
IBM DB2 10.1
for Linux, UNIX, and Windows

Call Level Interface Guide and
Reference Volume 1

SC27-3866-00

���

IBM DB2 10.1
for Linux, UNIX, and Windows

Call Level Interface Guide and
Reference Volume 1

SC27-3866-00

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 283.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/

order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book vii

Chapter 1. Introduction to DB2 Call
Level Interface and ODBC 1
Comparison of CLI and ODBC 2

Chapter 2. IBM Data Server CLI and
ODBC drivers 7
IBM Data Server Driver for ODBC and CLI overview 7

Obtaining the IBM Data Server Driver for ODBC
and CLI 8
Installing the IBM Data Server Driver for ODBC
and CLI 8
Configuring the IBM Data Server Driver for
ODBC and CLI 11
Connecting to databases with the IBM Data
Server Driver for ODBC and CLI 19
Running CLI and ODBC applications using the
IBM Data Server Driver for ODBC and CLI. . . 34
Deploying the IBM Data Server Driver for ODBC
and CLI with database applications 46

Chapter 3. ODBC driver managers . . . 49
unixODBC driver manager 49

Setting up the unixODBC driver manager . . . 49
Microsoft ODBC driver manager 51
DataDirect ODBC driver manager 51

Chapter 4. Initializing CLI applications 53
Initialization and termination in CLI overview. . . 54
Handles in CLI 55

Chapter 5. Data types and data
conversion in CLI applications 57
String handling in CLI applications 58
Large object usage in CLI applications 60

LOB locators in CLI applications 61
Direct file input and output for LOB handling in
CLI applications 63
LOB usage in ODBC applications 64

Long data for bulk inserts and updates in CLI
applications 65
User-defined type (UDT) usage in CLI applications 66

Distinct type usage in CLI applications 67
XML data handling in CLI applications - Overview 68

Changing of default XML type handling in CLI
applications 68

Chapter 6. Transaction processing in
CLI overview 69
Allocating statement handles in CLI applications . . 70
Issuing SQL statements in CLI applications 70
Parameter marker binding in CLI applications. . . 71

Binding parameter markers in CLI applications 73
Binding parameter markers in CLI applications
with column-wise array input 74
Binding parameter markers in CLI applications
with row-wise array input 75
Parameter diagnostic information in CLI
applications 76
Changing parameter bindings in CLI applications
with offsets 76
Specifying parameter values at execute time for
long data manipulation in CLI applications. . . 77

Commit modes in CLI applications 79
When to call the CLI SQLEndTran() function . . . 80
Preparing and executing SQL statements in CLI
applications 81

Deferred prepare in CLI applications 82
Executing compound SQL (CLI) statements in
CLI applications 83

Cursors in CLI applications 85
Cursor considerations for CLI applications . . . 88

Result set terminology in CLI applications 89
Bookmarks in CLI applications 90
Rowset retrieval examples in CLI applications . . 91

Retrieving query results in CLI applications . . . 92
Column binding in CLI applications 94
Specifying the rowset returned from the result set 95
Retrieving data with scrollable cursors in a CLI
application 97
Retrieving data with bookmarks in a CLI
application 99
Result set retrieval into arrays in CLI
applications 101
Data retrieval in pieces in CLI applications . . 105
Fetching LOB data with LOB locators in CLI
applications 106
XML data retrieval in CLI applications 107

Inserting data 108
Inserting bulk data with bookmarks using
SQLBulkOperations() in CLI applications . . . 108
Importing data with the CLI LOAD utility in
CLI applications 109
XML column inserts and updates in CLI
applications 111

Updating and deleting data in CLI applications . . 112
Updating bulk data with bookmarks using
SQLBulkOperations() in CLI applications . . . 113
Deleting bulk data with bookmarks using
SQLBulkOperations() in CLI applications . . . 114

Calling stored procedures from CLI applications 115
CLI stored procedure commit behavior 117

Creating static SQL with CLI/ODBC Static
Profiling 118

Capture file for CLI/ODBC/JDBC Static
Profiling 121
Considerations for mixing embedded SQL and
CLI. 122

© Copyright IBM Corp. 2012 iii

Freeing statement resources in CLI applications 122
Handle freeing in CLI applications 123

Chapter 7. Terminating a CLI
application 125

Chapter 8. Trusted connections
through DB2 Connect 127
Creating and terminating a trusted connection
through CLI 128
Switching users on a trusted connection through
CLI. 129

Chapter 9. Descriptors in CLI
applications 133
Consistency checks for descriptors in CLI
applications 136
Descriptor allocation and freeing 137
Descriptor manipulation with descriptor handles in
CLI applications 139
Descriptor manipulation without using descriptor
handles in CLI applications. 141

Chapter 10. Catalog functions for
querying system catalog information
in CLI applications 143
Input arguments on catalog functions in CLI
applications 144

Chapter 11. Programming hints and
tips for CLI applications 147
Reduction of network flows with CLI array input
chaining 153

Chapter 12. Unicode CLI applications 155
Unicode functions (CLI) 156
Unicode function calls to ODBC driver managers 157

Chapter 13. Multisite updates (two
phase commit) in CLI applications . . 159
ConnectType CLI/ODBC configuration keyword 159
DB2 as transaction manager in CLI applications 160
Process-based XA-compliant Transaction Program
Monitor (XA TP) programming considerations for
CLI applications 162

Chapter 14. Asynchronous execution
of CLI functions 165
Executing functions asynchronously in CLI
applications 166

Chapter 15. Multithreaded CLI
applications 169
Application model for multithreaded CLI
applications 170
Mixed multithreaded CLI applications 171

Chapter 16. Vendor escape clauses in
CLI applications 173
Extended scalar functions for CLI applications . . 176

Chapter 17. Non-Java client support
for high availability on IBM data
servers 187
Non-Java client support for high availability for
connections to DB2 Database for Linux, UNIX, and
Windows 188

Configuration of DB2 Database for Linux,
UNIX, and Windows automatic client reroute
support for non-Java clients 189
Example of enabling DB2 Database for Linux,
UNIX, and Windows automatic client reroute
support in non-Java clients 193
Configuration of DB2 Database for Linux,
UNIX, and Windows workload balancing
support for non-Java clients 194
Example of enabling DB2 Database for Linux,
UNIX, and Windows workload balancing
support in non-Java clients 196
Operation of automatic client reroute for
connections to DB2 Database for Linux, UNIX,
and Windows from non-Java clients 198
Operation of transaction-level workload
balancing for connections to DB2 Database for
Linux, UNIX, and Windows 199
Alternate groups for connections to DB2
Database for Linux, UNIX, and Windows from
non-Java clients 200
Application programming requirements for high
availability for connecting to DB2 Database for
Linux, UNIX, and Windows servers 202
Client affinities for clients that connect to DB2
Database for Linux, UNIX, and Windows . . . 203

Non-Java client support for high availability for
connections to Informix servers 209

Configuration of Informix high-availability
support for non-Java clients 210
Example of enabling IDS high availability
support in non-Java clients 212
Operation of automatic client reroute for
connections to IDS from non-Java clients . . . 213
Operation of workload balancing for
connections to Informix from non-Java clients . 214
Application programming requirements for high
availability for connections from non-Java
clients to Informix servers 215
Client affinities for connections to Informix from
non-Java clients 216

Non-Java client support for high availability for
connections to DB2 for z/OS servers 222

Configuration of Sysplex workload balancing
and automatic client reroute for non-Java clients 224
Example of enabling DB2 for z/OS Sysplex
workload balancing and automatic client reroute
in non-Java client applications 229

iv Call Level Interface Guide and Reference Volume 1

Operation of Sysplex workload balancing for
connections from non-Java clients to DB2 for
z/OS servers 231
Operation of automatic client reroute for
connections from non-Java clients to DB2 for
z/OS servers 232
Operation of transaction-level workload
balancing for connections to the DB2 for z/OS
data sharing group 233
Alternate groups for connections to DB2 for
z/OS servers from non-Java clients 234
Application programming requirements for high
availability for connections from non-Java
clients to DB2 for z/OS servers 236

Chapter 18. XA support for a Sysplex
in non-Java clients 239
Enabling XA support for a Sysplex in non-Java
clients 239

Chapter 19. Configuring your
development environment to build
and run CLI and ODBC applications . 241
Setting up the ODBC environment (Linux and
UNIX) 241

Sample build scripts and configurations for the
unixODBC Driver Manager. 243

Setting up the Windows CLI environment 245
Selecting a different DB2 copy for your
Windows CLI application 246

CLI bind files and package names 247
Bind option limitations for CLI packages . . . 249

Chapter 20. Building CLI applications 251
Building CLI applications on UNIX 251

AIX CLI application compile and link options 252
HP-UX CLI application compile and link
options 252
Linux CLI application compile and link options 253

Solaris CLI application compile and link options 254
Building CLI multi-connection applications on
UNIX 255

Building CLI applications on Windows 257
Windows CLI application compile and link
options 258
Building CLI multi-connection applications on
Windows 259

Building CLI applications with configuration files 260
Building CLI stored procedures with configuration
files 262

Chapter 21. Building CLI routines. . . 265
Building CLI routines on UNIX 265

AIX CLI routine compile and link options . . . 266
HP-UX CLI routine compile and link options 267
Linux CLI routine compile and link options . . 268
Solaris CLI routine compile and link options 269

Building CLI routines on Windows 270
Windows CLI routine compile and link options 271

Appendix A. Overview of the DB2
technical information 273
DB2 technical library in hardcopy or PDF format 273
Displaying SQL state help from the command line
processor 276
Accessing different versions of the DB2
Information Center 276
Updating the DB2 Information Center installed on
your computer or intranet server 276
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 278
DB2 tutorials 279
DB2 troubleshooting information 280
Terms and conditions. 280

Appendix B. Notices 283

Index 287

Contents v

vi Call Level Interface Guide and Reference Volume 1

About this book

The Call Level Interface (CLI) Guide and Reference is in two volumes:
v Volume 1 describes how to use CLI to create database applications for DB2®

Database for Linux, UNIX, and Windows.
v Volume 2 is a reference that describes CLI functions, keywords and

configuration.

© Copyright IBM Corp. 2012 vii

viii Call Level Interface Guide and Reference Volume 1

Chapter 1. Introduction to DB2 Call Level Interface and ODBC

DB2 Call Level Interface (CLI) is IBM's callable SQL interface to the DB2 family of
database servers. It is a 'C' and 'C++' application programming interface for
relational database access that uses function calls to pass dynamic SQL statements
as function arguments.

You can use the CLI interface to access the following IBM® data server databases:
v DB2 Version 9 for Linux, UNIX, and Windows
v DB2 Universal Database™ Version 8 (and later) for OS/390® and z/OS®

v DB2 for IBM i 5.4 and later
v IBM Informix® Version 11.50 (starting in DB2 Version 9.7 Fix Pack 1 and later),

Version 11.70 (starting in DB2 Version 9.7 Fix Pack 3 and later)

CLI is an alternative to embedded dynamic SQL, but unlike embedded SQL, it
does not require host variables or a precompiler. Applications can be run against a
variety of databases without having to be compiled against each of these
databases. Applications use procedure calls at run time to connect to databases,
issue SQL statements, and retrieve data and status information.

The CLI interface provides many features not available in embedded SQL. For
example:
v CLI provides function calls that support a way of querying database catalogs

that is consistent across the DB2 family. This reduces the need to write catalog
queries that must be tailored to specific database servers.

v CLI provides the ability to scroll through a cursor:
– Forward by one or more rows
– Backward by one or more rows
– Forward from the first row by one or more rows
– Backward from the last row by one or more rows
– From a previously stored location in the cursor.

v Stored procedures called from application programs that were written using CLI
can return result sets to those programs.

CLI is based on the Microsoft Open Database Connectivity (ODBC) specification,
and the International Standard for SQL/CLI. These specifications were chosen as
the basis for the DB2 Call Level Interface in an effort to follow industry standards
and to provide a shorter learning curve for those application programmers already
familiar with either of these database interfaces. In addition, some DB2 specific
extensions have been added to help the application programmer specifically exploit
DB2 features.

The CLI driver also acts as an ODBC driver when loaded by an ODBC driver
manager. It conforms to ODBC 3.51.

CLI Background information

To understand CLI or any callable SQL interface, it is helpful to understand what it
is based on, and to compare it with existing interfaces.

© Copyright IBM Corp. 2012 1

The X/Open Company and the SQL Access Group jointly developed a specification
for a callable SQL interface referred to as the X/Open Call Level Interface. The goal of
this interface is to increase the portability of applications by enabling them to
become independent of any one database vendor's programming interface. Most of
the X/Open Call Level Interface specification has been accepted as part of the ISO
Call Level Interface International Standard (ISO/IEC 9075-3:1995 SQL/CLI).

Microsoft developed a callable SQL interface called Open Database Connectivity
(ODBC) for Microsoft operating systems based on a preliminary draft of X/Open
CLI.

The ODBC specification also includes an operating environment where
database-specific ODBC drivers are dynamically loaded at run time by a driver
manager based on the data source (database name) provided on the connect
request. The application is linked directly to a single driver manager library rather
than to each DBMS's library. The driver manager mediates the application's
function calls at run time and ensures they are directed to the appropriate
DBMS-specific ODBC driver. Because the ODBC driver manager only knows about
the ODBC-specific functions, DBMS-specific functions cannot be accessed in an
ODBC environment. DBMS-specific dynamic SQL statements are supported
through a mechanism called an escape clause.

ODBC is not limited to Microsoft operating systems; other implementations are
available on various platforms.

The CLI load library can be loaded as an ODBC driver by an ODBC driver
manager. For ODBC application development, you must obtain an ODBC Software
Development Kit. For the Windows platform, the ODBC SDK is available as part of
the Microsoft Data Access Components (MDAC) SDK, available for download from
http://www.microsoft.com/downloads. For non-Windows platforms, the ODBC
SDK is provided by other vendors. When developing ODBC applications that may
connect to DB2 servers, use the Call Level Interface Guide and Reference Volume 1
and the Call Level Interface Guide and Reference Volume 2 (for information about
DB2 specific extensions and diagnostic information), in conjunction with the ODBC
Programmer's Reference and SDK Guide available from Microsoft.

Applications written using CLI APIs link directly to the CLI library. CLI includes
support for many ODBC and ISO SQL/CLI functions, as well as DB2 specific
functions.

The following DB2 features are available to both ODBC and CLI applications:
v double byte (graphic) data types
v stored procedures
v Distributed Unit of Work (DUOW), two phase commit
v compound SQL
v user defined types (UDT)
v user defined functions (UDF)

Comparison of CLI and ODBC
This topic discusses the support provided by the DB2 ODBC driver, and how it
differs from CLI driver.

2 Call Level Interface Guide and Reference Volume 1

http://www.microsoft.com/downloads

Figure 1 compares CLI and the DB2 ODBC driver. The left side shows an ODBC
driver under the ODBC Driver Manager, and the right side illustrates CLI, the
callable interface designed for DB2 applications.

Data Server Client refers to all available IBM Data Server Clients. DB2 server refers
to all DB2 server products on Linux, UNIX, and Windows.

In an ODBC environment, the Driver Manager provides the interface to the
application. It also dynamically loads the necessary driver for the database server
that the application connects to. It is the driver that implements the ODBC

ODBC Driver Manager
Environment

DB2 CLI
Environment

Application

ODBC Driver Manager

other
ODBC
driver

A

DBMS
B

Gateway
B

DB2
Server

DB2 Connect

Data Server
Client

DB2
ODBC
driver

DB2 CLI
driver

Application

other
ODBC
driver

B

DB2 (MVS)
SQL/DS
SQL/400

Other DRDA
DBMS

DBMS
A

DB2
Server

DB2 Connect

Data Server
Client

Figure 1. CLI and ODBC.

Chapter 1. CLI and ODBC 3

function set, with the exception of some extended functions implemented by the
Driver Manager. In this environment CLI conforms to ODBC 3.51.

For ODBC application development, you must obtain an ODBC Software
Development Kit. For the Windows platform, the ODBC SDK is available as part of
the Microsoft Data Access Components (MDAC) SDK, available for download from
http://www.microsoft.com/downloads. For non-Windows platforms, the ODBC
SDK is provided by other vendors.

In environments without an ODBC driver manager, CLI is a self sufficient driver
which supports a subset of the functions provided by the ODBC driver. Table 1
summarizes the two levels of support, and the CLI and ODBC function summary
provides a complete list of ODBC functions and indicates if they are supported.

Table 1. CLI ODBC support

ODBC features DB2 ODBC Driver CLI

Core level functions All All

Level 1 functions All All

Level 2 functions All All, except for SQLDrivers()

Additional CLI functions All, functions can be accessed by
dynamically loading the CLI library.

v SQLSetConnectAttr()
v SQLGetEnvAttr()
v SQLSetEnvAttr()
v SQLSetColAttributes()
v SQLGetSQLCA()
v SQLBindFileToCol()
v SQLBindFileToParam()
v SQLExtendedBind()
v SQLExtendedPrepare()
v SQLGetLength()
v SQLGetPosition()
v SQLGetSubString()

4 Call Level Interface Guide and Reference Volume 1

http://www.microsoft.com/downloads

Table 1. CLI ODBC support (continued)

ODBC features DB2 ODBC Driver CLI

SQL data types All the types listed for CLI. v SQL_BIGINT
v SQL_BINARY
v SQL_BIT
v SQL_BLOB
v SQL_BLOB_LOCATOR
v SQL_CHAR
v SQL_CLOB
v SQL_CLOB_LOCATOR
v SQL_DBCLOB
v SQL_DBCLOB_LOCATOR
v SQL_DECIMAL
v SQL_DOUBLE
v SQL_FLOAT
v SQL_GRAPHIC
v SQL_INTEGER
v SQL_LONGVARBINARY
v SQL_LONGVARCHAR
v SQL_LONGVARGRAPHIC
v SQL_NUMERIC
v SQL_REAL
v SQL_SMALLINT
v SQL_TINYINT
v SQL_TYPE_DATE
v SQL_TYPE_TIME
v SQL_TYPE_TIMESTAMP
v SQL_VARBINARY
v SQL_VARCHAR
v SQL_VARGRAPHIC
v SQL_WCHAR

C data types All the types listed for CLI. v SQL_C_BINARY
v SQL_C_BIT
v SQL_C_BLOB_LOCATOR
v SQL_C_CHAR
v SQL_C_CLOB_LOCATOR
v SQL_C_TYPE_DATE
v SQL_C_DBCHAR
v SQL_C_DBCLOB_LOCATOR
v SQL_C_DOUBLE
v SQL_C_FLOAT
v SQL_C_LONG
v SQL_C_SHORT
v SQL_C_TYPE_TIME
v SQL_C_TYPE_TIMESTAMP
v SQL_C_TIMESTAMP_EXT
v SQL_C_TINYINT
v SQL_C_SBIGINT
v SQL_C_UBIGINT
v SQL_C_NUMERIC 1

v SQL_C_WCHAR

Return codes All the codes listed for CLI. v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_NEED_DATA
v SQL_NO_DATA_FOUND
v SQL_ERROR
v SQL_INVALID_HANDLE

Chapter 1. CLI and ODBC 5

Table 1. CLI ODBC support (continued)

ODBC features DB2 ODBC Driver CLI

SQLSTATES Mapped to X/Open SQLSTATES with
additional IBM SQLSTATES, with the
exception of the ODBC type 08S01.

Mapped to X/Open SQLSTATES with
additional IBM SQLSTATES

Multiple connections per application Supported Supported

Dynamic loading of driver Supported Not applicable

Note:

1. Only supported on Windows operating systems.
2. The listed SQL data types are supported for compatibility with ODBC 2.0.

v SQL_DATE
v SQL_TIME
v SQL_TIMESTAMP

You should use the SQL_TYPE_DATE, SQL_TYPE_TIME, or
SQL_TYPE_TIMESTAMP instead to avoid any data type mappings.

3. The listed SQL data types and C data types are supported for compatibility
with ODBC 2.0.
v SQL_C_DATE
v SQL_C_TIME
v SQL_C_TIMESTAMP

You should use the SQL_C_TYPE_DATE, SQL_C_TYPE_TIME, or
SQL_C_TYPE_TIMESTAMP instead to avoid any data type mappings.

Isolation levels

The table 2 maps IBM RDBMSs isolation levels to ODBC transaction isolation
levels. The SQLGetInfo() function indicates which isolation levels are available.

Table 2. Isolation levels under ODBC

IBM isolation level ODBC isolation level

Cursor stability SQL_TXN_READ_COMMITTED

Repeatable read SQL_TXN_SERIALIZABLE_READ

Read stability SQL_TXN_REPEATABLE_READ

Uncommitted read SQL_TXN_READ_UNCOMMITTED

No commit (no equivalent in ODBC)

Note: SQLSetConnectAttr() and SQLSetStmtAttr() will return SQL_ERROR with an
SQLSTATE of HY009 if you try to set an unsupported isolation level.

Restriction

Mixing ODBC and CLI features and function calls in an application is not
supported on the Windows 64-bit operating system.

6 Call Level Interface Guide and Reference Volume 1

Chapter 2. IBM Data Server CLI and ODBC drivers

In the IBM Data Server Client and the IBM Data Server Runtime Client there is a
driver for the CLI application programming interface (API) and the ODBC API.
This driver is commonly referred to throughout the DB2 Information Center and
DB2 books as the IBM Data Server CLI driver or the IBM Data Server CLI/ODBC
driver.

New with DB2 Version 9, there is also a separate CLI and ODBC driver called the
IBM Data Server Driver for ODBC and CLI. The IBM Data Server Driver for ODBC
and CLI provides runtime support for the CLI and ODBC APIs. However, this
driver is installed and configured separately, and supports a subset of the
functionality of the DB2 clients, such as connectivity, in addition to the CLI and
ODBC API support.

Information that applies to the CLI and ODBC driver that is part of the DB2 client
generally applies to the IBM Data Server Driver for ODBC and CLI too. However,
there are some restrictions and some functionality that is unique to the IBM Data
Server Driver for ODBC and CLI. Information that applies only to the IBM Data
Server Driver for ODBC and CLI will use the full title of the driver to distinguish
it from general information that applies to the ODBC and CLI driver that comes
with the DB2 clients.
v For more information about the IBM Data Server Driver for ODBC and CLI,

see: “IBM Data Server Driver for ODBC and CLI overview.”

IBM Data Server Driver for ODBC and CLI overview
The IBM Data Server Driver for ODBC and CLI provides runtime support for the
CLI application programming interface (API) and the ODBC API. Though the IBM
Data Server Client and IBM Data Server Runtime Client both support the CLI and
ODBC APIs, this driver is not a part of either IBM Data Server Client or IBM Data
Server Runtime Client. It is available separately, installed separately, and supports
a subset of the functionality of the IBM Data Server Client.

Advantages of the IBM Data Server Driver for ODBC and CLI
v The driver has a much smaller footprint than the IBM Data Server Client and

the IBM Data Server Runtime Client.
v You can have multiple installations of the driver on a single machine.
v You can install the driver on a machine that already has an IBM Data Server

Client installed.
v You can include the driver in your database application installation package, and

redistribute the driver with your applications. Under certain conditions, you can
redistribute the driver with your database applications royalty-free.

v The driver can reside on an NFS mounted file system.

Functionality of the IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI provides:
v runtime support for the CLI API;
v runtime support for the ODBC API;

© Copyright IBM Corp. 2012 7

v runtime support for the XA API;
v database connectivity;
v support for DB2 Interactive Call Level Interface (db2cli);
v LDAP Database Directory support; and
v tracing, logging, and diagnostic support.
v See: “Restrictions of the IBM Data Server Driver for ODBC and CLI” on page 36.

Obtaining the IBM Data Server Driver for ODBC and CLI
The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It is available to download from the
internet, and it is on the DB2 Version 9 install CD.

Procedure

You can obtain the IBM Data Server Driver for ODBC and CLI from following
sources:
v Go to the IBM Support Fix Central website: http://www-933.ibm.com/support/

fixcentral/. Data Server client and driver packages are found under the
Information Management Product Group and IBM Data Server Client Packages
Product selection. Select the appropriate Installed Version and Platform and click
Continue. Click Continue again on the next screen and you will be presented
with a list of all client and driver packages available for your platform,
including IBM Data Server Driver for ODBC and CLI.
or

v Copy the driver from the DB2 install CD.

The driver is in a compressed file called
“ibm_data_server_driver_for_odbc_cli.zip” on Windows operating systems, and
“ibm_data_server_driver_for_odbc_cli.tar.Z” on other operating systems.

Installing the IBM Data Server Driver for ODBC and CLI
The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Clientt. It must be installed separately.

Before you begin

To install the IBM Data Server Driver for ODBC and CLI, you need to obtain the
compressed file that contains the driver. See “Obtaining the IBM Data Server
Driver for ODBC and CLI.”

About this task

There is no installation program for the IBM Data Server Driver for ODBC and
CLI. You must install the driver manually.

Procedure
1. Copy the compressed file that contains the driver onto the target machine from

the internet or a DB2 Version 9 installation CD.
2. Uncompress that file into your chosen install directory on the target machine.
3. Optional: Remove the compressed file.

8 Call Level Interface Guide and Reference Volume 1

http://www-933.ibm.com/support/fixcentral/
http://www-933.ibm.com/support/fixcentral/

Example

If you are installing the IBM Data Server Driver for ODBC and CLI under the
following conditions:
v the operating systems on the target machine is AIX®; and
v the DB2 Version 9 CD is mounted on the target machine.

the steps you would follow are:
1. Create the directory $HOME/db2_cli_odbc_driver, where you will install the

driver.
2. Locate the compressed file ibm_data_server_driver_for_odbc_cli.tar.Z on the

install CD.
3. Copy ibm_data_server_driver_for_odbc_cli.tar.Z to the install directory,

$HOME/db2_cli_odbc_driver.
4. Uncompress ibm_data_server_driver_for_odbc_cli.tar.Z:

cd $HOME/db2_cli_odbc_driver
uncompress ibm_data_server_driver_for_odbc_cli.tar.Z
tar -xvf ibm_data_server_driver_for_odbc_cli.tar

5. Delete ibm_data_server_driver_for_odbc_cli.tar.Z.
6. Ensure that the following requirements are met if you installed the driver on a

NFS file system:
v On UNIX or Linux operating systems the db2dump and the db2 directory need

to be writable. Alternatively, the path you have referenced in the diagpath
parameter must be writable.

v If host or i5/OS® data servers are being accessed directly ensure the license
directory is writable.

Installing multiple copies of the IBM Data Server Driver for ODBC
and CLI on the same machine
The IBM Data Server Driver for ODBC and CLI is not part of the IBM data server
client or the IBM Data Server Runtime Client. It must be installed separately.

You can install multiple copies of the IBM Data Server Driver for ODBC and CLI
on the same machine.

You might want to do this if you have two database applications on the same
machine that require different versions of the driver.

Before you begin

To install multiple copies of the IBM Data Server Driver for ODBC and CLI on the
same machine, you need to obtain the compressed file that contains the driver. See:
“Obtaining the IBM Data Server Driver for ODBC and CLI” on page 8.

Procedure

For each copy of the IBM Data Server Driver for ODBC and CLI that you are
installing:
1. Create a unique target installation directory.
2. Follow the installation steps outlined in “Installing the IBM Data Server Driver

for ODBC and CLI” on page 8.

Chapter 2. IBM Data Server CLI and ODBC drivers 9

3. Ensure the application is using the correct copy of the driver. Avoid relying on
the LD_LIBRARY_PATH environment variable as this can lead to inadvertent
loading of the incorrect driver. Dynamically load the driver explicitly from the
target installation directory.

Example

If you are installing two copies of the IBM Data Server Driver for ODBC and CLI
under the following conditions:
v

the operating systems on the target machine is AIX; and
v

the DB2 Version 9 CD is mounted on the target machine.

the steps you would follow are:
1. Create the two directories, $HOME/db2_cli_odbc_driver1 and

$HOME/db2_cli_odbc_driver2, where you will install the driver.
2. Locate the compressed file that contains the driver on the install CD. In this

scenario, the file would be called ibm_data_server_driver_for_odbc_cli.tar.Z.
3. Copy ibm_data_server_driver_for_odbc_cli.tar.Z to the install directories,

$HOME/db2_cli_odbc_driver1 and $HOME/db2_cli_odbc_driver2.
4. Uncompress ibm_data_server_driver_for_odbc_cli.tar.Z in each directory:

cd $HOME/db2_cli_odbc_driver1
uncompress ibm_data_server_driver_for_odbc_cli.tar.Z
tar -xvf ibm_data_server_driver_for_odbc_cli.tar
cd $HOME/db2_cli_odbc_driver2
uncompress ibm_data_server_driver_for_odbc_cli.tar.Z
tar -xvf ibm_data_server_driver_for_odbc_cli.tar

5. Delete ibm_data_server_driver_for_odbc_cli.tar.Z.

Installing the IBM Data Server Driver for ODBC and CLI on a
machine with an existing DB2 client
The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed separately.

You can install one or more copies of the IBM Data Server Driver for ODBC and
CLI on a machine where an IBM Data Server Client or IBM Data Server Runtime
Client is already installed. You might want to do this if you have developed some
ODBC or CLI database applications with the IBM Data Server Client that you plan
to deploy with the IBM Data Server Driver for ODBC and CLI, because it enables
you to test the database applications with the driver on the same machine as your
development environment.

Before you begin

To install the IBM Data Server Driver for ODBC and CLI on the same machine as
an IBM Data Server Client or IBM Data Server Runtime Client, you need:
v to obtain the compressed file that contains the driver.

– See: “Obtaining the IBM Data Server Driver for ODBC and CLI” on page 8.

About this task

The procedure for installing one or more copies of the IBM Data Server Driver for
ODBC and CLI on a machine that already has an IBM Data Server Client or IBM

10 Call Level Interface Guide and Reference Volume 1

Data Server Runtime Client installed is the same as the procedure for installing the
driver on a machine that has no IBM Data Server Client installed.

Procedure

See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8 and
“Installing multiple copies of the IBM Data Server Driver for ODBC and CLI on
the same machine” on page 9.

What to do next

Ensure the application is using the correct copy of the driver. Avoid relying on the
LD_LIBRARY_PATH environment variable as this can lead to inadvertent loading of
the incorrect driver. Dynamically load the driver explicitly from the target
installation directory.

Configuring the IBM Data Server Driver for ODBC and CLI
The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately. You must configure the IBM Data Server Driver for ODBC and CLI, and
the software components of your database application runtime environment in
order for your applications to use the driver successfully.

Before you begin

To configure the IBM Data Server Driver for ODBC and CLI and your application
environment for the driver, you need:
v one or more copies of the driver installed.

See “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

Procedure

To configure theIBM Data Server Driver for ODBC and CLI, and the runtime
environment of your IBM Data Server Driver for ODBC and CLI applications to
use the driver:
1. Configure aspects of the driver's behavior such as data source name, user

name, performance options, and connection options by updating the
db2cli.ini initialization file.
The location of thedb2cli.ini file might change based on whether the
Microsoft ODBC Driver Manager is used, the type of data source names (DSN)
used, the type of client or driver being installed, and whether the registry
variable DB2CLIINIPATH is set.
v See “db2cli.ini initialization file” on page 12.
There is no support for the Command Line Processor (CLP) with the IBM Data
Server Driver for ODBC and CLI. For this reason, you can not update CLI
configuration using the CLP command “db2 update CLI cfg”; you must update
the db2cli.ini initialization file manually.
If you have multiple copies of the IBM Data Server Driver for ODBC and CLI
installed, each copy of the driver will have its own db2cli.ini file. Ensure you
make the additions to the db2cli.ini for the correct copy of the driver.

2. Configure application environment variables.
v See “Configuring environment variables for the IBM Data Server Driver for

ODBC and CLI” on page 15.

Chapter 2. IBM Data Server CLI and ODBC drivers 11

3. For applications participating in transactions managed by the Microsoft
Distributed Transaction Coordinator (DTC) only, you must register the driver
with the DTC.
v See “Registering the IBM Data Server Driver for ODBC and CLI with the

Microsoft DTC” on page 18.
4. For ODBC applications using the Microsoft ODBC driver manager only, you

must register the driver with the Microsoft driver manager.
v See “Registering the IBM Data Server Driver for ODBC and CLI with the

Microsoft ODBC driver manager” on page 19.

db2cli.ini initialization file
The CLI/ODBC initialization file (db2cli.ini) contains various keywords and
values that can be used to configure the behavior of CLI and the applications using
it.

The keywords are associated with the database alias name, and affect all CLI and
ODBC applications that access the database.

The db2cli.ini.sample sample configuration file is included to help you get
started. You can create a db2cli.ini file that is based on the db2cli.ini.sample file
and that is stored in the same location. The location of the sample configuration
file depends on your driver type and platform.

For IBM Data Server Client, IBM Data Server Runtime Client, or IBM Data Server
Driver Package, the sample configuration file is created in one of the following
paths:
v On AIX, HP-UX, Linux, or Solaris operating systems: installation_path/cfg
v On Windows XP and Windows Server 2003: C:\Documents and Settings\All

Users\Application Data\IBM\DB2\driver_copy_name\cfg

v On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\DB2\
driver_copy_name\cfg

For example, if you use IBM Data Server Driver Package for Windows XP, and the
data server driver copy name is IBMDBCL1, then the db2cli.ini.sample file is
created in the C:\Documents and Settings\All Users\Application
Data\IBM\DB2\IBMDBCL1\cfg directory.

For IBM Data Server Driver for ODBC and CLI, the sample configuration file is
created in one of the following paths:
v On AIX, HP-UX, Linux, or Solaris operating systems: installation_path/cfg
v On Windows : installation_path\cfg

where installation_path is the file path where driver files are extracted.

For example, if you use IBM Data Server Driver for ODBC and CLI for Windows
Vista, and the driver is installed in the C:\IBMDB2\CLIDRIVER\V97FP3 directory, then
the db2cli.ini.sample file is created in the C:\IBMDB2\CLIDRIVER\V97FP3\cfg
directory.

When the ODBC Driver Manager is used to configure a user DSN on Windows
operating systems, the db2cli.ini file is created in Documents and Settings\User
Name where User Name represents the name of the user directory.

You can use the environment variable DB2CLIINIPATH to specify a different location
for the db2cli.ini file.

12 Call Level Interface Guide and Reference Volume 1

The configuration keywords enable you to:
v Configure general features such as data source name, user name, and password.
v Set options that will affect performance.
v Indicate query parameters such as wild card characters.
v Set patches or work-arounds for various ODBC applications.
v Set other, more specific features associated with the connection, such as code

pages and IBM GRAPHIC data types.
v Override default connection options specified by an application. For example, if

an application requests Unicode support from the CLI driver by setting the
SQL_ATTR_ANSI_APP connection attribute, then setting DisableUnicode=1 in
the db2cli.ini file will force the CLI driver not to provide the application with
Unicode support.

Note: If the CLI/ODBC configuration keywords set in the db2cli.ini file
conflict with keywords in the SQLDriverConnect() connection string, then the
SQLDriverConnect() keywords will take precedence.

The db2cli.ini initialization file is an ASCII file which stores values for the CLI
configuration options. A sample file is included to help you get started. While most
CLI/ODBC configuration keywords are set in the db2cli.ini initialization file,
some keywords are set by providing the keyword information in the connection
string to SQLDriverConnect() instead.

There is one section within the file for each database (data source) the user wishes
to configure. If needed, there is also a common section that affects all database
connections.

Only the keywords that apply to all database connections through the CLI/ODBC
driver are included in the COMMON section. This includes the following
keywords:
v CheckForFork

v DiagPath

v DisableMultiThread

v JDBCTrace

v JDBCTraceFlush

v JDBCTracePathName

v QueryTimeoutInterval

v ReadCommonSectionOnNullConnect

v Trace

v TraceComm

v TraceErrImmediate

v TraceFileName

v TraceFlush

v TraceFlushOnError

v TraceLocks

v TracePathName

v TracePIDList

v TracePIDTID

v TraceRefreshInterval

Chapter 2. IBM Data Server CLI and ODBC drivers 13

v TraceStmtOnly

v TraceTime

v TraceTimeStamp

All other keywords are to be placed in the database specific section.

Note: Configuration keywords are valid in the COMMON section, however, they
will apply to all database connections.

The COMMON section of the db2cli.ini file begins with:
[COMMON]

Before setting a common keyword it is important to evaluate its affect on all
CLI/ODBC connections from that client. A keyword such as TRACE, for example,
will generate information about all CLI/ODBC applications connecting to DB2 on
that client, even if you are intending to troubleshoot only one of those applications.

Each database specific section always begins with the name of the data source
name (DSN) between square brackets:
[data source name]

This is called the section header.

The parameters are set by specifying a keyword with its associated keyword value
in the form:
KeywordName =keywordValue

v All the keywords and their associated values for each database must be located
under the database section header.

v If the database-specific section does not contain a DBAlias keyword, the data
source name is used as the database alias when the connection is established.
The keyword settings in each section apply only to the applicable database alias.

v The keywords are not case sensitive; however, their values can be if the values
are character based.

v If a database is not found in the .INI file, the default values for these keywords
are in effect.

v Comment lines are introduced by having a semicolon in the first position of a
new line.

v Blank lines are permitted.
v If duplicate entries for a keyword exist, the first entry is used (and no warning

is given).

