(+) -- invalid cycle

This example starts with T1 as the outer table in the first predicate and then
cycles back to T1 in the third predicate. Note that T2 is used as both the
NULL-producer in the first predicate and the outer table in the second predicate,
but this usage is not itself a cycle.

v An AND-factor that includes an outer join operator must follow the rules for a
join-condition of an ON clause defined under joined-table.

v The outer join operator can only be specified in the WHERE clause on columns
that are associated with table-references specified in the FROM clause of the
same subselect.

Hierarchical queries
Hierarchical queries are a form of recursive query that provides support for
retrieving a hierarchy, such as a bill of materials, from relational data using a
CONNECT BY clause.

Hierarchical query support is enabled through the setting of the
DB2_COMPATIBILITY_VECTOR registry variable. This allows the CONNECT BY
syntax to be specified, including the use of pseudocolumns (see “Pseudocolumns”
on page 375

374 SQL Procedural Languages: Application Enablement and Support

on page 375), unary operators (see “Unary operators”), and the
SYS_CONNECT_BY_PATH scalar function.

Connect-by recursion uses the same subquery for the seed (start) and the recursive
step (connect). This combination provides a concise method of representing
recursions such as, for example, bills-of-material, reports-to-chains, or email
threads.

Connect-by recursion returns an error if a cycle occurs. A cycle occurs when a row
produces itself, either directly or indirectly. Using the optional CONNECT BY
NOCYCLE clause, the recursion can be directed to ignore the duplicated row, thus
avoiding both the cycle and the error. For more information about mapping
hierarchical queries to DB2 recursion, see Port CONNECT BY to DB2.

Pseudocolumns

A pseudocolumn is a qualified or unqualified identifier that has meaning in a
specific context and shares the same namespace as columns and variables. If an
unqualified identifier does not identify a column or a variable, it is checked to see
if it identifies a pseudocolumn.

LEVEL is a pseudocolumn for use in hierarchical queries. The LEVEL
pseudocolumn returns the recursive step in the hierarchy at which a row was
produced. All rows produced by the START WITH clause return the value 1. Rows
produced by applying the first iteration of the CONNECT BY clause return 2, and
so on. The data type of the column is INTEGER NOT NULL.

LEVEL must be specified in the context of a hierarchical query but cannot be
specified in the START WITH clause, as an argument of the CONNECT_BY_ROOT
operator, or as an argument of the SYS_CONNECT_BY_PATH function (SQLSTATE
428H4).

Unary operators

Unary operators in support of hierarchical queries include:
v CONNECT_BY_ROOT
v PRIOR

Functions

New functions in support of hierarchical queries include:
v SYS_CONNECT_BY_PATH scalar function

Subselect

Hierarchical query support includes the following extensions to the subselect.
v The subselect includes a new “hierarchical-query-clause” on page 376
v The clauses of the subselect are processed in the following sequence:

1. FROM clause
2. hierarchical-query-clause

3. WHERE clause
4. GROUP BY clause
5. HAVING clause

Chapter 4. DB2 compatibility features 375

http://www.ibm.com/developerworks/data/library/techarticle/dm-0510rielau/

6. SELECT clause
7. ORDER BY clause
8. FETCH FIRST clause

v If the subselect includes a hierarchical-query-clause, special rules apply for the
order of processing the predicates in the WHERE clause. The search-condition is
factored into predicates along its AND conditions (conjunction). If a predicate is
an implicit join predicate (that is, it references more than one table in the FROM
clause), the predicate is applied before the hierarchical-query-clause. Any predicate
referencing at most one table in the FROM clause is applied to the intermediate
result table of the hierarchical-query-clause.
A hierarchical query involving joins should be written using explicit joined
tables with an ON clause to avoid confusion about the application of WHERE
clause predicates.

v The new ORDER SIBLINGS BY clause can be specified if the subselect includes a
hierarchical-query-clause. This clause specifies that the ordering applies only to
siblings within the hierarchies.

hierarchical-query-clause

�� * * connect-by-clause *

start-with-clause
��

start-with-clause:

START WITH search-condition

connect-by-clause:

CONNECT BY search-condition
NOCYCLE

A subselect that includes a hierarchical-query-clause is called a hierarchical query.
After establishing a first intermediate result table H1, subsequent intermediate
result tables H2, H3, and so forth are generated by joining Hn with R using the
connect-by-clause as a join condition to produce Hn+1. R is the result of the FROM
clause of the subselect and any join predicates in the WHERE clause. The process
stops when Hn+1 has yielded an empty result table. The result table H of the
hierarchical-query-clause is the UNION ALL of every Hi.

The start-with-clause specifies the intermediate result table H1 for the hierarchical
query that consists of those rows of R for which the search-condition is true. If the
start-with-clause is not specified, H1 is the entire intermediate result table R.

The connect-by-clause produces the intermediate result table Hn+1 from Hn by joining
Hn with R, using the search condition.

The unary operator PRIOR is used to distinguish column references to Hn, the last
prior recursive step, from column references to R. For example:

CONNECT BY MGRID = PRIOR EMPID

MGRID is resolved with R, and EMPID is resolved within the previous
intermediate result table Hn.

376 SQL Procedural Languages: Application Enablement and Support

The rules for the search-condition within the start-with-clause and the
connect-by-clause are the same as those within the WHERE clause, except that
OLAP specifications cannot be specified in the connect-by-clause (SQLSTATE 42903).

If the intermediate result table Hn+1 would return a row from R for a hierarchical
path that is the same as a row from R that is already in that hierarchical path, an
error is returned (SQLSTATE 560CO).

If the NOCYCLE keyword is specified, an error is not returned, but the repeated
row is not included in the intermediate result table Hn+1.

DB2 supports a maximum of 64 levels of recursion (SQLSTATE 54066).

A subselect that is a hierarchical query returns the intermediate result set in a
partial order, unless that order is destroyed through the use of an explicit ORDER
BY clause, a GROUP BY or HAVING clause, or a DISTINCT keyword in the select
list. The partial order returns rows, such that rows produced in Hn+1 for a given
hierarchy immediately follow the row in Hn that produced them. The ORDER
SIBLINGS BY clause can be used to enforce order within a set of rows produced by
the same parent.

Restrictions on the use of hierarchical queries
v A hierarchical query is not supported in a materialized query table (SQLSTATE

428EC).
v The CONNECT BY clause cannot be used in conjunction with XML functions or

XQuery (SQLSTATE 428H4).
v A NEXT VALUE expression for a sequence cannot be specified in (SQLSTATE

428F9):
– The parameter list of the CONNECT_BY_ROOT operator or a

SYS_CONNECT_BY_PATH function
– START WITH and CONNECT BY clauses

Examples
v The following reports-to-chain example illustrates connect-by recursion. The

example is based on a table named MY_EMP, which is created and populated
with data as follows:
CREATE TABLE MY_EMP(

EMPID INTEGER NOT NULL PRIMARY KEY,
NAME VARCHAR(10),
SALARY DECIMAL(9, 2),
MGRID INTEGER);

INSERT INTO MY_EMP VALUES (1, 'Jones', 30000, 10);
INSERT INTO MY_EMP VALUES (2, 'Hall', 35000, 10);
INSERT INTO MY_EMP VALUES (3, 'Kim', 40000, 10);
INSERT INTO MY_EMP VALUES (4, 'Lindsay', 38000, 10);
INSERT INTO MY_EMP VALUES (5, 'McKeough', 42000, 11);
INSERT INTO MY_EMP VALUES (6, 'Barnes', 41000, 11);
INSERT INTO MY_EMP VALUES (7, 'O''Neil', 36000, 12);
INSERT INTO MY_EMP VALUES (8, 'Smith', 34000, 12);
INSERT INTO MY_EMP VALUES (9, 'Shoeman', 33000, 12);
INSERT INTO MY_EMP VALUES (10, 'Monroe', 50000, 15);
INSERT INTO MY_EMP VALUES (11, 'Zander', 52000, 16);
INSERT INTO MY_EMP VALUES (12, 'Henry', 51000, 16);
INSERT INTO MY_EMP VALUES (13, 'Aaron', 54000, 15);
INSERT INTO MY_EMP VALUES (14, 'Scott', 53000, 16);

Chapter 4. DB2 compatibility features 377

INSERT INTO MY_EMP VALUES (15, 'Mills', 70000, 17);
INSERT INTO MY_EMP VALUES (16, 'Goyal', 80000, 17);
INSERT INTO MY_EMP VALUES (17, 'Urbassek', 95000, NULL);

The following query returns all employees working for Goyal, as well as some
additional information, such as the reports-to-chain:

1 SELECT NAME,
2 LEVEL,
3 SALARY,
4 CONNECT_BY_ROOT NAME AS ROOT,
5 SUBSTR(SYS_CONNECT_BY_PATH(NAME, ':'), 1, 25) AS CHAIN
6 FROM MY_EMP
7 START WITH NAME = 'Goyal'
8 CONNECT BY PRIOR EMPID = MGRID
9 ORDER SIBLINGS BY SALARY;

NAME LEVEL SALARY ROOT CHAIN
---------- ----------- ----------- ----- ---------------
Goyal 1 80000.00 Goyal :Goyal
Henry 2 51000.00 Goyal :Goyal:Henry
Shoeman 3 33000.00 Goyal :Goyal:Henry:Shoeman
Smith 3 34000.00 Goyal :Goyal:Henry:Smith
O'Neil 3 36000.00 Goyal :Goyal:Henry:O'Neil
Zander 2 52000.00 Goyal :Goyal:Zander
Barnes 3 41000.00 Goyal :Goyal:Zander:Barnes
McKeough 3 42000.00 Goyal :Goyal:Zander:McKeough
Scott 2 53000.00 Goyal :Goyal:Scott

Lines 7 and 8 comprise the core of the recursion: The optional START WITH
clause describes the WHERE clause that is to be used on the source table to seed
the recursion. In this case, only the row for employee Goyal is selected. If the
START WITH clause is omitted, the entire source table is used to seed the
recursion. The CONNECT BY clause describes how, given the existing rows, the
next set of rows is to be found. The unary operator PRIOR is used to distinguish
values in the previous step from those in the current step. PRIOR identifies
EMPID as the employee ID of the previous recursive step, and MGRID as
originating from the current recursive step.
LEVEL in line 2 is a pseudocolumn that describes the current level of recursion.
CONNECT_BY_ROOT is a unary operator that always returns the value of its
argument as it was during the first recursive step; that is, the values that are
returned by an explicit or implicit START WITH clause.
SYS_CONNECT_BY_PATH() is a binary function that prepends the second
argument to the first and then appends the result to the value that it produced
in the previous recursive step. The arguments must be character types.
Unless explicitly overridden, connect-by recursion returns a result set in a partial
order; that is, the rows that are produced by a recursive step always follow the
row that produced them. Siblings at the same level of recursion have no specific
order. The ORDER SIBLINGS BY clause in line 9 defines an order for these
siblings, which further refines the partial order, potentially into a total order.

v Return the organizational structure of the DEPARTMENT table. Use the level of
the department to visualize the hierarchy.

SELECT LEVEL, CAST(SPACE((LEVEL - 1) * 4) || '/' || DEPTNAME
AS VARCHAR(40)) AS DEPTNAME

FROM DEPARTMENT
START WITH DEPTNO = 'A00'
CONNECT BY NOCYCLE PRIOR DEPTNO = ADMRDEPT

The query returns:
LEVEL DEPTNAME
----------- --

1 /SPIFFY COMPUTER SERVICE DIV.

378 SQL Procedural Languages: Application Enablement and Support

2 /PLANNING
2 /INFORMATION CENTER
2 /DEVELOPMENT CENTER
3 /MANUFACTURING SYSTEMS
3 /ADMINISTRATION SYSTEMS
2 /SUPPORT SERVICES
3 /OPERATIONS
3 /SOFTWARE SUPPORT
3 /BRANCH OFFICE F2
3 /BRANCH OFFICE G2
3 /BRANCH OFFICE H2
3 /BRANCH OFFICE I2
3 /BRANCH OFFICE J2

CONNECT_BY_ROOT unary operator
The CONNECT_BY_ROOT unary operator is for use only in hierarchical queries
(SQLSTATE 428H4). For every row in the hierarchy, this operator returns the
expression for the row's root ancestor.

�� CONNECT_BY_ROOT expression ��

expression
An expression that does not contain a NEXT VALUE expression, an
hierarchical query construct (such as the LEVEL pseudocolumn), the
SYS_CONNECT_BY_PATH function, or an OLAP function (SQLSTATE 428H4).

The result type of the operator is the result type of the expression.

Rules:
v A CONNECT_BY_ROOT operator cannot be specified in the START WITH

clause or the CONNECT BY clause of a hierarchical query (SQLSTATE 428H4).
v A CONNECT_BY_ROOT operator cannot be specified as an argument to the

SYS_CONNECT_BY_PATH function (SQLSTATE 428H4).

Notes:
v A CONNECT_BY_ROOT operator has a higher precedence than any infix

operator. Therefore, to pass an expression with infix operators (such as + or ||)
as an argument, parentheses must be used. For example:

CONNECT_BY_ROOT FIRSTNME || LASTNAME

returns the FIRSTNME value of the root ancestor row concatenated with the
LASTNAME value of the actual row in the hierarchy, because this expression is
equivalent to:

(CONNECT_BY_ROOT FIRSTNME) || LASTNAME

rather than:
CONNECT_BY_ROOT (FIRSTNME || LASTNAME)

Example:
v Return the hierarchy of departments and their root departments in the

DEPARTMENT table.
SELECT CONNECT_BY_ROOT DEPTNAME AS ROOT, DEPTNAME

FROM DEPARTMENT START WITH DEPTNO IN ('B01','C01','D01','E01')
CONNECT BY PRIOR DEPTNO = ADMRDEPT

This query returns:

Chapter 4. DB2 compatibility features 379

ROOT DEPTNAME
------------------ -----------------------
PLANNING PLANNING
INFORMATION CENTER INFORMATION CENTER
DEVELOPMENT CENTER DEVELOPMENT CENTER
DEVELOPMENT CENTER MANUFACTURING SYSTEMS
DEVELOPMENT CENTER ADMINISTRATION SYSTEMS
SUPPORT SERVICES SUPPORT SERVICES
SUPPORT SERVICES OPERATIONS
SUPPORT SERVICES SOFTWARE SUPPORT
SUPPORT SERVICES BRANCH OFFICE F2
SUPPORT SERVICES BRANCH OFFICE G2
SUPPORT SERVICES BRANCH OFFICE H2
SUPPORT SERVICES BRANCH OFFICE I2
SUPPORT SERVICES BRANCH OFFICE J2

PRIOR unary operator
The PRIOR unary operator is for use only in the CONNECT BY clause of
hierarchical queries (SQLSTATE 428H4).