The following sample .INI file contains two database alias sections:
; This is a comment line.
[MYDB22]
AutoCommit=0
TableType="’TABLE’,’SYSTEM TABLE’"

; This is another comment line.
[MYDB2MVS]
CurrentSQLID=SAAID
TableType="’TABLE’"
SchemaList="’USER1’,CURRENT SQLID,’USER2’"

14 Call Level Interface Guide and Reference Volume 1

Although you can edit the db2cli.ini file manually on all platforms, it is
recommended that you use the UPDATE CLI CONFIGURATION command if it is
available. You must add a blank line after the last entry if you manually edit the
db2cli.ini file.

Configuring environment variables for the IBM Data Server Driver
for ODBC and CLI
The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately. To use the IBM Data Server Driver for ODBC and CLI, there are two
types of environment variables that you might have to set: environment variables
that have replaced some DB2 registry variables; and an environment variable that
tells your applications where to find the driver libraries.

Before you begin

To configure environment variables for the IBM Data Server Driver for ODBC and
CLI, you need one or more copies of the driver installed. See “Installing the IBM
Data Server Driver for ODBC and CLI” on page 8.

Restrictions

If there are multiple versions of the IBM Data Server Driver for ODBC and CLI
installed on the same machine, or if there are other DB2 Version 9 products
installed on the same machine, setting environment variables (for example, setting
LIBPATH or LD_LIBRARY_PATH to point to the IBM Data Server Driver for ODBC and
CLI library) might break existing applications. When setting an environment
variable, ensure that it is appropriate for all applications running in the scope of
that environment.

IBM Data Server Driver for ODBC and CLI on 64 bit UNIX and Linux systems also
packages 32 bit driver library to support 32 bit CLI applications. On UNIX and
Linux systems, you can associate either 32 bit or 64 bit libraries with an instance,
not both. You can set LIBPATH or LD_LIBRARY_PATH to either lib32 or lib64 library
directories of IBM Data Server Driver for ODBC and CLI. You can also access
lib64 library using a preset soft link from the lib directory. The IBM Data Server
Driver for ODBC and CLI on Windows systems contains both 32 bit and 64 bit
necessary runtime DLLs in the same bin directory.

Procedure

To configure environment variables for the IBM Data Server Driver for ODBC and
CLI:
1. Optional: Set any applicable DB2 environment variables corresponding to its

equivalent DB2 registry variables.
There is no support for the command line processor (CLP) with the IBM Data
Server Driver for ODBC and CLI. For this reason, you cannot configure DB2
registry variables using the db2set CLP command. Required DB2 registry
variables have been replaced with environment variables.
For a list of the environment variables that can be used instead of DB2 registry
variables, see: “Environment variables supported by the IBM Data Server
Driver for ODBC and CLI” on page 16.

2. Optional: You can set the local environment variable
DB2_CLI_DRIVER_INSTALL_PATH to the directory in which the driver is installed.

Chapter 2. IBM Data Server CLI and ODBC drivers 15

If there are multiple copies of the IBM Data Server Driver for ODBC and CLI
installed, ensure that the DB2_CLI_DRIVER_INSTALL_PATH points to the intended
copy of the driver. Setting the DB2_CLI_DRIVER_INSTALL_PATH variable forces
IBM Data Server Driver for ODBC and CLI to use the directory specified with
the DB2_CLI_DRIVER_INSTALL_PATH variable as the install location of the driver.
For example:
export DB2_CLI_DRIVER_INSTALL_PATH=/home/db2inst1/db2clidriver/clidriver

where /home/db2inst1/db2clidriver is the install path where the CLI driver is
installed

3. Optional: Set the environment variable LIBPATH (on AIX operating systems),
SHLIB_PATH (on HP-UX systems), or LD_LIBRARY_PATH (on rest of the UNIX and
Linux systems) to the lib directory in which the driver is installed. For
example (on AIX systems):
export LIBPATH=/home/db2inst1/db2clidriver/clidriver/lib

If there are multiple copies of the IBM Data Server Driver for ODBC and CLI
installed, ensure LIBPATH or LD_LIBRARY_PATH points to the intended copy of the
driver. Do not set LIBPATH or LD_LIBRARY_PATH variables to multiple copies of
the IBM Data Server Driver for ODBC and CLI that are installed on your
system. Do not set LIBPATH or LD_LIBRARY_PATH variables to both lib32 and
lib64 (or lib) library directories.
This step is not necessary if your applications statically link to, or dynamically
load the driver library (db2cli.dll on Windows systems, or libdb2.a on other
systems) with the fully qualified name.
You must dynamically load the library using the fully qualified library name.
On Windows operating systems, you must use the LoadLibraryEx method
specifying the LOAD_WITH_ALTERED_SEARCH_PATH parameter and the path to the
driver DLL.

4. Optional: Set the PATH environment variable to include the bin directory of the
driver installation in all systems if you require the use of utilities like db2level,
db2cli, and db2trc. In UNIX and Linux systems, add adm directory of the
driver installation to the PATH environment variable in addition to the bin
directory. For Example (on all UNIX and Linux systems) :
export PATH=/home/db2inst1/db2clidriver/clidriver/bin:/home/db2inst1/db2clidriver/clidriver/adm:$PATH

Environment variables supported by the IBM Data Server Driver for ODBC and
CLI:

IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately.

The IBM Data Server Driver for ODBC and CLI does not support the command
line processor (CLP). This means that the usual mechanism to set DB2 registry
variables, using the db2set CLP command, is not possible. Relevant DB2 registry
variables will be supported with the IBM Data Server Driver for ODBC and CLI as
environment variables instead.

The DB2 registry variables that will be supported by the IBM Data Server Driver
for ODBC and CLI as environment variables are:

16 Call Level Interface Guide and Reference Volume 1

Table 3. DB2 registry variables supported as environment variables

Type of variable Variable name(s)

General variables DB2ACCOUNT
DB2BIDI
DB2CODEPAGE
DB2GRAPHICUNICODESERVER
DB2LOCALE
DB2TERRITORY

System environment variables DB2DOMAINLIST

Communications variables DB2_FORCE_NLS_CACHE
DB2SORCVBUF
DB2SOSNDBUF
DB2TCP_CLIENT_RCVTIMEOUT

Performance variables DB2_NO_FORK_CHECK

Miscellaneous variables DB2CLIINIPATH
DB2DSDRIVER_CFG_PATH
DB2DSDRIVER_CLIENT_HOSTNAME
DB2_ENABLE_LDAP
DB2LDAP_BASEDN
DB2LDAP_CLIENT_PROVIDER
DB2LDAPHOST
DB2LDAP_KEEP_CONNECTION
DB2LDAP_SEARCH_SCOPE
DB2NOEXITLIST

Diagnostic variables DB2_DIAGPATH

Connection variables AUTHENTICATION
PROTOCOL
PWDPLUGIN
KRBPLUGIN
ALTHOSTNAME
ALTPORT
INSTANCE
BIDI

db2oreg1.exe overview
You can use the db2oreg1.exe utility to register the XA library of the IBM Data
Server Driver for ODBC and CLI with the Microsoft Distributed Transaction
Coordinator (DTC), and to register the driver with the Microsoft ODBC driver
manager. You need to use the db2oreg1.exe utility on Windows operating systems
only.

Starting in Version 9.7 Fixpack 4, the db2oreg1.exe utility is deprecated and will
become unavailable in a future release. Use the db2cli DB2 interactive CLI
command instead.

For IBM Data Server client packages on Windows 64-bit operating systems, the
32-bit version of the db2oreg1.exe utility (db2oreg132.exe) is supported in addition
to the 64-bit version of db2oreg1.exe.

Conditions requiring that you run the db2oreg1.exe utility

You must run the db2oreg1.exe utility if:
v your applications that use the IBM Data Server Driver for ODBC and CLI will

be participating in distributed transactions managed by the DTC; or

Chapter 2. IBM Data Server CLI and ODBC drivers 17

v your applications that use the IBM Data Server Driver for ODBC and CLI will
be connecting to ODBC data sources.

You can also run the db2oreg1.exe utility to create the db2dsdriver.cfg.sample
and db2cli.ini.sample sample configuration files.

When to run the db2oreg1.exe utility

If you use the db2oreg1.exe utility, you must run it when:
v you install the IBM Data Server Driver for ODBC and CLI; and
v you uninstall the IBM Data Server Driver for ODBC and CLI.

The db2oreg1.exe utility makes changes to the Windows registry when you run
it after installing the driver. If you uninstall the driver, you should run the utility
again to undo those changes.

How to run the db2oreg1.exe utility
v db2oreg1.exe is located in bin subdirectory where the IBM Data Server Driver

for ODBC and CLI is installed.
v To list the parameters the db2oreg1.exe utility takes, and how to use them, run

the utility with the “-h” option.

Registering the IBM Data Server Driver for ODBC and CLI with
the Microsoft DTC
The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately.

To use the IBM Data Server Driver for ODBC and CLI with database applications
that participate in transactions managed by the Microsoft Distributed Transaction
Coordinator (DTC), you must register the driver with the DTC.

Here is a link to the Microsoft article outlining the details of this security
requirement: Registry Entries Are Required for XA Transaction Support

Before you begin

To register the IBM Data Server Driver for ODBC and CLI with the DTC, you need
one or more copies of the driver installed. See: “Installing the IBM Data Server
Driver for ODBC and CLI” on page 8.

Restrictions

You only need to register the IBM Data Server Driver for ODBC and CLI with the
DTC if your applications that use the driver are participating in transactions
managed by the DTC.

Procedure

To register the IBM Data Server Driver for ODBC and CLI with the DTC, run the
db2cli install -setup command for each copy of the driver that is installed:
The db2cli install -setup command makes changes to the Windows registry
when you run it after installing the driver. If you uninstall the driver, you should
run the db2cli install -cleanup command to undo those changes.

18 Call Level Interface Guide and Reference Volume 1

Example

For example, the following command registers the IBM Data Server Driver for
ODBC and CLI in the Windows registry, and creates the configuration folders
under the application data path:
> db2cli install –setup

The IBM Data Server Driver for ODBC and CLI registered successfully.
The configuration folders are created successfully.

Registering the IBM Data Server Driver for ODBC and CLI with
the Microsoft ODBC driver manager
The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately. For ODBC applications to use the IBM Data Server Driver for ODBC
and CLI with the Microsoft ODBC driver manager, you must register the driver
with the driver manager.

Before you begin

To register the IBM Data Server Driver for ODBC and CLI with the Microsoft
ODBC driver manager, you need one or more copies of the driver installed. See:
“Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

About this task

The Microsoft ODBC driver manager is the only ODBC driver manager with which
you must register the IBM Data Server Driver for ODBC and CLI. The other ODBC
driver managers do not require this activity.

Procedure

To register the IBM Data Server Driver for ODBC and CLI with the Microsoft
driver manager, run the db2cli install -setup command for each copy of the
driver that is installed.

Results

The db2cli install -setup command changes the Windows registry when you
run it after installing the driver. If you uninstall the driver, run the db2cli install
-cleanup command to undo those changes.

Example

For example, the following command registers the IBM Data Server Driver for
ODBC and CLI in the Windows registry, and creates the configuration folders
under the application data path:
> db2cli install –setup

The IBM Data Server Driver for ODBC and CLI registered successfully.
The configuration folders are created successfully.

Connecting to databases with the IBM Data Server Driver for
ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured

Chapter 2. IBM Data Server CLI and ODBC drivers 19

separately. The IBM Data Server Driver for ODBC and CLI does not create a local
database directory. This means that when you use this driver, you must make
connectivity information available to your applications in other ways.

Before you begin

To connect to databases with the IBM Data Server Driver for ODBC and CLI, you
need:
v databases to which to connect; and
v one or more copies of the driver installed.

– For more information, see “Installing the IBM Data Server Driver for ODBC
and CLI” on page 8.

About this task

There are several ways to specify connectivity information so that your CLI and
ODBC database applications can use the IBM Data Server Driver for ODBC and
CLI to connect to a database. When CLI settings are specified in multiple places,
they are used in the listed order:
1. Connection strings parameters
2. db2cli.ini file
3. db2dsdriver.cfg file

Procedure

To configure connectivity for a database when using the IBM Data Server Driver
for ODBC and CLI, use one of the listed methods:
v Specify the database connectivity information in the connection string parameter

to SQLDriverConnect.
– For more information, see “SQLDriverConnect function (CLI) - (Expanded)

Connect to a data source” on page 24.
v For CLI applications only: put the database connectivity information in the CLI

configuration file.
There is no support for the Command Line Processor (CLP) with the IBM Data
Server Driver for ODBC and CLI. For this reason, you can not update CLI
configuration using the CLP command "db2 update CLI cfg"; you must update
the db2cli.ini initialization file manually.
If you have multiple copies of the IBM Data Server Driver for ODBC and CLI
installed, each copy of the driver will have its own db2cli.ini file. Ensure you
make the additions to the db2cli.ini for the correct copy of the driver.
For more information about the location of the db2cli.ini file, see “db2cli.ini
initialization file” on page 12.

v Use the db2dsdriver.cfg configuration file to provide connection information
and parameters. For example, you can specify the listed information in the
db2dsdriver.cfg configuration file, and pass the connection string in
SQLDriverConnect() as DSN=myDSN;PWD=XXXXX:
<configuration>

<dsncollection>
<dsn alias="myDSN" name="sample" host="server.domain.com" port="446">
</dsn>

</dsncollection>
<databases>

<database name="sample" host="server.domain.com" port="446">
<parameter name="CommProtocol" value="TCPIP"/>

20 Call Level Interface Guide and Reference Volume 1

<parameter name="UID" value="username"/>
</database>

</databases>
</configuration>

v For ODBC applications only: register the database as an ODBC data source with
the ODBC driver manager. For more information, see “Registering ODBC data
sources for applications that use the IBM Data Server Driver for ODBC and CLI”
on page 22.

v Use the FileDSN CLI/ODBC keyword to identify a file data source name (DSN)
that contains the database connectivity information. For more information, see
“FileDSN CLI/ODBC configuration keyword” on page 31.
A file DSN is a file that contains database connectivity information. You can
create a file DSN by using the SaveFile CLI/ODBC keyword. On Windows
operating systems, you can use the Microsoft ODBC driver manager to create a
file DSN.

v For local database servers only: use the PROTOCOL and the INSTANCE CLI/ODBC
keywords to identify the local database.
1. Set the PROTOCOL CLI/ODBC keyword to the value Local.
2. Set the INSTANCE CLI/ODBC keyword to the instance name of the local

database server on which the database is located.
For more information, see “Protocol CLI/ODBC configuration keyword” on page
33 and “Instance CLI/ODBC configuration keyword” on page 31.

Example

Here is a list of CLI/ODBC keywords that work with file DSN or DSN-less
connections:
v “AltHostName CLI/ODBC configuration keyword” on page 30;
v “AltPort CLI/ODBC configuration keyword” on page 30;
v “Authentication CLI/ODBC configuration keyword” on page 30;
v “BIDI CLI/ODBC configuration keyword” on page 31;
v “FileDSN CLI/ODBC configuration keyword” on page 31;
v “Instance CLI/ODBC configuration keyword” on page 31;
v “Interrupt CLI/ODBC configuration keyword” on page 32;
v “KRBPlugin CLI/ODBC configuration keyword” on page 32;
v “Protocol CLI/ODBC configuration keyword” on page 33;
v “PWDPlugin CLI/ODBC configuration keyword” on page 33;
v “SaveFile CLI/ODBC configuration keyword” on page 33;
v “DiagLevel CLI/ODBC configuration keyword” on page 39;
v “NotifyLevel CLI/ODBC configuration keyword” on page 39;

For the examples, consider a database with the listed properties:
v the database or subsystem is called db1 on the server;
v the server is located at 11.22.33.44;
v the access port is 56789; and
v the transfer protocol is TCPIP.

To make a connection to the database in a CLI application, you can perform one of
the listed actions:

Chapter 2. IBM Data Server CLI and ODBC drivers 21

v Call SQLDriverConnect with a connection string that contains: Database=db1;
Protocol=tcpip; Hostname=11.22.33.44; Servicename=56789;

v Add the example to db2cli.ini:
[db1]
Database=db1
Protocol=tcpip
Hostname=11.22.33.44
Servicename=56789

To make a connection to the database in an ODBC application:
1. Register the database as an ODBC data source called odbc_db1 with the driver

manager.
2. Call SQLConnect with a connection string that contains: Database=odbc_db1;

Registering ODBC data sources for applications that use the IBM
Data Server Driver for ODBC and CLI
You must install and configure the IBM Data Server Driver for ODBC and CLI
before an ODBC database application can use the driver. This driver is not part of
the IBM Data Server Client or the IBM Data Server Runtime Client.

Before you begin

To register a database as an ODBC data source and associate the IBM Data Server
Driver for ODBC and CLI with the database, listed requirements must be met:
v Databases to which your ODBC applications connect
v An ODBC driver manager installed
v One or more copies of the IBM Data Server Driver for ODBC and CLI installed

– See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.
v one or more copies of the driver installed.

– See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

About this task

The name of the IBM Data Server Driver for ODBC and CLI library file is
db2app.dll on Windows operating systems, and db2app.lib on other platforms.
The driver library file is located in the lib subdirectory of the directory in which
you installed the driver.

If you have multiple copies of the IBM Data Server Driver for ODBC and CLI
installed, ensure that the intended copy is identified in the odbc.ini file. When
possible, avoid installing multiple copies of this driver.

Procedure

This procedure depends on which driver manager you are using for your
applications.
v For the Microsoft ODBC driver manager, perform the listed actions:

1. Register the IBM Data Server Driver for ODBC and CLI with the Microsoft
ODBC driver manager by using the db2cli install -setup command. See
“Registering the IBM Data Server Driver for ODBC and CLI with the
Microsoft ODBC driver manager” on page 19.

2. Register the database as an ODBC data source. See “Setting up the Windows
CLI environment” on page 245.

22 Call Level Interface Guide and Reference Volume 1

v For open source ODBC driver managers, perform the listed actions:
1. Identify the database as an ODBC data source by adding database

information to the odbc.ini file. See “Setting up the ODBC environment
(Linux and UNIX)” on page 241.

2. Associate the IBM Data Server Driver for ODBC and CLI with the data
source by adding it in the database section of the odbc.ini file. You must use
the fully qualified library file name.

Results

Whenever you create a Microsoft ODBC data source by using the ODBC Driver
Manager, you must manually open the ODBC data source Administrator and
create a data source by checking the contents of the db2cli.ini file or the
db2dsdriver.cfg file. There is no command-line utility that reads the db2cli.ini
file or the db2dsdriver.cfg file and creates a Microsoft ODBC data source. The
db2cli command provides additional options to create a Microsoft ODBC data
source through the registerdsn command parameter, which offers the listed
functions:
v Registers a Microsoft system or user ODBC data source if a data source entry is

available in the db2cli.ini or db2dsdriver.cfg file or in the local database
directory as a cataloged database.

v Lists all the DB2 system or user data sources that are already registered in the
Microsoft Data Source Administrator.

v Removes the system or user data sources that are already registered in the
Microsoft Data Source Administrator.

Note: The db2cli registerdsn command is supported only on Microsoft Windows
operating systems.

Example

You want to register ODBC data sources with an open source driver manager
under the listed conditions:
v The operating system for the target database server is AIX.
v There are two copies of the IBM Data Server Driver for ODBC and CLI installed

at
– $HOME/db2_cli_odbc_driver1 and
– $HOME/db2_cli_odbc_driver2

v You have two ODBC database applications:
– ODBCapp_A

- ODBCapp_A connects to two data sources, db1 and db2

- The application should use the copy of the driver installed at
$HOME/db2_cli_odbc_driver1.

– ODBCapp_B

- ODBCapp_B connects to the data source db3

- The application should use the copy of the driver installed at
$HOME/db2_cli_odbc_driver2.

To register ODBC data sources with an open source driver manager, add the
example entries in the odbc.ini file:

Chapter 2. IBM Data Server CLI and ODBC drivers 23

[db1]
Driver=$HOME/db2_cli_odbc_driver1/lib/libdb2.a
Description=First ODBC data source for ODBCapp1,

using the first copy of the IBM Data Server Driver for ODBC and CLI

[db2]
Driver=$HOME/db2_cli_odbc_driver1/lib/libdb.a
Description=Second ODBC data source for ODBCapp1,

using the first copy of the IBM Data Server Driver for ODBC and CLI

[db3]
Driver=$HOME/db2_cli_odbc_driver2/lib/libdb2.a
Description=First ODBC data source for ODBCapp2,

using the second copy of the IBM Data Server Driver for ODBC and CLI

Every time when a Microsoft ODBC Data Source (using ODBC Driver Manager)
has to be created, user has to manually open the ODBC Data Source Administrator
and create a Data Source by checking the contents of db2cli.ini or the
db2dsdriver.cfg files. There is no command line utility which reads the
db2cli.ini file or the db2dsdriver.cfg file and creates a Microsoft ODBC Data
Source. Hence to overcome this concern, the db2cli provides additional options to
create a Microsoft ODBC Data Source through the new registerdsn command
parameter which offers the listed functions:
v Register a Microsoft System/User ODBC Data Source if a Data Source entry is

available in db2cli.ini or in db2dsdriver.cfg file
v Register all the Data Sources available in the db2cli.ini file or the

db2dsdriver.cfg file at the same time. The data sources can be registered either
as a System Data Source or as a User Data Source

v Lists all the DB2 System or User Data Sources that are already registered in the
Microsoft Data Source Administrator

v Remove the System or User Data Sources that are already registered in the
Microsoft Data Source Administrator

Note: The db2cli registerdsn is supported only on Microsoft Windows platforms.

Using security plugins with the IBM Data Server Driver for ODBC
and CLI
A security plug-in is a dynamically-loadable library that provides authentication
security services.

Procedure

Using security plug-ins with the IBM Data Server Driver for ODBC and CLI is no
different from using security plug-ins with an IBM Data Server Client or IBM Data
Server Runtime Client.
When you read about using security plug-ins throughout the DB2 Information
Center and DB2 books, consider the IBM Data Server Driver for ODBC and CLI
like an IBM Data Server Client. Details about using security plug-ins with IBM
Data Server Clients apply to using security plug-ins with the IBM Data Server
Driver for ODBC and CLI too.

SQLDriverConnect function (CLI) - (Expanded) Connect to a data
source
An alternative to SQLConnect(). Both functions establish a connection to the target
database, but SQLDriverConnect() supports additional connection parameters and
the ability to prompt the user for connection information.

24 Call Level Interface Guide and Reference Volume 1

Specification:
v CLI 2.1
v ODBC 1.0

Use SQLDriverConnect() when the data source requires parameters other than the
3 input arguments supported by SQLConnect() (data source name, user ID and
password), or when you want to use CLI's graphical user interface to prompt the
user for mandatory connection information.

Once a connection is established, the completed connection string is returned.
Applications can store this string for future connection requests.

Syntax

Generic
SQLRETURN SQLDriverConnect (

SQLHDBC ConnectionHandle, /* hdbc */
SQLHWND WindowHandle, /* hwnd */
SQLCHAR *InConnectionString, /* szConnStrIn */
SQLSMALLINT InConnectionStringLength, /* cbConnStrIn */
SQLCHAR *OutConnectionString, /* szConnStrOut */
SQLSMALLINT OutConnectionStringCapacity, /* cbConnStrOutMax */
SQLSMALLINT *OutConnectionStringLengthPtr, /* pcbConnStrOut */
SQLUSMALLINT DriverCompletion); /* fDriverCompletion */

Function arguments

Table 4. SQLDriverConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

SQLHWND WindowHandle input Window handle. On Windows operating systems,
this is the parent Windows handle. Currently the
window handle is only supported on Windows.

If a NULL is passed, then no dialog will be
presented.

SQLCHAR * InConnectionString input A full, partial or empty (null pointer) connection
string (see following syntax and description).

SQLSMALLINT InConnectionStringLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store InConnectionString.

SQLSMALLINT * OutConnectionString output Pointer to buffer for the completed connection string.

If the connection was established successfully, this
buffer will contain the completed connection string.
Applications should allocate at least
SQL_MAX_OPTION_STRING_LENGTH bytes for
this buffer.

SQLSMALLINT OutConnectionString
Capacity

input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store OutConnectionString.

Chapter 2. IBM Data Server CLI and ODBC drivers 25

Table 4. SQLDriverConnect arguments (continued)

Data type Argument Use Description

SQLSMALLINT * OutConnectionString
LengthPtr

output Pointer to the number of SQLCHAR elements (or
SQLWCHAR elements for the Unicode variant of this
function), excluding the null-termination character,
available to return in the OutConnectionString buffer.

If the value of *OutConnectionStringLengthPtr is
greater than or equal to OutConnectionStringCapacity,
the completed connection string in
OutConnectionString is truncated to
OutConnectionStringCapacity - 1 SQLCHAR or
SQLWCHAR elements.

SQLUSMALLINT DriverCompletion input Indicates when CLI should prompt the user for more
information.

Possible values:
v SQL_DRIVER_PROMPT
v SQL_DRIVER_COMPLETE
v SQL_DRIVER_COMPLETE_REQUIRED
v SQL_DRIVER_NOPROMPT

Usage

InConnectionString Argument

A request connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= attribute-keyword=attribute-value
| DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | UID | PWD | NEWPWD
| driver-defined-attribute-keyword

attribute-value ::= character-string
driver-defined-attribute-keyword ::= identifier

where
v character-string has zero or more SQLCHAR or SQLWCHAR elements
v identifier has one or more SQLCHAR or SQLWCHAR elements
v attribute-keyword is case insensitive
v attribute-value may be case sensitive
v the value of the DSN keyword does not consist solely of blanks
v NEWPWD is used as part of a change password request. The application can either

specify the new string to use, for example, NEWPWD=anewpass; or specify NEWPWD=;
and rely on a dialog box generated by the CLI driver to prompt for the new
password

Because of connection string and initialization file grammar, keywords and
attribute values that contain the characters []{}(),;?*=!@ should be avoided. Because
of the grammar in the system information, keywords and data source names
cannot contain the backslash (\) character. For CLI Version 2, braces are required
around the DRIVER keyword.

26 Call Level Interface Guide and Reference Volume 1

If any keywords are repeated in the browse request connection string, CLI uses the
value associated with the first occurrence of the keyword. If the DSN and DRIVER
keywords are included in the same browse request connection string, CLI uses
whichever keyword appears first.

OutConnectionString Argument

The result connection string is a list of connection attributes. A connection attribute
consists of an attribute keyword and a corresponding attribute value. The browse
result connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= [*]attribute-keyword=attribute-value
attribute-keyword ::= ODBC-attribute-keyword
| driver-defined-attribute-keyword

ODBC-attribute-keyword = {UID | PWD}:[localized-identifier]
driver-defined-attribute-keyword ::= identifier[:localized-identifier]

attribute-value ::= {attribute-value-list} | ?
(The braces are literal; they are returned by CLI.)
attribute-value-list ::= character-string [:localized-character
string] | character-string [:localized-character string], attribute-value-list

where
v character-string and localized-character string have zero or more SQLCHAR or

SQLWCHAR elements
v identifier and localized-identifier have one or more SQLCHAR or SQLWCHAR

elements; attribute-keyword is case insensitive
v attribute-value may be case sensitive

Because of connection string and initialization file grammar, keywords, localized
identifiers, and attribute values that contain the characters []{}(),;?*=!@ should be
avoided. Because of the grammar in the system information, keywords and data
source names cannot contain the backslash (\) character.

The connection string is used to pass one or more values needed to complete a
connection. The contents of the connection string and the value of DriverCompletion
will determine if CLI needs to establish a dialog with the user.

�� �

;

Connection string syntax = attribute ��

Connection string syntax

DSN
UID
PWD
NEWPWD
CLI-defined-keyword

Attribute associated with each keyword are:

Chapter 2. IBM Data Server CLI and ODBC drivers 27

DSN Data source name. The name or alias-name of the database. Required if
DriverCompletion is equal to SQL_DRIVER_NOPROMPT.

UID Authorization-name (user identifier).

PWD The password corresponding to the authorization name. If there is no
password for the user ID, an empty value is specified (PWD=;).

NEWPWD
New password used as part of a change password request. The application
can either specify the new string to use, for example,
NEWPWD=anewpass; or specify NEWPWD=; and rely on a dialog box
generated by the CLI driver to prompt for the new password (set the
DriverCompletion argument to anything other than
SQL_DRIVER_NOPROMPT).

Any one of the CLI keywords can be specified on the connection string. If any
keywords are repeated in the connection string, the value associated with the first
occurrence of the keyword is used.

If any keywords exists in the CLI initialization file, the keywords and their values
are used to augment the information passed to CLI in the connection string. If the
information in the CLI initialization file contradicts information in the connection
string, the values in connection string take precedence.

If the end user Cancels a dialog box presented, SQL_NO_DATA_FOUND is
returned.

The following values of DriverCompletion determines when a dialog will be opened:

SQL_DRIVER_PROMPT:
A dialog is always initiated. The information from the connection string
and the CLI initialization file are used as initial values, to be supplemented
by data input via the dialog box.

SQL_DRIVER_COMPLETE:
A dialog is only initiated if there is insufficient information in the
connection string. The information from the connection string is used as
initial values, to be supplemented by data entered via the dialog box.

SQL_DRIVER_COMPLETE_REQUIRED:
A dialog is only initiated if there is insufficient information in the
connection string. The information from the connection string is used as
initial values. Only mandatory information is requested. The user is
prompted for required information only.

SQL_DRIVER_NOPROMPT:
The user is not prompted for any information. A connection is attempted
with the information contained in the connection string. If there is not
enough information, SQL_ERROR is returned.

Once a connection is established, the complete connection string is returned.
Applications that need to set up multiple connections to the same database for a
given user ID should store this output connection string. This string can then be
used as the input connection string value on future SQLDriverConnect() calls.

28 Call Level Interface Guide and Reference Volume 1

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLDriverConnectW(). See “Unicode
functions (CLI)” on page 156 for information about ANSI to Unicode function
mappings.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NO_DATA_FOUND
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

All of the diagnostics generated by SQLConnect() can be returned here as well. The
following table shows the additional diagnostics that can be returned.

Table 5. SQLDriverConnect SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer szConnstrOut was not large enough to hold the entire
connection string. The argument *OutConnectionStringLengthPtr
contains the actual length of the connection string available for
return. (Function returns SQL_SUCCESS_WITH_INFO)

01S00 Invalid connection string
attribute.

An invalid keyword or attribute value was specified in the input
connection string, but the connection to the data source was
successful anyway because one of the listed event has occurred:
v The unrecognized keyword was ignored.
v The invalid attribute value was ignored, the default value was

used instead.

(Function returns SQL_SUCCESS_WITH_INFO)

HY000 General error.

Dialog Failed

The information specified in the connection string was insufficient
for making a connect request, but the dialog was prohibited by
setting fCompletion to SQL_DRIVER_NOPROMPT.

The attempt to display the dialog failed.

HY090 Invalid string or buffer length. The value specified for InConnectionStringLength was less than 0,
but not equal to SQL_NTS.

The value specified for OutConnectionStringCapacity was less than
0.

HY110 Invalid driver completion. The value specified for the argument fCompletion was not equal to
one of the valid values.

Restrictions

None.

Example
rc = SQLDriverConnect(hdbc,

(SQLHWND)sqlHWND,
InConnectionString,
InConnectionStringLength,
OutConnectionString,
OutConnectionStringCapacity,
StrLength2,
DriveCompletion);

Chapter 2. IBM Data Server CLI and ODBC drivers 29

CLI/ODBC keywords for file DSN or DSN-less connections

AltHostName CLI/ODBC configuration keyword:

Specifies the alternate host name to be used if the primary server specified by
HOSTNAME cannot be contacted (Client Reroute.)

db2cli.ini keyword syntax:
AltHostName = fully qualified alternate host name | IP address of node

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies a fully qualified host name or the IP address of
the node where the alternate server for the database resides.

If the primary server returns alternate server information, it will override
this AltHostName setting. However, this keyword is read only. That means
the db2cli.ini will not be updated with the alternate server information
received from the primary server.

AltPort CLI/ODBC configuration keyword:

Specifies the alternate port to be used if the primary server specified by HOSTNAME
and PORT cannot be contacted (Client Reroute.)

db2cli.ini keyword syntax:
AltPort = port number

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies the port number of the alternate server of the
database manager instance where the alternate server for the database
resides.

If the primary server returns alternate server information, it will override
this AltPort setting. However, this keyword is read only. That means the
db2cli.ini will not be updated with the alternate server information
received from the primary server.

Authentication CLI/ODBC configuration keyword:

Specifies the type of authentication to be used with file DSN or DSN-less
connectivity.

db2cli.ini keyword syntax:
Authentication = CERTIFICATE | SERVER | SERVER_ENCRYPT |
SERVER_ENCRYPT_AES | DATA_ENCRYPT | KERBEROS |
GSSPLUGIN

Default setting:
SERVER

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

When you set this option, you must also set the following options:
v Database

30 Call Level Interface Guide and Reference Volume 1

v Protocol.

If Protocol=IPC, you need to set the following option as well:
v Instance.

If Protocol=TCPIP, you need to set the following options as well:
v Port

v Hostname.

If Kerberos is specified, then the KRBPlugin may also be optionally
specified. If KRBPlugin is not specified, the default plug-in IBMkrb5 will be
used.

Starting in DB2 Version 9.7 Fix Pack 6 and later, CERTIFICATE
authentication is available for connection to DB2 for z/OS Version 10 with
APAR PM53450 and later. The CERTIFICATE authentication type is
supported starting in DB2 Version 9.7 Fix Pack 6. This authentication type
allows you to use SSL client authentication without the need of providing
database passwords on the database client. When certificate-based
authentication is configured to supply authentication information, a
password cannot be specified in any other way (as in the db2dsdriver.cfg
configuration file, in the db2cli.ini configuration file, or in the connection
string). If CERTIFICATE is specified, then the new label parameter
SSLCLientLabel must also be specified in the CLI configuration file,
db2cli.ini, or in the data server driver configuration file,
db2dsdriver.cfg.

BIDI CLI/ODBC configuration keyword:

Specifies the BIDI code page when connected to a DB2 for z/OS.

db2cli.ini keyword syntax:
BIDI = code page

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

When you set this option, you must also set the listed options:
v Database
v Protocol=TCPIP
v Hostname
v Port

FileDSN CLI/ODBC configuration keyword:

Specifies a DSN file from which a connection string will be built for the data
source.

db2cli.ini keyword syntax:
You can not set this keyword in the db2cli.ini file.

You can specify the value of this keyword in the connection string in
SQLDriverConnect like this:
FileDSN = file name

Instance CLI/ODBC configuration keyword:

Chapter 2. IBM Data Server CLI and ODBC drivers 31

Specifies the instance name for a local IPC connection for file DSN or DSN-less
connectivity.

db2cli.ini keyword syntax:
Instance = instance name

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

When you set this keyword, you must also set the following options:
v Database
v Protocol=IPC

Interrupt CLI/ODBC configuration keyword:

Sets the interrupt processing mode.

db2cli.ini keyword syntax:
Interrupt = 0 | 1 | 2

Default setting:
1

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

When you set this option, you must also set the following options:
v Database
v Protocol=IPC

The keyword values have the following meaning:

0 Disables interrupt processing (SQLCancel calls will not interrupt
the processing.)

1 Interrupts are supported (default.) In this mode, if the server
supports an interrupt, an interrupt will be sent. Otherwise the
connection is dropped.

The settings for INTERRUPT_ENABLED (a DB2 Connect™ gateway
setting) and the DB2 registry variable
DB2CONNECT_DISCONNECT_ON_INTERRUPT will take precedence over the
Interrupt keyword setting of 1.

2 Interrupt drops the connection regardless of server's interrupt
capabilities (SQLCancel will drop the connection.)

KRBPlugin CLI/ODBC configuration keyword:

Specifies the name of the Kerberos plug-in library to be used for client side
authentication for file DSN or DSN-less connectivity.

db2cli.ini keyword syntax:
KRBPlugin = plugin name

Default setting:
By default, the value is null on UNIX operating systems, and IBMkrb5 on
Windows operating systems.

32 Call Level Interface Guide and Reference Volume 1

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies the name of the Kerberos plug-in library to be
used for client-side connection authentication. The plug-in is used when
the client is authenticated using KERBEROS authentication.

Protocol CLI/ODBC configuration keyword:

Communications protocol used for File DSN or in a DSN-less connection.

db2cli.ini keyword syntax:
Protocol = TCPIP | TCPIP6 | TCPIP4 | IPC | LOCAL

Default setting:
none

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

TCP/IP is the only protocol supported when using a File DSN. Set the
option to the string TCPIP (without the slash).

When this option is set then the following options must also be set:
v Database;
v ServiceName; and
v Hostname.

IPC connectivity can be specified by setting Protocol to either IPC or
LOCAL.

When Protocol = IPC | LOCAL the Instance keyword must also be set.

PWDPlugin CLI/ODBC configuration keyword:

Specifies the name of the userid-password plug-in library to be used for client side
authentication for file DSN or DSN-less connectivity.

db2cli.ini keyword syntax:
PWDPlugin = plug-in name

Default setting:
By default, the value is null and the DB2 supplied userid-password plug-in
library is used.

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies the name of the userid-password plug-in library
to be used for client-side connection authentication. The plug-in is used
when the client is authenticated using SERVER or SERVER_ENCRYPT
authentication.

SaveFile CLI/ODBC configuration keyword:

Specifies the file name of a DSN file in which to save the attribute values of the
keywords used in making the present, successful connection.

Chapter 2. IBM Data Server CLI and ODBC drivers 33

db2cli.ini keyword syntax:
You can not set this keyword in the db2cli.ini file.

You can specify the value of this keyword in the connection string in
SQLDriverConnect like this:
SaveFile = file name

Running CLI and ODBC applications using the IBM Data
Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately; and it provides a subset of the functionality of either IBM Data Server
Client. The IBM Data Server Driver for ODBC and CLI provides runtime support
for: the CLI application programming interface (API), the ODBC API, the XA API;
and connecting to databases.

Before you begin

To run database applications with the IBM Data Server Driver for ODBC and CLI,
you need:
v one or more copies of the driver installed.

– See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.
v to have configured the application environment for the driver.

– See: “Configuring the IBM Data Server Driver for ODBC and CLI” on page
11.

Procedure

When writing applications for, or migrating applications to using the IBM Data
Server Driver for ODBC and CLI:
v Ensure your applications use only the CLI, ODBC and XA API functions that are

supported by the driver.
– See:

- “CLI and ODBC API support in the IBM Data Server Driver for ODBC and
CLI” on page 35

- “XA API support in the IBM Data Server Driver for ODBC and CLI” on
page 35

v Ensure your applications are not attempting to make use of IBM Data Server
Client or IBM Data Server Runtime Client functionality that is restricted in the
driver.
– See: “Restrictions of the IBM Data Server Driver for ODBC and CLI” on page

36
v

Use the 32-bit version of the driver with 32-bit database applications, and use
the 64-bit version of the driver with 64-bit database applications.

v Understand the available tracing, logging, and diagnostic support provided by
the driver for investigating problems.
– See: “Diagnostic support in the IBM Data Server Driver for ODBC and CLI”

on page 37

34 Call Level Interface Guide and Reference Volume 1

CLI and ODBC API support in the IBM Data Server Driver for
ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately; and it provides a subset of the functionality of either IBM Data Server
Client.

The IBM Data Server Driver for ODBC and CLI supports the ANSI and (where
they exist) the Unicode versions of the following ODBC and CLI functions:
SQLAllocConnect SQLExtendedPrepare SQLNumParams
SQLAllocEnv SQLFetch SQLNumResultCols
SQLAllocHandle SQLFetchScroll SQLParamData
SQLAllocStmt SQLForeignKeys SQLParamOptions
SQLBindCol SQLFreeConnect SQLPrepare
SQLBindFileToCol SQLFreeEnv SQLPrimaryKeys
SQLBindFileToParam SQLFreeHandle SQLProcedureColumns
SQLBindParameter SQLFreeStmt SQLProcedures
SQLBrowseConnect SQLGetConnectAttr SQLPutData
SQLBuildDataLink SQLGetConnectOption SQLRowCount
SQLBulkOperations SQLGetCursorName SQLSetColAttributes
SQLCancel SQLGetData SQLSetConnectAttr
SQLCloseCursor SQLGetDataLinkAttr SQLSetConnectOption
SQLColAttribute SQLGetDescField SQLSetConnection
SQLColAttributes SQLGetDescRec SQLSetCursorName
SQLColumnPrivileges SQLGetDiagField SQLSetDescField
SQLColumns SQLGetDiagRec SQLSetDescRec
SQLConnect SQLGetEnvAttr SQLSetEnvAttr
SQLCopyDesc SQLGetFunctions SQLSetParam
SQLGetInfo SQLSetPos SQLDescribeCol
SQLGetLength SQLSetScrollOptions SQLDescribeParam
SQLGetPosition SQLSetStmtAttr SQLDisconnect
SQLGetSQLCA SQLSetStmtOption SQLDriverConnect
SQLGetStmtAttr SQLSpecialColumns SQLEndTran
SQLGetStmtOption SQLStatistics SQLError
SQLGetSubString SQLTablePrivileges SQLExecDirect
SQLGetTypeInfo SQLTables SQLExecute
SQLMoreResults SQLTransact SQLExtendedBind
SQLNativeSql SQLExtendedFetch SQLNextResult

XA API support in the IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately; and it provides a subset of the functionality of either IBM Data Server
client.

The IBM Data Server Driver for ODBC and CLI supports the following XA API
functions:

xa_open
xa_close
xa_start
xa_end
xa_prepare
xa_commit
xa_rollback
xa_forget
xa_recover

Chapter 2. IBM Data Server CLI and ODBC drivers 35

LDAP support in the IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately; and it provides a subset of the functionality of either IBM Data Server
client.

The IBM Data Server Driver for ODBC and CLI supports the LDAP Database
Directory support with one restriction:
v the LDAP cache is not saved to disk; it is an in-memory cache only. The

DB2LDAPCACHE registry variable is ignored.

The steps for configuring the database application environment to enable LDAP
when using the IBM Data Server Driver for ODBC and CLI are the same as for
other scenarios, except that the DB2LDAPCACHE registry variable is ignored.

Restrictions of the IBM Data Server Driver for ODBC and CLI

IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately; and it provides a subset of the functionality of either IBM Data Server
client.

IBM Data Server Driver for ODBC and CLI provides runtime support for:
v the DB2 CLI application programming interface (API)
v the ODBC API
v the XA API
v database connectivity
v the DB2 Interactive Call Level Interface (db2cli)

The following restrictions apply to the IBM Data Server Driver for ODBC and CLI:
v No other database product can be installed in the same path if the IBM Data

Server Driver for ODBC and CLI is already installed.
v On Windows operating systems, you can install a maximum of 16 copies of the

IBM Data Server Driver for ODBC and CLI.
v To connect to a z/OS server or a System i® server, you must register a DB2

Connect license key. (Retrieve the license file from your Passport Advantage®

distribution, for example db2conpe.lic, then copy the license file to the license
directory under the directory where the driver was installed.)

v XA connections against a z/OS server are supported. However, XA connections
against a System i server are not supported.

v If you use the configuration file db2dsdriver.cfg to specify aliases, the following
entries must contain a value:
– <dsncollection> entries (alias, name, host, and port)
– <database> entries (name, host, port).

These entries must be specified and cannot be empty.
v The CLI/ODBC configuration keyword DBNAME is not supported.
v The CLI LOAD utility statement attribute, sql_attr_use_load_api, is not

supported.

36 Call Level Interface Guide and Reference Volume 1

Functionality not supported by the IBM Data Server Driver for ODBC
and CLI
v CLI and ODBC application development
v the DB2 Command Line Processor (CLP)
v administrative APIs
v the CLIENT authentication type is not supported by the IBM Data Server Driver

for ODBC and CLI and by the IBM Data Server Driver Package
v installation program

– You must install the driver manually.
- See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

– You must configure the driver manually.
- See: “Configuring the IBM Data Server Driver for ODBC and CLI” on page

11.

Functionality supported with restrictions by the IBM Data Server Driver
for ODBC and CLI
v Messages will be reported only in English.
v There is no local database directory.

– LDAP is supported, but the LDAP cache is not saved to disk.
- See: “LDAP support in the IBM Data Server Driver for ODBC and CLI” on

page 36.
v Not all diagnostic utilities are available.

– See: “Diagnostic support in the IBM Data Server Driver for ODBC and CLI.”

For an up-to-date list of current restrictions, see http://www.ibm.com/
developerworks/wikis/display/DB2/IBM+Data+Server+Driver+Limitations.

Diagnostic support in the IBM Data Server Driver for ODBC and
CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately; and it provides a subset of the functionality of either IBM data server
client.

The following tracing, logging, and diagnostic utilities are provided with the IBM
Data Server Driver for ODBC and CLI:

CLI trace
The method for using CLI trace with the IBM Data Server Driver for
ODBC and CLI is the same as the method for using CLI trace with an IBM
data server client.

DB2 trace
To turn on DB2 trace when you are using the IBM Data Server Driver for
ODBC and CLI, you must invoke the db2trc utility from the adm
subdirectory of the driver's install directory on Linux and UNIX or the bin
subdirectory for Windows.

For example, if you installed the driver at $HOME/
ibm_data_server_driver_for_odbc_cli, you must be in the
$HOME/ibm_data_server_driver_for_odbc_cli/adm directory when you
invoke db2trc.

Chapter 2. IBM Data Server CLI and ODBC drivers 37

http://www.ibm.com/developerworks/wikis/display/DB2/IBM+Data+Server+Driver+Limitations
http://www.ibm.com/developerworks/wikis/display/DB2/IBM+Data+Server+Driver+Limitations

The IBM Data Server Driver for ODBC and CLI can be installed on a
Network File System (NFS). If the driver is installed on a read-only NFS,
the environment variable DB2_DIAGPATH must be set to allow DB2 trace
to work.

db2diag log files

When you are using the IBM Data Server Driver for ODBC and CLI, the
db2diag log files will be located in the following locations:
v On Windows operating systems: The db2diag log file is located in the

%SYSTEM APP DATA PATH%\IBM\DB2\%UNZIPPED PATH%. For example, if the
CLI driver %UNZIPPED PATH% is D:\Program Files\IBM\clidriver then
the db2diag.log path for the CLI driver will be %SYSTEM APP DATA
PATH%\IBM\DB2\D_Program Files_IBM_clidriver, where %SYSTEM APP
DATA PATH% is Drive:\Documents and Settings\All Users\Application
Data\ for Windows 2003, Windows XP and Drive:\ProgramData\ for
Windows 2008 and Windows Vista.

v On UNIX and Linux operating systems: The db2diag log file is located in
the db2dump subdirectory of the driver install directory.

The DB2_DIAG environment variable and the DIAGPATH CLI keyword
can be used to alter the location of the db2diag log files.

db2support

The DB2 command line processor is not available with the IBM Data
Server Driver for ODBC and CLI, so the CLP utility is not available.
However, an executable version of db2support will be available with the
driver.

This executable version of db2support will collect the following
information:
v db2level output;
v environment variables; and
v a listing of the contents of the IBM Data Server Driver for ODBC and

CLI install directory.

You must invoke db2support from the bin subdirectory of the driver install
directory.

For example, if you installed the driver at $HOME/
ibm_data_server_driver_for_odbc_cli, you must be in the
$HOME/ibm_data_server_driver_for_odbc_cli/bin directory when you
invoke db2support.

Setting diagnostic options

The IBM Data Server Driver for ODBC and CLI does not support the command
line processor (CLP.) This means that the usual mechanism to set DB2 registry
variables, using the db2set command, is not possible. However, the functionality of
registry variables related to diagnostics is supported through CLI/ODBC
keywords:
v “DiagLevel CLI/ODBC configuration keyword” on page 39
v “NotifyLevel CLI/ODBC configuration keyword” on page 39
v “DiagPath CLI/ODBC configuration keyword” on page 39

and attributes for SQLSetEnvAttr and SQSGetEnvAttr:
v SQL_ATTR_DIAGLEVEL

38 Call Level Interface Guide and Reference Volume 1

v SQL_ATTR_NOTIFYLEVEL
v SQL_ATTR_DIAGPATH
v See: “Environment attributes (CLI) list” on page 40.

and environment variables:
v DB2_DIAGPATH
v See: “Environment variables supported by the IBM Data Server Driver for ODBC

and CLI” on page 16.

The CLI/ODBC keyword DiagPath, the attribute SQL_ATTR_DIAGPATH, and the
environment variable DB2_DIAGPATH all have the same purpose: to specify
where diagnostic output is located. There is one situation, however, where
DB2_DIAGPATH must be used:
v The IBM Data Server Driver for ODBC and CLI can be installed on a Network

File System (NFS). If the driver is installed on a read-only NFS, the environment
variable DB2_DIAGPATH must be set to a writable directory to allow DB2 trace
to work.

Otherwise, the CLI/ODBC keyword DiagPath, the attribute
SQL_ATTR_DIAGPATH, and the environment variable DB2_DIAGPATH all have
the same effect.

DiagLevel CLI/ODBC configuration keyword:

Sets the diagnostic level.

db2cli.ini keyword syntax:
DiagLevel = 0 | 1 | 2 | 3 | 4

Default setting:
3

Usage notes:
This can be set in the [COMMON] section of the db2cli.ini file only.

This is applicable only at Environment Handle allocation time for an entire
process.

This is equivalent to the database manager parameter DIAGLEVEL.

NotifyLevel CLI/ODBC configuration keyword:

Sets the diagnostic level.

db2cli.ini keyword syntax:
NotifyLevel = 0 | 1 | 2 | 3 | 4

Default setting:
3

Usage notes:
This can be set in the [COMMON] section of the db2cli.ini file only.

This is equivalent to the database manager parameter NOTIFYLEVEL.

DiagPath CLI/ODBC configuration keyword:

Sets the path of the db2diag log files.

Chapter 2. IBM Data Server CLI and ODBC drivers 39

db2cli.ini keyword syntax:
DiagPath = existing directory

Default setting:
The default value is the db2dump directory on UNIX and Linux operating
systems, and the db2 directory on Windows operating systems.

Usage notes:

This can be set in the [COMMON] section of the db2cli.ini file only.

This is equivalent to the database manager parameter DIAGPATH.

Environment attributes (CLI) list:

CLI environment attributes that can be set using the SQLSetEnvAttr().

ODBC does not support setting driver-specific environment attributes using
SQLSetEnvAttr(). Only CLI applications can set the CLI-specific environment
attributes using this function.

SQL_ATTR_CONNECTION_POOLING
This attribute was deprecated in DB2 UDB for Linux, UNIX, and Windows
Version 8.

This attribute is not supported when accessing the Informix database
server.

SQL_ATTR_CONNECTTYPE
This attribute replaces the SQL_CONNECTTYPE attribute. A 32-bit integer
value that specifies whether this application is to operate in a coordinated
or uncoordinated distributed environment. The possible values are:
v SQL_CONCURRENT_TRANS: The application can have concurrent

multiple connections to any one database or to multiple databases. Each
connection has its own commit scope. No effort is made to enforce the
coordination of the transaction. If an application issues a commit by
using the environment handle on SQLEndTran() and not all of the
connections commit successfully, the application is responsible for
recovery. This is the default.

v SQL_COORDINATED_TRANS: The application can coordinate commit
and rollbacks among multiple database connections. This option setting
corresponds to the specification of the Type 2 CONNECT in embedded
SQL. In contrast to the SQL_CONCURRENT_TRANS setting that was
previously described, the application is permitted only one open
connection per database.

Note: This connection type results in the default for the
SQL_ATTR_AUTOCOMMIT connection option to be
SQL_AUTOCOMMIT_OFF.

If you change this attribute from the default, you must set it before any
connections are established on the environment handle.

Application typically set this attribute as an environment attribute with a
call to SQLSetEnvAttr() function. The SQLSetEnvAttr() function is called as
soon as the environment handle is allocated. However, because ODBC
applications cannot access SQLSetEnvAttr() function, ODBC applications
must set this attribute using SQLSetConnectAttr() function after each
connection handle is allocated, but before any connections are established.

40 Call Level Interface Guide and Reference Volume 1

All connections on an environment handle must have the same
SQL_ATTR_CONNECTTYPE setting. An environment cannot have both
concurrent and coordinated connections. The type of the first connection
determines the type of all subsequent connections. SQLSetEnvAttr() returns
an error if an application attempts to change the connection type while
there is an active connection.

You can also set the default connect type by using the “ConnectType
CLI/ODBC configuration keyword” on page 159.

The SQL_ATTR_CONNECTTYPE attribute is an IBM defined extension.

SQL_ATTR_CP_MATCH
This attribute was deprecated in DB2 database version 8.

This attribute is not supported when accessing the Informix database
server.

SQL_ATTR_DIAGLEVEL

Description
A 32-bit integer value which represents the diagnostic level. This is
equivalent to the database manager DIAGLEVELparameter.

Values
Valid values are: 0, 1, 2, 3, or 4. (The default value is 3.)

Usage notes
You must set this attribute before any connection handles are
created.

SQL_ATTR_DIAGPATH

Description
A pointer to a null-terminated character string that contains the
name of the directory where diagnostic data is to be placed. This is
equivalent to the database manager DIAGPATH parameter.

Values
The default value is the db2dump directory on UNIX and Linux
operating systems, and the db2 directory on Windows operating
systems.

Usage notes
You must set this attribute before any connection handles are
created.

SQL_ATTR_INFO_ACCTSTR

Description
A pointer to a null-terminated character string that is used to
identify the client accounting string that is sent to the data server
when using DB2 Connect or DB2 database products for Linux,
UNIX, and Windows.

Values
When you set the value, some servers might not be able to handle
the entire length that is provided and might truncate the value.
DB2 for z/OS and DB2 Universal Database for z/OS and OS/390
servers support up to 200 characters. To ensure that the data is
converted correctly when transmitted to a host system, use only
the characters A to Z, 0 to 9, and the underscore (_) or period (.).

Chapter 2. IBM Data Server CLI and ODBC drivers 41

The SQL_ATTR_INFO_ACCTSTR attribute is an IBM defined
extension.

SQL_ATTR_INFO_APPLNAME

Description
A pointer to a null-terminated character string that is used to
identify the client application name that is sent to the data server
when using DB2 Connect or DB2 database products for Linux,
UNIX, and Windows.

Values
When you set the value, some servers might not be able to handle
the entire length provided and might truncate the value. DB2 for
z/OS and DB2 Universal Database for z/OS and OS/390 servers
support up to 32 characters. To ensure that the data is converted
correctly when transmitted to a host system, use only the
characters A to Z, 0 to 9, and the underscore (_) or period (.).

The SQL_ATTR_INFO_APPLNAME attribute is an IBM defined
extension.

SQL_ATTR_INFO_USERID

Description
A pointer to a null-terminated character string that is used to
identify the client user ID that is sent to the data server when
using DB2 Connect or DB2 database products for Linux, UNIX,
and Windows.

Values
When you set the value, some servers might not be able to handle
the entire length provided and might truncate the value. DB2 for
z/OS and DB2 Universal Database for z/OS and OS/390 servers
support up to 16 characters. This user ID is not to be confused
with the authentication user ID. This user ID is for identification
purposes only, and is not used for any authorization. To ensure
that the data is converted correctly when transmitted to a host
system, use only the characters A to Z, 0 to 9, and the underscore
(_) or period (.).

The SQL_ATTR_INFO_USERID attribute is an IBM defined
extension.

SQL_ATTR_INFO_WRKSTNNAME

Description
A pointer to a null-terminated character string that is used to
identify the client workstation name that is sent to the data server
when using DB2 Connect or DB2 database products for Linux,
UNIX, and Windows.

Values
When you set the value, some servers might not be able to handle
the entire length provided and might truncate the value. DB2 for
z/OS and DB2 Universal Database for z/OS and OS/390 servers
support up to 18 characters. To ensure that the data is converted
correctly when transmitted to a host system, use only the
characters A to Z, 0 to 9, and the underscore (_) or period (.).

The SQL_ATTR_INFO_WRKSTNNAME attribute is an IBM
defined extension.

42 Call Level Interface Guide and Reference Volume 1

SQL_ATTR_MAXCONN
This attribute was deprecated in DB2 Version 8.

This attribute is not supported when accessing the Informix database
servers.

SQL_ATTR_NOTIFYLEVEL

Description
A 32-bit integer value that represents the notification level. This is
equivalent to the database manager NOTIFYLEVEL parameter.

Values
Valid values are: 0, 1, 2, 3, or 4. (The default value is 3.)

Usage notes
You must set this attribute value before any connection handles are
created.

This attribute is not supported when accessing the Informix database
servers.

SQL_ATTR_ODBC_VERSION

Description
A 32-bit integer that determines whether certain functionality
exhibits ODBC 2.x (CLI v2) behavior or ODBC 3.0 (CLI v5)
behavior. ODBC applications must set this environment attribute
before calling any function that has an SQLHENV argument, or the
call will return SQLSTATE HY010 (Function sequence error.).

Values
The listed values are used to set the value of this attribute:
v SQL_OV_ODBC3: Causes the listed ODBC 3.0 (CLI v5) behavior:

– CLI returns and expects ODBC 3.0 (CLI v5) codes for date,
time, and timestamp.

– CLI returns ODBC 3.0 (CLI v5) SQLSTATE codes when
SQLError(), SQLGetDiagField(), or SQLGetDiagRec() functions
are called.

– The CatalogName argument in a call to SQLTables() function
accepts a search pattern.

v SQL_OV_ODBC2: Causes the listed ODBC 2.x (CLI v2) behavior:
– CLI returns and expects ODBC 2.x (CLI v2) codes for date,

time, and timestamp.
– CLI returns ODBC 2.0 (CLI v2) SQLSTATE codes when

SQLError(), SQLGetDiagField(), or SQLGetDiagRec() functions
are called.

– The CatalogName argument in a call to SQLTables() function
does not accept a search pattern.

v SQL_OV_ODBC3_80: Causes the listed ODBC 3.0 (CLI v5)
behavior:
– CLI returns and expects ODBC 3.x codes for date, time, and

timestamp.
– CLI returns ODBC 3.x SQLSTATE codes when SQLError(),

SQLGetDiagField(), or SQLGetDiagRec() functions are called.
– The CatalogName argument in a call to SQLTables() function

accepts a search pattern.

SQL_ATTR_OUTPUT_NTS

Chapter 2. IBM Data Server CLI and ODBC drivers 43

Description
A 32-bit integer value that controls the use of null-termination in
output arguments.

Values
The possible values are:
v SQL_TRUE: CLI uses null termination to indicate the length of

output character strings (default).
v SQL_FALSE: CLI does not use null termination in output

character strings.

The CLI functions that are affected by this attribute are all of the
functions that are called for the environment (and for any
connections and statements that are allocated under the
environment) that have character string parameters.

You can only set this attribute when there are no connection
handles that are allocated under this environment.

SQL_ATTR_PROCESSCTL

Description
A 32-bit mask that sets process-level attributes, which affect all
environments and connections for the process. You must set this
attribute before the environment handle is allocated.

The call to SQLSetEnvAttr() must have the EnvironmentHandle
argument set to SQL_NULL_HANDLE. The settings remain in
effect for the duration of the process. Generally, use this attribute
only for performance sensitive applications, where large numbers
of CLI function calls are being made. Before setting any of these
bits, ensure that the application, and any other libraries that the
application calls, comply with the restrictions that are listed.

Values

You can combine the listed values to form a bit mask:
v SQL_PROCESSCTL_NOTHREAD - This bit indicates that the

application does not use multiple threads, or if it does use
multiple threads, guarantees that all DB2 calls are serialized by
the application. If set, CLI does not make any system calls to
serialize calls to CLI, and sets the DB2 context type to
SQL_CTX_ORIGINAL.

v SQL_PROCESSCTL_NOFORK - This bit indicates that the
application will never fork a child process. By default, CLI does
not check to see if an application forks a child process. However,
if the CheckForFork CLI/ODBC configuration keyword is set,
CLI checks the current process ID for each function call for all
applications that are connecting to the database for which the
keyword is enabled. You can set this attribute so that CLI does
not check for forked processes for that application.

The SQL_ATTR_PROCESSCTL attribute is an IBM defined
extension.

SQL_ATTR_RESET_CONNECTION

Description
A 32-bit unsigned integer value that specifies whether the ODBC
Driver Manager notifies the ODBC drivers that a connection has

44 Call Level Interface Guide and Reference Volume 1

been placed in the connection pool on Windows operating systems.
If the SQL_ATTR_ODBC_VERSION environment attribute is set to
SQL_OV_ODBC3_80, the ODBC Driver Manager sets this attribute
before placing a connection in the connection pool so that the
driver can reset the other connection attributes to their default
values.

Values
The only possible value is:
v SQL_RESET_CONNECTION_YES (default): The ODBC Driver

Manager notifies the ODBC drivers that a connection has been
placed in the connection pool.

Note: You should use SQL_ATTR_RESET_CONNECTION only for
communication between the ODBC Driver Manager and an ODBC driver.
You should not set this attribute from an application because all connection
attributes will be reset to their default value. For example, any connection
attribute values that you set by using the SQLSetConnectAttr () function
will be reset to CLI default values and your application could behave
unexpectedly.

SQL_ATTR_SYNC_POINT
This attribute was deprecated in DB2 database version 8.

This attribute is not supported when accessing the Informix database
servers.

SQL_ATTR_TRACE

Description
A pointer to a null-terminated character string that is used to turn
on the CLI/ODBC trace facility.

Values
The string must include the CLI keywords TRACE and
TRACEPATHNAME. For example:
"TRACE=1; TRACEPATHNAME=<dir>;"

Usage notes

This attribute is not supported when accessing the Informix
database servers.

SQL_ATTR_TRACENOHEADER

Description
A 32-bit integer value that specifies whether header information is
included in the CLI trace file.

Values
The possible values are:
v 0 - Header information is included in the CLI trace file.
v 1 - No header information is included in the CLI trace file.

You can use the SQL_ATTR_TRACENOHEADER attribute with an
SQL_NULL_HANDLE or with a valid environment handle.

SQL_ATTR_USE_2BYTES_OCTET_LENGTH
This attribute is deprecated in DB2 database version 8.

This attribute is not supported when accessing the Informix database
servers.

Chapter 2. IBM Data Server CLI and ODBC drivers 45

SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA
Setting this attribute is equivalent to setting the connection attribute
SQL_ATTR_DESCRIBE_OUTPUT_LEVEL to 0.
SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA is deprecated and applications
should now use the connection attribute
SQL_ATTR_DESCRIBE_OUTPUT_LEVEL.

SQL_ATTR_USER_REGISTRY_NAME

Description
This attribute is used only when authenticating a user on a server
that is using an identity mapping service.

Values
The SQL_ATTR_USER_REGISTRY_NAME attribute is set to a user
defined string that names an identity mapping registry. The format
of the name varies depending on the identity mapping service. By
providing this attribute you tell the server that the user name that
is provided can be found in this registry.

After setting this attribute, the value is used on subsequent
attempts to establish a normal connection, establish a trusted
connection, or switch the user ID on a trusted connection.

Usage notes

This attribute is not supported when accessing the Informix
database servers.

SQL_CONNECTTYPE
This Attribute is replaced with SQL_ATTR_CONNECTTYPE.

SQL_MAXCONN
This Attribute is replaced with SQL_ATTR_MAXCONN.

SQL_SYNC_POINT
This Attribute is replaced with SQL_ATTR_SYNC_POINT.

This attribute is not supported when accessing the Informix database
servers.

Deploying the IBM Data Server Driver for ODBC and CLI with
database applications

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client . It must be installed and configured
separately. You can simplify the deployment of your CLI and ODBC database
applications by creating an install program.

You can deploy the IBM Data Server Driver for ODBC and CLI with your CLI and
ODBC database applications by obtaining the compressed file that contains the
driver and following the installation and configuration steps required for the
driver into your install program.

Before you begin

To deploy the IBM Data Server Driver for ODBC and CLI with your applications
you will need:
v a mechanism for deploying the applications, such as an install program (install

program is available on Windows only);

46 Call Level Interface Guide and Reference Volume 1

v to obtain the compressed file that contains the driver; See: “Obtaining the IBM
Data Server Driver for ODBC and CLI” on page 8

v a redistribution license. See: “License requirements for the IBM Data Server
Driver for ODBC and CLI.”

Restrictions

Under the terms of the redistribution license, only some of the IBM Data Server
Driver for ODBC and CLI files can be redistributed. Which files may be
redistributed is listed in the file redist.txt. This file can be found in the
compressed file that contains the driver, called
ibm_data_server_driver_for_odbc_cli.zip on the Windows operating systems and
ibm_data_server_driver_for_odbc_cli.tar.Z on all other platforms.

Procedure

To incorporate the IBM Data Server Driver for ODBC and CLI into your install
program:
1. Copy the driver files into your install program. See the restrictions mentioned

previously about which driver files can be redistributed.
2. Set the install program to install the driver on the target machine. See:

“Installing the IBM Data Server Driver for ODBC and CLI” on page 8.
3. Set the install program to configure the environment on the target machine.

See: “Configuring the IBM Data Server Driver for ODBC and CLI” on page 11.

License requirements for the IBM Data Server Driver for ODBC
and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server
Client or the IBM Data Server Runtime Client. It must be installed and configured
separately.

You can download and install the IBM Data Server Driver for ODBC and CLI and
use it with your ODBC and CLI applications without a special license.

The IBM Data Server Driver for ODBC and CLI can connect to the following
properly licensed servers:
v DB2 Database for Linux, UNIX, and Windows
v DB2 Connect Server
v InfoSphere® Federation Server
v IBM Informix
v DB2 for z/OS
v IBM DB2 for IBM i
v DB2 Server for VM and VSE

The IBM Data Server Driver for ODBC and CLI can be used to connect to DB2 for
z/OS, IBM DB2 for IBM i, and DB2 Server for VM and VSE servers only if:
v a connection is established through a properly licensed DB2 Connect server; or
v directly to the server if and only if a properly formatted authentic DB2 Connect

license file is present. The license file is distributed as part of the DB2 Connect
products. The only way to obtain the license key file is to purchase one of the
following DB2 Connect products:
– DB2 Connect Personal Edition

Chapter 2. IBM Data Server CLI and ODBC drivers 47

– DB2 Connect Enterprise Edition
– DB2 Connect Application Server Edition
– DB2 Connect Unlimited Edition for System z®

– DB2 Connect Unlimited Edition for System i
No other product provides the required license file or the license rights afforded
by the presence of this file. Tampering with or unauthorized distribution of this
file is a breach of the license agreement. The relevant license file can be located
on the DB2 Connect activation image in the /db2/license directory. The license
must be copied to the license subdirectory of the data server driver installation
path, for example: installation_path/license. The name of the file varies with
the product:
– DB2 Connect Personal Edition: db2conpe.lic
– DB2 Connect Application Server Edition: db2consv_as.lic
– DB2 Connect Enterprise Edition: db2consv_ee.lic
– DB2 Connect Unlimited Edition for System i: db2consv_is.lic
– DB2 Connect Unlimited Edition for System z: db2consv_zs.lic

48 Call Level Interface Guide and Reference Volume 1

Chapter 3. ODBC driver managers

DB2 Call Level Interface (CLI) supports a variety of ODBC driver managers in
connections to DB2.

An ODBC driver manager is not supplied on UNIX platforms as part of the
operating system. Using ODBC on UNIX systems requires a separate commercial
or open source ODBC driver manager. Refer to the unixODBC website
(http://www.unixodbc.org), and the README files within the unixODBC
distribution package for more information.

unixODBC driver manager
The unixODBC Driver Manager is an open source ODBC driver manager
supported for DB2 ODBC applications on all supported Linux and UNIX operating
systems.

Support statement

If you experience problems with the combination of the unixODBC Driver
Manager and the DB2 ODBC driver after they have been properly installed and
configured, you can contact DB2 Support (http://www.ibm.com/software/data/
db2/support/db2_9/) for assistance in diagnosing the problem. If the source of the
problem lies with the unixODBC Driver Manager, then you can:
v Purchase a service contract for technical support from Easysoft, a commercial

sponsor of unixODBC (http://www.easysoft.com).
v Participate in any open source support channels at http://www.unixodbc.org.

Setting up the unixODBC driver manager
To run ODBC applications on Linux or UNIX operating systems, you must
configure the unixODBC Driver Manager.

Procedure

To set up the unixODBC Driver Manager for use with CLI and ODBC applications:
1. Download the latest unixODBC source code from http://www.unixodbc.org.
2. Untar the source files. For example:

gzip -d unixODBC-2.2.11.tar.gz
tar xf unixODBC-2.2.11.tar

3. For AIX only: Configure the C compiler to be thread-enabled:
export CC=xlc_r
export CCC=xlC_r

4. To compile a 64-bit version of the driver manager using the xlc_r compilers,
set the environment variables OBJECT_MODE and CFLAGS:
export OBJECT_MODE=64
export CFLAGS=-q64 -DBUILD_REAL_64_BIT_MODE

5. Install the driver manager in either your home directory or the default
/usr/local prefix:
v (Home directory) Issue the following command in the directory where you

untarred the source files:

© Copyright IBM Corp. 2012 49

http://www.unixodbc.org/
http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/
http://www.easysoft.com/
http://www.unixodbc.org/
http://www.unixodbc.org

./configure --prefix=$HOME -DBUILD_REAL_64_BIT_MODE --enable-gui=no
--enable-drivers=no

v (/usr/local as root) Issue the following command:
./configure --enable-gui=no --enable-drivers=no

6. Optional: Examine all configuration options by issuing the following
command:
./configure --help

7. Build and install the driver manager:
make
make install

Libraries will be copied to the [prefix]/lib directory, and executables will be
copied to the [prefix]/bin directory.

8. For AIX only: Extract the shared library from the ODBC driver for DB2 to
yield shr.o on 32-bit operating systems and shr_64.o on 64-bit operating
systems. To avoid confusion, rename the files db2.o and db2_64.o. These steps
are necessary on AIX because the unixODBC Driver Manager loads the driver
dynamically.
v On 32-bit operating systems, issue the following commands:

cd INSTHOME/sqllib/lib
ar -x libdb2.a
mv shr.o db2.o

where INSTHOME is the home directory of the instance owner.
v On 64-bit operating systems, issue the following commands:

cd INSTHOME/sqllib/lib
ar -x -X 64 libdb2.a
mv shr_64.o db2_64.o

where INSTHOME is the home directory of the instance owner.

Ensure that your INI file references the correct library.
9. Optional: For AIX only: Extract libodbc.a, libodbcinst.a, and libodbccr.a if

you will be dynamically loading the driver manager:
ar -x libodbc.a
ar -x libodbcinst.a
ar -x libodbccr.a

This produces libodbc.so.1, libodbcinst.so.1, and libodbccr.so.1 in the
[prefix]/lib/so directory.

10. Build the application and ensure it is linked to the unixODBC Driver Manager
by including the -L[prefix]/lib -lodbc option in the compile and link
command.

11. Specify the paths for at least the user INI file (odbc.ini) or the system INI file
(odbcinst.ini), and set the ODBCHOME environment variable to the directory
where the system INI file was created.

Important: Provide absolute paths when specifying the paths of the user and
system INI files. Do not use relative paths or environment variables.

Note: If compiling 64-bit applications for the ODBC Driver, use the -DODBC64
option to enable the 64-bit definitions in the driver manager.

50 Call Level Interface Guide and Reference Volume 1

Microsoft ODBC driver manager
The Microsoft ODBC driver manager can be used for connections to remote DB2
databases when using TCP/IP networks.

DataDirect ODBC driver manager
The DataDirect ODBC driver manager for DB2 can be used for connections to the
DB2 database.

Restrictions

Complications arise when using the CLI/ODBC driver with the DataDirect
Connect for ODBC Driver Manager in the UNIX environment because of the use of
UTF-8 character encoding by the driver manager. UTF-8 is a variable length
character encoding scheme using anywhere from 1 to 6 bytes to store characters.
UTF-8 and UCS-2 are not inherently compatible, and passing UTF-8 data to the
CLI/ODBC driver (which expects UCS-2) might result in application errors, data
corruption, or application exceptions.

To avoid this problem, the DataDirect Connect for ODBC Driver Manager 4.2
Service Pack 2 recognizes a CLI/ODBC driver and not use the Unicode functions,
effectively treating the CLI/ODBC driver as an ANSI-only driver. Before release 4.2
Service Pack 2, the DataDirect Connect for ODBC Driver Manager had to be linked
with the _36 version of the CLI/ODBC driver which does not export the
SQLConnectW function.

Chapter 3. ODBC driver managers 51

52 Call Level Interface Guide and Reference Volume 1

Chapter 4. Initializing CLI applications

Initializing CLI applications is part of the larger task of programming with CLI.
The task of initializing CLI applications involves allocating environment and
connection handles and then connecting to the data source.

Procedure

To initialize the application:
1. Allocate an environment handle by calling SQLAllocHandle() with a HandleType

of SQL_HANDLE_ENV and an InputHandle of SQL_NULL_HANDLE. For example:
SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

Use the allocated environment handle, returned in the *OutputHandlePtr
argument (henv in the example), for all subsequent calls that require an
environment handle.

2. Optional: Set environment attributes for your application by calling
SQLSetEnvAttr() with the required environment attribute for each attribute you
want set.
Important: If you plan to run your application as an ODBC application, you
must set the SQL_ATTR_ODBC_VERSION environment attribute using
SQLSetEnvAttr(). Setting this attribute for applications that are strictly CLI
applications is recommended but not required.