�� PRIOR expression ��

The CONNECT BY clause performs an inner join between the intermediate result
table Hn of the hierarchical query and the source result table specified in the
FROM clause. All column references to tables that are referenced in the FROM
clause, and which are arguments to the PRIOR operator, are considered to be
ranging over Hn.

The primary key of the intermediate result table Hn is typically joined to the
foreign keys of the source result table to recursively traverse the hierarchy.

CONNECT BY PRIOR T.PK = T.FK

If the primary key is a composite key, care must be taken to prefix each column
with PRIOR:

CONNECT BY PRIOR T.PK1 = T.FK1 AND PRIOR T.PK2 = T.FK2

expression
Any expression that does not contain a NEXT VALUE expression, an
hierarchical query construct (such as the LEVEL pseudocolumn), the
SYS_CONNECT_BY_PATH function, or an OLAP function (SQLSTATE 428H4).

The result data type of the operator is the result data type of the expression.

Notes:
v A PRIOR operator has a higher precedence than any infix operator. Therefore, to

pass an expression with infix operators (such as + or ||) as an argument,
parentheses must be used. For example:

PRIOR FIRSTNME || LASTNAME

returns the FIRSTNME value of the prior row concatenated with the
LASTNAME value of the actual row in the hierarchy, because this expression is
equivalent to:

(PRIOR FIRSTNME) || LASTNAME

rather than:
PRIOR (FIRSTNME || LASTNAME)

380 SQL Procedural Languages: Application Enablement and Support

Example:
v Return the hierarchy of departments in the DEPARTMENT table.

SELECT LEVEL, DEPTNAME
FROM DEPARTMENT START WITH DEPTNO = 'A00'
CONNECT BY NOCYCLE PRIOR DEPTNO = ADMRDEPT

This query returns:
LEVEL DEPTNAME
----------- --

1 SPIFFY COMPUTER SERVICE DIV.
2 PLANNING
2 INFORMATION CENTER
2 DEVELOPMENT CENTER
3 MANUFACTURING SYSTEMS
3 ADMINISTRATION SYSTEMS
2 SUPPORT SERVICES
3 OPERATIONS
3 SOFTWARE SUPPORT
3 BRANCH OFFICE F2
3 BRANCH OFFICE G2
3 BRANCH OFFICE H2
3 BRANCH OFFICE I2
3 BRANCH OFFICE J2

SYS_CONNECT_BY_PATH
The SYS_CONNECT_BY_PATH function (in the SYSIBM schema) is used in
hierarchical queries to build a string representing a path from the root row to this
row.

�� SYS_CONNECT_BY_PATH (string-expression1 , string-expression2) ��

The string for a given row at LEVEL n is built as follows:
v Step 1 (using the values of the root row from the first intermediate result table

H1):
path1 := string-expression2 || string-expression1

v Step n (based on the row from the intermediate result table Hn):
pathn := pathn-1 || string-expression2 || string-expression1

string-expression1
A character string expression that identifies the row. The expression must not
include a NEXT VALUE expression for a sequence (SQLSTATE 428F9), any
hierarchical query construct, such as the LEVEL pseudocolumn or the
CONNECT_BY_ROOT operator (SQLSTATE 428H4), an OLAP function, or an
aggregate function (SQLSTATE 428H4).

string-expression2
A constant string that serves as a separator. The expression must not include a
NEXT VALUE expression for a sequence (SQLSTATE 428F9), any hierarchical
query construct, such as the LEVEL pseudocolumn or the
CONNECT_BY_ROOT operator (SQLSTATE 428H4), an OLAP function, or an
aggregate function (SQLSTATE 428H4).

The result is a varying-length character string. The length attribute of the result
data type is the greater of 1000 and the length attribute of string-expression1.

Rules:

Chapter 4. DB2 compatibility features 381

v The SYS_CONTEXT_BY_PATH function must not be used outside of the context
of a hierarchical query (SQLSTATE 428H4).

v The function cannot be used in a START WITH clause or a CONNECT BY clause
(SQLSTATE 428H4).

Example:
v Return the hierarchy of departments in the DEPARTMENT table.

SELECT CAST(SYS_CONNECT_BY_PATH(DEPTNAME, '/')
AS VARCHAR(76)) AS ORG

FROM DEPARTMENT START WITH DEPTNO = 'A00'
CONNECT BY NOCYCLE PRIOR DEPTNO = ADMRDEPT

This query returns:
ORG

/SPIFFY COMPUTER SERVICE DIV.
/SPIFFY COMPUTER SERVICE DIV./PLANNING
/SPIFFY COMPUTER SERVICE DIV./INFORMATION CENTER
/SPIFFY COMPUTER SERVICE DIV./DEVELOPMENT CENTER
/SPIFFY COMPUTER SERVICE DIV./DEVELOPMENT CENTER/MANUFACTURING SYSTEMS
/SPIFFY COMPUTER SERVICE DIV./DEVELOPMENT CENTER/ADMINISTRATION SYSTEMS
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/OPERATIONS
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/SOFTWARE SUPPORT
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE F2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE G2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE H2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE I2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE J2

Database configuration parameters
New database configuration parameters indicate the status of several compatibility
features.

The new parameters include:
v date_compat, which indicates whether the DATE compatibility semantics

associated with the TIMESTAMP(0) data type are applied to the connected
database

v number_compat, which indicates whether the compatibility semantics associated
with the NUMBER data type are applied to the connected database

v varchar2_compat, which indicates whether the compatibility semantics
associated with the VARCHAR2 data type are applied to the connected database

The value of each of these parameters is determined at database creation time, and
is based on the setting of the DB2_COMPATIBILITY_VECTOR registry variable.
The value cannot be changed.

ROWNUM pseudocolumn
DB2 converts any unresolved and unqualified column reference to ROWNUM to
the OLAP specification ROW_NUMBER() OVER().

ROWNUM pseudocolumn support is enabled through the setting of the
DB2_COMPATIBILITY_VECTOR registry variable.

Both ROWNUM and ROW_NUMBER() OVER() are allowed in the WHERE clause
of a subselect, and are useful for restricting the size of a result set.

382 SQL Procedural Languages: Application Enablement and Support

If ROWNUM is used in the WHERE clause, and there is an ORDER BY clause in
the same subselect, the ordering is applied before the ROWNUM predicate is
evaluated. This is also true for a ROW_NUMBER() OVER() function in the WHERE
clause.

If the OLAP specification ROW_NUMBER() OVER() is used in the WHERE clause,
neither a window-order-clause nor a window-partition-clause can be specified.

Notes
v Before translating an unqualified reference to 'ROWNUM' as ROW_NUMBER()

OVER(), DB2 attempts to resolve the reference as one of:
– A column within the current SQL query
– A local variable
– A routine parameter
– A global variable

v Avoid using 'ROWNUM' as a column name or a variable name while
ROWNUM pseudocolumn support is enabled.

Example 1

Set the DB2_COMPATIBILITY_VECTOR registry variable to support an
application using ROWNUM and outer join operator queries. To achieve maximum
compatibility with Oracle, set the value to ORA. This is the recommended setting.

db2set DB2_COMPATIBILITY_VECTOR=ORA
db2stop
db2start

The new setting does not take effect until after the instance has been stopped and
then restarted.

Example 2

Assuming that ROWNUM pseudocolumn support is enabled for the connected
database, retrieve the twentieth to the fortieth row of a result set that is stored in a
temporary table.

SELECT TEXT FROM SESSION.SEARCHRESULTS
WHERE ROWNUM BETWEEN 20 AND 40
ORDER BY ID

Note that ROWNUM is affected by the ORDER BY clause.

DUAL table
The DB2 data server resolves any unqualified table reference to “DUAL” as a
built-in view returning one row and one column named “DUMMY”, whose value
is 'X'.

Unqualified table references to the DUAL table are resolved as SYSIBM.DUAL
through the setting of the DB2_COMPATIBILITY_VECTOR registry variable.

If a user-defined table named DUAL exists, the DB2 server resolves a table
reference to the user-defined table only if the reference is explicitly qualified.

Chapter 4. DB2 compatibility features 383

Example 1

Generate a random number by selecting from DUAL.
SELECT RAND() AS RANDOM_NUMBER FROM DUAL

Example 2

Retrieve the value of the CURRENT SCHEMA special register.
SET SCHEMA = MYSCHEMA;
SELECT CURRENT SCHEMA AS CURRENT_SCHEMA FROM DUAL;

Insensitive cursor
Starting with Version 9.7 Fix Pack 2 and later fix packs, you have the option of
making cursors insensitive to subsequent statements by materializing the cursor at
OPEN time.

For a cursor to be insensitive to other data change statements, the result set is
materialized at OPEN time and the cursor behaves as a read only cursor. Without
insensitive cursor support there is no guarantee that DB2 cursors will be
materialized at OPEN time, which could cause different result sets when a query is
run in DB2 as opposed to a relational database that immediately materializes
cursors. For example, Sybase TSQL includes the capability of issuing a query from
a batch or procedure code that produces a result set for the invoker. The query is
materialized immediately and other statements in the block assume that they
cannot impact the result and issue statements, such as delete, against the same
table that was referenced in the query. When a similar scenario is run without an
insensitive cursor, the result set from that cursor will be different than the Sybase
result.

Insensitive cursor support is enabled by setting bit position number 13 (0x1000) of
the DB2_COMPATIBILITY_VECTOR registry variable. When this bit is set, all
cursors defined as WITH RETURN are INSENSITIVE as long as they are not
explicitly marked as FOR UPDATE. A new setting for the registry variable does
not take effect until after the instance has been stopped and then restarted.

The DECLARE CURSOR statement is extended allowing a cursor to be defined as
INSENSITIVE. Declaring an insensitive cursor is only supported in the context of a
compound SQL (compiled) statement.

The STATICREADONLY option of the BIND command now allows a specification
of INSENSITIVE. A package that is bound with STATICREADONLY INSENSITIVE
will cause all read only and ambiguous cursors to be insensitive. This bind option
will also be supported in the registry variable DB2_SQLROUTINE_PREPOPTS and
the procedure SET_ROUTINE_OPTS, so that SQL routines can make all read only
and ambiguous cursors issued as static SQL materialize at OPEN time.

Restrictions

The INSENSITIVE keyword can only be specified on a DECLARE CURSOR
statement used within a compound SQL (compiled) statement. It is not supported
by any of the precompilers. No changes are made to CLI or JDBC to identify
insensitive nonscrollable cursors (either cursor attributes or result set attributes).

384 SQL Procedural Languages: Application Enablement and Support

Example

This code returns the entire result set of the SELECT statement to the client prior
to starting the DELETE statement.
BEGIN
DECLARE res INSENSITIVE CURSOR WITH RETURN TO CLIENT FOR
SELECT * FROM T;
OPEN T;
DELETE FROM T;

END

INOUT parameter
Starting with Version 9.7 Fix Pack 2 and later fix packs, a procedure can have
INOUT parameters defined with a default and the procedure can subsequently be
invoked without an argument for those parameters.

Procedure declarations allow the specification of DEFAULT expressions for INOUT
parameters in addition to IN parameters. A procedure with INOUT parameters
defined with defaults can be invoked without specifying arguments corresponding
to those parameters. If an argument corresponding to an INOUT parameter is not
specified, or the argument is the DEFAULT keyword, then the provided default
expression (or NULL if none was specified) is used to initialize the parameter
within the procedure and no value is returned for this parameter when the
procedure exits.

INOUT parameter support is enabled by setting bit position number 14 (0x2000) of
the DB2_COMPATIBILITY_VECTOR registry variable. A new setting for the
registry variable does not take effect until after the instance has been stopped and
then restarted.

Restrictions

The DEFAULT keyword is supported for INOUT parameters in procedures, but not
in functions.

Example

Creating a procedure with optional INOUT parameters.
CREATE OR REPLACE PROCEDURE paybonus

(IN empid INTEGER,
IN percentbonus DECIMAL(2, 2),
INOUT budget DECFLOAT DEFAULT NULL)
...

The procedure computes the amount of bonus from the employee's salary, issues
the bonus, and then deducts the bonus from the departmental budget. If no budget
is given, then that part is ignored. The procedure can be invoked such as:

CALL paybonus(12, 0.05, 50000);
CALL paybonus(12, 0.05, DEFAULT);
CALL paybonus(12, 0.05);

Chapter 4. DB2 compatibility features 385

Currently committed semantics improve concurrency
Lock timeouts and deadlocks can occur under the CS isolation level with row-level
locking, especially with applications that are not designed to prevent such
problems. Some high throughput database applications cannot tolerate waiting on
locks that are issued during transaction processing, and some applications cannot
tolerate processing uncommitted data, but still require non-blocking behavior for
read transactions.

Under the new currently committed semantics, only committed data is returned, as
was the case previously, but now readers do not wait for writers to release row
locks. Instead, readers return data that is based on the currently committed
version; that is, data prior to the start of the write operation.

Currently committed semantics are turned on by default for new databases. This
allows any application to take advantage of the new behavior, and no changes to
the application itself are required. The new database configuration parameter
cur_commit can be used to override this behavior. This might be useful, for
example, in the case of applications that require blocking on writers to synchronize
internal logic.