3. Allocate a connection handle by calling SQLAllocHandle() with a HandleType of
SQL_HANDLE_DBC using the environment handle returned from Step 1 as the
InputHandle argument. For example:
SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);

Use the allocated connection handle, returned in the *OutputHandlePtr
argument (hdbc in the example), for all subsequent calls that require a
connection handle.

4. Optional: Set connection attributes for your application by calling
SQLSetConnectAttr() with the required connection attribute for each attribute
you want set.

5. Connect to a data source by calling one of following functions with the
connection handle you allocated in Step 3 for each data source you want to
connect to:
v SQLConnect(): basic database connection method. For example:

SQLConnect (hdbc, server, SQL_NTS, user, SQL_NTS, password, SQL_NTS);

where SQL_NTS is a special string length value that indicates the referenced
string is null-terminated.

v SQLDriverConnect(): extended connect function that allows additional
connect options and offers Graphical User Interface support. For example:
char * connStr = "DSN=SAMPLE;UID=;PWD=;";

SQLDriverConnect (hdbc, (SQLHWND)NULL, connStr, SQL_NTS,
NULL, 0, NULL, SQL_DRIVER_NOPROMPT);

v SQLBrowseConnect(): least common connection method that iteratively
returns the attributes and attribute values for connecting to a data source.
For example:

© Copyright IBM Corp. 2012 53

char * connInStr = "DSN=SAMPLE;UID=;PWD=;";
char outStr[512];

SQLBrowseConnect (hdbc, connInStr, SQL_NTS, outStr,
512, &strLen2Ptr);

Results

Now that your application has been initialized, you can proceed to processing
transactions.

Initialization and termination in CLI overview
Figure 2 on page 55 shows the function call sequences for both the initialization
and termination tasks. The transaction processing task in the middle of the
diagram is shown in Chapter 6, “Transaction processing in CLI overview,” on page
69.

The initialization task consists of the allocation and initialization of environment
and connection handles. An environment handle must be allocated before a
connection handle can be created. Once a connection handle is created, the
application can then establish a connection. When a connection exists, the
application can proceed to the transaction processing task. An application then
passes the appropriate handle when it calls other CLI functions.

The termination task consists of disconnecting from the data source and freeing
those handles that were allocated during the initialization phase. The connection
handle should be freed before freeing the environment handle.

54 Call Level Interface Guide and Reference Volume 1

Handles in CLI
A CLI handle is a variable that refers to a data object allocated and managed by
CLI. Using handles relieves the application from having to allocate and manage
global variables or data structures, such as the SQLDA.

There are four types of handles in CLI:

Environment handle
An environment handle refers to a data object that holds information about
the global state of the application, such as attributes or valid connections.
An environment handle must be allocated before a connection handle can
be allocated.

Connection handle
A connection handle refers to a data object that holds information
associated with a connection to a particular data source (database).
Examples of such information include valid statement and descriptor
handles on a connection, transaction status, and diagnostic information.

An application can be connected to several data sources at the same time,
and can establish several distinct connections to the same data source. A

Allocate Environment

Connect

Free Connection

Disconnect

Free Environment

SQLAllocHandle()

SQLConnect()
or

SQLDriverConnect()

SQLAllocHandle()

SQLFreeHandle()

SQLDisconnect()

Allocate Connection

Initialization}

} Termination

Transaction
Processing

SQLFreeHandle()

Figure 2. Conceptual view of initialization and termination tasks

Chapter 4. Initializing CLI applications 55

separate connection handle must be allocated for each concurrent
connection. A connection handle must be allocated before a statement or
descriptor handle can be allocated.

Connection handles ensure that multithreaded applications which use one
connection per thread are thread-safe, because separate data structures are
allocated and maintained by CLI for each connection.

Note: There is a limit of 512 active connections per environment handle.

Statement handle
A statement handle refers to a data object that is used to track the
execution of a single SQL statement. It provides access to statement
information such as error messages, the associated cursor name, and status
information for SQL statement processing. A statement handle must be
allocated before an SQL statement can be issued.

When a statement handle is allocated, CLI automatically allocates four
descriptors and assigns the handles for these descriptors to the
SQL_ATTR_APP_ROW_DESC, SQL_ATTR_APP_PARAM_DESC,
SQL_ATTR_IMP_ROW_DESC, and SQL_ATTR_IMP_PARAM_DESC
statement attributes. Application descriptors can be explicitly allocated by
allocating descriptor handles.

The number of statement handles available to a CLI application depends
on the number of large packages the application has defined and is limited
by overall system resources (usually stack size). By default, there are 3
small and 3 large packages. Each small package allows a maximum of 64
statement handles per connection, and each large package allows a
maximum of 384 statement handles per connection. The number of
available statement handles by default is therefore (3 * 64) + (3 * 384) =
1344.

To get more than the default 1344 statement handles, increase the number
of large packages by setting the value of the CLI/ODBC configuration
keyword CLIPkg to a value up to 30. CLIPkg indicates the number of large
packages that will be generated. If you set CLIPkg to the maximum value
of 30, then the maximum number of statement handles that is available
becomes (3 * 64) + (30 * 384) = 11 712.

An HY014 SQLSTATE may be returned on the call to SQLPrepare(),
SQLExecute(), or SQLExecDirect() if this limit is exceeded.

It is recommended that you only allocate as many large packages as your
application needs to run, as packages take up space in the database.

Descriptor handle
A descriptor handle refers to a data object that contains information about
the columns in a result set and dynamic parameters in an SQL statement.

On operating systems that support multiple threads, applications can use the same
environment, connection, statement, or descriptor handle on different threads. CLI
provides thread safe access for all handles and function calls. The application itself
might experience unpredictable behavior if the threads it creates do not co-ordinate
their use of CLI resources.

56 Call Level Interface Guide and Reference Volume 1

Chapter 5. Data types and data conversion in CLI applications

When writing a CLI application it is necessary to work with both SQL data types
and C data types. This is unavoidable because the DBMS uses SQL data types,
while the application uses C data types. The application, therefore, must match C
data types to SQL data types when calling CLI functions to transfer data between
the DBMS and the application.

To facilitate this, CLI provides symbolic names for the various data types, and
manages the transfer of data between the DBMS and the application. It also
performs data conversion (from a C character string to an SQL INTEGER type, for
example) if required. CLI needs to know both the source and target data type. This
requires the application to identify both data types using symbolic names.

Data type conversion can occur under one of two conditions:
v The application specified a C type that is not the default C type for the SQL

type.
v The application specified an SQL type that does not match the base column SQL

type at the server, and there was no describe information available to the CLI
driver.

Note:

v GRAPHIC and VARGRAPHIC columns are not supported by Informix data
server. Due to this limitation, conversion from sql_c_dbchar (C data type) and
sql_graphic (SQL Datatype) are not supported. NCHAR and NVARCHAR
datatypes and SQL_C_BINARY and SQL_BINARY conversions may be used
instead of GRAPHIC and VARGRAPHIC.

v The SQL_XML data type is not supported for use with an Informix data server.

Example of how to use data types

Because the data source contains SQL data types and the CLI application works
with C data types, the data to be retrieved needs to be handled with the correct
data types. The following example shows how SQL and C data types are used by
an application to retrieve data from the source into application variables. The
following code snippet examines how data is retrieved from the DEPTNUMB
column of the ORG table in the sample database.
v The DEPTNUMB column of the ORG table is declared as the SQL data type

SMALLINT.
v The application variable which will hold the retrieved data is declared using C

types. Since the DEPTNUMB column is of SQL type SMALLINT, the application
variable needs to be declared using the C type SQLSMALLINT, which is
equivalent to the SQL type SMALLINT.

struct
{ SQLINTEGER ind;

SQLSMALLINT val;
} deptnumb; /* variable to be bound to the DEPTNUMB column */

SQLSMALLINT represents the base C type of short int.
v The application binds the application variable to the symbolic C data type of

SQL_C_SHORT:

© Copyright IBM Corp. 2012 57

sqlrc = SQLBindCol(hstmt, 1, SQL_C_SHORT, &deptnumb.val, 0,
&deptnumb.ind);

The data types are now consistent, because the result data type SQL_C_SHORT
represents the C type SQLSMALLINT.

Data conversion

CLI manages the transfer and any required conversion of data between the
application and the DBMS. Before the data transfer actually takes place, either the
source, the target or both data types are indicated when calling
SQLBindParameter(), SQLBindCol() or SQLGetData(). These functions use the
symbolic type names to identify the data types involved.

For example, to bind a parameter marker that corresponds to an SQL data type of
DECIMAL(5,3), to an application's C buffer type of double, the appropriate
SQLBindParameter() call would look like:

SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_DOUBLE,
SQL_DECIMAL, 5, 3, double_ptr, 0, NULL);

The functions mentioned in the previous paragraph can be used to convert data
from the default to other data types, but not all data conversions are supported or
make sense.

Note: When using CLI with an Informix data server, binary values can not be
inserted into CHAR columns. User can only insert binary values into a LOB
column. This is an Informix data server limitation on converting to STRING types.
When binding a TIMESTAMP column to a sql_c_char/sql_c_wchar string with an
Informix data server, the input value must be specified using the ODBC escape
sequence or as a literal. DATETIME functions can not be specified.

The rules that specify limits on precision and scale, as well as truncation and
rounding rules for type conversions apply in CLI, with the following exception:
truncation of values to the right of the decimal point for numeric values may
return a truncation warning, whereas truncation to the left of the decimal point
returns an error. In cases of error, the application should call SQLGetDiagRec() to
obtain the SQLSTATE and additional information about the failure. When moving
and converting floating point data values between the application and CLI, no
correspondence is guaranteed to be exact as the values may change in precision
and scale.

String handling in CLI applications
The following conventions deal with the various aspects of string arguments in
CLI functions.

Length of string arguments

Input strings can have an associated length argument which indicates either the
exact length of the string (not including the null terminator), the special value
SQL_NTS to indicate a null-terminated string, or SQL_NULL_DATA to pass a
NULL value. If the length is set to SQL_NTS, CLI will determine the length of the
string by locating the null terminator.

Output strings have two associated length arguments: an input length argument to
specify the length of the allocated output buffer, and an output length argument to

58 Call Level Interface Guide and Reference Volume 1

return the actual length of the string returned by CLI. The returned length value is
the total length of the string available for return, regardless of whether it fits in the
buffer or not.

For SQL column data, if the output is a null value, SQL_NULL_DATA is returned
in the length argument and the output buffer is untouched. The descriptor field
SQL_DESC_INDICATOR_PTR is set to SQL_NULL_DATA if the column value is a
null value. For more information, including which other fields are set, see the
descriptor FieldIdentifier argument values.

If a function is called with a null pointer for an output length argument, CLI will
not return a length. When the output data is a NULL value, CLI cannot indicate
that the value is NULL. If it is possible that a column in a result set can contain a
NULL value, a valid pointer to the output length argument must always be
provided. It is highly recommended that a valid output length argument always be
used.

Performance hint

If the length argument (StrLen_or_IndPtr) and the output buffer (TargetValuePtr) are
contiguous in memory, CLI can return both values more efficiently, improving
application performance. For example, if the following structure is defined:

struct
{ SQLINTEGER pcbValue;

SQLCHAR rgbValue [BUFFER_SIZE];
} buffer;

and &buffer.pcbValue and buffer.rgbValue is passed to SQLBindCol(), CLI would
update both values in one operation.

Null-termination of strings

By default, every character string that CLI returns is terminated with a null
terminator (hex 00), except for strings returned from graphic and DBCLOB data
types into SQL_C_CHAR application variables. Graphic and DBCLOB data types
that are retrieved into SQL_C_DBCHAR application variables are null terminated
with a double byte null terminator. Also, string data retrieved into
SQL_C_WCHAR are terminated with the Unicode null terminator 0x0000. This
requires that all buffers allocate enough space for the maximum number of bytes
expected, plus the null terminator.

It is also possible to use SQLSetEnvAttr() and set an environment attribute to
disable null termination of variable length output (character string) data. In this
case, the application allocates a buffer exactly as long as the longest string it
expects. The application must provide a valid pointer to storage for the output
length argument so that CLI can indicate the actual length of data returned;
otherwise, the application will not have any means to determine this. The CLI
default is to always write the null terminator.

It is possible, using the Patch1 CLI/ODBC configuration keyword, to force CLI to
null terminate graphic and DBCLOB strings.

String truncation

If an output string does not fit into a buffer, CLI will truncate the string to the size
of the buffer, and write the null terminator. If truncation occurs, the function will

Chapter 5. Data types 59

return SQL_SUCCESS_WITH_INFO and an SQLSTATE of 01004 indicating
truncation. The application can then compare the buffer length to the output length
to determine which string was truncated.

For example, if SQLFetch() returns SQL_SUCCESS_WITH_INFO, and an
SQLSTATE of 01004, it means at least one of the buffers bound to a column is too
small to hold the data. For each buffer that is bound to a column, the application
can compare the buffer length with the output length and determine which column
was truncated. You can also call SQLGetDiagField() to find out which column
failed.

Interpretation of strings

Normally, CLI interprets string arguments in a case-sensitive manner and does not
trim any spaces from the values. The one exception is the cursor name input
argument on the SQLSetCursorName() function: if the cursor name is not delimited
(enclosed by quotation marks) the leading and trailing blanks are removed and
case is ignored.

Blank padding of strings

DB2 Universal Database Version 8.1.4 and later do not pad strings with blanks to
fit the column size, as was the behavior in releases of DB2 UDB from Version 8.1
through to Version 8.1.4. With DB2 UDB Version 8.1.4 and later, a string might
have a length which differs from the length defined for the CHAR column if code
page conversion occurred. For releases of DB2 UDB before Version 8.1.4, strings are
padded with blanks to fill the column size; these blanks would be returned as part
of the string data when the string was fetched from the CHAR column.

Large object usage in CLI applications
The term large object and the generic acronym LOB are used to refer to any type of
large object. There are three LOB data types: Binary Large Object (BLOB),
Character Large Object (CLOB), and Double-Byte Character Large Object
(DBCLOB). These LOB data types are represented symbolically as SQL_BLOB,
SQL_CLOB, SQL_DBCLOB. The LOB symbolic constants can be specified or
returned on any of the CLI functions that take in or return an SQL data type
argument (such as SQLBindParameter(), SQLDescribeCol()).

LOB locators versus file input and output

By default row data is returned with LOB locators. For example, if a CLI
application does not provide an output buffer, the IBM data server client will
request a LOB locator on behalf of the application for each LOB column in the
result set. However, if the application binds a buffer of adequate size to a LOB
column, the LOB value will be returned in the buffer.

When a CLI application calls the function SQLGetData() to retrieve the LOB data, it
will, by default, make one request to the server, and will store the entire LOB in
memory provided BufferLength is large enough. If BufferLength is not large enough
to hold the entire LOB value, it will be retrieved piecewise.

Since LOB values can be very large, transfer of data using the piecewise sequential
method provided by SQLGetData() and SQLPutData() can be quite time consuming.
Applications dealing with such data will often do so in random access segments
using LOB locators or via direct file input and output.

60 Call Level Interface Guide and Reference Volume 1

To determine if any of the LOB functions are supported for the current server, call
SQLGetFunctions() with the appropriate function name argument value, or
SQLGetTypeInfo() with the particular LOB data type.

Note: When accessing IDS data servers, Large Binary Object blocking is not
supported.

Figure 3 shows the retrieval of a character LOB (CLOB).
v The left side shows a locator being used to extract a character string from the

CLOB, without having to transfer the entire CLOB to an application buffer.
A LOB locator is fetched, which is then used as an input parameter to search the
CLOB for a substring, the substring is then retrieved.

v The right side shows how the CLOB can be fetched directly into a file.
The file is first bound to the CLOB column, and when the row is fetched, the
entire CLOB value is transferred directly to a file.

LOB locators in CLI applications
There are many cases where an application needs to select a large object value and
operate on pieces of it, but does not need or want the entire value to be transferred

SQLFreeHandle
(Statement)

If statement is not executed again.

SQLBindCol SQLBindFileToCol

SQLExecuteSQLExecute

CLOB

CLOB

SQLFetch SQLFetch

SQLPrepare

SQLAllocHandle
(Statement)

SQLGetPosition

SQLGetSubString

SQLExecDirect
"FREE LOCATOR"

SQLGetLength

locator

locator

locator , buffer buffer

locator

locator

"string",

Figure 3. Fetching CLOB data

Chapter 5. Data types 61

from the database server into application memory. In these cases, the application
can reference an individual LOB value via a large object locator (LOB locator).

A LOB locator is a token value, defined as type SQLINTEGER, that allows for
efficient random access of a large object. When a LOB locator is used, the server
performs the query and instead of placing the value of the LOB column in the
result set, it updates the LOB locator with an integer that corresponds to the value
of the LOB. When the application later requests the result, the application then
passes the locator to the server and the server returns the LOB result.

A LOB locator is not stored in the database. It refers to a LOB value during a
transaction, and does not persist beyond the transaction in which it was created. It
is a simple token value created to reference a single large object value, and not a
column in a row. There is no operation that could be performed on a locator that
would have an effect on the original LOB value stored in the row.

Each of the three LOB locator types has its own C data type
(SQL_C_BLOB_LOCATOR, SQL_C_CLOB_LOCATOR,
SQL_C_DBCLOB_LOCATOR). These types are used to enable transfer of LOB
locator values to and from the database server.

Locators are implicitly allocated by:
v Fetching a bound LOB column to the appropriate C locator type.
v Calling SQLGetSubString() and specifying that the substring be retrieved as a

locator.
v Calling SQLGetData() on an unbound LOB column and specifying the

appropriate C locator type. The C locator type must match the LOB column type
or an error will occur.

In a CLI application, for a statement that retrieves LOB data, by default the row
data is returned with LOB locators to reference the LOB values. In cases where a
buffer of an adequate size has been bound to a LOB column, the LOB value will be
returned in the buffer and not as a LOB locator.

Differences between regular data types and LOB locators

LOB locators can in general be treated as any other data type, but there are some
important differences:
v Locators are generated at the server when a row is fetched and a LOB locator C

data type is specified on SQLBindCol(), or when SQLGetSubString() is called to
define a locator on a portion of another LOB. Only the locator is transferred to
the application.

v The value of the locator is only valid within the current transaction. You cannot
store a locator value and use it beyond the current transaction, even if the cursor
used to fetch the LOB locator has the WITH HOLD attribute.

v A locator can also be freed before the end of the transaction with the FREE
LOCATOR statement.

v Once a locator is received, the application can use SQLGetSubString(), to either
receive a portion of the LOB value, or to generate another locator representing
the sub-string. The locator value can also be used as input for a parameter
marker (using SQLBindParameter()).
A LOB locator is not a pointer to a database position, but rather it is a reference
to a LOB value: a snapshot of that LOB value. There is no association between
the current position of the cursor and the row from which the LOB value was

62 Call Level Interface Guide and Reference Volume 1

extracted. This means that even after the cursor has moved to a different row,
the LOB locator (and thus the value that it represents) can still be referenced.

v SQLGetPosition() and SQLGetLength() can be used with SQLGetSubString() to
define the sub-string.

For a given LOB column in the result set, the binding can be to a:
v storage buffer for holding the entire LOB data value,
v LOB locator, or
v LOB file reference (using SQLBindFileToCol()).

Examples of using LOB locators

LOB locators also provide an efficient method of moving data from one column of
a table in a database to another column (of the same or different table) without
having to pull the data first into application memory and then sending it back to
the server. The following INSERT statement inserts a LOB value that is a
concatenation of 2 LOB values as represented by their locators:
INSERT INTO lobtable values (CAST ? AS CLOB(4k) || CAST ? AS CLOB(5k))

CLI applications may also obtain LOB values in pieces using the following
VALUES statement:
VALUES (SUBSTR(:locator, :offset, :length))

Direct file input and output for LOB handling in CLI
applications

As an alternative to using LOB locators, if an application requires the entire LOB
column value, it can request direct file input and output for LOBs. Database
queries, updates, and inserts may involve transfer of single LOB column values
into and from files. The two CLI LOB file access functions are:

SQLBindFileToCol()
Binds (associates) a LOB column in a result set with a file name.

Example:
SQLUINTEGER fileOption = SQL_FILE_OVERWRITE;
SQLINTEGER fileInd = 0;
SQLSMALLINT fileNameLength = 14;
/* ... */
SQLCHAR fileName[14] = "";

/* ... */
rc = SQLBindFileToCol(hstmt, 1, fileName, &fileNameLength,

&fileOption, 14, NULL, &fileInd);

SQLBindFileToParam()
Binds (associates) a LOB parameter marker with a file name.

Example:
SQLUINTEGER fileOption = SQL_FILE_OVERWRITE;
SQLINTEGER fileInd = 0;
SQLSMALLINT fileNameLength = 14;
/* ... */
SQLCHAR fileName[14] = "";

/* ... */

rc = SQLBindFileToParam(hstmt, 3, SQL_BLOB, fileName,
&fileNameLength, &fileOption, 14, &fileInd);

Chapter 5. Data types 63

The file name is either the complete path name of the file (which is recommended),
or a relative file name. If a relative file name is provided, it is appended to the
current path (of the operating environment) of the client process. On execute or
fetch, data transfer to and from the file would take place, in a similar way to that
of bound application variables. A file options argument associated with these 2
functions indicates how the files are to be handled at time of transfer.

Use of SQLBindFileToParam() is more efficient than the sequential input of data
segments using SQLPutData(), since SQLPutData() essentially puts the input
segments into a temporary file and then uses the SQLBindFileToParam() technique
to send the LOB data value to the server. Applications should take advantage of
SQLBindFileToParam() instead of using SQLPutData().

Note: CLI uses a temporary file when inserting LOB data in pieces. If the data
originates in a file, the use of a temporary file can be avoided by using
SQLBindFileToParam(). Call SQLGetFunctions() to query if support is provided for
SQLBindFileToParam(), since SQLBindFileToParam() is not supported against
servers that do not support LOBs.

LOB usage in ODBC applications
Existing ODBC-compliant applications use SQL_LONGVARCHAR and
SQL_LONGVARBINARY instead of the DB2 BLOB and CLOB data types. You can
still access LOB columns from these ODBC-compliant applications by setting the
LongDataCompat configuration keyword in the initialization file, or setting the
SQL_ATTR_LONGDATA_COMPAT connection attribute using
SQLSetConnectAttr(). Once this is done, CLI will map the ODBC long data types
to the DB2 LOB data types. The LOBMaxColumnSize configuration keyword
allows you to override the default COLUMN_SIZE for LOB data types.

When this mapping is in effect:
v SQLGetTypeInfo() will return CLOB, BLOB and DBCLOB characteristics when

called with SQL_LONGVARCHAR, SQL_LONGVARBINARY or
SQL_LONGVARGRAPHIC.

v The following functions will return SQL_LONGVARCHAR,
SQL_LONGVARBINARY or SQL_LONGVARGRAPHIC when describing CLOB,
BLOB or DBCLOB data types:
– SQLColumns()

– SQLSpecialColumns()

– SQLDescribeCol()

– SQLColAttribute()

– SQLProcedureColumns()

v LONG VARCHAR and LONG VARCHAR FOR BIT DATA will continue to be
described as SQL_LONGVARCHAR and SQL_LONGVARBINARY.

The default setting for SQL_ATTR_LONGDATA_COMPAT is
SQL_LD_COMPAT_NO; that is, mapping is not in effect.

With mapping in effect, ODBC applications can retrieve and input LOB data by
using the SQLGetData(), SQLPutData() and related functions.

64 Call Level Interface Guide and Reference Volume 1

Long data for bulk inserts and updates in CLI applications
Long data can be provided for bulk inserts and updates performed by calls to
SQLBulkOperations().
1. When an application binds the data using SQLBindCol(), the application places

an application-defined value, such as the column number, in the *TargetValuePtr
buffer for data-at-execution columns. The value can be used later to identify the
column.
The application places the result of the SQL_LEN_DATA_AT_EXEC(length)
macro in the *StrLen_or_IndPtr buffer. If the SQL data type of the column is
SQL_LONGVARBINARY, SQL_LONGVARCHAR, or a long, data
source-specific data type and CLI returns "Y" for the
SQL_NEED_LONG_DATA_LEN information type in SQLGetInfo(), length is the
number of bytes of data to be sent for the parameter; otherwise, it must be a
non-negative value and is ignored.

2. When SQLBulkOperations() is called, if there are data-at-execution columns, the
function returns SQL_NEED_DATA and proceeds to the next event in the
sequence, described in the next item. (If there are no data-at-execution columns,
the process is complete.)

3. The application calls SQLParamData() to retrieve the address of the
*TargetValuePtr buffer for the first data-at-execution column to be processed.
SQLParamData() returns SQL_NEED_DATA. The application retrieves the
application-defined value from the *TargetValuePtr buffer.

Note: Although data-at-execution parameters are similar to data-at-execution
columns, the value returned by SQLParamData() is different for each.

Data-at-execution columns are columns in a rowset for which data will be sent
with SQLPutData() when a row is updated or inserted with
SQLBulkOperations(). They are bound with SQLBindCol(). The value returned
by SQLParamData() is the address of the row in the *TargetValuePtr buffer that is
being processed.

4. The application calls SQLPutData() one or more times to send data for the
column. More than one call is needed if all the data value cannot be returned
in the *TargetValuePtr buffer specified in SQLPutData(); note that multiple calls
to SQLPutData() for the same column are allowed only when sending character
C data to a column with a character, binary, or data source-specific data type or
when sending binary C data to a column with a character, binary, or data
source-specific data type.

5. The application calls SQLParamData() again to signal that all data has been sent
for the column.
v If there are more data-at-execution columns, SQLParamData() returns

SQL_NEED_DATA and the address of the TargetValuePtr buffer for the next
data-at-execution column to be processed. The application repeats steps 4
and 5 as long as SQLParamData() returns SQL_NEED_DATA.

v If there are no more data-at-execution columns, the process is complete. If
the statement was executed successfully, SQLParamData() returns
SQL_SUCCESS or SQL_SUCCESS_WITH_INFO; if the execution failed, it
returns SQL_ERROR. At this point, SQLParamData() can return any
SQLSTATE that can be returned by SQLBulkOperations().

If the operation is canceled, or an error occurs in SQLParamData() or SQLPutData(),
after SQLBulkOperations() returns SQL_NEED_DATA, and before data is sent for
all data-at-execution columns, the application can call only SQLCancel(),

Chapter 5. Data types 65

SQLGetDiagField(), SQLGetDiagRec(), SQLGetFunctions(), SQLParamData(), or
SQLPutData() for the statement or the connection associated with the statement. If
it calls any other function for the statement or the connection associated with the
statement, the function returns SQL_ERROR and SQLSTATE HY010 (Function
sequence error).

On DB2 for z/OS, calls to the SQLEndTran() function specifying SQL_ROLLBACK
as completion type are allowed when the SQL_ATTR_FORCE_ROLLBACK
connection attribute is set, the StreamPutData configuration keyword is set to 1,
and autocommit mode is enabled.

If the application calls SQLCancel() while CLI still needs data for data-at-execution
columns, CLI cancels the operation. The application can then call
SQLBulkOperations() again; canceling does not affect the cursor state or the current
cursor position.

User-defined type (UDT) usage in CLI applications
User-defined types (UDTs) are database types defined by the user to provide
structure or strong typing not available with conventional SQL types. There are
three varieties of UDT: distinct types, structured types, and reference types.

Note: User-defined types (UDTs) are not currently supported by CLI when
running with an IDS data server. Using a UDT with an IDS data server will return
CLI Error -999 [IBM][CLI Driver][IDS] Not implemented yet.

A CLI application may want to determine whether a given database column is a
UDT, and if so, the variety of UDT. The descriptor field
SQL_DESC_USER_DEFINED_TYPE_CODE may be used to obtain this information.
When SQL_DESC_USER_DEFINED_TYPE_CODE is retrieved using
SQLColAttribute() or directly from the IPD using SQLGetDescField(), it will have
one of the following numeric values:

SQL_TYPE_BASE (this is a regular SQL type, not a UDT)
SQL_TYPE_DISTINCT (this value indicates that the column

is a distinct type)
SQL_TYPE_STRUCTURED (this value indicates that the column

is a structured type)
SQL_TYPE_REFERENCE (this value indicates that the column

is a reference type)

Additionally, the following descriptor fields may be used to obtain the type names:
v SQL_DESC_REFERENCE_TYPE contains the name of the reference type, or an

empty string if the column is not a reference type.
v SQL_DESC_STRUCTURED_TYPE contains the name of the structured type, or

an empty string if the column is not a structured type.
v SQL_DESC_USER_TYPE or SQL_DESC_DISTINCT_TYPE contains the name of

the distinct type, or an empty string if the column is not a distinct type.

Descriptor fields return a schema as part of the name. If the schema is less than 8
letters, it is padded with blanks.

The connection attribute SQL_ATTR_TRANSFORM_GROUP allows an application
to set the transform group, and is an alternative to the SQL statement SET
CURRENT DEFAULT TRANSFORM GROUP.

66 Call Level Interface Guide and Reference Volume 1

A CLI application may not want to repeatedly obtain the value of the
SQL_DESC_USER_DEFINED_TYPE_CODE descriptor field to determine if columns
contain UDTs. For this reason, there is an attribute called
SQL_ATTR_RETURN_USER_DEFINED_TYPES at both the connection and the
statement handle level. When set to SQL_TRUE using SQLSetConnectAttr(), CLI
returns SQL_DESC_USER_DEFINED_TYPE where you would normally find SQL
types in results from calls to SQLColAttribute(), SQLDescribeCol() and
SQLGetDescField(). This allows the application to check for this special type, and
then do special processing for UDTs. The default value for this attribute is
SQL_FALSE.

When the SQL_ATTR_RETURN_USER_DEFINED_TYPES attribute is set to
SQL_TRUE, the descriptor field SQL_DESC_TYPE will no longer return the "base"
SQL type of the UDT, that is, the SQL type that the UDT is based on or transforms
to. For this reason, the descriptor field SQL_DESC_BASE_TYPE will always return
the base type of UDTs, and the SQL type of normal columns. This field simplifies
modules of a program that do not deal specifically with UDTs that would
otherwise have to change the connection attribute.

Note that SQLBindParameter() will not allow you to bind a parameter of the type
SQL_USER_DEFINED_TYPE. You must still bind parameters using the base SQL
type, which you can obtain using the descriptor field SQL_DESC_BASE_TYPE. For
example, here is the SQLBindParameter() call used when binding to a column with
a distinct type based on SQL_VARCHAR:

sqlrc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_VARCHAR, 30, 0, &c2, 30, NULL);

Distinct type usage in CLI applications
In addition to SQL data types (referred to as base SQL data types), new distinct
types can be defined by the user. This variety of user defined types (UDTs) shares
its internal representation with an existing type, but is considered to be a separate
and incompatible type for most operations. Distinct types are created using the
CREATE DISTINCT TYPE SQL statement.

Distinct types help provide the strong typing control needed in object oriented
programming by ensuring that only those functions and operators explicitly
defined on a distinct type can be applied to its instances. Applications continue to
work with C data types for application variables, and only need to consider the
distinct types when constructing SQL statements.

This means:
v All SQL to C data type conversion rules that apply to the built-in type apply to

distinct types.
v Distinct types will have the same default C Type as the built-in type.
v SQLDescribeCol() will return the built-in type information. The user defined

type name can be obtained by calling SQLColAttribute() with the input
descriptor type set to SQL_DESC_DISTINCT_TYPE.

v SQL predicates that involve parameter markers must be explicitly cast to the
distinct type. This is required since the application can only deal with the
built-in types, so before any operation can be performed using the parameter, it
must be cast from the C built-in type to the distinct type; otherwise an error will
occur when the statement is prepared.

Chapter 5. Data types 67

XML data handling in CLI applications - Overview
CLI applications can retrieve and store XML data by using the SQL_XML data
type. This data type corresponds to the native XML data type of the DB2 database,
which is used to define columns that store well-formed XML documents. You can
bind the SQL_XML type to the following C types: SQL_C_BINARY, SQL_C_CHAR,
SQL_C_WCHAR, and SQL_C_DBCHAR. Use the default SQL_C_BINARY type,
instead of character types, to avoid possible data loss or corruption, which could
result from code page conversion when character types are used.

To store XML data in an XML column, bind a binary (SQL_C_BINARY) or
character (SQL_C_CHAR, SQL_C_WCHAR, or SQL_C_DBCHAR) buffer that
contains the XML value to the SQL_XML SQL type and execute the INSERT or
UPDATE SQL statements. To retrieve XML data from the database, bind the result
set to a binary (SQL_C_BINARY) or character (SQL_C_CHAR, SQL_C_WCHAR, or
SQL_C_DBCHAR) type. You should use character types with caution because of
encoding issues.

When an XML value is retrieved into an application data buffer, the DB2 server
performs an implicit serialization on the XML value to convert it from its stored
hierarchical form to the serialized string form. For character-typed buffers, the
XML value is implicitly serialized to the application character code page that is
associated with the character type.

By default, an XML declaration is included in the output serialized string. You can
change this default behavior by setting the SQL_ATTR_XML_DECLARATION
statement or connection attribute, or by setting the XMLDeclaration CLI/ODBC
configuration keyword in the db2cli.ini file.

You can issue and execute XQuery expressions and SQL/XML functions in CLI
applications. SQL/XML functions are issued and executed like any other SQL
statements. You must add a prefix to the XQuery expressions with the not case
sensitive keyword XQUERY, or you must set the SQL_ATTR_XQUERY_STATEMENT
statement attribute for the statement handle that is associated with the XQuery
expression.

Note: Starting with DB2 Version 9.7 Fix Pack 5, the SQL_XML data type is
supported for DB2 for i V7R1 servers or later releases.

Changing of default XML type handling in CLI applications
CLI supports CLI/ODBC configuration keywords that provide compatibility for
applications that do not expect the default types returned when describing or
specifying SQL_C_DEFAULT for XML columns and parameter markers. Older CLI
and ODBC applications might not recognize or expect the default SQL_XML type
when describing XML columns or parameters. Some CLI or ODBC applications
might also expect a default type other than SQL_C_BINARY for XML columns and
parameter markers. To provide compatibility for these types of applications, CLI
supports the MapXMLDescribe and MapXMLCDefault keywords.

MapXMLDescribe specifies which SQL data type is returned when XML columns
or parameter markers are described.

MapXMLCDefault specifies the C type that is used when SQL_C_DEFAULT is
specified for XML columns and parameter markers in CLI functions.

68 Call Level Interface Guide and Reference Volume 1

Chapter 6. Transaction processing in CLI overview

Figure 4 shows the typical order of function calls in the transaction processing task
of a CLI application. Not all functions or possible paths are shown.

The transaction processing task contains five steps:
v Allocating statement handle(s)

Commit or Rollback Free Statement

Statement not executed again

Receive Query Results Update Data Other

(SELECT, VALUES)
(UPDATE, DELETE,
INSERT)

(ALTER, CREATE, DROP,
GRANT, REVOKE, SET)

SQLEndTran() SQLFreeHandle()
(Statement)

SQLFetch()

SQLGetData()

SQLRowCount() (no functions required)

SQLBindCol()

SQLColAttribute()
or

SQLDescribeCol()

SQLNumResultCols()

Prepare a Statement

SQLPrepare()
SQLBindParameter()

Directly Execute
a Statement

SQLBindParameter()
SQLExecDirect()

Allocate a Statement

SQLAllocHandle()

Execute a Statement

SQLExecute()

Figure 4. Transaction processing

© Copyright IBM Corp. 2012 69

v Preparing and executing SQL statements
v Processing results
v Committing or Rolling Back
v (Optional) Freeing statement handle(s) if the statement is unlikely to be executed

again.

Allocating statement handles in CLI applications
To issue an SQL statement in a CLI application, you need to allocate a statement
handle. A statement handle tracks the execution of a single SQL statement and is
associated with a connection handle. Allocating statement handles is part of the
larger task of processing transactions.

Before you begin

Before you begin allocating statement handles, you must allocate an environment
handle and a connection handle. This is part of the task of initializing your CLI
application.

Procedure

To allocate a statement handle:
1. Call SQLAllocHandle() with a HandleType of SQL_HANDLE_STMT. For

example:
SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

2. Optional: To set attributes for this statement, call SQLSetStmtAttr() for each
required attribute option.

Results

After allocating environment, connection, and statement handles, you can now
prepare, issue, or execute SQL statements.

Issuing SQL statements in CLI applications
SQL statements are passed to CLI functions as SQLCHAR string variables. The
variable can consist of one or more SQL statements, with or without parameter
markers, depending on the type of processing you want. This topic describes the
various ways SQL statements can be issued in CLI applications.

Before you begin

Before you issue an SQL statement, ensure you have allocated a statement handle.