Similarly, upgraded databases have cur_commit disabled by default in case
applications require blocking writers to synchronize their internal logic, and this
parameter can be turned on later, if so desired.

Currently committed semantics apply only to read-only scans that do not involve
catalog tables or the internal scans that are used to evaluate or enforce constraints.
Note that, because currently committed is decided at the scan level, a writer's
access plan might include currently committed scans. For example, the scan for a
read-only subquery can involve currently committed semantics. Because currently
committed semantics obey isolation level semantics, applications running under
currently committed semantics continue to respect isolation levels.

Currently committed semantics require increased log space for writers. Additional
space is required for logging the first update of a data row during a transaction.
This data is required for retrieving the currently committed image of the row.
Depending on the workload, this can have an insignificant or measurable impact
on the total log space used. The requirement for additional log space does not
apply when cur_commit is disabled.

Restrictions

The following restrictions apply to currently committed semantics:
v The target table object in a section that is to be used for data update or deletion

operations does not use currently committed semantics. Rows that are to be
modified must be lock protected to ensure that they do not change after they
have satisfied any query predicates that are part of the update operation.

v A transaction that has made an uncommitted modification to a row forces the
currently committed reader to access appropriate log records to determine the
currently committed version of the row. Although log records that are no longer
in the log buffer can be physically read, currently committed semantics do not
support the retrieval of log files from the log archive. This only affects databases
that are configured to use infinite logging.

v The following scans do not use currently committed semantics:
– Catalog table scans

386 SQL Procedural Languages: Application Enablement and Support

– Scans that are used to enforce referential integrity constraints
– Scans that reference LONG VARCHAR or LONG VARGRAPHIC columns
– Range-clustered table (RCT) scans
– Scans that use spatial or extended indexes

Example

Consider the following scenario, in which deadlocks are avoided under the
currently committed semantics. In this scenario, two applications update two
separate tables, but do not yet commit. Each application then attempts to read
(with a read-only cursor) from the table that the other application has updated.

Step Application A Application B

1 update T1 set col1 = ? where
col2 = ?

update T2 set col1 = ? where
col2 = ?

2 select col1, col3, col4 from T2
where col2 >= ?

select col1, col5, from T1
where col5 = ? and col2 = ?

3 commit commit

Without currently committed semantics, these applications running under the
cursor stability isolation level might create a deadlock, causing one of the
applications to fail. This happens when each application needs to read data that is
being updated by the other application.

Under currently committed semantics, if the query in step 2 (for either application)
happens to require the data currently being updated by the other application, that
application does not wait for the lock to be released, making a deadlock
impossible. The previously committed version of the data is located and used
instead.

Oracle data dictionary-compatible views
When the DB2_COMPATIBILITY_VECTOR registry variable is set to support
Oracle data dictionary-compatible views, the views are automatically created when
the database is created.

Support for Oracle data dictionary-compatible views is at the database level, and
must be enabled before creating the database where support is required. The data
dictionary definition includes CREATE VIEW, CREATE PUBLIC SYNONYM, and
COMMENT statements for each view that is compatible with Oracle's data
dictionary. These views, which are created in the SYSIBMADM schema, are listed
in Table 39.

Table 39. Oracle data dictionary-compatible views
Category Defined views

General DICTIONARY, DICT_COLUMNS
USER_CATALOG, DBA_CATALOG, ALL_CATALOG
USER_DEPENDENCIES, DBA_DEPENDENCIES, ALL_DEPENDENCIES
USER_OBJECTS, DBA_OBJECTS, ALL_OBJECTS
USER_SEQUENCES, DBA_SEQUENCES, ALL_SEQUENCES
USER_TABLESPACES, DBA_TABLESPACES

Chapter 4. DB2 compatibility features 387

Table 39. Oracle data dictionary-compatible views (continued)
Category Defined views

Tables or views USER_CONSTRAINTS, DBA_CONSTRAINTS, ALL_CONSTRAINTS
USER_CONS_COLUMNS, DBA_CONS_COLUMNS, ALL_CONS_COLUMNS
USER_INDEXES, DBA_INDEXES, ALL_INDEXES
USER_IND_COLUMNS, DBA_IND_COLUMNS, ALL_IND_COLUMNS
USER_TAB_PARTITIONS, DBA_TAB_PARTITIONS, ALL_TAB_PARTITIONS
USER_PART_TABLES, DBA_PART_TABLES, ALL_PART_TABLES
USER_PART_KEY_COLUMNS, DBA_PART_KEY_COLUMNS, ALL_PART_KEY_COLUMNS
USER_SYNONYMS, DBA_SYNONYMS, ALL_SYNONYMS
USER_TABLES, DBA_TABLES, ALL_TABLES
USER_TAB_COMMENTS, DBA_TAB_COMMENTS, ALL_TAB_COMMENTS
USER_TAB_COLUMNS, DBA_TAB_COLUMNS, ALL_TAB_COLUMNS
USER_COL_COMMENTS, DBA_COL_COMMENTS, ALL_COL_COMMENTS
USER_TAB_COL_STATISTICS, DBA_TAB_COL_STATISTICS, ALL_TAB_COL_STATISTICS
USER_VIEWS, DBA_VIEWS, ALL_VIEWS
USER_VIEW_COLUMNS, DBA_VIEW_COLUMNS, ALL_VIEW_COLUMNS

Programming objects USER_PROCEDURES, DBA_PROCEDURES, ALL_PROCEDURES
USER_SOURCE, DBA_SOURCE, ALL_SOURCE
USER_TRIGGERS, DBA_TRIGGERS, ALL_TRIGGERS
USER_ERRORS, DBA_ERRORS, ALL_ERRORS
USER_ARGUMENTS, DBA_ARGUMENTS, ALL_ARGUMENTS

Security USER_ROLE_PRIVS, DBA_ROLE_PRIVS, ROLE_ROLE_PRIVS
SESSION_ROLES
USER_SYS_PRIVS, DBA_SYS_PRIVS, ROLE_SYS_PRIVS
SESSION_PRIVS
USER_TAB_PRIVS, DBA_TAB_PRIVS, ALL_TAB_PRIVS, ROLE_TAB_PRIVS
USER_TAB_PRIVS_MADE, ALL_TAB_PRIVS_MADE
USER_TAB_PRIVS_RECD, ALL_TAB_PRIVS_RECD
DBA_ROLES

Examples
v Enable the creation of data dictionary-compatible views for a database named

MYDB.
db2set DB2_COMPATIBILITY_VECTOR=ORA
db2stop
db2start
db2 create db mydb

v Determine what data dictionary-compatible views are available.
connect to mydb
select * from dictionary

v Several data dictionary-compatible views provide information about privileges.
Use the USER_SYS_PRIVS view to show all the system privileges that the
current user has been granted.

connect to mydb
select * from user_sys_privs

v Determine the column definitions for the DBA_TABLES view.
connect to mydb
describe select * from dba_tables

DB2-Oracle terminology mapping
Because Oracle applications can be enabled to work with DB2 data servers when
the DB2 environment is set up appropriately, it is important to understand how
certain Oracle concepts map to DB2 concepts.

Table 40 provides a concise summary of commonly used Oracle terms and their
DB2 equivalents.

Table 40. Mapping of common Oracle concepts to DB2 concepts

Oracle concept DB2 concept Notes

active log active log This is the same concept.

actual parameter argument This is the same concept.

388 SQL Procedural Languages: Application Enablement and Support

Table 40. Mapping of common Oracle concepts to DB2 concepts (continued)

Oracle concept DB2 concept Notes

alert log db2diag log files and
administration notification
log

The db2diag log files are
primarily intended for use
by IBM Software Support for
troubleshooting purposes.
The administration
notification log is primarily
intended for troubleshooting
use by database and system
administrators.
Administration notification
log messages are also logged
to the db2diag log files using
a standardized message
format.

archive log offline-archive log This is the same concept.

archive log mode log archiving This is the same concept.

background_dump_dest diagpath This is the same concept.

created global temporary
table

created global temporary
table

This is the same concept.

cursor sharing statement concentrator This is the same concept.

data block data page This is the same concept.

data buffer cache buffer pool This is the same concept.
However, in DB2 you can
have as many buffer pools of
any page size you like.

data dictionary system catalog The DB2 system catalog
contains metadata in the
form of tables and views.
The database manager
creates and maintains two
sets of system catalog views
that are defined on the base
system catalog tables:

v SYSCAT views, which are
read-only views

v SYSSTAT views, which are
updatable views that
contain statistical
information that is used by
the optimizer

data dictionary cache catalog cache This is the same concept.

data file container DB2 data is physically stored
in containers, which contain
objects.

database link nickname A nickname is an identifier
that refers to an object at a
remote data source (a
federated database object).

dual table dual table This is the same concept.

Chapter 4. DB2 compatibility features 389

Table 40. Mapping of common Oracle concepts to DB2 concepts (continued)

Oracle concept DB2 concept Notes

dynamic performance views snapshot monitor SQL
administrative views

Snapshot monitor SQL
administrative views, which
use schema SYSIBMADM,
return monitor data about a
specific area of the database
system. For example, the
SYSIBMADM.SNAPBP SQL
administrative view provides
a snapshot of buffer pool
information.

extent extent A DB2 extent is made up of
a set of contiguous data
pages.

formal parameter parameter This is the same concept.

global index nonpartitioned index This is the same concept.

inactive log online-archive log This is the same concept.

init.ora and Server Parameter
File (SPFILE)

database manager
configuration file and
database configuration file

A DB2 instance can contain
multiple databases.
Therefore, configuration
parameters and their values
are stored at both the
instance level, in the
database manager
configuration file, and at the
database level, in the
database configuration file.
These files are managed
through the GET or UPDATE
DBM CFG command and the
GET or UPDATE DB CFG
command, respectively.

instance instance or database manager An instance is a combination
of background processes and
shared memory. A DB2
instance is also known as a
database manager. Because a
DB2 instance can contain
multiple databases, there are
DB2 configuration files at
both the instance level (the
database manager
configuration file) and at the
database level (the database
configuration file).

large pool utility heap The utility heap is used by
the backup, restore, and load
utilities.

library cache package cache The package cache, which is
allocated from database
shared memory, is used to
cache sections for static and
dynamic SQL and XQuery
statements on a database.

390 SQL Procedural Languages: Application Enablement and Support

Table 40. Mapping of common Oracle concepts to DB2 concepts (continued)

Oracle concept DB2 concept Notes

local index partitioned index This is the same concept.

materialized view materialized query table
(MQT)

An MQT is a table whose
definition is based on the
results of a query and is
meant to be used to improve
performance. The DB2 SQL
compiler determines whether
a query would run more
efficiently against an MQT
than it would against the
base table on which the MQT
is based.

noarchive log mode circular logging This is the same concept.

Oracle Call Interface (OCI) DB2CI Interface DB2CI is a 'C' and 'C++'
application programming
interface that uses function
calls to connect to DB2
Version 9.7 databases,
manage cursors, and perform
SQL statements. See “IBM
Data Server Driver for
DB2CI” on page 395 for a list
of OCI APIs supported by
the DB2CI driver.

Oracle Call Interface (OCI) Call Level Interface (CLI) CLI is a C and C++
application programming
interface that uses function
calls to pass dynamic SQL
statements as function
arguments. In most cases,
you can replace an OCI
function with a CLI function
and relevant changes to the
supporting program code.

ORACLE_SID environment
variable

DB2INSTANCE environment
variable

This is the same concept.

partitioned tables partitioned tables This is the same concept.

Procedural
Language/Structured Query
Language (PL/SQL)

SQL Procedural Language
(SQL PL)

SQL PL is an extension of
SQL that consists of
statements and language
elements. SQL PL provides
statements for declaring
variables and condition
handlers, assigning values to
variables, and implementing
procedural logic. SQL PL is a
subset of the SQL Persistent
Stored Modules (SQL/PSM)
language standard. Oracle
PL/SQL statements can be
compiled and executed using
DB2 interfaces.

Chapter 4. DB2 compatibility features 391

Table 40. Mapping of common Oracle concepts to DB2 concepts (continued)

Oracle concept DB2 concept Notes

program global area (PGA) application shared memory
and agent private memory

Application shared memory
stores information that is
shared between a database
and a particular application:
primarily, rows of data being
passed to or from the
database. Agent private
memory stores information
used to service a particular
application, such as sort
heaps, cursor information,
and session contexts.

redo log transaction log The transaction log records
database transactions and
can be used for recovery.

role role This is the same concept.

segment storage object This is the same concept.

session session; database connection This is the same concept.

startup nomount db2start The command that starts the
instance.

synonym alias An alias is an alternative
name for a table, view,
nickname, or another alias.
The term “synonym” is
tolerated and can be
specified in place of “alias”.
Aliases are not used to
control what version of a
DB2 procedure or
user-defined function is
being used by an application;
to do this, use the SET PATH
statement to add the
required schema to the value
of the CURRENT PATH
special register.

system global area (SGA) instance shared memory and
database shared memory

The instance shared memory
stores all of the information
for a particular instance,
such as lists of all active
connections and security
information. The database
shared memory stores
information for a particular
database, such as package
caches, log buffers, and
buffer pools.

SYSTEM table space SYSCATSPACE table space The SYSCATSPACE table
space contains the system
catalog. This table space is
created by default when you
create a database.

table space table space This is the same concept.

392 SQL Procedural Languages: Application Enablement and Support

Table 40. Mapping of common Oracle concepts to DB2 concepts (continued)

Oracle concept DB2 concept Notes

user global area (UGA) application global memory Application global memory
comprises application shared
memory and
application-specific memory.

Chapter 4. DB2 compatibility features 393

394 SQL Procedural Languages: Application Enablement and Support

Chapter 5. DB2CI application development

DB2CI is a callable SQL interface to the DB2 Version 9.7 database servers. It is a 'C'
and 'C++' application programming interface for DB2 database access that uses
function calls to connect to databases, manage cursors, and perform SQL
statements.

Starting with Version 9.7 Fix Pack 1, you can use the DB2CI interface to access
databases on DB2 Version 9.7 servers on any of the supported operating systems.