Procedure

Perform either of the following steps to issue SQL statements:
v To issue a single SQL statement, either initialize an SQLCHAR variable with the

SQL statement and pass this variable to the CLI function, or directly pass a
string argument cast to an SQLCHAR * to the function. For example:
SQLCHAR * stmt = (SQLCHAR *) "SELECT deptname, location FROM org";
/* ... */
SQLExecDirect (hstmt, stmt, SQL_NTS);

70 Call Level Interface Guide and Reference Volume 1

or
SQLExecDirect (hstmt, (SQLCHAR *) "SELECT deptname, location FROM org",

SQL_NTS);

v To issue multiple SQL statements on the same statement handle:
1. Initialize an array of SQLCHAR elements, where each element represents an

individual SQL statement, or initialize a single SQLCHAR variable that
contains the multiple statements delimited by a ";" character. For example:
SQLCHAR * multiple_stmts[] = {

(SQLCHAR *) "SELECT deptname, location FROM org",
(SQLCHAR *) "SELECT id, name FROM staff WHERE years > 5",
(SQLCHAR *) "INSERT INTO org VALUES (99,’Hudson’,20,’Western’,’Seattle’)"

};

or
SQLCHAR * multiple_stmts =

"SELECT deptname, location FROM org;
SELECT id, name FROM staff WHERE years > 5;
INSERT INTO org VALUES (99, ’Hudson’, 20, ’Western’, ’Seattle’)";

2. Call SQLExecDirect() to issue the first statement in the statement handle and
then call SQLMoreResults() to issue subsequent statements in the statement
handle, as shown in the following example:
/* Issuing the first SELECT statement of multiple_stmts */
cliRC = SQLExecDirect (hstmt, multiple_stmts, SQL_NTS);
/* ... process result-set of first SELECT statement ... */

/* Issuing the second SELECT statement of multiple_stmts */
cliRC = SQLMoreResults(hstmt);
/* ... process result-set of second SELECT statement ... */

/* Issuing the INSERT statement of multiple_stmts */
cliRC = SQLMoreResults(hstmt);
/* cliRC is set to SQL_NO_DATA_FOUND to indicate that */
/* there are no more SQL statements to issue */

When a list of SQL statements is specified on the same statement handle,
only one statement is issued at a time, starting with the first statement in the
list. Each subsequent statement is issued in the order it appears.

v To issue SQL statements with parameter markers, see “Binding parameter
markers in CLI applications” on page 73.

v To capture and convert SQL statements dynamically executed with CLI (dynamic
SQL) to static SQL, see “Creating static SQL with CLI/ODBC Static Profiling” on
page 118.

Parameter marker binding in CLI applications
Parameter markers indicate the position in the SQL statement where the contents
of application variables are to be substituted when the statement is executed. (A
parameter marker is used where a host variable can be used in static embedded
SQL.) CLI supports unnamed parameter markers, which are represented by a
question mark (?), and named parameter markers, which are represented by a
colon followed by a name (for example, :name, where name is a valid identifier). To
use named parameter markers, you must explicitly enable named parameter
processing by setting the EnableNamedParameterSupport configuration keyword
to TRUE.

Parameter markers can be bound to:
v An application variable.

Chapter 6. Processing transactions 71

SQLBindParameter() is used to bind the application storage area to the parameter
marker.

v A LOB value from the database server (by specifying a LOB locator).
SQLBindParameter() is used to bind a LOB locator to the parameter marker. The
LOB value itself is supplied by the database server, so only the LOB locator is
transferred between the database server and the application.

v A file within the application's environment containing a LOB value.
SQLBindFileToParam() is used to bind a file to a LOB parameter marker. When
SQLExecDirect() is executed, CLI will transfer the contents of the file directly to
the database server.

An application cannot place parameter markers in the listed locations:
v In a SELECT list
v As both expressions in a comparison-predicate
v As both operands of a binary operator
v As both the first and second operands of a BETWEEN operation
v As both the first and third operands of a BETWEEN operation
v As both the expression and the first value of an IN operation
v As the operand of a unary + or – operation
v As the argument of a SET FUNCTION reference

Parameter markers are referenced sequentially, from left to right, starting at 1.
SQLNumParams() can be used to determine the number of parameters in a statement.

The application must bind an application variable to each parameter marker in the
SQL statement before it executes that statement. Binding is carried out by calling
the SQLBindParameter() function with a number of arguments to indicate:
v the ordinal position of the parameter,
v the SQL type of the parameter,
v the type of parameter (input, output, or inout),
v the C data type of the variable,
v a pointer to the application variable,
v the length of the variable.

The bound application variable and its associated length are called deferred input
arguments because only the pointers are passed when the parameter is bound; no
data is read from the variable until the statement is executed. Deferred arguments
allow the application to modify the contents of the bound parameter variables, and
re-execute the statement with the new values.

Information about each parameter remains in effect until:
v it is overridden by the application
v the application unbinds the parameter by calling SQLFreeStmt() with the

SQL_RESET_PARAMS Option

v the application drops the statement handle by calling SQLFreeHandle() with a
HandleType of SQL_HANDLE_STMT or SQLFreeStmt() with the SQL_DROP
Option.

Information for each parameter remains in effect until overridden, or until the
application unbinds the parameter or drops the statement handle. If the application
executes the SQL statement repeatedly without changing the parameter binding,

72 Call Level Interface Guide and Reference Volume 1

then CLI uses the same pointers to locate the data on each execution. The
application can also change the parameter binding to a different set of deferred
variables by calling SQLBindParameter() again for one or more parameters and
specifying different application variables. The application must not deallocate or
discard variables used for deferred input fields between the time it binds the fields
to parameter markers and the time CLI accesses them at execution time. Doing so
can result in CLI reading garbage data, or accessing invalid memory resulting in
an application trap.

It is possible to bind the parameter to a variable of a different type from that
required by the SQL statement. The application must indicate the C data type of
the source, and the SQL type of the parameter marker, and CLI will convert the
contents of the variable to match the SQL data type specified. For example, the
SQL statement might require an integer value, but your application has a string
representation of an integer. The string can be bound to the parameter, and CLI
will convert the string to the corresponding integer value when you execute the
statement.

By default, CLI does not verify the type of the parameter marker. If the application
indicates an incorrect type for the parameter marker, it might cause:
v an extra conversion by the DBMS
v an error at the DBMS which forces CLI to describe the statement being executed

and re-execute it, resulting in extra network traffic
v an error returned to the application if the statement cannot be described, or the

statement cannot be re-executed successfully.

Information about the parameter markers can be accessed using descriptors. If you
enable automatic population of the implementation parameter descriptor (IPD)
then information about the parameter markers will be collected. The statement
attribute SQL_ATTR_ENABLE_AUTO_IPD must be set to SQL_TRUE for this to
work.

If the parameter marker is part of a predicate on a query and is associated with a
User Defined Type, then the parameter marker must be cast to the built-in type in
the predicate portion of the statement; otherwise, an error will occur.

After the SQL statement has been executed, and the results processed, the
application might want to reuse the statement handle to execute a different SQL
statement. If the parameter marker specifications are different (number of
parameters, length or type) then SQLFreeStmt() must be called with
SQL_RESET_PARAMS to reset or clear the parameter bindings.

Binding parameter markers in CLI applications
This topic describes how to bind parameter markers to application variables before
executing SQL statements.

Parameter markers in SQL statements can be bound to single values or to arrays of
values. Binding each parameter marker individually requires a network flow to the
server for each set of values. Using arrays, however, allows several sets of
parameter values to be bound and sent at once to the server.

Before you begin

Before you bind parameter markers, ensure you have initialized your application.

Chapter 6. Processing transactions 73

Procedure

To bind parameter markers, perform either of the following steps:
v To bind parameter markers one at a time to application variables, call

SQLBindParameter() for each application variable you want to bind. Ensure you
specify the correct parameter type: SQL_PARAM_INPUT,
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT. The following
example shows how two parameter markers are bound with two application
variables:
SQLCHAR *stmt =

(SQLCHAR *)"DELETE FROM org WHERE deptnumb = ? AND division = ? ";
SQLSMALLINT parameter1 = 0;
char parameter2[20];

/* bind parameter1 to the statement */
cliRC = SQLBindParameter(hstmt,

1,
SQL_PARAM_INPUT,
SQL_C_SHORT,
SQL_SMALLINT,
0,
0,
¶meter1,
0,
NULL);

/* bind parameter2 to the statement */
cliRC = SQLBindParameter(hstmt,

2,
SQL_PARAM_INPUT,
SQL_C_CHAR,
SQL_VARCHAR,
20,
0,
parameter2,
20,
NULL);

v To bind at once many values to parameter markers, perform either of the
following tasks which use arrays of values:
– binding parameter markers with column-wise array inputbinding parameter

markers with column-wise array input
– binding parameter markers with row-wise array inputbinding parameter

markers with row-wise array input

Binding parameter markers in CLI applications with
column-wise array input

To process an SQL statement that will be repeated with different values, you can
use column-wise array input to achieve bulk inserts, deletes, or updates.

This results in fewer network flows to the server because SQLExecute() does not
have to be called repeatedly on the same SQL statement for each value.
Column-wise array input allows arrays of storage locations to be bound to
parameter markers. A different array is bound to each parameter.

Before you begin

Before binding parameter markers with column-wise binding, ensure that you have
initialized your CLI application.

74 Call Level Interface Guide and Reference Volume 1

About this task

For character and binary input data, the application uses the maximum input
buffer size argument (BufferLength) of the SQLBindParameter() call to indicate to
CLI the location of values in the input array. For other input data types, the length
of each element in the array is assumed to be the size of the C data type.

Procedure

To bind parameter markers using column-wise array input:
1. Specify the size of the arrays (the number rows to be inserted) by calling

SQLSetStmtAttr() with the SQL_ATTR_PARAMSET_SIZE statement attribute.
2. Initialize and populate an array for each parameter marker to be bound.

Note: Each array must contain at least SQL_ATTR_PARAMSET_SIZE elements,
otherwise, memory access violations may occur.

3. Optional: Indicate that column-wise binding is to be used by setting the
SQL_ATTR_PARAM_BIND_TYPE statement attribute to
SQL_BIND_BY_COLUMN (this is the default setting).

4. Bind each parameter marker to its corresponding array of input values by
calling SQLBindParameter() for each parameter marker.

Binding parameter markers in CLI applications with row-wise
array input

To process an SQL statement that will be repeated with different values, you can
use row-wise array input to achieve bulk inserts, deletes, or updates.

This results in fewer network flows to the server because SQLExecute() does not
have to be called repeatedly on the same SQL statement for each value. Row-wise
array input allows an array of structures to be bound to parameters.

Before you begin

Before binding parameter markers with row-wise binding, ensure that you have
initialized your CLI application.

Procedure

To bind parameter markers using row-wise array input:
1. Initialize and populate an array of structures that contains two elements for

each parameter: the first element contains the length/indicator buffer, and the
second element holds the value itself. The size of the array corresponds to the
number of values to be applied to each parameter. For example, the following
array contains the length and value for three parameters:

struct { SQLINTEGER La; SQLINTEGER A; /* Information for parameter A */
SQLINTEGER Lb; SQLCHAR B[4]; /* Information for parameter B */
SQLINTEGER Lc; SQLCHAR C[11]; /* Information for parameter C */

} R[n];

2. Indicate that row-wise binding is to by used by setting the
SQL_ATTR_PARAM_BIND_TYPE statement attribute to the length of the struct
created in the previous step, using SQLSetStmtAttr().

3. Set the statement attribute SQL_ATTR_PARAMSET_SIZE to the number of
rows of the array, using SQLSetStmtAttr().

Chapter 6. Processing transactions 75

4. Bind each parameter to the first row of the array created in step 1 using
SQLBindParameter(). For example,

/* Parameter A */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,

SQL_INTEGER, 5, 0, &R[0].A, 0, &R.La);

/* Parameter B */
rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

3, 0, R[0].B, 3, &R.Lb);

/* Parameter C */
rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

10, 0, R[0].C, 10, &R.Lc);

Parameter diagnostic information in CLI applications
A parameter status array is an array of one or more SQLSMALLINTs allocated by a
CLI application. Each element in the array corresponds to an element in the input
(or output) parameter array. If specified, the CLI driver updates the parameter
status array with information about the processing status of each set of parameters
included in an SQLExecute() or SQLExecDirect() call.

CLI updates the elements in the parameter status array with the following values:
v SQL_PARAM_SUCCESS: The SQL statement was successfully executed for this

set of parameters.
v SQL_PARAM_SUCCESS_WITH_INFO: The SQL statement was successfully

executed for this set of parameters, however, warning information is available in
the diagnostics data structure.

v SQL_PARAM_ERROR: An error occurred in processing this set of parameters.
Additional error information is available in the diagnostics data structure.

v SQL_PARAM_UNUSED: This parameter set was unused, possibly because a
previous parameter set caused an error that aborted further processing.

v SQL_PARAM_DIAG_UNAVAILABLE: Diagnostic information is not available,
possibly because an error was detected before the parameter set was even used
(for example, an SQL statement syntax error).

A CLI application must call the SQLSetStmtAttr() function to set the
SQL_ATTR_PARAM_STATUS_PTR attribute before CLI will update the parameter
status array. Alternatively, the application can call the SQLSetDescField() function
to set the SQL_DESC_ARRAY_STATUS_PTR field in the IPD descriptor to point to
the parameter status array.

The statement attribute SQL_ATTR_PARAMS_PROCESSED, or the corresponding
IPD descriptor header field SQL_DESC_ROWS_PROCESSED_PTR, can be used to
return the number of sets of parameters that have been processed.

Once the application has determined what parameters had errors, it can use the
statement attribute SQL_ATTR_PARAM_OPERATION_PTR, or the corresponding
APD descriptor header field SQL_DESC_ARRAY_STATUS_PTR, (both of which
point to an array of values) to control which sets of parameters are ignored in a
second call to SQLExecute() or SQLExecDirect().

Changing parameter bindings in CLI applications with offsets
When an application needs to change parameter bindings, it can call
SQLBindParameter() a second time.

76 Call Level Interface Guide and Reference Volume 1

This will change the bound parameter buffer address and the corresponding
length/indicator buffer address used. Instead of multiple calls to
SQLBindParameter(), however, CLI also supports parameter binding offsets. Rather
than re-binding each time, an offset can be used to specify new buffer and
length/indicator addresses which will be used in a subsequent call to SQLExecute()
or SQLExecDirect().

Before you begin

Before changing your parameter bindings, ensure that your application has been
initialized.

Procedure

To change parameter bindings by using offsets:
1. Call SQLBindParameter() as you had been to bind the parameters.

The first set of bound parameter buffer addresses and the corresponding
length/indicator buffer addresses will act as a template. The application will
then move this template to different memory locations using the offset.

2. Call SQLExecute() or SQLExecDirect() as you had been to execute the
statement.
The values stored in the bound addresses will be used.

3. Initialize a variable to hold the memory offset value.
The statement attribute SQL_ATTR_PARAM_BIND_OFFSET_PTR points to the
address of an SQLINTEGER buffer where the offset will be stored. This address
must remain valid until the cursor is closed.
This extra level of indirection enables the use of a single memory variable to
store the offset for multiple sets of parameter buffers on different statement
handles. The application need only set this one memory variable and all of the
offsets will be changed.

4. Store an offset value (number of bytes) in the memory location pointed to by
the statement attribute set in the previous step.
The offset value is always added to the memory location of the originally
bound values. This sum must point to a valid memory address.

5. Call SQLExecute() or SQLExecDirect() again. CLI will add the offset value to
the location used in the original call to SQLBindParameter() to determine where
the parameters to be used are stored in memory.

6. Repeat steps 4 and 5 as required.

Specifying parameter values at execute time for long data
manipulation in CLI applications

When manipulating long data, it might not be feasible for the application to load
the entire parameter data value into storage at the time the statement is executed,
or when the data is fetched from the database.

A method has been provided to allow the application to handle the data in a
piecemeal fashion. The technique of sending long data in pieces is called specifying
parameter values at execute time.

It can also be used to specify values for fixed size non-character data types such as
integers.

Chapter 6. Processing transactions 77

Before you begin

Before specifying parameter values at execute time, ensure you have initialized
your CLI application.

About this task

While the data-at-execution flow is in progress, the only CLI functions the
application can call are:
v SQLParamData() and SQLPutData() functions.
v The SQLCancel() function which is used to cancel the flow and force an exit

from the loops without executing the SQL statement.
v The SQLGetDiagRec() function.

A data-at-execute parameter is a bound parameter for which a value is prompted
at execution time instead of stored in memory before SQLExecute() or
SQLExecDirect() is called.

Procedure

To indicate such a parameter on an SQLBindParameter() call:
1. Set the input data length pointer to point to a variable that, at execute time,

will contain the value SQL_DATA_AT_EXEC. For example:
/* dtlob.c */
/* ... */
SQLINTEGER blobInd ;
/* ... */
blobInd = SQL_DATA_AT_EXEC;
sqlrc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

SQL_BLOB, BUFSIZ, 0, (SQLPOINTER)inputParam,
BUFSIZ, &blobInd);

2. If there is more than one data-at-execute parameter, set each input data pointer
argument to some value that it will recognize as uniquely identifying the field
in question.

3. If there are any data-at-execute parameters when the application calls
SQLExecDirect() or SQLExecute(), the call returns with SQL_NEED_DATA to
prompt the application to supply values for these parameters. The application
responds with the subsequent steps.

4. Call SQLParamData() to conceptually advance to the first such parameter.
SQLParamData() returns SQL_NEED_DATA and provides the contents of the
input data pointer argument specified on the associated
SQLBindParameter()call to help identify the information required.

5. Pass the actual data for the parameter by calling SQLPutData(). Long data can
be sent in pieces by calling SQLPutData() repeatedly.

6. Call SQLParamData() again after providing the entire data for this
data-at-execute parameter.

7. If more data-at-execute parameters exist, SQLParamData() again returns
SQL_NEED_DATA and the application repeats steps 4 and 5.
For example:

/* dtlob.c */
/* ... */

else
{ sqlrc = SQLParamData(hstmt, (SQLPOINTER *) &valuePtr);

/* ... */

78 Call Level Interface Guide and Reference Volume 1

while (sqlrc == SQL_NEED_DATA)
{ /*

if more than 1 parms used DATA_AT_EXEC then valuePtr would
have to be checked to determine which param needed data
*/
while (feof(pFile) == 0)
{ n = fread(buffer, sizeof(char), BUFSIZ, pFile);

sqlrc = SQLPutData(hstmt, buffer, n);
STMT_HANDLE_CHECK(hstmt, sqlrc);
fileSize = fileSize + n;
if (fileSize > 102400u)
{ /* BLOB column defined as 100K MAX */

/* ... */
break;

}
}
/* ... */
sqlrc = SQLParamData(hstmt, (SQLPOINTER *) &valuePtr);
/* ... */

}
}

Results

When all data-at-execute parameters have been assigned values, SQLParamData()
completes execution of the SQL statement and returns a return value and
diagnostics as the original SQLExecDirect() or SQLExecute() might have produced.

Commit modes in CLI applications
A transaction is a recoverable unit of work, or a group of SQL statements that can
be treated as one atomic operation. This means that all the operations within the
group are guaranteed to be completed (committed) or undone (rolled back), as if
they were a single operation. When the transaction spans multiple connections, it
is referred to as a distributed unit of work (DUOW).

Transactions are started implicitly with the first access to the database using
SQLPrepare(), SQLExecDirect(), SQLGetTypeInfo(), or any function that returns a
result set, such as catalog functions. At this point a transaction has begun, even if
the call failed.

CLI supports two commit modes:

auto-commit
In auto-commit mode, every SQL statement is a complete transaction,
which is automatically committed. For a non-query statement, the commit
is issued at the end of statement execution. For a query statement, the
commit is issued after the cursor has been closed. The default commit
mode is auto-commit (except when participating in a coordinated
transaction).

manual-commit
In manual-commit mode, the transaction ends when you use SQLEndTran()
to either rollback or commit the transaction. This means that any
statements executed (on the same connection) between the start of a
transaction and the call to SQLEndTran() are treated as a single transaction.
If CLI is in manual-commit mode, a new transaction will be implicitly
started if the application is not already in a transaction and an SQL
statement that can be contained within a transaction is executed.

Chapter 6. Processing transactions 79

An application can switch between manual-commit and auto-commit modes by
calling SQLSetConnectAttr(). Auto-commit can be useful for query-only
applications, because the commits can be chained to the SQL execution request
sent to the server. Another benefit of auto-commit is improved concurrency
because locks are removed as soon as possible. Applications that must perform
updates to the database should turn off auto-commit as soon as the database
connection has been established and should not wait until the disconnect before
committing or rolling back the transaction.

The examples of how to set auto-commit on and off:
v Setting auto-commit on:

/* ... */

/* set AUTOCOMMIT on */
sqlrc = SQLSetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_ON, SQL_NTS) ;

/* continue with SQL statement execution */

v Setting auto-commit off:
/* ... */

/* set AUTOCOMMIT OFF */
sqlrc = SQLSetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_OFF, SQL_NTS) ;

/* ... */

/* execute the statement */
/* ... */
sqlrc = SQLExecDirect(hstmt, stmt, SQL_NTS) ;

/* ... */

sqlrc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);
DBC_HANDLE_CHECK(hdbc, sqlrc);

/* ... */

When multiple connections exist to the same or different databases, each
connection has its own transaction. Special care must be taken to call SQLEndTran()
with the correct connection handle to ensure that only the intended connection and
related transaction is affected. It is also possible to rollback or commit all the
connections by specifying a valid environment handle, and a NULL connection
handle on the SQLEndTran() call. Unlike distributed unit of work connections, there
is no coordination between the transactions on each connection in this case.

When to call the CLI SQLEndTran() function
In auto-commit mode, a commit is issued implicitly at the end of each statement
execution or when a cursor is closed.

In manual-commit mode, SQLEndTran() must be called before calling
SQLDisconnect(). If a Distributed Unit of Work is involved, additional rules may
apply.

Consider the following behavior when deciding where in the application to end a
transaction:

80 Call Level Interface Guide and Reference Volume 1

v Each connection cannot have more than one current transaction at any given
time, so keep dependent statements within the same unit of work. Note that
statements must always be kept on the same connection under which they were
allocated.

v Various resources may be held while the current transaction on a connection is
running. Ending the transaction will release the resources for use by other
applications.

v Once a transaction has successfully been committed or rolled back, it is fully
recoverable from the system logs. Open transactions are not recoverable.

Effects of calling SQLEndTran()

When a transaction ends:
v All locks on DBMS objects are released, except those that are associated with a

held cursor.
v Prepared statements are preserved from one transaction to the next. Once a

statement has been prepared on a specific statement handle, it does not need to
be prepared again even after a commit or rollback, provided the statement
continues to be associated with the same statement handle.

v Cursor names, bound parameters, and column bindings are maintained from
one transaction to the next.

v By default, cursors are preserved after a commit (but not a rollback). All cursors
are by default defined with the WITH HOLD clause, except when the CLI
application is running in a Distributed Unit of Work environment.

Preparing and executing SQL statements in CLI applications
After you have allocated a statement handle, you can perform operations using
SQL statements or XQuery expressions. An SQL statement or XQuery expression
must be prepared before it can be executed, and CLI offers two ways of preparing
and executing: perform the prepare and execute operations in separate steps, and
combine the prepare and execute operations into one step.

Before you begin

Before preparing and executing your SQL statement or XQuery expression, ensure
that you have allocated a statement handle for it.

Procedure
v To prepare and execute an SQL statement or XQuery expression in separate

steps:
1. Prepare the SQL statement or XQuery expression by calling SQLPrepare()

and passing the statement or expression as the StatementText argument.

Note: XQuery expressions must be prefixed with the case-insensitive
"XQUERY" keyword, unless the statement attribute
SQL_ATTR_XQUERY_STATEMENT has been set to SQL_TRUE for this
statement handle.

2. Call SQLBindParameter() to bind any parameter markers you have in the
SQL statement. CLI supports named parameter markers (for example, :name)
and unnamed parameter markers represented by a question mark (?).

Note:

Chapter 6. Processing transactions 81

– To use named parameter markers, you must explicitly enable named
parameter processing by setting the EnableNamedParameterSupport
configuration keyword to TRUE.

– For XQuery expressions, you cannot specify parameter markers in the
expression itself. You can, however, use the XMLQUERY function to bind
parameter markers to XQuery variables. The values of the bound
parameter markers are then passed to the XQuery expression specified in
XMLQUERY for execution.

3. Execute the prepared statement by calling SQLExecute().

Use this method when:
– The same SQL statement or XQuery expression is executed repeatedly

(usually with different parameter values). This avoids having to prepare the
same statement or expression more than once. The subsequent executions use
the access plans already generated by the prepared statement, thus increasing
driver efficiency and delivering better application performance.

– The application requires information about the parameters or columns in the
result set before the statement execution.

v To prepare and execute an SQL statement or XQuery expression in one step:
1. Call SQLBindParameter() to bind any parameter markers you may have in

the SQL statement. CLI supports named parameter markers (for example,
:name) and unnamed parameter markers represented by a question mark (?).

Note:

– To use named parameter markers, you must explicitly enable named
parameter processing by setting the EnableNamedParameterSupport
configuration keyword to TRUE.

– For XQuery expressions, you cannot specify parameter markers in the
expression itself. You can, however, use the XMLQUERY function to bind
parameter markers to XQuery variables. The values of the bound
parameter markers are then passed to the XQuery expression specified in
XMLQUERY for execution.

2. Prepare and execute the statement or expression by calling SQLExecDirect()
with the SQL statement or XQuery expression as the StatementText argument.

Note: XQuery expressions must be prefixed with the case-insensitive
"XQUERY" keyword, unless the statement attribute
SQL_ATTR_XQUERY_STATEMENT has been set to SQL_TRUE for this
statement handle.

3. Optional: If a list of SQL statements is to be executed, call SQLMoreResults()
to advance to the next SQL statement.

Use this method of preparing and executing in one step when:
– The statement or expression is executed only once. This avoids having to call

two functions to execute the statement or expression.
– The application does not require information about the columns in the result

set before the statement is executed.

Deferred prepare in CLI applications
Deferred prepare is the name of the CLI feature that seeks to minimize
communication with the server by sending both the prepare and execute requests
for SQL statements in the same network flow. The default value for this property
can be overridden using the CLI/ODBC configuration keyword DeferredPrepare.

82 Call Level Interface Guide and Reference Volume 1

This property can be set on a per-statement handle basis by calling
SQLSetStmtAttr() to change the SQL_ATTR_DEFEFERRED_PREPARE statement
attribute.

When deferred prepare is on, the prepare request is not sent to the server until the
corresponding execute request is issued. The two requests are then combined into
one command/reply flow (instead of two) to minimize network flow and to
improve performance. Because of this behavior, any errors that would typically be
generated by SQLPrepare() will appear at execute time, and SQLPrepare() will
always return SQL_SUCCESS. Deferred prepare is of greatest benefit when the
application generates queries where the answer set is very small, and the resource
usage of separate requests and replies is not spread across multiple blocks of query
data.

Note: Even if deferred prepare is enabled, operations that require a statement to be
prepared before the operation's execution will force the prepare request to be sent
to the server before the execute. Describe operations resulting from calls to
SQLDescribeParam() or SQLDescribeCol() are examples of when deferred prepare
will be overridden, because describe information is only available after the
statement has been prepared.

Executing compound SQL (CLI) statements in CLI applications
Compound SQL allows multiple SQL statements to be grouped into a single
executable block. This block of statements, together with any input parameter
values, can then be executed in a single continuous stream, reducing the execution
time and network traffic.

About this task
v Compound SQL (CLI) does not guarantee the order in which the substatements

are executed, therefore there must not be any dependencies among the
substatements.

v Compound SQL (CLI) statements cannot be nested.
v The BEGIN COMPOUND and END COMPOUND statements must be executed

with the same statement handle.
v The value specified in the STOP AFTER FIRST ? STATEMENTS clause of the

BEGIN COMPOUND SQL statement must be of type SQL_INTEGER, and you
can only bind an application buffer of type SQL_C_INTEGER or
SQL_C_SMALLINT for this value.

v Each substatement must have its own statement handle.
v All statement handles must belong to the same connection and have the same

isolation level.
v Atomic array input is not supported within a BEGIN COMPOUND and END

COMPOUND block of SQL statements. Atomic array input refers to the behavior
where all inserts will be undone if any single insert fails.

v All statement handles must remain allocated until the END COMPOUND
statement is executed.

v SQLEndTran() cannot be called for the same connection or any connect requests
between BEGIN COMPOUND and END COMPOUND.

v Only the following functions may be called using the statement handles
allocated for the compound substatements:
– SQLAllocHandle()

– SQLBindParameter()

Chapter 6. Processing transactions 83

– SQLBindFileToParam()

– SQLExecute()

– SQLParamData()

– SQLPrepare()

– SQLPutData()

Procedure

To execute compound SQL (CLI) statements in CLI applications:
1. Allocate a parent statement handle. For example:

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmtparent);

2. Allocate statement handles for each of the compound substatements. For
example:
SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmtsub1);
SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmtsub2);
SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmtsub3);

3. Prepare the substatements. For example:
SQLPrepare (hstmtsub1, stmt1, SQL_NTS);
SQLPrepare (hstmtsub2, stmt2, SQL_NTS);
SQLPrepare (hstmtsub3, stmt3, SQL_NTS);

4. Execute the BEGIN COMPOUND statement using the parent statement handle.
For example:
SQLExecDirect (hstmtparent, (SQLCHAR *) "BEGIN COMPOUND NOT ATOMIC STATIC",

SQL_NTS);

5. If this is an atomic compound SQL operation, execute the substatements using
the SQLExecute() function only. For example:
SQLExecute (hstmtsub1);
SQLExecute (hstmtsub2);
SQLExecute (hstmtsub3);

Note: All statements to be executed inside an atomic compound block must
first be prepared. Attempts to use the SQLExecDirect() function within an
atomic compound block will result in errors.

6. Execute the END COMPOUND statement using the parent statement handle.
For example:
SQLExecDirect (hstmtparent, (SQLCHAR *) "END COMPOUND NOT ATOMIC STATIC",

SQL_NTS);

7. Optional: If you used an input parameter value array, call SQLRowCount() with
the parent statement handle to retrieve the aggregate number of rows affected
by all elements of the input array. For example:
SQLRowCount (hstmtparent, &numRows);

8. Free the handles of the substatements. For example:
SQLFreeHandle (SQL_HANDLE_STMT, hstmtsub1);
SQLFreeHandle (SQL_HANDLE_STMT, hstmtsub2);
SQLFreeHandle (SQL_HANDLE_STMT, hstmtsub3);

9. Free the parent statement handle when you have finished using it. For
example:
SQLFreeHandle (SQL_HANDLE_STMT, hstmtparent);

Results

If the application is not operating in auto-commit mode and the COMMIT option
is not specified, the sub-statements will not be committed. If the application is

84 Call Level Interface Guide and Reference Volume 1

operating in auto-commit mode, however, then the sub-statements will be
committed at END COMPOUND, even if the COMMIT option is not specified.

Cursors in CLI applications
A CLI application uses a cursor to retrieve rows from a result set. A cursor is a
moveable pointer to a row in the result table of an active query statement. With
the introduction of the DB2 Universal Database Version 8 client, the support for an
updatable scrollable cursor was moved from the client to the server. This means
that an application using the DB2 UDB client, Version 8 or higher, that requires
updatable scrollable cursor needs to ensure that the server supports updatable
scrollable cursors. DB2 UDB servers on Linux, UNIX and Windows, Version 8 and
later, and DB2 for z/OS servers Version 7 and later support this feature. To access
a scrollable cursor in a three-tier environment on DB2 for z/OS Version 7 and later,
the gateway must be running DB2 UDB Version 8 or later.

A cursor is opened when a dynamic SQL SELECT statement is successfully
executed by SQLExecute() or SQLExecDirect(). There is typically a one-to-one
correlation between application cursor operations and the operations performed by
the CLI driver with the cursor. Immediately after the successful execution, the
cursor is positioned before the first row of the result set, and FETCH operations
through calls to SQLFetch(), SQLFetchScroll(), or SQLExtendedFetch() will
advance the cursor one row at a time through the result set. When the cursor has
reached the end of the result set, the next fetch operation will return SQLCODE
+100. From the perspective of the CLI application, SQLFetch() returns
SQL_NO_DATA_FOUND when the end of the result set is reached.

Types of cursors

There are two types of cursors supported by CLI:

non-scrollable
Forward-only non-scrollable cursors are the default cursor type used by the
CLI driver. This cursor type is unidirectional and requires the least amount
of resource utilization.

scrollable
There are three types of scrollable cursors supported by CLI:

static This is a read-only cursor. When it is created, no rows can be
added or removed, and no values in any rows will change. The
cursor is not affected by other applications accessing the same
data. The isolation level of the statement used to create the cursor
determines how the rows of the cursor are locked, if at all.

keyset-driven
Unlike a static scrollable cursor, a keyset-driven scrollable cursor
can detect and make changes to the underlying data. Keyset
cursors are based on row keys. When a keyset-driven cursor is first
opened, it stores the keys in a keyset for the life of the entire result
set. The keyset is used to determine the order and set of rows that
are included in the cursor. As the cursor scrolls through the result
set, it uses the keys in this keyset to retrieve the most recent values
in the database, which are not necessarily the values that existed
when the cursor was first opened. For this reason, changes are not
reflected until the application scrolls to the row.

Chapter 6. Processing transactions 85

There are various types of changes to the underlying data that a
keyset-driven cursor might or might not reflect:
v Changed values in existing rows. The cursor will reflect these

types of changes. Because the cursor fetches a row from the
database each time it is required, keyset-driven cursors always
detect changes made by themselves and other cursors.

v Deleted rows. The cursor will reflect these types of changes. If a
selected row in the rowset is deleted after the keyset is
generated, it will appear as a "hole" in the cursor. When the
cursor goes to fetch the row again from the database, it will
realize that the row is no longer there.

v Added rows. The cursor will not reflect these types of changes.
The set of rows is determined once, when the cursor is first
opened. To see the inserted rows, the application must re-execute
the query.

Note: CLI currently only supports keyset-driven cursors if the
server supports them. The DB2 UDB Version 8 server now
supports updatable scrollable cursors. This means that if
applications require keyset cursor functionality and currently
access DB2 for OS/390 Version 6 or DB2 for UNIX and Windows
Version 7 and earlier, the clients should not be upgraded to DB2
UDB Version 8 or later. The servers can be upgraded to Version 8
or later. IDS data servers do not support using keyset-driven
cursors.

dynamic
Dynamic scrollable cursors can detect all changes (inserts, deletes,
and updates) to the result set, and make insertions, deletions and
updates to the result set. Unlike keyset-driven cursors, dynamic
cursors:
v detect rows inserted by other cursors
v omit deleted rows from the result set (keyset-driven cursors

recognize deleted rows as "holes" in the result set)

Currently, dynamic scrollable cursors are only supported in CLI
when accessing servers that are DB2 for z/OS Version 8.1 and later.
Dynamic scrollable cursors are not supported when accessing IDS
data servers.

Note: A column with a LOB type, distinct type on a LOB type, A column
with a LONG VARCHAR, LONG VARGRAPHIC, DATALINK, LOB, XML
type, distinct type on any of these types, or structured type cannot be
specified in the select-list of a scrollable cursor. CLI will downgrade the
cursor type from scrollable to forward-only and return a CLI0005W
(SQLSTATE 01S02) warning message.

86 Call Level Interface Guide and Reference Volume 1

Cursor attributes

The table 1 lists the default attributes for cursors in CLI.

Table 6. Default attributes for cursors in CLI

Cursor type Cursor
sensitivity

Cursor
updatable

Cursor
concurrency

Cursor
scrollable

forward-onlya unspecified non-updatable read-only
concurrency

non-scrollable

static insensitive non-updatable read-only
concurrency

scrollable

keyset-driven sensitive updatable values
concurrency

scrollable

dynamicb sensitive updatable values
concurrency

scrollable

v a Forward-only is the default behavior for a scrollable cursor without the FOR UPDATE
clause. Specifying FOR UPDATE on a forward-only cursor creates an updatable, lock
concurrency, non-scrollable cursor.

v b Values concurrency is the default behavior, however, DB2 on Linux, UNIX and
Windows will also support lock concurrency, which will result with pessimistic locking.

Update of keyset-driven cursors

A keyset-driven cursor is an updatable cursor. The CLI driver appends the FOR
UPDATE clause to the query, except when the query is issued as a SELECT ... FOR
READ ONLY query, or if the FOR UPDATE clause already exists. The default
keyset-driven cursor is a values concurrency cursor. A values concurrency cursor
results in optimistic locking, where locks are not held until an update or delete is
attempted. If lock concurrency has been explicitly asked for, then pessimistic
locking will be used and locks will be held as soon as the row is read. This level of
locking is only supported against DB2 on Linux, UNIX and Windows servers.
When an update or delete is attempted, the database server compares the previous
values the application retrieved to the current values in the underlying table. If the
values match, then the update or delete succeeds. If the values do not match, then
the operation fails. If failure occurs, the application must query the values again
and re-issue the update or delete if it is still applicable.