The DB2CI interface provides support for a number of Oracle Call Interface (OCI)
APIs. This support reduces the complexity of enabling existing OCI applications so
that they work with DB2 databases. The IBM Data Server Driver for DB2CI is the
driver for the DB2CI interface.

IBM Data Server Driver for DB2CI
The IBM Data Server Driver for DB2CI provides support for DB2CI application
development.

The IBM Data Server Client includes the DB2CI driver. You need to install this
client to install the DB2CI driver.

The DB2CI driver provides support for calls to the following OCI APIs:

OCIAttrGet OCILobGetLength OCINumberTan

OCIAttrSet OCILobIsEqual OCINumberToInt

OCIBindArrayOfStruct OCILobIsTemporary OCINumberToReal

OCIBindByName OCILobIsOpen OCINumberToRealArray

OCIBindByPos OCILobLocatorAssign OCINumberToText

OCIBindDynamic OCILobLocatorIsInit OCINumberTrunc

OCIBreak OCILobRead OCIParamGet

OCIClientVersion OCILobTrim OCIParamSet

OCIDateAddDays OCILobWrite OCIPasswordChange

OCIDateAddMonths OCILogoff OCIPing

OCIDateAssign OCILogon OCIRawAllocSize

OCIDateCheck OCILogon2 OCIRawAssignBytes

OCIDateCompare OCINumberAbs OCIRawAssignRaw

OCIDateDaysBetween OCINumberAdd OCIRawPtr

OCIDateFromText OCINumberArcCos OCIRawResize

OCIDateLastDay OCINumberArcSin OCIRawSize

OCIDateNextDay OCINumberArcTan OCIReset

OCIDateSysDate OCINumberArcTan2 OCIResultSetToStmt

OCIDateToText OCINumberAssign OCIServerAttach

OCIDefineArrayOfStruct OCINumberCeil OCIServerDetach

OCIDefineByPos OCINumberCmp OCIServerVersion

© Copyright IBM Corp. 1993, 2010 395

OCIDefineDynamic OCINumberCos OCISessionBegin

OCIDescribeAny OCINumberDec OCISessionEnd

OCIDescriptorAlloc OCINumberDiv OCISessionGet

OCIDescriptorFree OCINumberExp OCISessionRelease

OCIEnvCreate OCINumberFloor OCIStmtExecute

OCIEnvInit OCINumberFromInt OCIStmtFetch

OCIErrorGet OCINumberFromReal OCIStmtFetch2

OCIFileClose OCINumberFromText OCIStmtGetBindInfo

OCIFileExists OCINumberHypCos OCIStmtGetPieceInfo

OCIFileFlush OCINumberHypSin OCIStmtPrepare

OCIFileGetLength OCINumberHypTan OCIStmtPrepare2

OCIFileInit OCINumberInc OCIStmtRelease

OCIFileOpen OCINumberIntPower OCIStmtSetPieceInfo

OCIFileRead OCINumberIsInt OCIStringAllocSize

OCIFileSeek OCINumberIsZero OCIStringAssign

OCIFileTerm OCINumberLn OCIStringAssignText

OCIFileWrite OCINumberLog OCIStringPtr

OCIHandleAlloc OCINumberMod OCIStringResize

OCIHandleFree OCINumberMul OCIStringSize

OCIInitialize OCINumberNeg OCITerminate

OCILobAppend OCINumberPower OCITransCommit

OCILobAssign OCINumberPrec OCITransDetach

OCILobClose OCINumberRound OCITransForget

OCILobCopy OCINumberSetPi OCITransMultiPrepare

OCILobCreateTemporary OCINumberSetZero OCITransPrepare

OCILobDisableBuffering OCINumberShift OCITransRollback

OCILobEnableBuffering OCINumberSign OCITransStart

OCILobErase OCINumberSin xaoEnv

OCILobFreeTemporary OCINumberSqrt xaosterr

OCILobFlushBuffer OCINumberSub xaoSvcCtx

Building DB2CI applications
You can build DB2CI applications using an existing Oracle Call Interface (OCI)
application and the bldapp script file.
v You must have a DB2 database with the same structure as the Oracle database

used by your existing OCI application.
v You must have installed the IBM Data Server Client.

DB2 samples provides a script called bldapp for compiling and linking applications
that use OCI functions supported by the IBM Data Server Driver for DB2CI. It is
located in the DB2DIR\samples\db2ci or DB2DIR/samples/db2ci directories, along
with sample programs. DB2DIR represents the location where your DB2 copy is
installed.

396 SQL Procedural Languages: Application Enablement and Support

The bldapp script file takes up to four parameters. The first parameter, $1, specifies
the name of your source file. The additional parameters are only required to build
embedded SQL programs that requires a connection to the database: the second
parameter, $2, specifies the name of the database to which you want to connect;
the third parameter, $3, specifies the user ID for the database, and $4 specifies the
password. If the program contains embedded SQL, indicated by the .sqc
extension, then the embprep script is called to precompile the program, producing a
program file with a .c extension.

Restriction

v Ensure that your existing OCI application only has calls to OCI functions
supported by the DB2CI driver. See “IBM Data Server Driver for DB2CI” on
page 395 for a complete list of supported OCI functions.

1. If you are building your DB2CI application using an existing OCI application,
ensure that you specify the db2ci.h include file.

2. Build your DB2CI application with the bldapp script file The following example
shows how to build the sample program tbinfo from the source file tbinfo.c
on Linux and UNIX operating systems:
cd $INSTHOME/sqllib/samples/db2ci
bldapp tbinfo

The result is an executable file, tbinfo.
3. Run the executable file generated in the previous step by entering the

executable name as follows:
tbinfo

DB2CI application compile and link options (AIX)
The compile and link options in this topic are recommended for building DB2CI
applications with the AIX® IBM C compiler.

You can find the following options in the DB2DIR/samples/cli/bldapp batch file,
where DB2DIR is the location where your DB2 copy is installed.

Compile and link options for bldapp

Compile options:

xlc The IBM C compiler.

$EXTRA_CFLAG
Contains the value "-q64" for 64-bit environments; otherwise, contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example: $HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link steps.

Chapter 5. DB2CI 397

Link options:

xlc Use the compiler as a front end for the linker.

$EXTRA_CFLAG
Contains the value "-q64" for 64-bit environments; otherwise, contains no value.

-o $1 Specify the executable program.

$1.o Specify the object file.

utilci.o
Include the utility object file for error checking.

-L$DB2PATH/$LIB
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/$LIB. If you do not specify the -L option, the compiler assumes the
following path: /usr/lib:/lib.

-ldb2ci
Link with the DB2CI library.

DB2CI application compile and link options (HP-UX)
The compile and link options in this topic are recommended for building DB2CI
applications with the HP-UX C compiler.

You can find the following options in the DB2DIR/samples/db2ci/bldapp batch file,
where DB2DIR is the location where your DB2 copy is installed.

Compile and link options for bldapp

Compile options:

cc Use the C compiler.

$EXTRA_CFLAG
If the HP-UX platform is IA64 and 64-bit support is enabled, this flag contains the
value +DD64; if 32-bit support is enabled, it contains the value +DD32. If the HP-UX
platform is PA-RISC and 64-bit support is enabled, it contains the value +DA2.0W.
For 32-bit support on a PA-RISC platform, this flag contains the value +DA2.0N.

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

+DA2.0W
Must be used to generate 64-bit code for HP-UX on PA-RISC.

+DA2.0N
Must be used to generate 32-bit code for HP-UX on PA-RISC.

-Ae Enables HP ANSI extended mode.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example: $HOME/sqllib/include

-c Perform compile only; no link. Compile and link are separate steps.

398 SQL Procedural Languages: Application Enablement and Support

Link options:

cc Use the compiler as a front end for the linker.

$EXTRA_CFLAG
If the HP-UX platform is IA64 and 64-bit support is enabled, this flag contains the
value +DD64; if 32-bit support is enabled, it contains the value +DD32. If the HP-UX
platform is PA-RISC and 64-bit support is enabled, it contains the value +DA2.0W.
For 32-bit support on a PA-RISC platform, this flag contains the value +DA2.0N.

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

+DA2.0W
Must be used to generate 64-bit code for HP-UX on PA-RISC.

+DA2.0N
Must be used to generate 32-bit code for HP-UX on PA-RISC.

-o $1 Specify the executable program.

$1.o Specify the object file.

utilci.o
Include the utility object file for error checking.

$EXTRA_LFLAG
Specify the runtime path. If set, for 32-bit it contains the value
-Wl,+b$HOME/sqllib/lib32, and for 64-bit: -Wl,+b$HOME/sqllib/lib64. If not set, it
contains no value.

-L$DB2PATH/$LIB
Specify the location of the DB2 runtime shared libraries. For 32-bit:
$HOME/sqllib/lib32; for 64-bit: $HOME/sqllib/lib64.

-ldb2ci
Link with the DB2CI library.

DB2CI application compile and link options (Linux)
The compile and link options in this topic are recommended for building DB2CI
applications with the GNU/Linux gcc compiler.

You can find the following options in the DB2DIR/samples/db2ci/bldapp batch file,
where DB2DIR is the location where your DB2 copy is installed.

Compile and link options for bldapp

Compile options:

gcc The C compiler.

$EXTRA_C_FLAGS
Contains one of the following:

v -m31 on Linux for zSeries® only, to build a 32-bit library;

v -m32 on Linux for x86, x64 and POWER®, to build a 32-bit library;

v -m64 on Linux for zSeries, POWER, x64, to build a 64-bit library; or

v No value on Linux for IA64, to build a 64-bit library.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example: $HOME/sqllib/include

-c Perform compile only; no link. Compile and link are separate steps.

Chapter 5. DB2CI 399

Link options:

gcc Use the compiler as a front end for the linker.

$EXTRA_C_FLAGS
Contains one of the following:

v -m31 on Linux for zSeries only, to build a 32-bit library;

v -m32 on Linux for x86, x64 and POWER, to build a 32-bit library;

v -m64 on Linux for zSeries, POWER, x64, to build a 64-bit library; or

v No value on Linux for IA64, to build a 64-bit library.

-o $1 Specify the executable.

$1.o Include the program object file.

utilci.o
Include the utility object file for error checking.

$EXTRA_LFLAG
For 32-bit it contains the value "-Wl,-rpath,$DB2PATH/lib32", and for 64-bit it
contains the value "-Wl,-rpath,$DB2PATH/lib64".

-L$DB2PATH/$LIB
Specify the location of the DB2 static and shared libraries at link-time. For
example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit: $HOME/sqllib/lib64.

-ldb2ci
Link with the DB2CI library.

DB2CI application compile and link options (Solaris)
The compile and link options in this topic are recommended for building DB2CI
applications with the the Solaris C compiler.

You can find the following options in the DB2DIR/samples/db2ci/bldapp batch file,
where DB2DIR is the location where your DB2 copy is installed.

Compile and link options for bldapp

Compile options:

cc Use the C compiler.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when linking
with libdb2.so. The value for $CFLAG_ARCH is set as follows:

v "v8plusa" for 32-bit applications on Solaris SPARC

v "v9" for 64-bit applications on Solaris SPARC

v "sse2" for 32-bit applications on Solaris x64

v "amd64" for 64-bit applications on Solaris x64

-I$DB2PATH/include
Specify the location of the DB2 include files. For example: $HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link steps.

400 SQL Procedural Languages: Application Enablement and Support

Link options:

cc Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when linking
with libdb2.so. The value for $CFLAG_ARCH is set to either "v8plusa" for 32-bit,
or "v9" for 64-bit.

-mt Link in multi-thread support to prevent problems calling fopen.
Note: If POSIX threads are used, DB2 applications also have to link with
-lpthread, whether or not they are threaded.

-o $1 Specify the executable program.

$1.o Include the program object file.

utilci.o
Include the utility object file for error checking.

-L$DB2PATH/$LIB
Specify the location of the DB2 static and shared libraries at link-time. For
example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit: $HOME/sqllib/lib64

$EXTRA_LFLAG
Specify the location of the DB2 shared libraries at run-time. For 32-bit it contains
the value "-R$DB2PATH/lib32", and for 64-bit it contains the value
"-R$DB2PATH/lib64".

-ldb2ci
Link with the DB2CI library.

DB2CI application compile and link options (Windows)
The compile and link options in this topic are recommended for building DB2CI
applications with the Microsoft® Visual C++ compiler.

You can find the following options in the DB2DIR\samples\db2ci\bldapp.bat batch
file, where DB2DIR is the location where your DB2 copy is installed.

Compile and link options for bldapp

Compile options:

%BLDCOMP%
Variable for the compiler. The default is cl, the Microsoft Visual C++ compiler. It
can be also set to icl, the Intel® C++ Compiler for 32-bit and 64-bit applications,
or ecl, the Intel C++ Compiler for Itanium® 64-bit applications.

-Zi Enable debugging information.

-Od Disable optimizations. It is easier to use a debugger with optimization off.

-c Perform compile only; no link.

-W2 Set warning level.

-DWIN32
Compiler option necessary for Windows operating systems.

Chapter 5. DB2CI 401

Link options:

link Use the linker.

-debug Include debugging information.

-out:%1.exe
Specify the executable.

%1.obj Include the object file.

db2ci.lib or db2ci64.lib
Link to the DB2CI library. For Windows 32-bit operating systems, use db2ci.lib.
For Windows 64-bit operating systems, use db2ci64.lib.

Refer to your compiler documentation for additional compiler options.