An application can update a keyset-driven cursor in two ways:
v Issue an UPDATE WHERE CURRENT OF <cursor name> or DELETE WHERE CURRENT OF

<cursor name> using SQLPrepare() with SQLExecute() or SQLExecDirect()

v Use SQLSetPos() or SQLBulkOperations() to update, delete, or add a row to the
result set.

Note: Rows added to a result set through SQLSetPos() or SQLBulkOperations()
are inserted into the table on the server, but are not added to the server's result
set. Therefore, these rows are not updatable nor are they sensitive to changes
made by other transactions. However, the inserted rows will appear to be part of
the result set as they are cached on the client. Any triggers that apply to the
inserted rows will appear to the application as if they have not been applied. To
make the inserted rows updatable, sensitive, and to see the result of applicable
triggers, the application must issue the query again to regenerate the result set.

Chapter 6. Processing transactions 87

Cursor considerations for CLI applications
Which cursor type to use

The first decision to make is between a forward-only cursor and a scrollable cursor.
A forward-only cursor incurs less resource usage than a scrollable cursor, and
scrollable cursors have the potential for decreased concurrency. If your application
does not need the additional features of a scrollable cursor, then you should use a
non-scrollable cursor.

If a scrollable cursor is required then you must decide between a static cursor, a
keyset-driven cursor, or a dynamic cursor. A static cursor involves the least amount
of resource usage. If the application does not need the additional features of a
keyset-driven or dynamic cursor then a static cursor should be used.

Note: Currently, dynamic cursors are only supported when accessing servers that
are DB2 for z/OS Version 8.1 and later.

If the application needs to detect changes to the underlying data or needs to add,
update, or delete data from the cursor, then the application must use either a
keyset-driven or dynamic cursor. To perform updates and deletions on rows in a
dynamic scrollable cursor's result set, the UPDATE or DELETE statement must
include all the columns of at least one unique key in the base table. This can be the
primary key or any other unique key. Because dynamic cursors incur more
resource usage and might have less concurrency than keyset-driven cursors, only
choose dynamic cursors if the application needs to detect both changes made and
rows inserted by other cursors.

If an application requests a scrollable cursor that can detect changes without
specifying a particular cursor type, then CLI will assume that a dynamic cursor is
not needed and provide a keyset-driven cursor. This behavior avoids the increased
resource usage and reduced concurrency that is incurred with dynamic cursors.

To determine the attributes of the types of cursors supported by the driver and
DBMS, the application should call SQLGetInfo() with an InfoType of:
v SQL_DYNAMIC_CURSOR_ATTRIBUTES1
v SQL_DYNAMIC_CURSOR_ATTRIBUTES2
v SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1
v SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2
v SQL_KEYSET_CURSOR_ATTRIBUTES1
v SQL_KEYSET_CURSOR_ATTRIBUTES2
v SQL_STATIC_CURSOR_ATTRIBUTES1
v SQL_STATIC_CURSOR_ATTRIBUTES2

Unit of work considerations

A cursor can be closed either explicitly or implicitly. An application can explicitly
close a cursor by calling SQLCloseCursor(). Any further attempts to manipulate the
cursor will result in error, unless the cursor is opened again. The implicit closure of
a cursor depends on a several factors including how the cursor was declared and
whether or not a COMMIT or ROLLBACK occurs.

By default, the CLI driver declares all cursors as WITH HOLD. This means that
any open cursor will persist across COMMITs, thereby requiring the application to

88 Call Level Interface Guide and Reference Volume 1

explicitly close each cursor. Be aware, however, that if a cursor is closed in
autocommit mode, then any other open cursors that are not defined with the
WITH HOLD option will be closed and all remaining open cursors will become
unpositioned. (This means that no positioned updates or deletes can be performed
without issuing another fetch.) There are two ways to change whether a cursor is
declared WITH HOLD:
v Set the statement attribute SQL_ATTR_CURSOR_HOLD to

SQL_CURSOR_HOLD_ON (default) or SQL_CURSOR_HOLD_OFF. This setting
only affects cursors opened on the statement handle after this value has been set.
It will not affect cursors already open.

v Set the CLI/ODBC configuration keyword CursorHold to change the default CLI
driver behavior. Setting CursorHold=1 preserves the default behavior of cursors
declared as WITH HOLD, and CursorHold=0 results in cursors being closed
when each transaction is committed. You can override this keyword by setting
the SQL_ATTR_CURSOR_HOLD statement attribute.

Note: A ROLLBACK will close all cursors, including those declared WITH HOLD.

Troubleshooting for applications created before scrollable cursor
support

Because scrollable cursor support is a newer feature, some CLI/ODBC applications
that were working with previous releases of DB2 for OS/390 or DB2 for Linux,
UNIX and Windows might encounter behavioral or performance changes. This
occurs because before scrollable cursors were supported, applications that
requested a scrollable cursor would receive a forward-only cursor. To restore an
application's previous behavior before scrollable cursor support, set the following
configuration keywords in the db2cli.ini file:

Table 7. Configuration keyword values restoring application behavior before scrollable cursor
support

Configuration keyword
setting

Description

Patch2=6 Returns a message that scrollable cursors (keyset-driven,
dynamic and static) are not supported. CLI automatically
downgrades any request for a scrollable cursor to a
forward-only cursor.

DisableKeysetCursor=1 Disables keyset-driven scrollable cursors. This can be used
to force the CLI driver to give the application a static
cursor when a keyset-driven or dynamic cursor is
requested.

Result set terminology in CLI applications
The following terms describe result handling:

result set
The complete set of rows that satisfy the SQL SELECT statement. This is
the set from which fetches retrieve rows to populate the rowset.

rowset
The subset of rows from the result set that is returned after each fetch. The
application indicates the size of the rowset before the first fetch of data,
and can modify the size before each subsequent fetch. Each call to

Chapter 6. Processing transactions 89

SQLFetch(), SQLFetchScroll(), or SQLExtendedFetch() populates the rowset
with the appropriate rows from the result set.

bookmark
It is possible to store a reference to a specific row in the result set called a
bookmark. Once stored, the application can continue to move through the
result set, then return to the bookmarked row to generate a rowset. You
can also use a bookmark to perform updates and deletions with
SQLBulkOperations().

keyset A set of key values used to identify the set and order of rows that are
included in a keyset-driven cursor. The keyset is created when a
keyset-driven cursor is first opened. As the cursor scrolls through the result
set, it uses the keys in the keyset to retrieve the current data values for
each row.

The following figure demonstrates the relationship between result set, rowset,
bookmark, and keyset:

bookmark 2

bookmark 1

key 1row 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

KEYSETRESULT SET

key 2

key 3ROWSET size = 3

key 4

key 5

key 6

.

.

.

.

.

.

key 7

key 8

key 9

key 10

key 11

key 12

key 13

key 14

key 15

key 16

Rows added after
the keyset-driven
cursor was opened
become part of the
result set.

all rows that satisfy
the SELECT
statement

Bookmarks in CLI applications
When scrollable cursors are used, you can save a reference to any row in the result
set using a bookmark. The application can then use that bookmark as a relative
position to retrieve a rowset of information, or to update or delete a row when
using keyset cursors. You can retrieve a rowset starting from the bookmarked row,
or specify a positive or negative offset.

90 Call Level Interface Guide and Reference Volume 1

Once you have positioned the cursor to a row in a rowset using SQLSetPos(), you
can obtain the bookmark value starting from column 0 using SQLGetData(). In
most cases you will not want to bind column 0 and retrieve the bookmark value
for every row, but use SQLGetData() to retrieve the bookmark value for the specific
row you require.

A bookmark is only valid within the result set in which it was created. The
bookmark value will be different if you select the same row from the same result
set in two different cursors.

The only valid comparison is a byte-by-byte comparison between two bookmark
values obtained from the same result set. If they are the same then they both point
to the same row. Any other mathematical calculations or comparisons between
bookmarks will not provide any useful information. This includes comparing
bookmark values within a result set, and between result sets.

Rowset retrieval examples in CLI applications
Partial rowset example

When working with rowsets, you should verify what portion of the result set
returned contains meaningful data. The application cannot assume that the entire
rowset will contain data. It must check the row status array after each rowset is
created to determine the number of rows returned, because there are instances
where the rowset will not contain a complete set of rows. For instance, consider
the case where the rowset size is set to 10, and SQLFetchScroll() is called using
SQL_FETCH_ABSOLUTE and FetchOffset is set to -3. This will attempt to return 10
rows starting 3 rows from the end of the result set. Only the first three rows of the
rowset will contain meaningful data, however, and the application must ignore the
rest of the rows.

} Result Set

} Rowset
(FetchOffset = -3)

}}Valid rows

Invalid rows

n
n-1
n-2

row 1
2

3

Figure 5. Partial rowset example

Chapter 6. Processing transactions 91

Fetch orientations example

The following figure demonstrates a number of calls to SQLFetchScroll() using
various FetchOrientation values. The result set includes all of the rows (from 1 to n),
and the rowset size is 3. The order of the calls is indicated on the left, and the
FetchOrientation values are indicated on the right.

Retrieving query results in CLI applications
Retrieving query results is part of the larger task of processing transactions in CLI
applications. Retrieving query results involves binding application variables to
columns of a result set and then fetching the rows of data into the application
variables. A typical query is the SELECT statement.

Before you begin

Before you retrieve results, ensure that you have initialized your application and
prepared and executed the necessary SQL statements.

Procedure

To retrieve each row of the result set:
1. Optional: Determine the structure of the result set, number of columns, and

column types and lengths by calling SQLNumResultCols() and
SQLDescribeCol().

Note: Performing this step can reduce performance if done before the query
has been executed, because it forces CLI to describe the query's columns.
Information about the result set's columns is available after successful

n
n-1

n-2

row 1
2

3

n-1

2.

3.

4.

5.

1.

SQL_FETCH_FIRST

SQL_FETCH_NEXT

SQL_FETCH_RELATIVE

SQL_FETCH_ABSOLUTE

SQL_FETCH_LAST

(FetchOffset = -1)

(FetchOffset = 11)

Figure 6. Example of retrieving rowsets

92 Call Level Interface Guide and Reference Volume 1

execution, and describing the result set does not incur any additional resource
usage if the describe is performed after successful execution.

2. Bind an application variable to each column of the result set, by calling
SQLBindCol(), ensuring that the variable type matches the column type. For
example:

struct
{

SQLINTEGER ind;
SQLSMALLINT val;

}
deptnumb; /* variable to be bound to the DEPTNUMB column */

struct
{

SQLINTEGER ind;
SQLCHAR val[15];

}
location; /* variable to be bound to the LOCATION column */

/* ... */

/* bind column 1 to variable */
cliRC = SQLBindCol(hstmt, 1, SQL_C_SHORT, &deptnumb.val, 0,

&deptnumb.ind);
STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

/* bind column 2 to variable */
cliRC = SQLBindCol(hstmt, 2, SQL_C_CHAR, location.val, 15,

&location.ind);
STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

The application can use the information obtained in step 1 to determine an
appropriate C data type for the application variable and to allocate the
maximum storage the column value could occupy. The columns are bound to
deferred output arguments, which means the data is written to these storage
locations when it is fetched.

Important: Do not de-allocate or discard variables used for deferred output
arguments between the time the application binds them to columns of the
result set and the time CLI writes to these arguments.

3. Repeatedly fetch the row of data from the result set by calling SQLFetch() until
SQL_NO_DATA_FOUND is returned. For example:

/* fetch each row and display */
cliRC = SQLFetch(hstmt);

if (cliRC == SQL_NO_DATA_FOUND)
{

printf("\n Data not found.\n");
}
while (cliRC != SQL_NO_DATA_FOUND)
{

printf(" %-8d %-14.14s \n", deptnumb.val, location.val);

/* fetch next row */
cliRC = SQLFetch(hstmt);

}

SQLFetchScroll() can also be used to fetch multiple rows of the result set into
an array.
If data conversion was required for the data types specified on the call to
SQLBindCol(), the conversion will occur when SQLFetch() is called.

Chapter 6. Processing transactions 93

4. Optional: Retrieve columns that were not previously bound by calling
SQLGetData() after each successful fetch. You can retrieve all unbound columns
this way. For example:

/* fetch each row and display */
cliRC = SQLFetch(hstmt);

if (cliRC == SQL_NO_DATA_FOUND)
{

printf("\n Data not found.\n");
}
while (cliRC != SQL_NO_DATA_FOUND)
{

/* use SQLGetData() to get the results */
/* get data from column 1 */
cliRC = SQLGetData(hstmt,

1,
SQL_C_SHORT,
&deptnumb.val,
0,
&deptnumb.ind);

STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

/* get data from column 2 */
cliRC = SQLGetData(hstmt,

2,
SQL_C_CHAR,
location.val,
15,
&location.ind);

/* display the data */
printf(" %-8d %-14.14s \n", deptnumb.val, location.val);

/* fetch the next row */
cliRC = SQLFetch(hstmt);

}

Note: Applications perform better if columns are bound, rather than having
them retrieved as unbound columns using SQLGetData(). However, an
application may be constrained in the amount of long data it can retrieve and
handle at one time. If this is a concern, then SQLGetData() may be the better
choice.

Column binding in CLI applications
Columns may be bound to:
v Application storage

SQLBindCol() is used to bind application storage to the column. Data will be
transferred from the server to the application at fetch time. Length of the
available data to return is also set.

v LOB locators
SQLBindCol() is used to bind LOB locators to the column. Only the LOB locator
(4 bytes) will be transferred from the server to the application at fetch time.
If a CLI application does not provide an output buffer for a LOB column using
the function SQLBindCol() the IBM data server client will, by default, request a
LOB locator on behalf of the application for each LOB column in the result sets.
Once an application receives a locator it can be used in SQLGetSubString(),
SQLGetPosition(), SQLGetLength(), or as the value of a parameter marker in
another SQL statement. SQLGetSubString() can either return another locator, or
the data itself. All locators remain valid until the end of the transaction in which

94 Call Level Interface Guide and Reference Volume 1

they were created (even when the cursor moves to another row), or until it is
freed using the FREE LOCATOR statement.

v Lob file references
SQLBindFileToCol() is used to bind a file to a LOB or XML column. CLI will
write the data directly to a file, and update the StringLength and IndicatorValue
buffers specified on SQLBindFileToCol().
If the data value for the column is NULL and SQLBindFileToCol() was used,
then IndicatorValue will be set to SQL_NULL_DATA and StringLength to 0.

The number of columns in a result set can be determined by calling
SQLNumResultCols() or by calling SQLColAttribute() with the DescType argument
set to SQL_COLUMN_COUNT.

The application can query the attributes (such as data type and length) of the
column by first calling SQLDescribeCol() or SQLColAttribute(). This information
can then be used to allocate a storage location of the correct data type and length,
to indicate data conversion to another data type, or in the case of LOB data types,
optionally return a locator.

An application can choose not to bind every column, or even not to bind any
columns. Data in any of the columns can also be retrieved using SQLGetData()
after the bound columns have been fetched for the current row. It is usually more
efficient to bind application variables or file references to result sets than to use
SQLGetData(). When the data is in a LOB column, LOB functions are preferable to
SQLGetData() . Use SQLGetData() when the data value is large variable-length data
that:
v must be received in pieces, or
v may not need to be retrieved.

Instead of multiple calls to SQLBindCol(), CLI also supports column binding
offsets. Rather than re-binding each time, an offset can be used to specify new
buffer and length/indicator addresses which will be used in a subsequent call to
SQLFetch() or SQLFetchScroll(). This can only be used with row wise binding, but
will work whether the application retrieves a single row or multiple rows at a
time.

When binding any variable length column, CLI will be able to write
StrLen_or_IndPtr and TargetValuePtr in one operation if they are allocated
contiguously. For example:

struct { SQLINTEGER StrLen_or_IndPtr;
SQLCHAR TargetValuePtr[MAX_BUFFER];

} column;

The most recent bind column function call determines the type of binding that is in
effect.

Specifying the rowset returned from the result set
Before you begin to retrieve data, you need to establish the rowset that will be
returned. This topic describes the steps associated with setting up the rowset.

Before you begin

Before specifying the rowset, ensure that you have initialized your CLI application.

Chapter 6. Processing transactions 95

About this task

CLI allows an application to specify a rowset for a non-scrollable or scrollable
cursor that spans more than one row at a time.

Procedure

To effectively work with a rowset, an application should perform the following
steps:
1. Specify the size of the rowset returned from calls to SQLFetch() or

SQLFetchScroll() by setting the statement attribute
SQL_ATTR_ROW_ARRAY_SIZE to the number of rows in the rowset. The
default number of rows is 1. For example, to declare a rowset size of 35 rows,
issue the following call:

#define ROWSET_SIZE 35
/* ... */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,
(SQLPOINTER) ROWSET_SIZE,
0);

2. Set up a variable that will store the number of rows returned. Declare a
variable of type SQLUINTEGER and set the
SQL_ATTR_ROWS_FETCHED_PTR statement attribute to point to this variable.
In the following example, rowsFetchedNb will hold the number of rows returned
in the rowset after each call to SQLFetchScroll():

/* ... */

SQLUINTEGER rowsFetchedNb;

/* ... */

rc = SQLSetStmtAttr(hstmt,
SQL_ATTR_ROWS_FETCHED_PTR,
&rowsFetchedNb,
0);

3. Set up the row status array. Declare an array of type SQLUSMALLINT with the
same number of rows as the size of the rowset (as determined in Step 1). Then
specify the address of this array with the statement attribute
SQL_ATTR_ROW_STATUS_PTR. For example:

/* ... */
SQLUSMALLINT row_status[ROWSET_SIZE];
/* ... */
/* Set a pointer to the array to use for the row status */
rc = SQLSetStmtAttr(

hstmt,
SQL_ATTR_ROW_STATUS_PTR,
(SQLPOINTER) row_status,
0);

The row status array provides additional information about each row in the
rowset. After each call to SQLFetch() or SQLFetchScroll(), the array is updated.
If the call to SQLFetch() or SQLFetchScroll() does not return SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, then the contents of the row status array are
undefined. Otherwise, any of the row status array values will be returned (refer
to the row status array section of the SQLFetchScroll() documentation for a
complete list of values).

4. Position the rowset within the result set, indicating the position you want the
rowset to begin. Specify this position by calling SQLFetch(), or

96 Call Level Interface Guide and Reference Volume 1

SQLFetchScroll() with FetchOrientation and FetchOffset values. For example, the
following call generates a rowset starting on the 11th row in the result set:

SQLFetchScroll(hstmt, /* Statement handle */
SQL_FETCH_ABSOLUTE, /* FetchOrientation value */
11); /* Offset value */

Scroll bar operations of a screen-based application can be mapped directly to
the positioning of a rowset. By setting the rowset size to the number of lines
displayed on the screen, the application can map the movement of the scroll
bar to calls to SQLFetchScroll().

Note: If the application can buffer data in the display and regenerate the result
set to see updates, then use a forward-only cursor instead. This yields better
performance for small result sets.

Rowset retrieved FetchOrientation value Scroll bar

First rowset SQL_FETCH_FIRST Home: Scroll bar at
the top

Last rowset SQL_FETCH_LAST End: Scroll bar at the
bottom

Next rowset SQL_FETCH_NEXT (same as calling
SQLFetch())

Page Down

Previous rowset SQL_FETCH_PRIOR Page Up

Rowset starting on
next row

SQL_FETCH_RELATIVE with FetchOffset set
to 1

Line Down

Rowset starting on
previous row

SQL_FETCH_RELATIVE with FetchOffset set
to -1

Line Up

Rowset starting on a
specific row

SQL_FETCH_ABSOLUTE with FetchOffset
set to an offset from the start (a positive
value) or the end (a negative value) of the
result set

Application generated

Rowset starting on a
previously
bookmarked row

SQL_FETCH_BOOKMARK with FetchOffset
set to a positive or negative offset from the
bookmarked row

Application generated

5. Check the rows fetched pointer after each rowset is created to determine the
number of rows returned. Check the row status array for the status of each
row, because there are instances where the rowset will not contain a complete
set of rows. The application cannot assume that the entire rowset will contain
data.
For instance, consider the case where the rowset size is set to 10, and
SQLFetchScroll() is called using SQL_FETCH_ABSOLUTE and FetchOffset is
set to -3. This will attempt to return 10 rows starting 3 rows from the end of
the result set. Only the first three rows of the rowset will contain meaningful
data, however, and the application must ignore the rest of the rows.

Retrieving data with scrollable cursors in a CLI application
Scrollable cursors allow you to move throughout a result set. You can make use of
this feature when retrieving data. This topic describes how to use scrollable cursors
to retrieve data.

Chapter 6. Processing transactions 97

Before you begin

Before you retrieve data using scrollable cursors, ensure that you have initialized
your CLI application.

Procedure

To use scrollable cursors to retrieve data:
1. Specify the size of the rowset returned by setting the statement attribute

SQL_ATTR_ROW_ARRAY_SIZE to the number of rows in the rowset. The
default number of rows is 1. For example, to declare a rowset size of 35 rows,
issue the following call:

#define ROWSET_SIZE 35
/* ... */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,
(SQLPOINTER) ROWSET_SIZE,
0);

2. Specify the type of scrollable cursor to use. Using SQLSetStmtAttr(), set the
SQL_ATTR_CURSOR_TYPE statement attribute to SQL_CURSOR_STATIC for
a static read-only cursor or to SQL_CURSOR_KEYSET_DRIVEN for a
keyset-driven cursor. For example:

sqlrc = SQLSetStmtAttr (hstmt,
SQL_ATTR_CURSOR_TYPE,
(SQLPOINTER) SQL_CURSOR_STATIC,
0);

If the type of cursor is not set, the default forward-only non-scrollable cursor
will be used.

3. Set up a variable that will store the number of rows returned. Declare a
variable of type SQLUINTEGER and set the
SQL_ATTR_ROWS_FETCHED_PTR statement attribute to point to this
variable. In the following example, rowsFetchedNb will hold the number of
rows returned in the rowset after each call to SQLFetchScroll():

/* ... */

SQLUINTEGER rowsFetchedNb;

/* ... */

rc = SQLSetStmtAttr(hstmt,
SQL_ATTR_ROWS_FETCHED_PTR,
&rowsFetchedNb,
0);

4. Set up the row status array. Declare an array of type SQLUSMALLINT with
the same number of rows as the size of the rowset (as determined in Step 1).
Then specify the address of this array with the statement attribute
SQL_ATTR_ROW_STATUS_PTR. For example:

/* ... */
SQLUSMALLINT row_status[ROWSET_SIZE];
/* ... */
/* Set a pointer to the array to use for the row status */
rc = SQLSetStmtAttr(

hstmt,
SQL_ATTR_ROW_STATUS_PTR,
(SQLPOINTER) row_status,
0);

98 Call Level Interface Guide and Reference Volume 1

The row status array provides additional information about each row in the
rowset. After each call to SQLFetchScroll(), the array is updated. If the call to
SQLFetchScroll() does not return SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, then the contents of the row status array are
undefined. Otherwise, any of the row status array values will be returned
(refer to the row status array section of the SQLFetchScroll() documentation
for a complete list of values).

5. Optional: If you want to use bookmarks with the scrollable cursor, set the
SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE.
For example:

sqlrc = SQLSetStmtAttr (hstmt,
SQL_ATTR_USE_BOOKMARKS,
(SQLPOINTER) SQL_UB_VARIABLE,
0);

6. Issue an SQL SELECT statement.
7. Execute the SQL SELECT statement.
8. Bind the result set using either column-wise or row-wise binding.
9. Fetch a rowset of rows from the result set.

a. Call SQLFetchScroll() to fetch a rowset of data from the result set.
Position the rowset within the result set indicating the position you want
the rowset to begin. Specify this position by calling SQLFetchScroll() with
FetchOrientation and FetchOffset values. For example, the following call
generates a rowset starting on the 11th row in the result set:

SQLFetchScroll(hstmt, /* Statement handle */
SQL_FETCH_ABSOLUTE, /* FetchOrientation value */
11); /* Offset value */

b. Check the row status array after each rowset is created to determine the
number of rows returned, because there are instances where the rowset
will not contain a complete set of rows. The application cannot assume
that the entire rowset will contain data.
For instance, consider the case where the rowset size is set to 10, and
SQLFetchScroll() is called using SQL_FETCH_ABSOLUTE and FetchOffset
is set to -3. This will attempt to return 10 rows starting 3 rows from the
end of the result set. Only the first three rows of the rowset will contain
meaningful data, however, and the application must ignore the rest of the
rows.

c. Display or manipulate the data in the rows returned.
10. Close the cursor by calling SQLCloseCursor() or free the statement handle by

calling SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT.
Freeing the statement handles is not required every time retrieval has finished.
The statement handles can be freed at a later time, when the application is
freeing other handles.

Retrieving data with bookmarks in a CLI application
Bookmarks, available only when scrollable cursors are used, allow you to save a
reference to any row in a result set. You can take advantage of this feature when
retrieving data. This topic describes how to retrieve data using bookmarks.

Before you begin

Before you retrieve data with bookmarks, ensure that you have initialized your
CLI application. The steps explained here should be performed in addition to those
described in "Retrieving Data with Scrollable Cursors in a CLI Application".

Chapter 6. Processing transactions 99

Procedure

To use bookmarks with scrollable cursors to retrieve data:
1. Indicate that bookmarks will be used (if not already done so) by setting the

SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE. For
example:

sqlrc = SQLSetStmtAttr (hstmt,
SQL_ATTR_USE_BOOKMARKS,
(SQLPOINTER) SQL_UB_VARIABLE,
0);

2. Get the bookmark value from the required row in the rowset after executing
the SELECT statement and retrieving the rowset using SQLFetchScroll(). Do
this by calling SQLSetPos() to position the cursor within the rowset. Then call
SQLGetData() to retrieve the bookmark value. For example:

sqlrc = SQLFetchScroll(hstmt, SQL_FETCH_ABSOLUTE, 15);
/* ... */
sqlrc = SQLSetPos(hstmt, 3, SQL_POSITION, SQL_LOCK_NO_CHANGE);
/* ... */
sqlrc = SQLGetData(hstmt, 0, SQL_C_LONG, bookmark.val, 4,

&bookmark.ind);

In most cases, you will not want to bind column 0 and retrieve the bookmark
value for every row, but use SQLGetData() to retrieve the bookmark value for
the specific row you require.

3. Store the bookmark location for the next call to SQLFetchScroll(). Set the
SQL_ATTR_FETCH_BOOKMARK statement attribute to the variable that
contains the bookmark value. For example, bookmark.val stores the bookmark
value, so call SQLSetStmtAttr() as follows:

sqlrc = SQLSetStmtAttr(hstmt,
SQL_ATTR_FETCH_BOOKMARK_PTR,
(SQLPOINTER) bookmark.val,
0);

4. Retrieve a rowset based on the bookmark. Once the bookmark value is stored,
the application can continue to use SQLFetchScroll() to retrieve data from the
result set. The application can then move throughout the result set, but still
retrieve a rowset based on the location of the bookmarked row at any point
before the cursor is closed.
The following call to SQLFetchScroll() retrieves a rowset starting from the
bookmarked row:

sqlrc = SQLFetchScroll(hstmt, SQL_FETCH_BOOKMARK, 0);

The value 0 specifies the offset. You would specify -3 to begin the rowset 3
rows before the bookmarked row, or specify 4 to begin 4 rows after. For
example, the following call from retrieves a rowset 4 rows after the
bookmarked row:

sqlrc = SQLFetchScroll(hstmt, SQL_FETCH_BOOKMARK, 4);

Note that the variable used to store the bookmark value is not specified in the
SQLFetchScroll() call. It was set in the previous step using the statement
attribute SQL_ATTR_FETCH_BOOKMARK_PTR.

Retrieving bulk data with bookmarks using SQLBulkOperations()
in CLI applications
You can retrieve, or fetch, bulk data using bookmarks and the CLI
SQLBulkOperations() function.

100 Call Level Interface Guide and Reference Volume 1

Before you begin

Before fetching bulk data using bookmarks and SQLBulkOperations(), ensure you
have initialized your CLI application.

About this task

Bookmarks in CLI do not persist across cursor close operations. This means that an
application cannot use bookmarks that it has stored from a previous cursor.
Instead, it has to call SQLFetch() or SQLFetchScroll() to retrieve the bookmarks
before updating with bookmarks.

Procedure

To perform bulk fetches using bookmarks with SQLBulkOperations():
1. Set the SQL_ATTR_USE_BOOKMARKS statement attribute to

SQL_UB_VARIABLE using SQLSetStmtAttr().
2. Execute a query that returns a result set.
3. Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of

rows you want to fetch by calling SQLSetStmtAttr().
4. Call SQLBindCol() to bind the data you want to fetch.

The data is bound to an array with a size equal to the value of
SQL_ATTR_ROW_ARRAY_SIZE.

5. Call SQLBindCol() to bind column 0, the bookmark column.
6. Copy the bookmarks for rows you want to fetch into the array bound to

column 0.

Note: The size of the array pointed to by the SQL_ATTR_ROW_STATUS_PTR
statement attribute should either be equal to SQL_ATTR_ROW_ARRAY_SIZE,
or the SQL_ATTR_ROW_STATUS_PTR statement attribute should be a null
pointer.

7. Fetch the data by calling SQLBulkOperations() with an Operation argument of
SQL_FETCH_BY_BOOKMARK.
If the application has set the SQL_ATTR_ROW_STATUS_PTR statement
attribute, then it can inspect this array to see the result of the operation.

Result set retrieval into arrays in CLI applications
One of the most common tasks performed by an application is to issue a query
statement, and then fetch each row of the result set into application variables that
have been bound using SQLBindCol(). If the application requires that each column
or each row of the result set be stored in an array, each fetch must be followed by
either a data copy operation or a new set of SQLBindCol() calls to assign new
storage areas for the next fetch.

Alternatively, applications can eliminate the resource usage of extra data copies or
extra SQLBindCol() calls by retrieving multiple rows of data (called a rowset) at
one time into an array.

Note: A third method of reducing resource usage, which can be used on its own
or with arrays, is to specify a binding offset. Rather than re-binding each time, an
offset can be used to specify new buffer and length/indicator addresses which will
be used in a subsequent call to SQLFetch() or SQLFetchScroll(). This can only be
used with row offset binding.

Chapter 6. Processing transactions 101

When retrieving a result set into an array, SQLBindCol() is also used to assign
storage for application array variables. By default, the binding of rows is in
column-wise fashion: this is similar to using SQLBindParameter() to bind arrays of
input parameter values. Figure 7 is a logical view of column-wise binding.

The application can also do row-wise binding which associates an entire row of the
result set with a structure. In this case the rowset is retrieved into an array of
structures, each of which holds the data in one row and the associated length
fields. Figure 8 gives a pictorial view of row-wise binding.

Retrieving array data in CLI applications using column-wise
binding
When retrieving data, you may want to retrieve more than one row at a time and
store the data in an array.

Instead of fetching and copying each row of data into an array, or binding to new
storage areas, you can retrieve multiple rows of data at once using column-wise

Result Set

Fetch Scroll, Column-Wise Binding

Column:
A
B
C

Data Type:
INTEGER
CHAR(3)

CHAR(10)

Column A

SQLCHAR B[n][4]
SQLINTEGER Lb[n]

SQLCHAR C[n][11]
SQLINTEGER Lc[n]

SQLINTEGER A[n]
SQLINTEGER La[n]

Column B Column C
Data Data DataLength Length Length

AbcdeXYZ10

10 4 3 5XYZ Abcde

}1

2

3

...

A CB

n

...
1

2

3

...

n

... ...

1

2

3

...

n

... ...

1

2

3

...

n

... ...

Figure 7. Column-wise binding

Result Set
Fetch Scroll, Row-Wise Binding

Column:
A
B
C

Data Type:
INTEGER
CHAR(3)

CHAR(10)

Column A

SQLCHAR B[4];SQLINTEGER Lb;
SQLCHAR C[11];

} buffer[n];
SQLINTEGER Lc;

SQLINTEGER A;struct { SQLINTEGER La;

Column B Column C

AbcdeXYZ10

104 3 5XYZ Abcde

}
1

2

3

...

n

1

2

3

...

n

A CB

...

......

Figure 8. Row-wise binding

102 Call Level Interface Guide and Reference Volume 1

binding. Column-wise binding is the default row-binding method whereby each
data value and its length is stored in an array.

Before you begin

Before using column-wise binding to retrieve data into arrays, ensure you have
initialized your CLI application.

Procedure

To retrieve data using column-wise binding:
1. Allocate an array of the appropriate data type for each column data value. This

array will hold the retrieved data value.
2. Allocate an array of SQLINTEGER for each column. Each array will store the

length of each column's data value.
3. Specify that column-wise array retrieval will be used by setting the

SQL_ATTR_ROW_BIND_TYPE statement attribute to
SQL_BIND_BY_COLUMN using SQLSetStmtAttr().

4. Specify the number of rows that will be retrieved by setting the
SQL_ATTR_ROW_ARRAY_SIZE statement attribute using SQLSetStmtAttr().
When the value of the SQL_ATTR_ROW_ARRAY_SIZE attribute is greater than
1, CLI treats the deferred output data pointer and length pointer as pointers to
arrays of data and length rather than to one single element of data and length
of a result set column.

5. Prepare and execute the SQL statement used to retrieve the data.
6. Bind each array to its column by calling SQLBindCol() for each column.
7. Retrieve the data by calling SQLFetch() or SQLFetchScroll().

When returning data, CLI uses the maximum buffer size argument
(BufferLength) of SQLBindCol() to determine where to store successive rows of
data in the array. The number of bytes available for return for each element is
stored in the deferred length array. If the number of rows in the result set is
greater than the SQL_ATTR_ROW_ARRAY_SIZE attribute value, multiple calls
to SQLFetchScroll() are required to retrieve all the rows.

Retrieving array data in CLI applications using row-wise binding
When retrieving data, you might want to retrieve more than one row at a time and
store the data in an array.

Instead of fetching and copying each row of data into an array, or binding to new
storage areas, you can retrieve multiple rows of data using row-wise binding.
Row-wise binding associates an entire row of the result set with a structure. The
rowset is retrieved into an array of structures, each of which holds the data in one
row and the associated length fields.

Before you begin

Before using row-wise binding to retrieve data into arrays, ensure you have
initialized your CLI application.

Procedure

To retrieve data using row-wise binding:

Chapter 6. Processing transactions 103

1. Allocate an array of structures of size equal to the number of rows to be
retrieved, where each element of the structure is composed of each row's data
value and each data value's length.
For example, if each row of the result set consisted of Column A of type
INTEGER, Column B of type CHAR(3), and Column C of type CHAR(10), then
you can allocate the example structure, where n represents the number of rows
in the result set:
struct { SQLINTEGER La; SQLINTEGER A;

SQLINTEGER Lb; SQLCHAR B[4];
SQLINTEGER Lc; SQLCHAR C[11];

} buffer[n];

2. Specify that row-wise array retrieval will be used by setting the
SQL_ATTR_ROW_BIND_TYPE statement attribute, using SQLSetStmtAttr() to
the size of the structure to which the result columns will be bound.

3. Specify the number of rows that will be retrieved by setting the
SQL_ATTR_ROW_ARRAY_SIZE statement attribute using SQLSetStmtAttr().

4. Prepare and execute the SQL statement used to retrieve the data.
5. Bind each structure to the row by calling SQLBindCol() for each column of the

row.
CLI treats the deferred output data pointer of SQLBindCol() as the address of
the data field for the column in the first element of the array of structures. The
deferred output length pointer is treated as the address of the associated length
field of the column.

6. Retrieve the data by calling SQLFetchScroll().
When returning data, CLI uses the structure size provided with the
SQL_ATTR_ROW_BIND_TYPE statement attribute to determine where to store
successive rows in the array of structures.

Changing column bindings in a CLI application with column
binding offsets
When an application needs to change bindings (for a subsequent fetch, for
example) it can call SQLBindCol() a second time.

This will change the buffer address and length/indicator pointer used. Instead of
multiple calls to SQLBindCol(), CLI supports column binding offsets. Rather than
re-binding each time, an offset can be used to specify new buffer and
length/indicator addresses which will be used in a subsequent call to SQLFetch()
or SQLFetchScroll().

Before you begin

Before using column binding offsets to change result set bindings, ensure you have
initialized your CLI application.

About this task

This method can only be used with row-wise binding, but will work whether the
application retrieves a single row or multiple rows at a time.

Procedure

To change result set bindings using column binding offsets:

104 Call Level Interface Guide and Reference Volume 1

1. Call SQLBindCol() as usual to bind the result set. The first set of bound data
buffer and length/indicator buffer addresses will act as a template. The
application will then move this template to different memory locations using
the offset.

2. Call SQLFetch() or SQLFetchScroll() as usual to fetch the data. The data
returned will be stored in the locations bound in step 1.

3. Set up a variable to hold the memory offset value.
The statement attribute SQL_ATTR_ROW_BIND_OFFSET_PTR points to the
address of an SQLINTEGER buffer where the offset will be stored. This address
must remain valid until the cursor is closed.
This extra level of indirection enables the use of a single memory variable to
store the offset for multiple sets of bindings on different statement handles. The
application need only set this one memory variable and all of the offsets will be
changed.