402 SQL Procedural Languages: Application Enablement and Support

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Help for DB2 tools
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a
DB2 technical issue that the documentation does not resolve, contact your local
IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 9.7 manuals in PDF format can be downloaded
from www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 1993, 2010 403

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 41. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-2435-02 Yes September, 2010

Administrative Routines
and Views

SC27-2436-02 No September, 2010

Call Level Interface
Guide and Reference,
Volume 1

SC27-2437-02 Yes September, 2010

Call Level Interface
Guide and Reference,
Volume 2

SC27-2438-02 Yes September, 2010

Command Reference SC27-2439-02 Yes September, 2010

Data Movement Utilities
Guide and Reference

SC27-2440-00 Yes August, 2009

Data Recovery and High
Availability Guide and
Reference

SC27-2441-02 Yes September, 2010

Database Administration
Concepts and
Configuration Reference

SC27-2442-02 Yes September, 2010

Database Monitoring
Guide and Reference

SC27-2458-02 Yes September, 2010

Database Security Guide SC27-2443-01 Yes November, 2009

DB2 Text Search Guide SC27-2459-02 Yes September, 2010

Developing ADO.NET
and OLE DB
Applications

SC27-2444-01 Yes November, 2009

Developing Embedded
SQL Applications

SC27-2445-01 Yes November, 2009

Developing Java
Applications

SC27-2446-02 Yes September, 2010

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-2447-01 No September, 2010

Developing User-defined
Routines (SQL and
External)

SC27-2448-01 Yes November, 2009

Getting Started with
Database Application
Development

GI11-9410-01 Yes November, 2009

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI11-9411-00 Yes August, 2009

404 SQL Procedural Languages: Application Enablement and Support

Table 41. DB2 technical information (continued)

Name Form Number Available in print Last updated

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-02 Yes September, 2010

Installing IBM Data
Server Clients

GC27-2454-01 No September, 2010

Message Reference
Volume 1

SC27-2450-00 No August, 2009

Message Reference
Volume 2

SC27-2451-00 No August, 2009

Net Search Extender
Administration and
User's Guide

SC27-2469-02 No September, 2010

Partitioning and
Clustering Guide

SC27-2453-01 Yes November, 2009

pureXML Guide SC27-2465-01 Yes November, 2009

Query Patroller
Administration and
User's Guide

SC27-2467-00 No August, 2009

Spatial Extender and
Geodetic Data
Management Feature
User's Guide and
Reference

SC27-2468-01 No September, 2010

SQL Procedural
Languages: Application
Enablement and Support

SC27-2470-02 Yes September, 2010

SQL Reference, Volume 1 SC27-2456-02 Yes September, 2010

SQL Reference, Volume 2 SC27-2457-02 Yes September, 2010

Troubleshooting and
Tuning Database
Performance

SC27-2461-02 Yes September, 2010

Upgrading to DB2
Version 9.7

SC27-2452-02 Yes September, 2010

Visual Explain Tutorial SC27-2462-00 No August, 2009

What's New for DB2
Version 9.7

SC27-2463-02 Yes September, 2010

Workload Manager
Guide and Reference

SC27-2464-02 Yes September, 2010

XQuery Reference SC27-2466-01 No November, 2009

Table 42. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and
Configuring DB2
Connect Personal Edition

SC27-2432-02 Yes September, 2010

Installing and
Configuring DB2
Connect Servers

SC27-2433-02 Yes September, 2010

Appendix A. Overview of the DB2 technical information 405

Table 42. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect User's
Guide

SC27-2434-02 Yes September, 2010

Table 43. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:
Administration Guide for
Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:
ASNCLP Program
Reference for Replication
and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:
Configuration Guide for
Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:
SQL Replication Guide
and Reference

SC19-1030-02 Yes August, 2009

Information Integration:
Introduction to
Replication and Event
Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all
countries or regions. You can always order printed DB2 books from your local IBM
representative. Keep in mind that some softcopy books on the DB2 PDF
Documentation DVD are unavailable in print. For example, neither volume of the
DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF
Documentation DVD can be ordered for a fee from IBM. Depending on where you
are placing your order from, you may be able to order books online, from the IBM
Publications Center. If online ordering is not available in your country or region,
you can always order printed DB2 books from your local IBM representative. Note
that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the
DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:
v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access
publication ordering information and then follow the ordering instructions for
your location.

v To order printed DB2 books from your local IBM representative:

406 SQL Procedural Languages: Application Enablement and Support

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

1. Locate the contact information for your local representative from one of the
following Web sites:
– The IBM directory of world wide contacts at www.ibm.com/planetwide
– The IBM Publications Web site at http://www.ibm.com/shop/

publications/order. You will need to select your country, region, or
language to the access appropriate publications home page for your
location. From this page, follow the "About this site" link.

2. When you call, specify that you want to order a DB2 publication.
3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical
library in hardcopy or PDF format” on page 403.

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Displaying topics in your preferred language in the DB2 Information
Center

The DB2 Information Center attempts to display topics in the language specified in
your browser preferences. If a topic has not been translated into your preferred
language, the DB2 Information Center displays the topic in English.
v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...
button. The Language Preferences window opens.

Appendix A. Overview of the DB2 technical information 407

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the
fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the
Move Up button until the language is first in the list of languages.

3. Refresh the page to display the DB2 Information Center in your preferred
language.

v To display topics in your preferred language in a Firefox or Mozilla browser:
1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences
window.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.
– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Refresh the page to display the DB2 Information Center in your preferred

language.

On some browser and operating system combinations, you must also change the
regional settings of your operating system to the locale and language of your
choice.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

A DB2 Version 9.7 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information
Center is unavailable for a minimal period of time during the update. In
addition, automatic updates can be set to run as part of other batch jobs that run
periodically.

v Manual updates - should be used when you want to add features or languages
during the update process. For example, a local Information Center was
originally installed with both English and French languages, and now you want
to also install the German language; a manual update will install German, as
well as, update the existing Information Center features and languages.
However, a manual update requires you to manually stop, update, and restart
the Information Center. The Information Center is unavailable during the entire
update process.

408 SQL Procedural Languages: Application Enablement and Support

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the ic-update script:

ic-update

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 9.7 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the ic-update.bat file:

ic-update.bat

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

Updating your locally-installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system using a machine that is connected to the internet and
has the DB2 Information Center installed. If many users on your network will be
installing the documentation updates, you can reduce the time required for
individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.

Appendix A. Overview of the DB2 technical information 409

If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.
v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 9.7 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript™ must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then
click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:
v On Windows, navigate to the installation directory's doc\bin directory, and

run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

410 SQL Procedural Languages: Application Enablement and Support

v On Linux, navigate to the installation directory's doc/bin directory, and run
the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 products. Lessons
provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

“Visual Explain” in Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance using
Visual Explain.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center. There you will find information about how to isolate
and identify problems using DB2 diagnostic tools and utilities, solutions to
some of the most common problems, and other advice on how to solve
problems you might encounter with your DB2 database products.

DB2 Technical Support Web site
Refer to the DB2 Technical Support Web site if you are experiencing
problems and want help finding possible causes and solutions. The
Technical Support site has links to the latest DB2 publications, TechNotes,

Appendix A. Overview of the DB2 technical information 411

http://publib.boulder.ibm.com/infocenter/db2luw/v9

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and
other resources. You can search through this knowledge base to find
possible solutions to your problems.

Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions
Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal use: You may reproduce these Publications for your personal, non
commercial use provided that all proprietary notices are preserved. You may not
distribute, display or make derivative work of these Publications, or any portion
thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these Publications, or reproduce, distribute
or display these Publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the Publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the Publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

412 SQL Procedural Languages: Application Enablement and Support

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1993, 2010 413

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

414 SQL Procedural Languages: Application Enablement and Support

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino

logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium, and Pentium® are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

v Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 415

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

416 SQL Procedural Languages: Application Enablement and Support

Index

A
actual parameter

DB2-Oracle terminology mapping 388
alert log

DB2-Oracle terminology mapping 388
ALLOCATE CURSOR statement

caller routine 81
ANALYZE_DATABASE procedure 293
ANALYZE_PART_OBJECT procedure 294
ANALYZE_SCHEMA procedure 295
anchored data types

declaring variables 6
details 4
examples 6, 7
restrictions 5

anonymous block statement
PL/SQL 108

anonymous blocks 108
APPEND procedure 216
applications

DB2CI 395
archive log

DB2-Oracle terminology mapping 388
archive log mode

DB2-Oracle terminology mapping 388
array data types

associative array
creating 36
declaring local variables 36
overview 34
restrictions 35

creating 25
elements

deleting 31
determining whether exist 32
retrieving number 28

ordinary 23
overview 22, 24
restrictions 24
trimming 31
values

assigning 27
retrieving 28, 30

variables
creating 25
declaring 26
overview 25

arrays
assigning values 27, 38
associative 120
elements

retrieving 29
type comparison 23

assignment statement
PL/SQL 138

ASSOCIATE RESULT SET LOCATOR statement 81
associative array data types

creating 36
declaring local variables 36
overview 34
restrictions 35

associative arrays
comparison to simple arrays 23
overview 34, 38
PL/SQL 120

attributes
cursor 171
PL/SQL

%ROWTYPE 136
%TYPE 133

statement
PL/SQL 146

B
bdump directory

DB2-Oracle terminology mapping 388
BIND_VARIABLE_BLOB procedure 252
BIND_VARIABLE_CHAR procedure 252
BIND_VARIABLE_CLOB procedure 253
BIND_VARIABLE_DATE procedure 253
BIND_VARIABLE_DOUBLE procedure 254
BIND_VARIABLE_INT procedure 254
BIND_VARIABLE_NUMBER procedure 255
BIND_VARIABLE_RAW procedure 255
BIND_VARIABLE_TIMESTAMP procedure 256
BIND_VARIABLE_VARCHAR procedure 256
binding

compiled functions 83
compiled triggers 83
SQL procedures 83
SQL statements 83

blocks
PL/SQL 108

books
ordering 406

Boolean data type
details 50

BROKEN procedure 210
Building DB2CI applications 396
BULK COLLECT INTO clause

PL/SQL 143

C
C language

building DB2CI applications 396
C/C++ language

building DB2CI applications 396
CANONICALIZE procedure 296
CASE statement

PL/SQL 151
searched 153
simple 151
SQL procedures 72

CHANGE procedure 211
character constants 372
CLOSE procedures 216
CLOSE statement

closing cursors 170
CLOSE_CURSOR procedure 257

© Copyright IBM Corp. 1993, 2010 417

CLOSE_DATA procedure 347
collections

associative arrays 120
methods 124
overview 118
VARRAY type 118

COLUMN_VALUE_BLOB procedure 257
COLUMN_VALUE_CHAR procedure 258
COLUMN_VALUE_CLOB procedure 259
COLUMN_VALUE_DATE procedure 259
COLUMN_VALUE_DOUBLE procedure 260
COLUMN_VALUE_INT procedure 260
COLUMN_VALUE_LONG procedure 261
COLUMN_VALUE_NUMBER procedure 262
COLUMN_VALUE_RAW procedure 263
COLUMN_VALUE_TIMESTAMP procedure 263
COLUMN_VALUE_VARCHAR procedure 264
COMMA_TO_TABLE procedure 298
command line processor (CLP)

terminating character 82
COMMAND procedure 348
COMMAND_REPLIES procedure 349
COMPARE function 217
compatibility

features summary 359
compile options

AIX
DB2CI applications 397

HP-UX
DB2CI applications 398

Linux
DB2CI applications 399

Solaris
DB2CI applications 400

Windows
DB2CI applications 401

COMPILE_SCHEMA procedure 299
compiled functions

bind options 83
precompile options 83

compiled SQL functions 90
compiled triggers

bind options 83
precompile options 83

compound SQL statements
creating 95
overview 94
restrictions 95
SQL procedures 69

concurrency
improving 386

condition handlers
SQL procedures 79

configuration parameters
date_compat 365, 382
number_compat 367, 382
varchar2_compat 369, 382

CONNECT BY clause 374
CONNECT_BY_ROOT unary operator 379
CONNECTION procedure 316
constants

handling 372
control statements

PL/SQL
EXIT 159
list 147
LOOP 159

CONVERTTOBLOB procedure 218
CONVERTTOCLOB procedure 219
COPY procedure 219
CREATE FUNCTION statement

PL/SQL 115
CREATE PACKAGE BODY statement 189
CREATE PACKAGE statement 186
CREATE PROCEDURE statement

creating SQL procedures 82
PL/SQL 110

CREATE TRIGGER statement
details 179

CREATE_DIRECTORY procedure 322
CREATE_OR_REPLACE_DIRECTORY procedure 323
CREATE_PIPE function 235
CREATE_WRAPPED procedure 206
cur_commit database configuration parameter

overview 386
CURRENTAPPS procedure 317
CURRENTSQL procedure 317
cursor data types

creating 43
overview 39
privileges 41
restrictions 41
types 39

cursor predicates
details 42

cursor sharing
DB2-Oracle terminology mapping 388

cursor variables
assigning values 45
creating 43, 44
details 42, 172
example 48, 176
opening 173
referencing 46
restrictions 41
ROWTYPE attribute 170
SQL procedures 48
SYS_REFCURSOR 172

cursor_rowCount function 48
cursors

insensitive 384
parameterized 166
PL/SQL

attributes 171
closing 170
declaring 166
details 166
fetching rows 168
opening 167
processing result sets 154

SQL procedures 70

D
data block

DB2-Oracle terminology mapping 388
data buffer cache

DB2-Oracle terminology mapping 388
data dictionary

DB2-Oracle terminology mapping 388
Oracle

compatible views 387
data dictionary cache

DB2-Oracle terminology mapping 388

418 SQL Procedural Languages: Application Enablement and Support

data file
DB2-Oracle terminology mapping 388

DATA procedure 349
data types

anchored
overview 5

associative array
creating 36
overview 34

BOOLEAN
overview 50

cursor
overview 39

DATE 365
FILE_TYPE 341
NUMBER 367
PL/SQL 131, 135
REF CURSOR 173
row 8, 11
VARCHAR2 369

database applications
DB2CI 395

database link
DB2-Oracle terminology mapping 388

database objects
creating 91

DATE data type
based on TIMESTAMP(0) 365

date_compat database configuration parameter
DATE based on TIMESTAMP(0) 365
overview 382

DB_VERSION procedure 300
DB2 Information Center

languages 407
updating 408, 409
versions 407

DB2_COMPATIBILITY_VECTOR registry variable
details 360

DB2CI
AIX

application compile options 397
HP-UX

application compile options 398
IBM Data Server Driver for OCI 395
Linux

application compile options 399
Solaris

application compile options 400
Windows

application compile options 401
DBCI

application development 395
DBMS_ALERT module 197
DBMS_DDL module 204
DBMS_JOB module

BROKEN procedure 210
CHANGE procedure 211
INTERVAL procedure 211
NEXT_DATE procedure 212
overview 208
REMOVE procedure 212
RUN procedure 213
SUBMIT procedure 213
WHAT procedure 214

DBMS_LOB module
APPEND procedures 216
CLOSE procedures 216

DBMS_LOB module (continued)
COMPARE function 217
CONVERTTOBLOB procedure 218
CONVERTTOCLOB procedure 219
COPY procedures 219
ERASE procedures 220
GET_STORAGE_LIMIT function 221
GETLENGTH function 221
INSTR function 222
ISOPEN function 222
OPEN procedures 223
overview 215
READ procedures 223
SUBSTR function 224
TRIM procedures 224
WRITE procedures 225
WRITEAPPEND procedures 225

DBMS_OUTPUT module 226
DBMS_PIPE module 233
DBMS_SQL module

BIND_VARIABLE_BLOB procedure 252
BIND_VARIABLE_CHAR procedure 252
BIND_VARIABLE_CLOB procedure 253
BIND_VARIABLE_DATE procedure 253
BIND_VARIABLE_DOUBLE procedure 254
BIND_VARIABLE_INT procedure 254
BIND_VARIABLE_NUMBER procedure 255
BIND_VARIABLE_RAW procedure 255
BIND_VARIABLE_TIMESTAMP procedure 256
BIND_VARIABLE_VARCHAR procedure 256
CLOSE_CURSOR procedure 257
COLUMN_VALUE_BLOB procedure 257
COLUMN_VALUE_CHAR procedure 258
COLUMN_VALUE_CLOB procedure 259
COLUMN_VALUE_DATE procedure 259
COLUMN_VALUE_DOUBLE procedure 260
COLUMN_VALUE_INT procedure 260
COLUMN_VALUE_LONG procedure 261
COLUMN_VALUE_NUMBER procedure 262
COLUMN_VALUE_RAW procedure 263
COLUMN_VALUE_TIMESTAMP procedure 263
COLUMN_VALUE_VARCHAR procedure 264
DEFINE_COLUMN_BLOB procedure 265
DEFINE_COLUMN_CHAR procedure 265
DEFINE_COLUMN_CLOB procedure 266
DEFINE_COLUMN_DATE procedure 266
DEFINE_COLUMN_DOUBLE procedure 266
DEFINE_COLUMN_INT procedure 267
DEFINE_COLUMN_LONG procedure 267
DEFINE_COLUMN_NUMBER procedure 268
DEFINE_COLUMN_RAW procedure 268
DEFINE_COLUMN_TIMESTAMP procedure 269
DEFINE_COLUMN_VARCHAR procedure 269
DESCRIBE_COLUMNS procedure 270
DESCRIBE_COLUMNS2 procedure 273
EXECUTE procedure 274
EXECUTE_AND_FETCH procedure 276
FETCH_ROWS procedure 278
IS_OPEN procedure 281
LAST_ROW_COUNT procedure 282
OPEN_CURSOR procedure 284
overview 249
PARSE procedure 285
VARIABLE_VALUE_BLOB procedure 287
VARIABLE_VALUE_CHAR procedure 288
VARIABLE_VALUE_CLOB procedure 288
VARIABLE_VALUE_DATE procedure 289

Index 419

DBMS_SQL module (continued)
VARIABLE_VALUE_DOUBLE procedure 289
VARIABLE_VALUE_INT procedure 289
VARIABLE_VALUE_NUMBER procedure 290
VARIABLE_VALUE_RAW procedure 290
VARIABLE_VALUE_TIMESTAMP procedure 291
VARIABLE_VALUE_VARCHAR procedure 291

DBMS_UTILITY module
ANALYZE_DATABASE procedure 293
ANALYZE_PART_OBJECT procedure 294
ANALYZE_SCHEMA procedure 295
CANONICALIZE procedure 296
COMMA_TO_TABLE procedures 298
COMPILE_SCHEMA procedure 299
DB_VERSION procedure 300
EXEC_DDL_STATEMENT procedure 301
GET_CPU_TIME function 301
GET_DEPENDENCY procedure 302
GET_HASH_VALUE function 303
GET_TIME function 304
NAME_RESOLVE procedure 305
NAME_TOKENIZE procedure 309
overview 292
TABLE_TO_COMMA procedures 312
VALIDATE procedure 314

DBSUMMARY procedure 318
deadlocks

avoiding 386
DECLARE statements

SQL procedures
condition handlers 71
conditions 71
cursors 71
variables 67, 71

DEFINE_COLUMN_BLOB procedure 265
DEFINE_COLUMN_CHAR procedure 265
DEFINE_COLUMN_CLOB procedure 266
DEFINE_COLUMN_DATE procedure 266
DEFINE_COLUMN_DOUBLE procedure 266
DEFINE_COLUMN_INT procedure 267
DEFINE_COLUMN_LONG procedure 267
DEFINE_COLUMN_NUMBER procedure 268
DEFINE_COLUMN_RAW procedure 268
DEFINE_COLUMN_TIMESTAMP procedure 269
DEFINE_COLUMN_VARCHAR procedure 269
DESCRIBE_COLUMNS procedure 270
DESCRIBE_COLUMNS2 procedure 273
DISABLE procedure 227
documentation

overview 403
PDF files 403
printed 403
terms and conditions of use 412

DROP_DIRECTORY procedure 324
dropping

row data types 16
triggers 182

DUAL table 383
dynamic performance views

DB2-Oracle terminology mapping 388
dynamic SQL

SQL procedures comparison 55

E
EHLO procedure 350

elements
retrieving 29

ENABLE procedure 228
ERASE procedure 220
errors

DB2-Oracle mapping 164
mapping 164
PL/SQL applications 162

examples
anchored data types 6, 7
cursor variables 48
PL/SQL schema 100
PL/SQL triggers 182
row data types 18

exceptions
PL/SQL

handling 161
transactions 179

EXEC_DDL_STATEMENT procedure 301
EXECUTE IMMEDIATE statement

PL/SQL 139
EXECUTE procedure 274
EXECUTE_AND_FETCH procedure 276
EXIT statement 159
external routines

SQL routines comparison 53

F
FCLOSE procedure 326
FCLOSE_ALL procedure 327
FCOPY procedure 328
FETCH statement

PL/SQL 168
FETCH_ROWS procedure 278
FFLUSH procedure 329
FILE_TYPE data type 341
FIRST function 29
FOPEN function 330
FOR (cursor variant) statement 154
FOR (integer variant) statement 155
FOR statement 73
FORALL statement

PL/SQL 119, 157
formal parameter

DB2-Oracle terminology mapping 388
FOUND cursor attribute 171
FREMOVE procedure 332
FRENAME procedure 332
function

WRAP 205
functions

CREATE_PIPE 235
FOPEN 330
invocation syntax support in PL/SQL 113
IS_OPEN 335
modules 197
NEXT_ITEM_TYPE 237
PACK_MESSAGE 238
parameter modes 130
PL/SQL

overview 114
references to 117

RECEIVE_MESSAGE 241
REMOVE_PIPE 242
scalar

CONCAT 369

420 SQL Procedural Languages: Application Enablement and Support

functions (continued)
scalar (continued)

LENGTH 369
REPLACE 369
SUBSTR 369
SYS_CONNECT_BY_PATH 381
TRANSLATE 369
TRIM 369

UNIQUE_SESSION_NAME 246

G
GET_CPU_TIME procedure 301
GET_DEPENDENCY procedure 302
GET_DIRECTORY_PATH procedure 324
GET_HASH_VALUE function 303
GET_LINE procedure

files 333
message buffers 228

GET_LINES procedure 230
GET_STORAGE_LIMIT function 221
GET_TIME function 304
GETLENGTH function 221
global index

DB2-Oracle terminology mapping 388
GOTO statement

details 76
graphic data

constants
handling 372

H
HELO procedure 351
help

configuring language 407
SQL statements 407

HELP procedure 351
hierarchical queries 374

I
IBM Data Server Driver for OCI

supported OCI APIs 395
IF statement

PL/SQL 147
SQL 72, 73

inactive log
DB2-Oracle terminology mapping 388

init.ora
DB2-Oracle terminology mapping 388

inlined SQL functions 90
insensitive cursor 384
INSTR function 222
INTERVAL procedure 211
IS_OPEN function 335
IS_OPEN procedure 281
ISOPEN attribute 171
ISOPEN function 222
ITERATE statement

example 77

L
large pool

DB2-Oracle terminology mapping 388
LAST function 29
LAST_ROW_COUNT procedure 282
LEAVE statement

SQL procedures 78
LEVEL pseudocolumn 374
library cache

DB2-Oracle terminology mapping 388
literals

handling 372
local index

DB2-Oracle terminology mapping 388
locks

timeouts
avoiding 386

LOCKWAIT procedure 319
LOOP statement

PL/SQL 159
SQL procedures 74

loops
PL/SQL 154

M
MAIL procedure 352
materialized view

DB2-Oracle terminology mapping 388
methods

collection 124
migrating

Sybase applications 365
modules

DBMS_ALERT 197
DBMS_DDL 204
DBMS_JOB 208
DBMS_LOB 215
DBMS_OUTPUT 226
DBMS_PIPE 233
DBMS_SQL 249
DBMS_UTILITY 292
MONREPORT 314
overview 197
UTL_DIR 322
UTL_FILE 325
UTL_MAIL 341
UTL_SMTP 345

MONREPORT module 314
CONNECTION 316
CURRENTAPPS 317
CURRENTSQL 317
DBSUMMARY 318
LOCKWAIT 319
PKGCACHE 321

N
NAME_RESOLVE procedure 305
NAME_TOKENIZE procedure 309
NEW trigger variable 178
NEW_LINE procedure 231, 335
NEXT_DATE procedure 212
NEXT_ITEM_TYPE function 237
noarchive log mode

DB2-Oracle terminology mapping 388

Index 421

NOOP procedure 353
NOTFOUND attribute 171
notices 413
NULL

statement 138
null producer 373
NUMBER data type

details 367
number_compat database configuration parameter

effect 367
overview 382

NVARCHAR2 data type
details 369

O
obfuscation

PL/SQL 107
SQL PL 107

objects
packages 191

OCI APIs
IBM Data Server Driver for OCI 395

OLAP
specification 382

OLD trigger variable 178
OPEN FOR statement 173
OPEN procedure 223
OPEN statement

PL/SQL 167
OPEN_CONNECTION function 353
OPEN_CONNECTION procedure 354
OPEN_CURSOR procedure 284
OPEN_DATA procedure 354
operators

CONNECT_BY_ROOT 379
outer join 373
PRIOR 380
unary 374

Oracle
application enablement 363
data dictionary--compatible views 387
DB2-Oracle terminology mapping 388

Oracle Call Interface (OCI)
DB2-Oracle terminology mapping 388

ORACLE_SID environment variable
DB2-Oracle terminology mapping 388

ordering DB2 books 406
ordinary array data type 23

P
PACK_MESSAGE function 238
PACK_MESSAGE_RAW procedure 239
packages

bodies 188
objects 191
PL/SQL

components 185
creating 186
creating package bodies 188, 189
creating package specifications 186
dropping 195
overview 185
user-defined types 192

parameter markers
examples 62
overview 62

parameter modes 130
parameterized cursors 166
parameters

INOUT 385
SQL procedures 61

PARSE procedure 285
performance

SQL procedures 84
PKGCACHE procedure 321
PL/SQL

blocks 108
collection methods 124
collections

associative arrays 120
overview 118
VARRAY type 118

control statements
EXIT 159
FOR (cursor variant) 154
FOR (integer variant) 155
FORALL 119, 157
LOOP 159
overview 147
WHILE 160

cursor variables
opening 173
overview 172
ROWTYPE attribute 170
SYS_REFCURSOR built-in data type 172

cursors
attributes 171
closing 170
declaring 166
fetching rows from 168
opening 167
overview 166
parameterized 166

data types
list 131
record 135, 136

dynamic queries 173
exception handling 161
function invocation syntax support 113
functions

creating 98
overview 114
references to 117

loops 154
modularizing cursor operations example 176
obfuscation 107
Oracle application enablement 363
overview 97
packages

components 185
creating 186
creating package body 188
creating package specifications 186
dropping 195
overview 185
package specifications 186
referencing objects 191
user-defined types 192

parameters
%TYPE attribute 133

422 SQL Procedural Languages: Application Enablement and Support

PL/SQL (continued)
procedures

creating 98
overview 110
references to 113

raising exceptions 162
REF CURSOR data type 173
REF CURSOR example 175
restrictions 100
sample schema 100
statement attributes 146
statements

anonymous block 108
assignment 138
basic 138
BULK COLLECT INTO clause 143
CASE 151
CREATE FUNCTION 115
CREATE PACKAGE 186
CREATE PACKAGE BODY 189
CREATE PROCEDURE 110
CREATE TRIGGER 179
EXECUTE IMMEDIATE 139
IF 147
NULL 138
RAISE 163
RETURNING INTO clause 144
searched CASE 153
simple CASE 151
SQL 142