4. Store an offset value (number of bytes) in the memory location pointed to by
the statement attribute set in the previous step.
The offset value is always added to the memory location of the originally
bound values. This sum must point to a valid memory address with sufficient
space to hold the next set of data.

5. Call SQLFetch() or SQLFetchScroll() again. CLI will add the offset value to the
locations used in the original call to SQLBindCol(). This will determine where
in memory to store the results.

6. Repeat steps 4 and 5 as required.

Data retrieval in pieces in CLI applications
Typically, an application might choose to allocate the maximum memory the
column value could occupy and bind it via SQLBindCol(), based on information
about a column in the result set (obtained via a call to SQLDescribeCol(), for
example, or prior knowledge). However, in the case of character and binary data,
the column can be arbitrarily long. If the length of the column value exceeds the
length of the buffer the application can allocate or afford to allocate, a feature of
SQLGetData() lets the application use repeated calls to obtain in sequence the value
of a single column in more manageable pieces.

A call to SQLGetData() (which is called after SQLFetch()) returns
SQL_SUCCESS_WITH_INFO (with SQLSTATE 01004) to indicate more data exists
for this column. SQLGetData() is called repeatedly to get the remaining pieces of
data until it returns SQL_SUCCESS, signifying that the entire data has been
retrieved for this column.

For example:
/* dtlob.c */
/* ... */
sqlrc = SQLGetData(hstmt, 1, SQL_C_BINARY, (SQLPOINTER) buffer,

BUFSIZ, &bufInd);
/* ... */
while(sqlrc == SQL_SUCCESS_WITH_INFO || sqlrc == SQL_SUCCESS)
{ if (bufInd > BUFSIZ) /* full buffer */

{ fwrite(buffer, sizeof(char), BUFSIZ, pFile);
}
else /* partial buffer on last GetData */
{ fwrite(buffer, sizeof(char), bufInd, pFile);
}

Chapter 6. Processing transactions 105

sqlrc = SQLGetData(hstmt, 1, SQL_C_BINARY, (SQLPOINTER)buffer,
BUFSIZ, &bufInd);

/* ... */
}

The function SQLGetSubString() can also be used to retrieve a specific portion of a
large object value. For other alternative methods to retrieve long data, refer to the
documentation on large object usage.

Fetching LOB data with LOB locators in CLI applications
There are many cases where an application needs to fetch a large object value by
referencing a large object locator (LOB locator).

An example is used to demonstrate how using a locator to retrieve CLOB data
allows a character string to be extracted from the CLOB, without having to transfer
the entire CLOB to an application buffer. The LOB locator is fetched and then used
as an input parameter to search the CLOB for a substring. This substring is then
retrieved.

Before you begin

Before fetching LOB data with LOB locators, ensure that you have initialized your
CLI application.

Procedure

To fetch LOB data using LOB locators:
1. Retrieve a LOB locator into an application variable using the SQLBindCol() or

SQLGetData() functions. For example:
SQLINTEGER clobLoc ;
SQLINTEGER pcbValue ;

/* ... */
sqlrc = SQLBindCol(hstmtClobFetch, 1, SQL_C_CLOB_LOCATOR,

&clobLoc, 0, &pcbValue);

2. Fetch the locator using SQLFetch():
sqlrc = SQLFetch(hstmtClobFetch);

3. Call SQLGetLength() to get the length of a string that is represented by a LOB
locator. For example:

sqlrc = SQLGetLength(hstmtLocUse, SQL_C_CLOB_LOCATOR,
clobLoc, &clobLen, &ind) ;

4. Call SQLGetPosition() to get the position of a search string within a source
string where the source string is represented by a LOB locator. The search
string can also be represented by a LOB locator. For example:

sqlrc = SQLGetPosition(hstmtLocUse,
SQL_C_CLOB_LOCATOR,
clobLoc,
0,
(SQLCHAR *) "Interests",
strlen("Interests"),
1,
&clobPiecePos,
&ind) ;

5. Call SQLGetSubString() to retrieve the substring. For example:
sqlrc = SQLGetSubString(hstmtLocUse,

SQL_C_CLOB_LOCATOR,
clobLoc,

106 Call Level Interface Guide and Reference Volume 1

clobPiecePos,
clobLen - clobPiecePos,
SQL_C_CHAR,
buffer,
clobLen - clobPiecePos + 1,
&clobPieceLen,
&ind) ;

6. Free the locator. All LOB locators are implicitly freed when a transaction ends.
The locator can be explicitly freed before the end of a transaction by executing
the FREE LOCATOR statement.
Although this statement cannot be prepared dynamically, CLI will accept it as a
valid statement on SQLPrepare() and SQLExecDirect(). The application uses
SQLBindParameter() with the SQL data type argument set to the appropriate
SQL and C symbolic data types. For example,

sqlrc = SQLSetParam(hstmtLocFree,
1,
SQL_C_CLOB_LOCATOR,
SQL_CLOB_LOCATOR,
0,
0,
&clobLoc,
NULL) ;

/* ... */
sqlrc = SQLExecDirect(hstmtLocFree, stmtLocFree, SQL_NTS) ;

XML data retrieval in CLI applications
When you select data from XML columns in a table, the output data is in the
serialized string format.

For XML data, when you use SQLBindCol() to bind columns in a query result set to
application variables, you can specify the data type of the application variables as
SQL_C_BINARY, SQL_C_CHAR, SQL_C_DBCHAR or SQL_C_WCHAR. When
retrieving a result set from an XML column, it is recommended that you bind your
application variable to the SQL_C_BINARY type. Binding to character types can
result in possible data loss resulting from code page conversion. Data loss can
occur when characters in the source code page cannot be represented in the target
code page. Binding your variable to the SQL_C_BINARY C type avoids these
issues.

XML data is returned to the application as internally encoded data. CLI determines
the encoding of the data as follows:
v If the C type is SQL_C_BINARY, CLI returns the data in the UTF-8 encoding

scheme.
v If the C type is SQL_C_CHAR or SQL_C_DBCHAR, CLI returns the data in the

application code page encoding scheme.
v If the C type is SQL_C_WCHAR, CLI returns the data in the UCS-2 encoding

scheme.

The database server performs an implicit serialization of the data before returning
it to the application. You can explicitly serialize the XML data to a specific data
type by calling the XMLSERIALIZE function. Implicit serialization is
recommended, however, because explicitly serializing to character types with
XMLSERIALIZE can introduce encoding issues.

The following example shows how to retrieve XML data from an XML column into
a binary application variable.

Chapter 6. Processing transactions 107

char xmlBuffer[10240];
// xmlBuffer is used to hold the retrieved XML document
integer length;

// Assume a table named dept has been created with the following statement:
// CREATE TABLE dept (id CHAR(8), deptdoc XML)

length = sizeof (xmlBuffer);
SQLExecute (hStmt, "SELECT deptdoc FROM dept WHERE id=’001’", SQL_NTS);
SQLBindCol (hStmt, 1, SQL_C_BINARY, xmlBuffer, &length, NULL);
SQLFetch (hStmt);
SQLCloseCursor (hStmt);
// xmlBuffer now contains a valid XML document encoded in UTF-8

Inserting data

Inserting bulk data with bookmarks using
SQLBulkOperations() in CLI applications

You can insert data in bulk with bookmarks using SQLBulkOperations().

Before you begin

Before inserting bulk data with SQLBulkOperations(), ensure you have initialized
your CLI application.

About this task

Bookmarks in CLI do not persist across cursor close operations. This means that an
application cannot use bookmarks that it has stored from a previous cursor.
Instead, it has to call SQLFetch() or SQLFetchScroll() to retrieve the bookmarks
before updating with bookmarks.

Procedure

To perform a bulk data insert using SQLBulkOperations():
1. Set the SQL_ATTR_USE_BOOKMARKS statement attribute to

SQL_UB_VARIABLE using SQLSetStmtAttr().
2. Execute a query that returns a result set.
3. Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of

rows you want to insert using SQLSetStmtAttr().
4. Call SQLBindCol() to bind the data you want to insert.

The data is bound to an array with a size equal to the value of
SQL_ATTR_ROW_ARRAY_SIZE, set in the previous step.

Note: The size of the array pointed to by the SQL_ATTR_ROW_STATUS_PTR
statement attribute should either be equal to SQL_ATTR_ROW_ARRAY_SIZE
or SQL_ATTR_ROW_STATUS_PTR should be a null pointer.

5. Insert the data by calling SQLBulkOperations() with SQL_ADD as the Operation
argument.
CLI will update the bound column 0 buffers with the bookmark values for the
newly inserted rows. For this to occur, the application must have set the
SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE
before executing the statement.

108 Call Level Interface Guide and Reference Volume 1

Note: If SQLBulkOperations() is called with an Operation argument of
SQL_ADD on a cursor that contains duplicate columns, an error is returned.

Importing data with the CLI LOAD utility in CLI applications
The CLI LOAD functionality provides an interface to the IBM DB2 LOAD utility from
CLI.

This functionality allows you to insert data in CLI using LOAD instead of array
insert. This option can yield significant performance benefits when large amounts
of data need to be inserted. Because this interface invokes LOAD, the same
consideration given for using LOAD should also be taken into account when using
the CLI LOAD interface.

Before you begin

Before importing data with the CLI LOAD utility, ensure you have initialized your
CLI application.

Note: The CLI LOAD interface to the IBM DB2 LOAD utility is not supported when
accessing IDS data servers.

About this task

Note: Starting from Version 9.7, Fix Pack 4, this feature can also be used with the
CLI async processing feature.
v Unlike the IBM DB2 LOAD utility, the CLI LOAD utility does not load data directly

from an input file. Instead, if required, the application should retrieve the data
from the input file and insert it into the appropriate application parameters that
correspond to the parameter markers in the prepared statement.

v If the prepared SQL statement for inserting data contains a SELECT clause,
parameter markers are not supported.

v The prepared SQL statement for inserting data must include parameter markers
for all columns in the target table, unless a fullselect is used instead of the
VALUES clause in the INSERT statement.

v The insertion of data is non-atomic because the load utility precludes atomicity.
LOAD might not be able to successfully insert all the rows passed to it. For
example, if a unique key constraint is violated by a row being inserted, LOAD will
not insert this row but will continue loading the remaining rows.

v A COMMIT will be issued by LOAD. Therefore, if the insertion of the data
completes successfully, the LOAD and any other statements within the transaction
cannot be rolled back.

v The error reporting for the CLI LOAD interface differs from that of array insert.
Non-severe errors or warnings, such as errors with specific rows, will only
appear in the LOAD message file.

Procedure

To import data using the CLI LOAD utility:
1. Specify the statement attribute SQL_ATTR_USE_LOAD_API in

SQLSetStmtAttr() with one of the following supported values:

SQL_USE_LOAD_INSERT
Use the LOAD utility to append to existing data in the table.

Chapter 6. Processing transactions 109

SQL_USE_LOAD_REPLACE
Use the LOAD utility to replace existing data in the table.

For example, the following call indicates that the CLI LOAD utility will be used
to add to the existing data in the table:
SQLSetStmtAttr (hStmt, SQL_ATTR_USE_LOAD_API,

(SQLPOINTER) SQL_USE_LOAD_INSERT, 0);

Note: When SQL_USE_LOAD_INSERT or SQL_USE_LOAD_REPLACE is set,
no other CLI functions except for the following CLI function can be called until
SQL_USE_LOAD_OFF is set (see Step 3):
v SQLBindParameter()
v SQLExecute()
v SQLExtendedBind()
v SQLParamOptions()
v SQLSetStmtAttr()

2. Create a structure of type db2LoadStruct and specify the required load options
through this structure. Set the SQL_ATTR_LOAD_INFO statement attribute to a
pointer to this structure.

3. Optional: The ANYORDER file type modifier option of the LOAD API can
potentially increase the performance of the load. Set the statement attribute
SQL_ATTR_LOAD_MODIFIED_BY in SQLSetStmtAttr() to specify the file type
modifier option ANYORDER.
For example, the following call specifies the anyorder file type modifier for the
CLI LOAD:
char *filemod="anyorder";
SQLSetStmtAttr (hstmt, SQL_ATTR_LOAD_MODIFIED_BY,

(SQLPOINTER) filemod, SQL_NTS);

4. Issue SQLExecute() on the prepared SQL statement for the data to be inserted.
The INSERT SQL statement can be a fullselect which allows data to be loaded
from a table using the SELECT statement. With a single execution of the
INSERT statement, all of the data from the SELECT is loaded. The following
example shows how a fullselect statement loads data from one table into
another:
SQLPrepare (hStmt,

(SQLCHAR *) "INSERT INTO tableB SELECT * FROM tableA",
SQL_NTS);

SQLExecute (hStmt);

5. Call SQLSetStmtAttr() with SQL_USE_LOAD_OFF. This ends the processing of
data using the LOAD utility. Subsequently, regular CLI array insert will be in
effect until SQL_ATTR_USE_LOAD_API is set again (see Step 1).

6. Optional: After the CLI LOAD operation, you can query the number of rows that
were affected by it by using the following statement attributes:
v SQL_ATTR_LOAD_ROWS_COMMITTED_PTR: A pointer to an integer that

represents the total number of rows processed. This value equals the number
of rows successfully loaded and committed to the database, plus the number
of skipped and rejected rows.

v SQL_ATTR_LOAD_ROWS_DELETED_PTR: A pointer to an integer that
represents the number of duplicate rows deleted.

v SQL_ATTR_LOAD_ROWS_LOADED_PTR: A pointer to an integer that
represents the number of rows loaded into the target table.

v SQL_ATTR_LOAD_ROWS_READ_PTR: A pointer to an integer that
represents the number of rows read.

110 Call Level Interface Guide and Reference Volume 1

v SQL_ATTR_LOAD_ROWS_REJECTED_PTR: A pointer to an integer that
represents the number of rows that could not be loaded.

v SQL_ATTR_LOAD_ROWS_SKIPPED_PTR: A pointer to an integer that
represents the number of rows skipped before the CLI LOAD operation began.

To use the statement attributes to query the number of rows affected by the CLI
LOAD, the application must call SQLSetStmtAttr before the CLI LOAD, and pass a
pointer to the memory location where the value will be stored.
For example, after you turn on CLI LOAD by calling SQLSetStmtAttr and specify
the statement attribute SQL_ATTR_USE_LOAD_API as in step 1, before
executing the INSERT to do the CLI LOAD, you can call SQLSetStmtAttr to pass
a pointer to the memory location where the value will be stored.
int *rowsLoaded;
int *rowsDeleted;

rowsLoaded = (int *)malloc(sizeof(int));
if (rowsLoaded == NULL)
{

// Handle any memory allocation failure by malloc
}
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_LOAD_ROWS_LOADED_PTR, rowsLoaded,
SQL_IS_POINTER);

rowsDeleted = (int *)malloc(sizeof(int));
if (rowsLoaded == NULL)
{

// Handle any memory allocation failure by malloc
}
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_LOAD_ROWS_DELETED_PTR, rowsDeleted,
SQL_IS_POINTER);

After the CLI LOAD, you can retrieve the statement attribute values as follows:
printf("\n Value of SQL_ATTR_LOAD_ROWS_LOADED_PTR is %d", *rowsLoaded);
printf("\n Value of SQL_ATTR_LOAD_ROWS_DELETED_PTR is %d", *rowsDeleted);

You can also retrieve the statement attribute values by calling SQLGetStmtAttr,
as shown in the following example. Note that you must call SQLSetStmtAttr to
pass a pointer to the memory location where the value will be stored before
you issue the INSERT statement for the CLI LOAD.
int *pStmtAttrValue;

rc = SQLGetStmtAttr(hstmt,
SQL_ATTR_LOAD_ROWS_LOADED_PTR,
&pStmtAttrValue,
sizeof(pStmtAttrValue),
NULL);

printf("\n Value of SQL_ATTR_LOAD_ROWS_LOADED_PTR is %d", *pStmtAttrValue);

rc = SQLGetStmtAttr(hstmt,
SQL_ATTR_LOAD_ROWS_DELETED_PTR,
&pStmtAttrValue,
sizeof(pStmtAttrValue),
NULL);

printf("\n Value of SQL_ATTR_LOAD_ROWS_DELETED_PTR is %d", *pStmtAttrValue);

XML column inserts and updates in CLI applications
When you update or insert data into XML columns of a table, the input data must
be in the serialized string format.

For XML data, when you use SQLBindParameter() to bind parameter markers to
input data buffers, you can specify the data type of the input data buffer as
SQL_C_BINARY, SQL_C_CHAR, SQL_C_DBCHAR or SQL_C_WCHAR.

Chapter 6. Processing transactions 111

When you bind a data buffer that contains XML data as SQL_C_BINARY, CLI
processes the XML data as internally encoded data. This is the preferred method
because it avoids additional resource usage and potential data loss of character
conversion when character types are used.

Important: If the XML data is encoded in an encoding scheme and CCSID other
than the application code page encoding scheme, you must include internal
encoding in the data and bind the data as SQL_C_BINARY to avoid character
conversion.

When you bind a data buffer that contains XML data as SQL_C_CHAR,
SQL_C_DBCHAR or SQL_C_WCHAR, CLI processes the XML data as externally
encoded data. CLI determines the encoding of the data as follows:
v If the C type is SQL_C_WCHAR, CLI assumes that the data is encoded as

UCS-2.
v If the C type is SQL_C_CHAR or SQL_C_DBCHAR, CLI assumes that the data

is encoded in the application code page encoding scheme.

If you want the database server to implicitly parse the data before storing it in an
XML column, the parameter marker data type in SQLBindParameter() should be
specified as SQL_XML.

Implicit parsing is recommended, because explicit parsing of a character type with
XMLPARSE can introduce encoding issues.

The following example shows how to update XML data in an XML column using
the recommended SQL_C_BINARY type.
char xmlBuffer[10240];
integer length;

// Assume a table named dept has been created with the following statement:
// CREATE TABLE dept (id CHAR(8), deptdoc XML)

// xmlBuffer contains an internally encoded XML document that is to replace
// the existing XML document
length = strlen (xmlBuffer);
SQLPrepare (hStmt, "UPDATE dept SET deptdoc = ? WHERE id = ’001’", SQL_NTS);
SQLBindParameter (hStmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_XML, 0, 0,

xmlBuffer, 10240, &length);
SQLExecute (hStmt);

Updating and deleting data in CLI applications
Updating and deleting data is part of the larger task of processing transactions in
CLI. There are two types of update and delete operations available in CLI
programming: simple and positioned.

A simple update or delete operation only requires that you issue and execute the
UPDATE or DELETE SQL statements as you would any other SQL statement. You
could, in this case, use SQLRowCount() to obtain the number of rows affected by the
SQL statement. Positioned updates and deletes involve modifying the data of a
result set. A positioned update is the update of a column of a result set, and a
positioned delete is when a row of a result set is deleted. Positioned update and
delete operations require cursors to be used. This document describes how to
perform positioned update and delete operations by first getting the name of the
cursor associated with the result set, and then issuing and executing the UPDATE
or DELETE on a second statement handle using the retrieved cursor name.

112 Call Level Interface Guide and Reference Volume 1

Before you begin

Before you perform a positioned update or delete operation, ensure that you have
initialized your CLI application.

Procedure

To perform a positioned update or delete operation:
1. Generate the result set that the update or delete will be performed on by

issuing and executing the SELECT SQL statement.
2. Call SQLGetCursorName() to get the name of the cursor, using the same

statement handle as the handle that executed the SELECT statement. This
cursor name will be needed in the UPDATE or DELETE statement.
When a statement handle is allocated, a cursor name is automatically
generated. You can define your own cursor name using SQLSetCursorName(),
but it is recommended that you use the name that is generated by default
because all error messages will reference the generated name, not the name
defined using SQLSetCursorName().

3. Allocate a second statement handle that will be used to execute the positioned
update or delete.
To update a row that has been fetched, the application uses two statement
handles, one for the fetch and one for the update. You cannot reuse the fetch
statement handle to execute the positioned update or delete, because it is still
in use when the positioned update or delete is executing.

4. Fetch data from the result set by calling SQLFetch() or SQLFetchScroll().
5. Issue the UPDATE or DELETE SQL statement with the WHERE CURRENT of

clause and specify the cursor name obtained in step 2. For example:
sprintf((char *)stmtPositionedUpdate,

"UPDATE org SET location = ’Toronto’ WHERE CURRENT of %s",
cursorName);

6. Position the cursor on the row of the data fetched and execute the positioned
update or delete statement.

Updating bulk data with bookmarks using
SQLBulkOperations() in CLI applications

You can update data in bulk with bookmarks using SQLBulkOperations().

Before you begin

Before updating data in bulk, ensure you have initialized your CLI application.

About this task

Bookmarks in CLI do not persist across cursor close operations. This means that an
application cannot use bookmarks that it has stored from a previous cursor.
Instead, it has to call SQLFetch() or SQLFetchScroll() to retrieve the bookmarks
before updating with bookmarks.

Procedure

To update data in bulk:
1. Set the SQL_ATTR_USE_BOOKMARKS statement attribute to

SQL_UB_VARIABLE using SQLSetStmtAttr().

Chapter 6. Processing transactions 113

2. Execute a query that returns a result set.
3. Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of

rows you want to update using SQLSetStmtAttr().
4. Call SQLBindCol() to bind the data you want to update.

The data is bound to an array with a size equal to the value of
SQL_ATTR_ROW_ARRAY_SIZE, set in the previous step.

5. Bind the bookmark column to column 0 by calling SQLBindCol().
6. Copy the bookmarks for rows that you want to update into the array bound to

column 0.
7. Update the data in the bound buffers.

Note: The size of the array pointed to by the SQL_ATTR_ROW_STATUS_PTR
statement attribute should either be equal to SQL_ATTR_ROW_ARRAY_SIZE
or SQL_ATTR_ROW_STATUS_PTR should be a null pointer.

8. Update the data by calling SQLBulkOperations() with an Operation argument of
SQL_UPDATE_BY_BOOKMARK.

Note: If the application has set the SQL_ATTR_ROW_STATUS_PTR statement
attribute, then it can inspect this array to see the result of the operation.

9. Optional: Verify that the update has occurred by calling SQLBulkOperations()
with an Operation argument of SQL_FETCH_BY_BOOKMARK. This will fetch
the data into the bound application buffers.
If data has been updated, CLI changes the value in the row status array for the
appropriate rows to SQL_ROW_UPDATED.

Note: If SQLBulkOperations() is called with an Operation argument of
SQL_UPDATE_BY_BOOKMARK on a cursor that contains duplicate columns,
an error is returned.

Deleting bulk data with bookmarks using
SQLBulkOperations() in CLI applications

You can use SQLBulkOperations() and bookmarks to delete data in bulk.

Before you begin

Before deleting data in bulk, ensure you have initialized your CLI application.

About this task

Bookmarks in CLI do not persist across cursor close operations. This means that an
application cannot use bookmarks that it has stored from a previous cursor.
Instead, it has to call SQLFetch() or SQLFetchScroll() to retrieve the bookmarks
before updating by bookmarks.

Procedure

To perform bulk deletions using bookmarks and SQLBulkOperations():
1. Set the SQL_ATTR_USE_BOOKMARKS statement attribute to

SQL_UB_VARIABLE using SQLSetStmtAttr().
2. Execute a query that returns a result set.
3. Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of

rows you want to delete.

114 Call Level Interface Guide and Reference Volume 1

4. Bind the bookmark column to column 0 by calling SQLBindCol().
5. Copy the bookmarks for the rows you want to delete into the array bound to

column 0.

Note: The size of the array pointed to by the SQL_ATTR_ROW_STATUS_PTR
statement attribute should either be equal to SQL_ATTR_ROW_ARRAY_SIZE,
or the SQL_ATTR_ROW_STATUS_PTR statement attribute should be a null
pointer.

6. Perform the deletion by calling SQLBulkOperations() with an Operation
argument of SQL_DELETE_BY_BOOKMARK.
If the application has set the SQL_ATTR_ROW_STATUS_PTR statement
attribute, then it can inspect this array to see the result of the operation.

Calling stored procedures from CLI applications
CLI applications invoke stored procedures by executing the CALL procedure SQL
statement. This topic describes how to call stored procedures from CLI
applications.

Before you begin

Before calling a stored procedure, ensure that you have initialized your CLI
application.

About this task

If the stored procedure being called is uncataloged, ensure that it does not call any
of the CLI schema functions. Calling CLI schema functions from uncataloged
stored procedures is not supported.

The CLI schema functions are: SQLColumns(), SQLColumnPrivileges(),
SQLForeignKeys(), SQLPrimaryKeys(), SQLProcedureColumns(), SQLProcedures(),
SQLSpecialColumns(), SQLStatistics(), SQLTables(), and SQLTablePrivileges().

Procedure

To call a stored procedure:
1. Declare application host variables corresponding to each of the IN, INOUT, and

OUT parameters of the stored procedure. Ensure the application variable data
types and lengths match the data types and lengths of the arguments in the
stored procedure signature. CLI supports calling stored procedures with all
SQL types as parameter markers.

2. Initialize the IN, INOUT, and OUT parameter application variables.
3. Issue the CALL SQL statement. For example:

SQLCHAR *stmt = (SQLCHAR *)"CALL OUT_LANGUAGE (?)";

or
SQLCHAR *stmt = (SQLCHAR *)"CALL OUT_LANGUAGE (:language)";

Remember: To use named parameter markers (for example, :language), you
must explicitly enable named parameter processing by setting the
EnableNamedParameterSupport configuration keyword to TRUE.
For optimal performance, applications should use parameter markers for stored
procedure arguments in the CALL procedure string, and then bind the host

Chapter 6. Processing transactions 115

variables to those parameter markers. If inbound stored procedure arguments
must be specified as string literals rather than parameter markers, however,
include the ODBC call escape clause delimiters { } in the CALL procedure
statement. For example:

SQLCHAR *stmt = (SQLCHAR *)"{CALL IN_PARAM (123, ’Hello World!’)}";

When string literals and the ODBC escape clause are used in a CALL procedure
statement, the string literals can only be specified as IN mode stored procedure
arguments. INOUT and OUT mode stored procedure arguments must still be
specified using parameter markers.

4. Optional: Prepare the CALL statement by calling SQLPrepare().
5. Bind each parameter of the CALL procedure statement by calling

SQLBindParameter().

Note: Ensure each parameter is bound correctly (to SQL_PARAM_INPUT,
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT), otherwise
unexpected results could occur when the CALL procedure statement is
executed. This would happen, for example, if an input parameter was
incorrectly bound with an InputOutputType of SQL_PARAM_OUTPUT.

Note: The CALL procedure statement does not support an array input for a
parameter marker using the SQL_ATTR_PARAMSET_SIZE attribute.

6. Execute the CALL procedure statement using SQLExecDirect(), or if the CALL
procedure statement was prepared in step 4, SQLExecute().

Note: If an application or thread that has invoked a stored procedure is
terminated before the stored procedure completes, execution of the stored
procedure will also be terminated. It is important that a stored procedure
contain logic to ensure that the database is in both a consistent and desirable
state if the stored procedure is terminated prematurely.

7. Check the return code of SQLExecDirect() or SQLExecute() when the function
has returned to determine if any errors occurred during execution of either the
CALL procedure statement or the stored procedure. If the return code is
SQL_SUCCESS_WITH_INFO or SQL_ERROR, use the CLI diagnostic functions
SQLGetDiagRec() and SQLGetDiagField() to determine why the error occurred.
If a stored procedure has executed successfully, any variables bound as OUT
parameters may contain data that the stored procedure has passed back to the
CLI application. If applicable, the stored procedure may also return one or
more result sets through non-scrollable cursors. CLI applications should process
stored procedure result sets as they would process result sets generated by
executing SELECT statements.

Note: If a CLI application is unsure of the number or type of columns in a
result set returned by a stored procedure, the SQLNumResultCols(),
SQLDescribeCol(), and SQLColAttribute() functions can be called (in this
order) on the result set to determine this information.

Results

Once you have executed the CALL statement, you can retrieve result sets from the
stored procedure if applicable.

Note:

116 Call Level Interface Guide and Reference Volume 1

The numeric month and day parts of a DATETYPE data type value will appear to
be reversed in procedure result sets that are returned to DB2 CLI applications if
the values are not returned in ISO format. For example, this can happen if a local
format is used instead. To ensure that DATETYPE data type value information is
correctly interpreted by a client application, the procedures should be bound to the
database with a locale-independent DATETIME format such as ISO. For example:

db2set DB2_SQLROUTINE_PREPOPTS="DATETIME ISO"

Note:

CLI packages are automatically bound to databases when the databases are created
or upgraded.

Resultsets from Anonymous blocks

Starting in Version 9.7 FixPack 2, CLI will be prepare for resultsets
whenever a SQL statement that starts with BEGIN, but not BEGIN
COMPOUND, is sent by the application. CLI will interpret the returned
cursor from the server and allow application to retrieve the resultsets.

Example 1: Using SQLExecDirect
opt caller on
opt echo on

quickc 1 1 sample

SQLAllocStmt 1 1
getmem 1 1 SQL_C_LONG

SQLExecDirect 1 "drop table t1" -3
SQLExecDirect 1 "create table t1 (c1 int)" -3
SQLExecDirect 1 "insert into t1 values (10)” -3
SQLExecDirect 1 "insert into t1 values (20)” -3
SQLExecDirect 1 "insert into t1 values (30)” -3

SQLExecDirect 1 "begin declare c1 cursor with return to client with hold
for select c1 from t1; end" -3
SQLBindCol 1 1 sql_c_long 1
FetchAll 1

SQLFreeStmt 1 SQL_DROP
SQLTransact 1 1 SQL_COMMIT

killenv 1

CLI stored procedure commit behavior
The commit behavior of SQL statements, both in a CLI client application and in the
called stored procedure running on a DB2 server, depends on the commit
combinations applied in the application and the stored procedure.

The possible combinations and the resulting commit behavior are described in the
following table.

Table 8. CLI Stored procedure commit behavior

CLI client Stored
procedure

Commit behavior

autocommit on autocommit on All successfully executed SQL statements in the stored procedure are committed,
even if other SQL statements in the stored procedure fail and an error or
warning SQLCODE is returned to the CALL statement.

autocommit on autocommit off If the stored procedure returns an SQLCODE >= 0, all successfully executed SQL
statements in the stored procedure are committed. Otherwise, all SQL statements
in the stored procedure are rolled back.

Chapter 6. Processing transactions 117

Table 8. CLI Stored procedure commit behavior (continued)

CLI client Stored
procedure

Commit behavior

autocommit on manual commit All successfully executed SQL statements in the stored procedure that are
manually committed will not be rolled back, even if an error SQLCODE is
returned to the CALL statement.
Note: If the stored procedure returns an SQLCODE >= 0, any successfully
executed SQL statements in the stored procedure that occur after the last manual
commit will be committed; otherwise, they will be rolled back to the manual
commit point.

autocommit off autocommit on All successfully executed SQL statements in the stored procedure are committed
and will not be rolled back, even if an error SQLCODE is returned to the CALL
statement. In addition, all uncommitted and successfully executed SQL
statements in the CLI client application up to and including the CALL statement
are committed.
Note: Exercise caution when using this commit combination in a multi-SQL
statement client-side transaction, because the transaction cannot be fully rolled
back after the CALL statement has been issued.

autocommit off autocommit off If the stored procedure returns an SQLCODE >= 0, all successfully executed SQL
statements in the stored procedure will be committed when the transaction that
includes the CALL statement is committed. Otherwise, all SQL statements in the
stored procedure will be rolled back when the transaction that includes the
CALL statement is rolled back.

autocommit off manual commit All successfully executed SQL statements in the stored procedure that are
manually committed will not be rolled back, even if an error SQLCODE is
returned to the CALL statement. In addition, all uncommitted and successfully
executed SQL statements in the CLI client application up to the CALL statement
are committed.
Note: If the stored procedure returns an SQLCODE >= 0, any successfully
executed SQL statements within the stored procedure that occur after the last
manual commit will be committed; otherwise, they will be rolled back to the
manual commit point.
Note: Exercise caution when using this commit combination in a multi-SQL
statement client-side transaction, because the transaction cannot be fully rolled
back after the CALL statement has been issued.

Creating static SQL with CLI/ODBC Static Profiling
The CLI/ODBC Static Profiling feature enables an application's end users to
replace the use of dynamic SQL with static SQL, potentially resulting in runtime
performance improvement and better security from the package-based
authorization mechanism.

About this task
v When executing an application with pre-bound static SQL statements, dynamic

registers that control the dynamic statement behavior will have no effect on the
statements that are converted to static.

v If an application issues DDL (data definition language) statements for objects
that are referenced in subsequent DML (data manipulation language) statements,
you will find all of these statements in the capture file. The CLI/ODBC Static
Profiling Bind Tool, db2cap, will attempt to bind them. The bind attempt will be
successful with DBMSs that support the VALIDATE(RUN) bind option, but it
will fail with ones that do not. In this case, the application should not use Static
Profiling.

118 Call Level Interface Guide and Reference Volume 1

v The database administrator (DBA) may edit the capture file to add, change, or
remove SQL statements, based on application-specific requirements.

Before running the application during the profiling session, ensure that the
following conditions have been noted:
v An SQL statement must have successfully executed (generated a positive

SQLCODE) for it to be captured in a profiling session. In a statement matching
session, unmatched dynamic statements will continue to execute as dynamic
CLI/ODBC calls.

v An SQL statement must be identical character-by-character to the one that was
captured and bound to be a valid candidate for statement matching. Spaces are
significant: for example, "COL = 1" is considered different than "COL=1". Use
parameter markers in place of literals to improve match hits.

Be aware that there are times when not all dynamic CLI/ODBC calls can be
captured and grouped into a static package. Possible reasons are:
v The application does not regularly free environment handles. During a capture

session, statements captured under a particular environment handle are only
written to the capture file or files when that environment handle is freed.

v The application has complex control flows that make it difficult to cover all
runtime conditions in a single application run.

v The application executes SET statements to change register variables. These
statements are not recorded. Note that there is a limited capability in match
mode to detect dynamic SET SQLID and SET SCHEMA statements, and suspend
executing static statements accordingly. However, for other SET statements,
subsequent SQL statements which depend on the register variables being set
may not behave properly.

v The application issues DML (Data Manipulation Language) statements.
Depending on application complexities and the nature of these statements,
either: (1) they may not be matched, or (2) they may not execute properly at
runtime.

Since dynamic and static SQL are quite different, the DBA should always verify the
behaviour of the application in static match mode before making it available to end
users. Furthermore, while static SQL may offer improved runtime performance
over dynamic SQL, this is not necessarily true for all statements. If testing shows
that static execution decreases performance for a particular statement, the DBA can
force that statement to be dynamically executed by removing the statement from
the capture file. In addition, static SQL, unlike dynamic SQL, may require
occasional rebinding of packages to maintain performance, particularly if the
database objects referred to in the packages frequently change. If CLI/ODBC Static
Profiling does not fit the type of application you are running, there are other
programming methods which allow you to obtain the benefits of static SQL, such
as embedded SQL and stored procedures.

Procedure

To create static SQL statements from existing dynamic SQL statements, perform the
following steps:
1. Profile the application by capturing all the dynamic SQL statements issued by

the application. This process is known as running the application in static
capture mode. To turn on static capture mode, set the following CLI/ODBC
configuration keywords for the CLI/ODBC data source in the db2cli.ini
configuration file, before running the application:

Chapter 6. Processing transactions 119

v StaticMode = CAPTURE

v StaticPackage = qualified_package_name

v StaticCapFile = capture_file_name

For example:
[DSN1]
StaticMode = CAPTURE
StaticPackage = MySchema.MyPkg
StaticCapFile = E:\Shared\MyApp.cpt

Attention: For the StaticPackage keyword, ensure that you specify a schema
name (MySchema is the schema name in the example). If a schema is not
specified, the name you provide will be considered to be the container name
instead of the package name, and the package name will be blank.
The resulting static profile takes the form of a text-based capture file, containing
information about the SQL statements captured.
The example file yields the following results: Data Source Name 1 (DSN1) is set
to capture mode; the package will be named MySchema.MyPkg; and the capture
file, MyApp.cpt, will be saved in the E:\Shared\ directory. Until the StaticMode
keyword is changed to a value other than CAPTURE, such as DISABLED which is
used to turn off static capture mode, each subsequent run of this application
will capture SQL statements and append them to the capture file MyApp.cpt.
Only unique SQL statements will be captured however, as duplicate executions
are ignored.

2. Optional: Set the CLI/ODBC configuration keyword StaticLogFile to generate
a CLI/ODBC Static Profiling log file. It contains useful information to
determine the state of the statement capturing process.

3. Run the application. Unique SQL statements will now be captured in the
capture file. Duplicate statements are ignored.

4. Disable static capture mode by setting the CLI/ODBC configuration keyword
StaticMode to DISABLED, or remove the keywords set in the first step from the
db2cli.ini file.