SYS_REFCURSOR data type 172
triggers

commits 179
dropping 182
examples 182
overview 178
rollbacks 179
row-level 178
trigger variables 178

variables
%TYPE attribute 133
declaring 129
overview 128
record 135

precompiling
compiled functions 83
compiled triggers 83
SQL procedures 83
SQL statements 83

predicates
IS FOUND 42
IS NOT FOUND 42
IS NOT OPEN 42
IS OPEN 42

PRIOR unary operator 380
privileges

cursor data types 41
problem determination

information available 411
tutorials 411

procedures
CREATE_DIRECTORY 322
CREATE_OR_REPLACE_DIRECTORY 323
CREATE_WRAPPED 206
DISABLE 227
DROP_DIRECTORY 324
ENABLE 228

procedures (continued)
FCLOSE 326
FCLOSE_ALL 327
FCOPY 328
FFLUSH 329
FREMOVE 332
FRENAME 332
GET_DIRECTORY_PATH 324
GET_LINE 228, 333
GET_LINES 230
NEW_LINE 231, 335
PACK_MESSAGE_RAW 239
PL/SQL

overview 110
parameter modes 130
references to 113

PURGE 240
PUT 232, 337
PUT_LINE 233, 338
PUTF 340
REGISTER 198
REMOVE 199
REMOVEALL 200
RESET_BUFFER 244
result sets

SQL routines 81
SEND_MESSAGE 245
SET_DEFAULTS 200
SIGNAL 201
SQL

array support 33
components 58
compound statements 69
condition handlers 79
conditional statements 72
control flow statements 71, 72, 73
designing 58
features 58
looping statements 73
overview 57
parameters 61
structure 59
transfer of control statements 76
uses 57
variables 67, 69

UNPACK_MESSAGE 247
WAITANY 202
WAITONE 203

program global area (PGA)
DB2-Oracle terminology mapping 388

pseudocolumns
LEVEL 374
ROWNUM 382

PURGE procedure 240
PUT procedure

put partial line in message buffer 232
write string to file 337

PUT_LINE procedure
put complete line in message buffer 233
write text to file 338

PUTF procedure 340

Q
queries

hierarchical 374
QUIT procedure 355

Index 423

R
RAISE statement 163
RCPT procedure 355
READ procedure 223
RECEIVE_MESSAGE function 241
records

types
user-defined 135

variables 135
redo log

DB2-Oracle terminology mapping 388
REF CURSOR data type 173
REF CURSOR variables 175
REGISTER procedure 198
registry variables

DB2_COMPATIBILITY_VECTOR 360
REMOVE procedure

delete job definition from database 212
remove registration for specified alert 199

REMOVE_PIPE function 242
REMOVEALL procedure 200
REPEAT statement

SQL procedures 76
RESET_BUFFER procedure 244
result sets

receiving
SQL routines 81

returning
SQL procedures 80

RETURN statement
SQL procedures 79

RETURNING INTO clause 144
rounding 367
routines

comparison
SQL and external 53

external
comparison to SQL 53

issuing CREATE statements 82
modules 197
receiving result sets 81
SQL

comparison to external 53
creating 52
overview 51, 52
performance 84

row data types
assigning values 11, 12
creating 9
details 8
dropping 16
examples 16, 18, 21
overview 8
restrictions 8
variables 10

row values
assigning 13
referencing 13

row variables
assigning values 10
comparing 13
creating 9
overview 9
referencing

fields 14
INSERT statements 15
overview 14

ROW_NUMBER 382
ROWCOUNT attribute 171
ROWNUM pseudocolumn 382
rows

passing as routine parameters 16
ROWTYPE attribute 136, 170
RSET procedure 356
RUN procedure 213

S
samples

PL/SQL schema 100
scalar functions

creating 91
schemas

sample 100
searched CASE statement

PL/SQL 153
segment

DB2-Oracle terminology mapping 388
SEND procedure 341
SEND_ATTACH_RAW procedure 343
SEND_ATTACH_VARCHAR2 procedure 344
SEND_MESSAGE procedure 245
Server Parameter File (SPFILE)

DB2-Oracle terminology mapping 388
session

DB2-Oracle terminology mapping 388
SET statement

row variables 12
variables in SQL procedures 67

SET_DEFAULTS procedure 200
SIGNAL procedure 201
specifications

packages 186
SQL

table functions
creating 93

SQL functions
comparison to SQL procedures 54
compiled 90
creating

scalar 91
designing 90
features 90
inlined 90
overview 89
restrictions 91
scalar

creating 91
SQL PL

obfuscation 107
SQL Procedural Language (SQL PL)

array data types 22
control flow statements 71
cursor data types 43
data types

Boolean 51
inline

executing 3
overview 1

overview 1
performance 84
SQL procedures 2

SQL procedures
ATOMIC compound statements 59

424 SQL Procedural Languages: Application Enablement and Support

SQL procedures (continued)
bind options 83
comparison to dynamic compound SQL 55
comparison to SQL functions 54
components 58
condition handlers

overview 79
conditional statements 72
control flow statements 71, 72, 73
creating 82
cursors 70
designing 58
features 58
labels 59
looping statements

FOR 73
LOOP 74
overview 73
REPEAT 76
WHILE 75

NOT ATOMIC compound statements 59
overview 57
parameters 61
performance 84
precompile options 83
returning result sets 80
rewriting as SQL UDFs 56
SQLCODE variables 69
SQLSTATE variables 69
structure 59
transfer of control statements

GOTO 76
ITERATE 77
LEAVE 78
overview 76
RETURN 79

uses 57
variables 67

SQL routines
comparison to external routines 53
creating 52
overview 51, 52

SQL statements
bind options 83
compound 94
help

displaying 407
looping statements 73
PL/SQL 142
precompile options 83
related to variables 71
transfer of control statements 76

SQL%FOUND statement attribute 146
SQL%NOTFOUND statement attribute 146
SQL%ROWCOUNT statement attribute 146
SQLCODE

variables in SQL procedures 69
SQLSTATE

variables in SQL procedures 69
START WITH clause 374
startup nomount

DB2-Oracle terminology mapping 388
statement attributes

PL/SQL 146
statements

PL/SQL
anonymous block 108

statements (continued)
PL/SQL (continued)

assignment 138
basic 138
BULK COLLECT INTO clause 143
CASE 151
CLOSE 170
control 147
CREATE FUNCTION 115
CREATE PACKAGE 186
CREATE PACKAGE BODY 189
CREATE PROCEDURE 110
CREATE TRIGGER 179
EXECUTE IMMEDIATE 139
EXIT 159
FETCH 168
FOR (cursor variant) 154
FOR (integer variant) 155
FORALL 119, 157
IF 147
LOOP 159
NULL 138
OPEN 167
OPEN FOR 173
RAISE 163
RETURNING INTO clause 144
searched CASE 153
simple CASE 151
WHILE 160

strings
semantics 369

subindexes 27
SUBMIT procedure 213
SUBSTR scalar function

details 224
Sybase

migrating applications 365
synonyms

DB2-Oracle terminology mapping 388
SYS_CONNECT_BY_PATH scalar function 381
system global area (SGA)

DB2-Oracle terminology mapping 388
SYSTEM table space

DB2-Oracle terminology mapping 388

T
TABLE_TO_COMMA procedure 312
tables

DUAL 383
terminology mapping

DB2-Oracle 388
terms and conditions

publications 412
TIMESTAMP(0)

DATE data type based on 365
transactions

PL/SQL 179
triggers

PL/SQL
commits 179
creating 179
dropping 182
examples 182
overview 178
rollbacks 179
row-level 178

Index 425

triggers (continued)
PL/SQL (continued)

trigger variables 178
TRIM procedure 224
troubleshooting

online information 411
tutorials 411

tutorials
list 411
problem determination 411
troubleshooting 411
Visual Explain 411

TYPE attribute 133

U
unary operators

CONNECT_BY_ROOT 374, 379
PRIOR 380

UNIQUE_SESSION_NAME function 246
UNPACK_MESSAGE procedure 247
updates

DB2 Information Center 408, 409
user global area (UGA)

DB2-Oracle terminology mapping 388
user-defined functions (UDFs)

rewriting SQL procedures as UDFs 56
scalar

creating 91
user-defined types (UDTs)

associative array 34
ordinary array 23
PL/SQL packages 192

UTL_DIR module 322
UTL_FILE module 325
UTL_MAIL module

overview 341
SEND 341
SEND_ATTACH_RAW 343
SEND_ATTACH_VARCHAR2 344

UTL_SMTP module
CLOSE 347
COMMAND 348
COMMAND_REPLIES 349
DATA 349
EHLO 350
HELO 351
HELP 351
MAIL 352
NOOP 353
OPEN_CONNECTION function 353
OPEN_CONNECTION procedure 354
OPEN_DATA 354
overview 345
QUIT 355
RCPT 355
RSET 356
VRFY 356
WRITE_DATA 357
WRITE_RAW_DATA 357

V
VALIDATE procedure 314
VARCHAR2

data types 369

VARCHAR2 data type
details 369

varchar2_compat database configuration parameter
details 382
VARCHAR2 data type 369

VARIABLE_VALUE_BLOB procedure 287
VARIABLE_VALUE_CHAR procedure 288
VARIABLE_VALUE_CLOB procedure 288
VARIABLE_VALUE_DATE procedure 289
VARIABLE_VALUE_DOUBLE procedure 289
VARIABLE_VALUE_INT procedure 289
VARIABLE_VALUE_NUMBER procedure 290
VARIABLE_VALUE_RAW procedure 290
VARIABLE_VALUE_TIMESTAMP procedure 291
VARIABLE_VALUE_VARCHAR procedure 291
variables

array data types 25
cursor data types 172
local

anchored data types 6
array data types 26
cursor data types 44

PL/SQL
declaring 129
overview 128
record 135

REF CURSOR 173
row data types 10
SQL procedures 67, 71
trigger 178

VARRAY collection type 118
views

compatible with Oracle data dictionary 387
VRFY procedure 356

W
WAITANY procedure 202
WAITONE procedure 203
WHAT procedure 214
WHILE statement

SQL procedures 75
WRAP function 205
WRITE procedure 225
WRITE_DATA procedure 357
WRITE_RAW_DATA procedure 357
WRITEAPPEND procedure 225

426 SQL Procedural Languages: Application Enablement and Support

����

Printed in USA

SC27-2470-02

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

9.
7

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Ve
rs

io
n

9
Re

le
as

e
7

SQ
L

Pr
oc

ed
ur

al
La

ng
ua

ge
s:

Ap
pl

ic
at

io
n

En
ab

le
m

en
ta

nd
Su

pp
or

t
�
�

�

	Contents
	Chapter 1. SQL Procedural Language (SQL PL)
	Inline SQL PL
	SQL PL in SQL procedures
	Inline SQL PL and SQL functions, triggers, and compound SQL statements
	SQL PL data types
	Anchored data type
	Features of the anchored data type
	Restrictions on the anchored data type
	Anchored data type variables
	Declaring local variables of the anchored data type
	Examples: Anchored data type use

	Row types
	Features of the row data type
	Restrictions on the row data type
	Row variables
	Creating row variables
	Assigning values to row variables
	Comparing row variables and row field values
	Referencing row values
	Passing rows as routine parameters
	Dropping a row data type
	Examples: Row data type use

	Array types
	Comparison of arrays and associative arrays
	Ordinary array data type
	Associative array data type

	Cursor types
	Overview of cursor data types
	Cursor variables
	Cursor predicates
	Creating cursor variables
	Assigning values to cursor variables
	Referencing cursor variables
	Determining the number of fetched rows for a cursor
	Example: Cursor variable use

	Boolean data type
	Restrictions on the Boolean data type

	SQL routines
	Overview of SQL routines
	CREATE statements for SQL routines
	Determining when to use SQL routines or external routines
	Determining when to use SQL procedures or SQL functions
	Determining when to use SQL routines or dynamically prepared compound SQL statements
	Rewriting SQL procedures as SQL user-defined functions

	SQL procedures
	Features of SQL procedures
	Designing SQL procedures
	Creating SQL procedures
	Improving the performance of SQL procedures

	SQL functions
	Features of SQL functions
	Designing SQL functions
	Creating SQL scalar functions
	Creating SQL table functions

	Compound statements
	Restrictions on compound statements
	Creating compound statements

	Chapter 2. PL/SQL support
	PL/SQL features
	Creating PL/SQL procedures and functions from a CLP script
	Restrictions on PL/SQL support
	PL/SQL sample schema
	Obfuscation
	Blocks (PL/SQL)
	Anonymous block statement (PL/SQL)

	Procedures (PL/SQL)
	CREATE PROCEDURE statement (PL/SQL)
	Procedure references (PL/SQL)
	Function invocation syntax support (PL/SQL)

	Functions (PL/SQL)
	CREATE FUNCTION statement (PL/SQL)
	Function references (PL/SQL)

	Collections (PL/SQL)
	VARRAY collection type declaration (PL/SQL)
	CREATE TYPE (VARRAY) statement (PL/SQL)
	Associative arrays (PL/SQL)
	Collection methods (PL/SQL)

	Variables (PL/SQL)
	Variable declarations (PL/SQL)
	Parameter modes (PL/SQL)
	Data types (PL/SQL)
	%TYPE attribute in variable declarations (PL/SQL)
	Record variables based on user-defined record types (PL/SQL)
	%ROWTYPE attribute in record type declarations (PL/SQL)

	Basic statements (PL/SQL)
	NULL statement (PL/SQL)
	Assignment statement (PL/SQL)
	EXECUTE IMMEDIATE statement (PL/SQL)
	SQL statements (PL/SQL)
	BULK COLLECT INTO clause (PL/SQL)
	RETURNING INTO clause (PL/SQL)
	Statement attributes (PL/SQL)

	Control statements (PL/SQL)
	IF statement (PL/SQL)
	CASE statement (PL/SQL)
	Simple CASE statement (PL/SQL)
	Searched CASE statement (PL/SQL)

	Loops (PL/SQL)
	FOR (cursor variant) statement (PL/SQL)
	FOR (integer variant) statement (PL/SQL)
	FORALL statement (PL/SQL)
	EXIT statement (PL/SQL)
	LOOP statement (PL/SQL)
	WHILE statement (PL/SQL)

	Exception handling (PL/SQL)
	Raise application error (PL/SQL)
	RAISE statement (PL/SQL)
	Oracle-DB2 error mapping (PL/SQL)

	Cursors (PL/SQL)
	Static cursors (PL/SQL)
	Parameterized cursors (PL/SQL)
	Opening a cursor (PL/SQL)
	Fetching rows from a cursor (PL/SQL)
	Closing a cursor (PL/SQL)
	Using %ROWTYPE with cursors (PL/SQL)
	Cursor attributes (PL/SQL)

	Cursor variables (PL/SQL)
	SYS_REFCURSOR cursor variables (PL/SQL)
	User-defined REF CURSOR type variables (PL/SQL)
	Dynamic queries with cursor variables (PL/SQL)
	Example: Returning a REF CURSOR from a procedure (PL/SQL)
	Example: Modularizing cursor operations (PL/SQL)

	Triggers (PL/SQL)
	Types of triggers (PL/SQL)
	Trigger variables (PL/SQL)
	Transactions and exceptions (PL/SQL)
	CREATE TRIGGER statement (PL/SQL)
	Dropping triggers (PL/SQL)
	Examples: Triggers (PL/SQL)

	Packages (PL/SQL)
	Package components (PL/SQL)
	Creating packages (PL/SQL)
	Creating package specifications (PL/SQL)
	CREATE PACKAGE statement (PL/SQL)
	Creating the package body (PL/SQL)
	CREATE PACKAGE BODY statement (PL/SQL)

	Referencing package objects (PL/SQL)
	Packages with user-defined types (PL/SQL)

	Dropping packages (PL/SQL)

	Chapter 3. System-defined modules
	DBMS_ALERT module
	REGISTER procedure - Register to receive a specified alert
	REMOVE procedure - Remove registration for a specified alert
	REMOVEALL procedure - Remove registration for all alerts
	SET_DEFAULTS - Set the polling interval for WAITONE and WAITANY
	SIGNAL procedure - Signal occurrence of a specified alert
	WAITANY procedure - Wait for any registered alerts
	WAITONE procedure - Wait for a specified alert

	DBMS_DDL Module
	WRAP function – Obfuscate a DDL statement
	CREATE_WRAPPED procedure – Deploy an obfuscated object

	DBMS_JOB module
	BROKEN procedure - Set the state of a job to either broken or not broken
	CHANGE procedure - Modify job attributes
	INTERVAL procedure - Set run frequency
	NEXT_DATE procedure - Set the date and time when a job is run
	REMOVE procedure - Delete the job definition from the database
	RUN procedure - Force a broken job to run
	SUBMIT procedure - Create a job definition and store it in the database
	WHAT procedure - Change the SQL statement run by a job

	DBMS_LOB module
	APPEND procedures - Append one large object to another
	CLOSE procedures - Close an open large object
	COMPARE function - Compare two large objects
	CONVERTTOBLOB procedure - Convert character data to binary
	CONVERTTOCLOB procedure - Convert binary data to character
	COPY procedures - Copy one large object to another
	ERASE procedures - Erase a portion of a large object
	GET_STORAGE_LIMIT function - Return the limit on the largest allowable large object
	GETLENGTH function - Return the length of the large object
	INSTR function - Return the location of the nth occurrence of a given pattern
	ISOPEN function - Test if the large object is open
	OPEN procedures - Open a large object
	READ procedures - Read a portion of a large object
	SUBSTR function - Return a portion of a large object
	TRIM procedures - Truncate a large object to the specified length
	WRITE procedures - Write data to a large object
	WRITEAPPEND procedures - Append data to the end of a large object

	DBMS_OUTPUT module
	DISABLE procedure - Disable the message buffer
	ENABLE procedure - Enable the message buffer
	GET_LINE procedure - Get a line from the message buffer
	GET_LINES procedure - Get multiple lines from the message buffer
	NEW_LINE procedure - Put an end-of-line character sequence in the message buffer
	PUT procedure - Put a partial line in the message buffer
	PUT_LINE procedure - Put a complete line in the message buffer

	DBMS_PIPE module
	CREATE_PIPE function - Create a pipe
	NEXT_ITEM_TYPE function - Return the data type code of the next item
	PACK_MESSAGE function - Put a data item in the local message buffer
	PACK_MESSAGE_RAW procedure - Put a data item of type RAW in the local message buffer
	PURGE procedure - Remove unreceived messages from a pipe
	RECEIVE_MESSAGE function - Get a message from a specified pipe
	REMOVE_PIPE function - Delete a pipe
	RESET_BUFFER procedure - Reset the local message buffer
	SEND_MESSAGE procedure - Send a message to a specified pipe
	UNIQUE_SESSION_NAME function - Return a unique session name
	UNPACK_MESSAGE procedures - Get a data item from the local message buffer

	DBMS_SQL module
	BIND_VARIABLE_BLOB procedure - Bind a BLOB value to a variable
	BIND_VARIABLE_CHAR procedure - Bind a CHAR value to a variable
	BIND_VARIABLE_CLOB procedure - Bind a CLOB value to a variable
	BIND_VARIABLE_DATE procedure - Bind a DATE value to a variable
	BIND_VARIABLE_DOUBLE procedure - Bind a DOUBLE value to a variable
	BIND_VARIABLE_INT procedure - Bind an INTEGER value to a variable
	BIND_VARIABLE_NUMBER procedure - Bind a NUMBER value to a variable
	BIND_VARIABLE_RAW procedure - Bind a RAW value to a variable
	BIND_VARIABLE_TIMESTAMP procedure - Bind a TIMESTAMP value to a variable
	BIND_VARIABLE_VARCHAR procedure - Bind a VARCHAR value to a variable
	CLOSE_CURSOR procedure - Close a cursor
	COLUMN_VALUE_BLOB procedure - Return a BLOB column value into a variable
	COLUMN_VALUE_CHAR procedure - Return a CHAR column value into a variable
	COLUMN_VALUE_CLOB procedure - Return a CLOB column value into a variable
	COLUMN_VALUE_DATE procedure - Return a DATE column value into a variable
	COLUMN_VALUE_DOUBLE procedure - Return a DOUBLE column value into a variable
	COLUMN_VALUE_INT procedure - Return an INTEGER column value into a variable
	COLUMN_VALUE_LONG procedure - Return a LONG column value into a variable
	COLUMN_VALUE_NUMBER procedure - Return a DECFLOAT column value into a variable
	COLUMN_VALUE_RAW procedure - Return a RAW column value into a variable
	COLUMN_VALUE_TIMESTAMP procedure - Return a TIMESTAMP column value into a variable
	COLUMN_VALUE_VARCHAR procedure - Return a VARCHAR column value into a variable
	DEFINE_COLUMN_BLOB- Define a BLOB column in the SELECT list
	DEFINE_COLUMN_CHAR procedure - Define a CHAR column in the SELECT list
	DEFINE_COLUMN_CLOB - Define a CLOB column in the SELECT list
	DEFINE_COLUMN_DATE - Define a DATE column in the SELECT list
	DEFINE_COLUMN_DOUBLE - Define a DOUBLE column in the SELECT list
	DEFINE_COLUMN_INT- Define an INTEGER column in the SELECT list
	DEFINE_COLUMN_LONG procedure - Define a LONG column in the SELECT list
	DEFINE_COLUMN_NUMBER procedure - Define a DECFLOAT column in the SELECT list
	DEFINE_COLUMN_RAW procedure - Define a RAW column or expression in the SELECT list
	DEFINE_COLUMN_TIMESTAMP - Define a TIMESTAMP column in the SELECT list
	DEFINE_COLUMN_VARCHAR procedure - Define a VARCHAR column in the SELECT list
	DESCRIBE_COLUMNS procedure - Retrieve a description of the columns in a SELECT list
	DESCRIBE_COLUMNS2 procedure - Retrieve a description of column names in a SELECT list
	EXECUTE procedure - Run a parsed SQL statement
	EXECUTE_AND_FETCH procedure - Run a parsed SELECT command and fetch one row
	FETCH_ROWS procedure - Retrieve a row from a cursor
	IS_OPEN procedure - Check if a cursor is open
	LAST_ROW_COUNT procedure - return the cumulative number of rows fetched
	OPEN_CURSOR procedure - Open a cursor
	PARSE procedure - Parse an SQL statement
	VARIABLE_VALUE_BLOB procedure - Return the value of a BLOB INOUT or OUT parameter
	VARIABLE_VALUE_CHAR procedure - Return the value of a CHAR INOUT or OUT parameter
	VARIABLE_VALUE_CLOB procedure - Return the value of a CLOB INOUT or OUT parameter
	VARIABLE_VALUE_DATE procedure - Return the value of a DATE INOUT or OUT parameter
	VARIABLE_VALUE_DOUBLE procedure - Return the value of a DOUBLE INOUT or OUT parameter
	VARIABLE_VALUE_INT procedure - Return the value of an INTEGER INOUT or OUT parameter
	VARIABLE_VALUE_NUMBER procedure - Return the value of a DECFLOAT INOUT or OUT parameter
	VARIABLE_VALUE_RAW procedure - Return the value of a BLOB(32767) INOUT or OUT parameter
	VARIABLE_VALUE_TIMESTAMP procedure - Return the value of a TIMESTAMP INOUT or OUT parameter
	VARIABLE_VALUE_VARCHAR procedure - Return the value of a VARCHAR INOUT or OUT parameter

	DBMS_UTILITY module
	ANALYZE_DATABASE procedure - Gather statistics on tables, clusters, and indexes
	ANALYZE_PART_OBJECT procedure - Gather statistics on a partitioned table or partitioned index
	ANALYZE_SCHEMA procedure - Gather statistics on schema tables, clusters, and indexes
	CANONICALIZE procedure - Canonicalize a string
	COMMA_TO_TABLE procedures - Convert a comma-delimited list of names into a table of names
	COMPILE_SCHEMA procedure - Compile all functions, procedures, triggers, and packages in a schema
	DB_VERSION procedure - Retrieve the database version
	EXEC_DDL_STATEMENT procedure - Run a DDL statement
	GET_CPU_TIME function - Retrieve the current CPU time
	GET_DEPENDENCY procedure - List objects dependent on the given object
	GET_HASH_VALUE function - Compute a hash value for a given string
	GET_TIME function - Return the current time
	NAME_RESOLVE procedure - Obtain the schema and other membership information for a database object
	NAME_TOKENIZE procedure - Parse the given name into its component parts
	TABLE_TO_COMMA procedures - Convert a table of names into a comma-delimited list of names
	VALIDATE procedure - Change an invalid routine into a valid routine

	MONREPORT module
	CONNECTION procedure - generate a report on connection metrics
	CURRENTAPPS procedure - generate a report of point-in-time application processing metrics
	CURRENTSQL procedure - generate a report that summarizes activities
	DBSUMMARY procedure - generate a summary report of system and application performance metrics
	LOCKWAIT procedure - generate a report of current lock waits
	PKGCACHE procedure - generate a summary report of package cache metrics

	UTL_DIR module
	CREATE_DIRECTORY procedure - Create a directory alias
	CREATE_OR_REPLACE_DIRECTORY procedure - Create or replace a directory alias
	DROP_DIRECTORY procedure - Drop a directory alias
	GET_DIRECTORY_PATH procedure - Get the path for a directory alias

	UTL_FILE module
	FCLOSE procedure - Close an open file
	FCLOSE_ALL procedure - Close all open files
	FCOPY procedure - Copy text from one file to another
	FFLUSH procedure - Flush unwritten data to a file
	FOPEN function - Open a file
	FREMOVE procedure - Remove a file
	FRENAME procedure - Rename a file
	GET_LINE procedure - Get a line from a file
	IS_OPEN function - Determine whether a specified file is open
	NEW_LINE procedure - Write an end-of-line character sequence to a file
	PUT procedure - Write a string to a file
	PUT_LINE procedure - Write a line of text to a file
	PUTF procedure - Write a formatted string to a file
	UTL_FILE.FILE_TYPE

	UTL_MAIL module
	SEND procedure - Send an e-mail to an SMTP server
	SEND_ATTACH_RAW procedure - Send an e-mail with a BLOB attachment to an SMTP server
	SEND_ATTACH_VARCHAR2 procedure - Send an e-mail with a VARCHAR attachment to an SMTP server

	UTL_SMTP module
	CLOSE_DATA procedure - End an e-mail message
	COMMAND procedure - Run an SMTP command
	COMMAND_REPLIES procedure - Run an SMTP command where multiple reply lines are expected
	DATA procedure - Specify the body of an e-mail message
	EHLO procedure - Perform initial handshaking with an SMTP server and return extended information
	HELO procedure - Perform initial handshaking with an SMTP server
	HELP procedure - Send the HELP command
	MAIL procedure - Start a mail transaction
	NOOP procedure - Send the null command
	OPEN_CONNECTION function - Return a connection handle to an SMTP server
	OPEN_CONNECTION procedure - Open a connection to an SMTP server
	OPEN_DATA procedure - Send the DATA command to the SMTP server
	QUIT procedure - Close the session with the SMTP server
	RCPT procedure - Provide the e-mail address of the recipient
	RSET procedure - End the current mail transaction
	VRFY procedure - Validate and verify the recipient's e-mail address
	WRITE_DATA procedure - Write a portion of an e-mail message
	WRITE_RAW_DATA procedure - Add RAW data to an e-mail message

	Chapter 4. DB2 compatibility features
	Introduction to DB2 compatibility features
	DB2_COMPATIBILITY_VECTOR registry variable
	Setting up DB2 for Oracle application enablement
	Sybase application migration
	Data types
	DATE data type based on TIMESTAMP(0)
	NUMBER data type
	VARCHAR2 and NVARCHAR2 data types

	Character and graphic constant handling
	Outer join operator
	Hierarchical queries
	CONNECT_BY_ROOT unary operator
	PRIOR unary operator
	SYS_CONNECT_BY_PATH

	Database configuration parameters
	ROWNUM pseudocolumn
	DUAL table
	Insensitive cursor
	INOUT parameter
	Currently committed semantics improve concurrency
	Oracle data dictionary-compatible views
	DB2-Oracle terminology mapping

	Chapter 5. DB2CI application development
	IBM Data Server Driver for DB2CI
	Building DB2CI applications
	DB2CI application compile and link options (AIX)
	DB2CI application compile and link options (HP-UX)
	DB2CI application compile and link options (Linux)
	DB2CI application compile and link options (Solaris)
	DB2CI application compile and link options (Windows)

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