5. Issue the db2cap command from the Command Line Processor. The db2cap
utility will generate a static package based on the capture file. If the db2cap
utility does not return a message indicating successful completion, then a
statement in the capture file could not be statically bound. The DBA should
remove the failing statement from the capture file and run the db2cap utility
again.

6. Distribute a copy of the capture file, processed with db2cap to each end user of
the application. If all users reside on the same client platform, an alternative is
to place a read-only copy of this capture file in a network directory accessible
to all users.

7. Enable your application for dynamic-to-static SQL statement mapping, known
as static match mode. Do this by setting the following configuration keywords:
v StaticMode = MATCH

v StaticCapFile = capture_file_name

For example:
[DSN1]
StaticMode = MATCH
StaticCapFile = E:\Shared\MyApp.cpt

8. Optional: Set the CLI/ODBC configuration keyword StaticLogFile keyword to
log useful information such as how many statements were matched (therefore
statically executed) and how many statements were unmatched (therefore

120 Call Level Interface Guide and Reference Volume 1

dynamically executed) during a match session. The DBA should use this
information to verify that static profiling in match mode is yielding an
acceptable match ratio before making static profiling available to end users.

9. Run the application.

Capture file for CLI/ODBC/JDBC Static Profiling
The capture file generated during static profiling is a text file. It contains the text of
SQL statements and other associated information obtained in static capture mode.
As well, it keeps track of a number of configurable bind options; some already
contain specific values obtained from the capture run, and some are left blank, in
which case the precompiler will use default values during package binding. Before
binding the package(s), the DBA may want to examine the capture file and make
necessary changes to these bind options using a text editor.

To help you understand how to edit SQL statements, here is the description of the
fields in a statement:

Field Description

SQLID If present, indicates the SCHEMA or SQLID when the
statement was captured is different from the default
QUALIFIER of the package(s).

SECTNO Section number of the static package that the statement was
bound to.

ISOLATION Isolation level for the statement. It determines which one of
the five possible package the statement belongs to.

STMTTEXT Statement string

STMTTYPE There are 3 possible values:

v SELECT_CURSOR_WITHHOLD: SELECT statement
using a withhold cursor

v SELECT_CURSOR_NOHOLD: SELECT statement using a
nohold cursor

v OTHER: non-SELECT statements

CURSOR Cursor name declared for the SELECT statement

INVARnn Description of the n-th input variable

The 7 comma-separated fields refer to:

1. SQL data type

2. Length of the data. For decimal or floating point types,
this is the precision.

3. For decimal or floating point types only, this is the
scale.

4. TRUE if the character data is a for-bit-data type;
otherwise FALSE.

5. TRUE if the variable is nullable; otherwise FALSE.

6. Column name

7. SQL_NAMED if this variable refers to a real column
name; SQL_UNNAMED if the variable is a
system-generate name.

OUTVARn Description of the n-th output variable for the SELECT
statement. The comma-separated fields follow the same
convention as in INVARs.

Chapter 6. Processing transactions 121

Considerations for mixing embedded SQL and CLI
You can use CLI in conjunction with embedded static SQL in an application.
Consider the scenario where the application developer wishes to take advantage of
the ease of use provided by the CLI catalog functions and maximize the portion of
the application's processing where performance is critical. In order to mix the use
of CLI and embedded SQL, the application must comply with the listed rules:
v All connection management and transaction management must be performed

completely using either CLI or embedded SQL - never a mixture of the two. Two
options are available to the application:
– it performs all connects and commits/rollbacks using CLI calls, and then calls

functions written using embedded SQL;
– or it performs all connects and commits/rollbacks using embedded SQL, and

then calls functions that use CLI APIs, notably, a null connection.
v Query statement processing cannot straddle CLI and embedded SQL interfaces

for the same statement. For example, the application cannot open a cursor using
embedded SQL, and then call the CLI SQLFetch() function to retrieve row data.

Since CLI permits multiple connections, the SQLSetConnection() function must be
called before executing any embedded SQL. This allows the application to
explicitly specify the connection under which the embedded SQL processing is
performed.

If the CLI application is multithreaded and also makes embedded SQL calls or DB2
API calls, then each thread must have a DB2 context.

Freeing statement resources in CLI applications
After a transaction has completed, end the processing for each statement handle by
freeing the resources associated with it.

About this task

There are four main tasks that are involved with freeing resources for a statement
handle:
v close the open cursor
v unbind the column bindings
v unbind the parameter bindings
v free the statement handle

There are two ways you can free statement resources: using SQLFreeHandle() or
SQLFreeStmt().

Before you can free statement resources, you must have initialized your CLI
application and allocated a statement handle.

To free statement resources with SQLFreeHandle(), call SQLFreeHandle() with a
HandleType of SQL_HANDLE_STMT and the handle you want to free. This will
close any open cursor associated with this statement handle, unbind column and
parameter bindings, and free the statement handle. This invalidates the statement
handle. You do not need to explicitly carry out each of the four tasks listed
previously.

122 Call Level Interface Guide and Reference Volume 1

Procedure

To free statement resources with SQLFreeStmt(), you need to call SQLFreeStmt() for
each task (depending on how the application was implemented, all of these tasks
may not be necessary):
v To close the open cursor, call SQLCloseCursor(), or call SQLFreeStmt() with the

SQL_CLOSE Option and statement handle as arguments. This closes the cursor
and discards any pending results.

v To unbind column bindings, call SQLFreeStmt() with an Option of SQL_UNBIND
and the statement handle. This unbinds all columns for this statement handle
except the bookmark column.

v To unbind parameter bindings, call SQLFreeStmt() with an Option of
SQL_RESET_PARAMS and the statement handle. This releases all parameter
bindings for this statement handle.

v To free the statement handle, call SQLFreeStmt() with an Option of SQL_DROP
and the statement handle to be freed. This invalidates this statement handle.

Note: Although this option is still supported, use SQLFreeHandle() in your CLI
applications so that they conform to the latest standards.

Handle freeing in CLI applications
Environment handle

Before calling SQLFreeHandle() with a HandleType of SQL_HANDLE_ENV, an
application must call SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC
for all connections allocated under the environment. Otherwise, the call to
SQLFreeHandle() returns SQL_ERROR and the environment remains valid, as well
as any connection associated with that environment.

Connection handle

If a connection is open on the handle, an application must call SQLDisconnect() for
the connection before calling SQLFreeHandle() with a HandleType of
SQL_HANDLE_DBC. Otherwise, the call to SQLFreeHandle() returns SQL_ERROR
and the connection remains valid.

Statement handle

A call to SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT frees all
resources that were allocated by a call to SQLAllocHandle() with a HandleType of
SQL_HANDLE_STMT. When an application calls SQLFreeHandle() to free a
statement that has pending results, the pending results are discarded. When an
application frees a statement handle, CLI frees all the automatically generated
descriptors associated with that handle.

Note that SQLDisconnect() automatically drops any statements and descriptors
open on the connection.

Descriptor Handle

A call to SQLFreeHandle() with a HandleType of SQL_HANDLE_DESC frees the
descriptor handle in Handle. The call to SQLFreeHandle() does not release any
memory allocated by the application that may be referenced by the deferred fields
(SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and

Chapter 6. Processing transactions 123

SQL_DESC_OCTET_LENGTH_PTR) of any descriptor record of Handle. When an
explicitly allocated descriptor handle is freed, all statements that the freed handle
had been associated with revert to their automatically allocated descriptor handle.

Note that SQLDisconnect() automatically drops any statements and descriptors
open on the connection. When an application frees a statement handle, CLI frees
all the automatically generated descriptors associated with that handle.

124 Call Level Interface Guide and Reference Volume 1

Chapter 7. Terminating a CLI application

After you have initialized your CLI application and processed transactions, you
must terminate the application to properly disconnect from the data source and
free resources.

Before you begin

Before terminating your application, you should have initialized your CLI
application and completed processing of all transactions.

Procedure

To terminate a CLI application:
1. Disconnect from the data source by calling SQLDisconnect().
2. Free the connection handle by calling SQLFreeHandle() with a HandleType

argument of SQL_HANDLE_DBC.
If multiple database connections exist, repeat steps 1 - 2 until all connections
are closed and connection handles freed.

3. Free the environment handle by calling SQLFreeHandle() with a HandleType
argument of SQL_HANDLE_ENV.

© Copyright IBM Corp. 2012 125

126 Call Level Interface Guide and Reference Volume 1

Chapter 8. Trusted connections through DB2 Connect

Some DB2 database servers support trusted contexts. A trusted context allows the
database administrator to, among other things, define conditions under which a
client application will be allowed to create a trusted connection. A trusted
connection is allowed to do things that a normal connection cannot.

There are two types of trusted connection, implicit and explicit. When you create a
connection, whether you get an explicit trusted connection, an implicit trusted
connection, or a regular connection depends on whether you ask for a trusted
connection and whether the connection meets the criteria defined in the trusted
context on the server, as summarized in Table 9.

Table 9. What type of connections result from different combinations of actions

The connection meets the
server's criteria for being
trusted

The connection does not
meet the server's criteria for
being trusted

You request that the
connection be trusted

Explicit trusted connection Regular connection and
warning SQL20360W
(SQLSTATE 01679) is
returned.

You do not request that the
connection be trusted

Implicit trusted connection Regular connection

An implicit trusted connection is identical to a regular connection except that it
grants temporary role privileges to the user while they are using the connection.
The role privileges that are granted (if any) are specified in the trusted context that
caused the connection to be trusted.

Implicit trusted connections can be created by any application that connects using
DB2 Connect. Implicit trusted connections are made and used in the same way
that regular connections are made and used. This means that no code changes are
necessary for an existing application to take advantage of implicit trusted
connections as long as the application connects through DB2 Connect.

An explicit trusted connection grants temporary role privileges to the user the same
way that an implicit trusted connection does. In addition, an explicit trusted
connection lets you change the authorization ID used when performing actions
across that connection. Changing the authorization ID on an explicit trusted
connection is referred to as switching users. The authorization IDs to which you can
switch and whether a given authorization ID requires a password when switching
to it are defined as part of the trusted context that allowed the trusted connection
to be created.

User switching can significantly reduce the processing usage of sharing a
connection among several users, especially for user names that do not require a
password because in that case the database server does not authenticate the
authorization ID. When using the feature, however, you must be very certain that
your application does not allow switching to an authorization ID without
validating and authenticating that authorization ID. Otherwise you are creating a
security hole in your system.

© Copyright IBM Corp. 2012 127

Explicit trusted connections can be created and the user can be switched when
connecting through DB2 Connect using CLI or JDBC, including XA established
connections. Creating an explicit trusted connection and switching users requires
setting special connection attributes. This means that existing applications will
need to be modified in order to take advantage of explicit trusted connections.

Other than the differences just mentioned, you can use a trusted connection
(whether implicit or explicit) the same way you would used a regular connection.
You must be certain, however, to explicitly disconnect an explicit trusted
connection when you are done with it, even if it is in a broken or disconnected
state. Otherwise resources used by the connection might not be released. This is
not a problem with implicit trusted connections.

Note:

1. Explicit trusted connections should not use CLIENT authentication. This does
not apply to implicit trusted connections.

2. Applications using explicit trusted connections should be run on secure
machines which are password protected and accessible only to authorized
personnel. This does not apply to implicit trusted connections.

Creating and terminating a trusted connection through CLI
If the database server you are connecting to is configured to allow it, you can
create an explicit trusted connection when connecting through CLI.

Before you begin

This procedure assumes that you are not using an XA transaction manager. If you
are using an XA transaction manager you only need to make sure that the
transaction manager is configured to set the configuration value TCTX to TRUE
when it calls xa_open. If that is done then any connection that can be an explicit
trusted connection will be. To verify that a connection is an explicit trusted
connection see step 3.
v The database that you are connecting to must support trusted contexts.
v A trusted context must be defined that will recognize the client as being

trustable.
v You must know the system authorization ID that is specified in the trusted

context. The system authorization ID of a trusted connection is the authorization
ID you provide to the server as a user name when creating the connection. For
your connection to be trusted by a particular trusted context the system
authorization ID must be the one specified in that trusted context. Ask your
security administrator for a valid system authorization ID and the password for
that ID.

About this task

The examples in these instructions use the C language and assume that conn is a
pointer to a valid, but unconnected, connection handle. The variable rc is assumed
to have a data type of SQLRETURN.

Procedure
1. In addition to setting any connection attributes that you would set for a regular

connection, set the connection attribute SQL_ATTR_USE_TRUSTED_CONTEXT
to SQL_TRUE with a call to the SQLSetConnectAttr function.

128 Call Level Interface Guide and Reference Volume 1

rc = SQLSetConnectAttr(
conn,
SQL_ATTR_USE_TRUSTED_CONTEXT, SQL_TRUE, SQL_IS_INTEGER

);

2. Connect to the database as you would for a regular connection, for example by
calling the SQLConnect function. Use the system authorization ID as the user
name and its password as the password. Be sure to check for errors and
warnings, especially those listed in table Table 10.

Table 10. Errors indicating failure to create a trusted connection

SQLCODE SQLSTATE Meaning

SQL20360W 01679 The connection could not be established as a trusted
connection. It was established as a regular connection instead.

If no errors or warnings tell you differently, then the connection is established
and is an explicit trusted connection.

3. Optional: You can verify that an established connection is an explicit trusted
connection by checking the value of the connection attribute
SQL_ATTR_USE_TRUSTED_CONTEXT using the SQLGetConnectAttr function.
If it is set to SQL_TRUE the connection is an explicit trusted connection.

4. When you are finished using the connection you must be very careful to
explicitly disconnect it, even if it is in a broken or disconnected state. If you do
not explicitly disconnect an explicit trusted connection some of the resources
used by the connection might not be released.

Results

Note:

1. Explicit trusted connections should not use CLIENT authentication. This does
not apply to implicit trusted connections.

2. Applications using explicit trusted connections should only be run on secure
computers which are password protected and accessible only to authorized
personnel. This does not apply to implicit trusted connections.

Switching users on a trusted connection through CLI
You can switch users on an explicit trusted connection through the command line
interface (CLI).

For a description of what it means to switch users using a trusted connection see
the topic in the related links.

Before you begin
v The connection must have been successfully created as an explicit trusted

connection.
v The explicit trusted connection must not be in a transaction.
v The trusted context that allowed the explicit trusted connection to be created

must be configured to allow switching to the authorization ID you are switching
to.

About this task

The examples in these instructions use the C language and assume that conn is a
pointer to a connected explicit trusted connection. The variable rc is assumed to
have a data type of SQLRETURN. The variable newuser is assumed to be a pointer

Chapter 8. Trusted connections through DB2 Connect 129

to a character string holding the authorization ID of the user you want to switch
to. The variable passwd is assumed to be a pointer to a character string containing
the password for that authorization ID.

Procedure
1. Call the SQLSetConnectAttr function to set the

SQL_ATTR_TRUSTED_CONTEXT_USERID attribute. Set it to the authorization
ID you want to switch to.
rc = SQLSetConnectAttr(

conn,
SQL_ATTR_TRUSTED_CONTEXT_USERID, newuser, SQL_NTS

);
//Check for errors

Be sure to check for errors and warnings, especially those listed in table
Table 11.

Table 11. Errors indicating failure to set a new authorization ID when switching users

SQLCODE Meaning

CLI0106E The connection is not connected.

CLI0197E The connection is not a trusted connection.

CLI0124E There is a problem with the value provided. Check that it is not null, or not
too long, for example.

CLI0196E The connection is involved in a unit of work that prevents it from switching
users. To be able to switch users the connection must not be in a transaction.

2. Optional: (This step is optional unless the trusted context that allowed this
trusted connection requires a password for the authorization ID you are
switching to.) Call the SQLSetConnectAttr function to set the
SQL_ATTR_TRUSTED_CONTEXT_PASSWORD attribute. Set it to the password
for the new authorization ID.
rc = SQLSetConnectAttr(

conn,
SQL_ATTR_TRUSTED_CONTEXT_PASSWORD, passwd, SQL_NTS

);
//Check for errors

Be sure to check for errors and warnings, both those listed in table Table 11 and
those listed in table Table 12.

Table 12. Errors indicating failure to set a password when switching users

SQLCODE Meaning

CLI0198E The attribute SQL_ATTR_TRUSTED_CONTEXT_USERID has not yet been set.

3. Proceed as with a regular connection. If you are using an XA transaction
manager the user switch is attempted as part of the next request, otherwise the
user switch is attempted just before initiating the next function call that
accesses the database (SQLExecDirect for example). In either case, in addition
to the errors and warnings you would normally check for, be sure to check for
the errors listed in Table 13 on page 131. The errors in Table 13 on page 131
indicate that the user switch failed.

130 Call Level Interface Guide and Reference Volume 1

Table 13. Errors indicating failure to switch users

SQLCODE Meaning

SQL1046N The trusted context that allowed this trusted
connection is not configured to allow
switching to the authorization ID you are
trying to switch to. You will not be able to
switch to that authorization ID until the
trusted context is changed.

SQL30082N The password provided is not correct for the
authorization ID you are switching to.

SQL0969N with a native error of -20361 There is some database level constraint that
prevent you from switching to the user.

If the user switch fails the connection will be in an unconnected state until you
successfully switch to another user. You can switch users on a trusted
connection in an unconnected state but cannot access the database server with
it. A connection in an unconnected state will remain in that state until you
successfully switch users on it.

What to do next

Note:

1. Important: Switching users without supplying a password bypasses the
database server's authentication. Your application must not allow a switch to an
authorization ID without a password unless that application has already
validated and authenticated that authorization ID. To do otherwise creates a
security hole.

2. Specifying a NULL value for the SQL_ATTR_TRUSTED_CONTEXT_USERID
attribute is equivalent to specifying the trusted context system authorization ID
(the user id used when the explicit trusted connection was created).

3. When you successfully set the value of the
SQL_ATTR_TRUSTED_CONTEXT_USERID connection attribute on an explicit
trusted connection the connection is immediately reset. The result of resetting is
as if a new connection were created using the original connection attributes of
that connection. This reset happens even if the value you set the connection
attribute to is the system authorization ID or NULL or the same value that the
attribute currently holds.

4. If the SQL_ATTR_TRUSTED_CONTEXT_PASSWORD attribute is set, the
password will be authenticated during the switch user processing, even if the
trusted context that allowed the trusted connection doesn't require
authentication on a switch user for that authorization ID. This results in
unnecessary processing time. This rule doesn't apply to the trusted context
system authorization ID. If the trusted context system authorization ID doesn't
require authentication when you switch to it then it is not authenticated even if
a password is provided.

Chapter 8. Trusted connections through DB2 Connect 131

132 Call Level Interface Guide and Reference Volume 1

Chapter 9. Descriptors in CLI applications

CLI stores information (data types, size, pointers, and so on) about columns in a
result set, and parameters in an SQL statement. The bindings of application buffers
to columns and parameters must also be stored. Descriptors are a logical view of
this information, and provide a way for applications to query and update this
information.

Many CLI functions make use of descriptors, but the application itself does not
need to manipulate them directly.

For instance:
v When an application binds column data using SQLBindCol(), descriptor fields

are set that completely describe the binding.
v A number of statement attributes correspond to the header fields of a descriptor.

In this case you can achieve the same effect calling SQLSetStmtAttr() as calling
the corresponding function SQLSetDescField() that sets the values in the
descriptor directly.

Although no database operations require direct access to descriptors, there are
situations where working directly with the descriptors will be more efficient or
result in simpler code. For instance, a descriptor that describes a row fetched from
a table can then be used to describe a row inserted back into the table.

There are four types of descriptors:

Application Parameter Descriptor (APD)
Describes the application buffers (pointers, data types, scale, precision,
length, maximum buffer length, and so on) that are bound to parameters in
an SQL statement. If the parameters are part of a CALL statement they
may be input, output, or both. This information is described using the
application's C data types.

Application Row Descriptor (ARD)
Describes the application buffers bound to the columns. The application
may specify different data types from those in the implementation row
descriptor (IRD) to achieve data conversion of column data. This descriptor
reflects any data conversion that the application may specify.

Implementation Parameter Descriptor (IPD)
Describes the parameters in the SQL statement (SQL type, size, precision,
and so on).
v If the parameter is used as input, this describes the SQL data that the

database server will receive after CLI has performed any required
conversion.

v If the parameter is used as output, this describes the SQL data before
CLI performs any required conversion to the application's C data types.

Implementation Row Descriptor (IRD)
Describes the row of data from the result set before CLI performs any
required data conversion to the application's C data types.

The only difference between four types of descriptors is how they are used. One of
the benefits of descriptors is that a single descriptor can be used to serve multiple

© Copyright IBM Corp. 2012 133

purposes. For instance, a row descriptor in one statement can be used as a
parameter descriptor in another statement.

As soon as a descriptor exists, it is either an application descriptor or an
implementation descriptor. This is the case even if the descriptor has not yet been
used in a database operation. If the descriptor is allocated by the application using
SQLAllocHandle() then it is an application descriptor.

Values stored in a descriptor

Each descriptor contains both header fields and record fields. These fields together
completely describe the column or parameter.

Header fields

Each header field occurs once in each descriptor. Changing one of these fields
affects all columns or parameters.

Many of the following header fields correspond to a statement attribute. Setting
the header field of the descriptor using SQLSetDescField() is the same as setting
the corresponding statement attribute using SQLSetStmtAttr(). The same holds
true for retrieving the information using SQLGetDescField() or SQLGetStmtAttr().
If your application does not already have a descriptor handle allocated then it is
more efficient to use the statement attribute calls instead of allocating the
descriptor handle, and then using the descriptor calls.

The list of the header fields are:
SQL_DESC_ALLOC_TYPE
SQL_DESC_BIND_TYPEa

SQL_DESC_ARRAY_SIZEa

SQL_DESC_COUNT
SQL_DESC_ARRAY_STATUS_PTRa

SQL_DESC_ROWS_PROCESSED_PTRa

SQL_DESC_BIND_OFFSET_PTRa

Note:
a This header field corresponds to a statement attribute.

The descriptor header field SQL_DESC_COUNT is the one-based index of the
highest-numbered descriptor record that contains information (and not a count of
the number of columns or parameters). CLI automatically updates this field (and
the physical size of the descriptor) as columns or parameters are bound and
unbound. The initial value of SQL_DESC_COUNT is 0 when a descriptor is first
allocated.

Descriptor records

Zero or more descriptor records are contained in a single descriptor. As new
columns or parameters are bound, new descriptor records are added to the
descriptor. When a column or parameter is unbound, the descriptor record is
removed.

The fields in a descriptor record describe a column or parameter, and occur once in
each descriptor record. The fields in a descriptor record are:

134 Call Level Interface Guide and Reference Volume 1

SQL_DESC_AUTO_UNIQUE_VALUE
SQL_DESC_LOCAL_TYPE_NAME
SQL_DESC_BASE_COLUMN_NAME
SQL_DESC_NAME
SQL_DESC_BASE_TABLE_NAME
SQL_DESC_NULLABLE
SQL_DESC_CASE_SENSITIVE
SQL_DESC_OCTET_LENGTH
SQL_DESC_CATALOG_NAME
SQL_DESC_OCTET_LENGTH_PTR
SQL_DESC_CONCISE_TYPE
SQL_DESC_PARAMETER_TYPE
SQL_DESC_DATA_PTR
SQL_DESC_PRECISION
SQL_DESC_DATETIME_INTERVAL_CODE
SQL_DESC_SCALE
SQL_DESC_DATETIME_INTERVAL_PRECISION
SQL_DESC_SCHEMA_NAME
SQL_DESC_DISPLAY_SIZE
SQL_DESC_SEARCHABLE
SQL_DESC_FIXED_PREC_SCALE
SQL_DESC_TABLE_NAME
SQL_DESC_INDICATOR_PTR
SQL_DESC_TYPE
SQL_DESC_LABEL
SQL_DESC_TYPE_NAME
SQL_DESC_LENGTH
SQL_DESC_UNNAMED
SQL_DESC_LITERAL_PREFIX
SQL_DESC_UNSIGNED
SQL_DESC_LITERAL_SUFFIX
SQL_DESC_UPDATABLE
SQL_DESC_CARDINALITY
SQL_DESC_CARDINALITY_PTR

Deferred fields

Deferred fields are created when the descriptor header or a descriptor record is
created. The addresses of the defined variables are stored but not used until a later
point in the application. The application must not deallocate or discard these
variables between the time it associates them with the fields and the time CLI
reads or writes them.

The following table lists the deferred fields and the meaning or a null pointer
where applicable:

Chapter 9. Descriptors 135

Table 14. Deferred fields

Field Meaning of Null value

SQL_DESC_DATA_PTR The record is unbound.

SQL_DESC_INDICATOR_PTR (none)

SQL_DESC_OCTET_LENGTH_PTR (ARD
and APD only)

v ARD: The length information for that
column is not returned.

v APD: If the parameter is a character string,
the driver assumes that string is
null-terminated. For output parameters, a
null value in this field prevents the driver
from returning length information. (If the
SQL_DESC_TYPE field does not indicate a
character-string parameter, the
SQL_DESC_OCTET_LENGTH_PTR field is
ignored.)

SQL_DESC_ARRAY_STATUS_PTR (multirow
fetch only)

A multirow fetch failed to return this
component of the per-row diagnostic
information.

SQL_DESC_ROWS_PROCESSED_PTR
(multirow fetch only)

(none)

SQL_DESC_CARDINALITY_PTR (none)

Bound descriptor records

The SQL_DESC_DATA_PTR field in each descriptor record points to a variable that
contains the parameter value (for APDs) or the column value (for ARDs). This is a
deferred field that defaults to null. When the column or parameter is bound, it
points to the parameter or column value. At this point the descriptor record is said
to be bound.

Application Parameter Descriptors (APD)
Each bound record constitutes a bound parameter. The application must
bind a parameter for each input and output parameter marker in the SQL
statement before the statement is executed.

Application Row Descriptors (ARD)
Each bound record relates to a bound column.

Consistency checks for descriptors in CLI applications
A consistency check is performed automatically whenever an application sets the
SQL_DESC_DATA_PTR field of the APD or ARD. The check ensures that various
fields are consistent with each other, and that appropriate data types have been
specified. Calling SQLSetDescRec() always prompts a consistency check. If any of
the fields is inconsistent with other fields, SQLSetDescRec() will return SQLSTATE
HY021, Inconsistent descriptor information.

To force a consistency check of IPD fields, the application can set the
SQL_DESC_DATA_PTR field of the IPD. This setting is only used to force the
consistency check. The value is not stored and cannot be retrieved by a call to
SQLGetDescField() or SQLGetDescRec().

A consistency check cannot be performed on an IRD.

136 Call Level Interface Guide and Reference Volume 1

Application descriptors

Whenever an application sets the SQL_DESC_DATA_PTR field of an APD, ARD, or
IPD, CLI checks that the value of the SQL_DESC_TYPE field and the values
applicable to that SQL_DESC_TYPE field are valid and consistent. This check is
always performed when SQLBindParameter() or SQLBindCol() is called, or when
SQLSetDescRec() is called for an APD, ARD, or IPD. This consistency check
includes the following checks on application descriptor fields:
v The SQL_DESC_TYPE field must be one of the valid C or SQL types. The

SQL_DESC_CONCISE_TYPE field must be one of the valid C or SQL types.
v If the SQL_DESC_TYPE field indicates a numeric type, the

SQL_DESC_PRECISION and SQL_DESC_SCALE fields are verified to be valid.
v If the SQL_DESC_CONCISE_TYPE field is a time data type the

SQL_DESC_PRECISION field is verified to be a valid seconds precision.

The SQL_DESC_DATA_PTR field of an IPD is not normally set; however, an
application can do so to force a consistency check of IPD fields. A consistency
check cannot be performed on an IRD. The value that the SQL_DESC_DATA_PTR
field of the IPD is set to is not actually stored, and cannot be retrieved by a call to
SQLGetDescField() or SQLGetDescRec(); the setting is made only to force the
consistency check.

Descriptor allocation and freeing
Descriptors are allocated in one of two ways:

Implicitly allocated descriptors
When a statement handle is allocated, a set of four descriptors are
implicitly allocated. When the statement handle is freed, all implicitly
allocated descriptors on that handle are freed as well.

To obtain handles to these implicitly allocated descriptors an application
can call SQLGetStmtAttr(), passing the statement handle and an Attribute
value of:
v SQL_ATTR_APP_PARAM_DESC (APD)
v SQL_ATTR_APP_ROW_DESC (ARD)
v SQL_ATTR_IMP_PARAM_DESC (IPD)
v SQL_ATTR_IMP_ROW_DESC (IRD)

The following example gives access to the statement's implicitly allocated
implementation parameter descriptor:

/* dbuse. c */
/* ... */
sqlrc = SQLGetStmtAttr (hstmt,

SQL_ATTR_IMP_PARAM_DESC,
&hIPD,
SQL_IS_POINTER,
NULL);

Note: The descriptors whose handles are obtained in this manner will still
be freed when the statement for which they were allocated is freed.

Explicitly allocated descriptors
An application can explicitly allocate application descriptors. It is not
possible, however, to allocate implementation descriptors.

An application descriptor can be explicitly allocated any time the
application is connected to the database. To explicitly allocate the

Chapter 9. Descriptors 137

application descriptor, call SQLAllocHandle() with a HandleType of
SQL_HANDLE_DESC. The following example explicitly allocates an
application row descriptor:

rc = SQLAllocHandle(SQL_HANDLE_DESC, hdbc, &hARD) ;

To use an explicitly allocated application descriptor instead of a statement's
implicitly allocated descriptor, call SQLSetStmtAttr(), and pass the
statement handle, the descriptor handle, and an Attribute value of either:
v SQL_ATTR_APP_PARAM_DESC (APD), or
v SQL_ATTR_APP_ROW_DESC (ARD)

When there are explicitly and implicitly allocated descriptors, the explicitly
specified one is used. An explicitly allocated descriptor can be associated
with more than one statement.

Field initialization

When an application row descriptor is allocated, its fields are initialized to the
values listed in the descriptor header and record field initialization values
documentation. The SQL_DESC_TYPE field is set to SQL_DEFAULT which
provides for a standard treatment of database data for presentation to the
application. The application may specify different treatment of the data by setting
fields of the descriptor record.

The initial value of the SQL_DESC_ARRAY_SIZE header field is 1. To enable
multirow fetch, the application can set this value in an ARD to the number of rows
in a rowset.

There are no default values for the fields of an IRD. The fields are set when there
is a prepared or executed statement.

The following fields of an IPD are undefined until a call to SQLPrepare()
automatically populates them:
v SQL_DESC_CASE_SENSITIVE
v SQL_DESC_FIXED_PREC_SCALE
v SQL_DESC_TYPE_NAME
v SQL_DESC_DESC_UNSIGNED
v SQL_DESC_LOCAL_TYPE_NAME

Automatic population of the IPD

There are times when the application will need to discover information about the
parameters of a prepared SQL statement. A good example is when a dynamically
generated query is prepared; the application will not know anything about the
parameters in advance. If the application enables automatic population of the IPD,
by setting the SQL_ATTR_ENABLE_AUTO_IPD statement attribute to SQL_TRUE
(using SQLSetStmtAttr()), then the fields of the IPD are automatically populated to
describe the parameter. This includes the data type, precision, scale, and so on (the
same information that SQLDescribeParam() returns). The application can use this
information to determine if data conversion is required, and which application
buffer is the most appropriate to bind the parameter to.

138 Call Level Interface Guide and Reference Volume 1

Automatic population of the IPD involves increased resource usage. If it is not
necessary for this information to be automatically gathered by the CLI driver then
the SQL_ATTR_ENABLE_AUTO_IPD statement attribute should be set to
SQL_FALSE.

When automatic population of the IPD is active, each call to SQLPrepare() causes
the fields of the IPD to be updated. The resulting descriptor information can be
retrieved by calling the following functions:
v SQLGetDescField()

v SQLGetDescRec()

v SQLDescribeParam()

Freeing of descriptors

Explicitly allocated descriptors
When an explicitly allocated descriptor is freed, all statement handles to
which the freed descriptor applied automatically revert to the original
descriptors implicitly allocated for them.

Explicitly allocated descriptors can be freed in one of two ways:
v by calling SQLFreeHandle()with a HandleType of SQL_HANDLE_DESC
v by freeing the connection handle that the descriptor is associated with

Implicitly allocated descriptors
An implicitly allocated descriptor can be freed in one of the following
ways:
v by calling SQLDisconnect() which drops any statements or descriptors

open on the connection
v by calling SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT

to free the statement handle and all of the implicitly allocated
descriptors associated with the statement

An implicitly allocated descriptor cannot be freed by calling
SQLFreeHandle() with a HandleType of SQL_HANDLE_DESC.

Descriptor manipulation with descriptor handles in CLI applications
Descriptors can be manipulated using descriptor handles or with CLI functions
that do not use descriptor handles. This topic describes accessing descriptors
through descriptor handles. The handle of an explicitly allocated descriptor is
returned in the OutputHandlePtr argument when the application calls
SQLAllocHandle() to allocate the descriptor. The handle of an implicitly allocated
descriptor is obtained by calling SQLGetStmtAttr() with either
SQL_ATTR_IMP_PARAM_DESC or SQL_ATTR_IMP_ROW_DESC.

Retrieval of descriptor field values

The CLI function SQLGetDescField() can be used to obtain a single field of a
descriptor record. SQLGetDescRec() retrieves the settings of multiple descriptor
fields that affect the data type and storage of column or parameter data.

Setting of descriptor field values

Two methods are available for setting descriptor fields: one field at a time or
multiple fields at once.

Chapter 9. Descriptors 139

Setting of individual fields

Some fields of a descriptor are read-only, but others can be set using the function
SQLSetDescField(). Refer to the list of header and record fields in the descriptor
FieldIdentifier values documentation.

Record and header fields are set differently using SQLSetDescField() as follows:

Header fields
The call to SQLSetDescField() passes the header field to be set and a
record number of 0. The record number is ignored since there is only one
header field per descriptor. In this case the record number of 0 does not
indicate the bookmark field.

Record fields
The call to SQLSetDescField() passes the record field to be set and a record
number of 1 or higher, or 0 to indicate the bookmark field.

The application must follow the sequence of setting descriptor fields described in
the SQLSetDescField() documentation when setting individual fields of a
descriptor. Setting some fields will cause CLI to automatically set other fields. A
consistency check will take place after the application follows the defined steps.
This will ensure that the values in the descriptor fields are consistent.

If a function call that would set a descriptor fails, the content of the descriptor
fields are undefined after the failed function call.

Setting of multiple fields

A predefined set of descriptor fields can be set with one call rather than setting
individual fields one at a time. SQLSetDescRec() sets the following fields for a
single column or parameter:
v SQL_DESC_TYPE
v SQL_DESC_OCTET_LENGTH
v SQL_DESC_PRECISION
v SQL_DESC_SCALE
v SQL_DESC_DATA_PTR
v SQL_DESC_OCTET_LENGTH_PTR
v SQL_DESC_INDICATOR_PTR

(SQL_DESC_DATETIME_INTERVAL_CODE is also defined by ODBC but is not
supported by CLI.)

For example, all of the descriptor fields are set with the following call:
/* dbuse.c */
/* ... */
rc = SQLSetDescRec(hARD, 1, type, 0,

length, 0, 0, &id_no, &datalen, NULL);

Copying of descriptors

One benefit of descriptors is the fact that a single descriptor can be used for
multiple purposes. For instance, an ARD on one statement handle can be used as
an APD on another statement handle.

140 Call Level Interface Guide and Reference Volume 1

There will be other instances, however, where the application will want to make a
copy of the original descriptor, then modify certain fields. In this case
SQLCopyDesc() is used to overwrite the fields of an existing descriptor with the
values from another descriptor. Only fields that are defined for both the source and
target descriptors are copied (with the exception of the SQL_DESC_ALLOC_TYPE
field which cannot be changed).

Fields can be copied from any type of descriptor, but can only be copied to an
application descriptor (APD or ARD) or an IPD. Fields cannot be copied to an IRD.
The descriptor's allocation type will not be changed by the copy procedure (again,
the SQL_DESC_ALLOC_TYPE field cannot be changed).

Descriptor manipulation without using descriptor handles in CLI
applications

Many CLI functions make use of descriptors, but the application itself does not
need to manipulate them directly. Instead, the application can use a different
function which will set or retrieve one or more fields of a descriptor as well as
perform other functions. This category of CLI functions is called concise functions.
SQLBindCol() is an example of a concise function that manipulates descriptor
fields.

In addition to manipulating multiple fields, concise functions are called without
explicitly specifying the descriptor handle. The application does not even need to
retrieve the descriptor handle to use a concise function.

The following types of concise functions exist:
v The functions SQLBindCol() and SQLBindParameter() bind a column or

parameter by setting the descriptor fields that correspond to their arguments.
These functions also perform other tasks unrelated to descriptors.
If required, an application can also use the descriptor calls directly to modify
individual details of a binding. In this case the descriptor handle must be
retrieved, and the functions SQLSetDescField() or SQLSetDescRec() are called to
modify the binding.

v The following functions always retrieve values in descriptor fields:
– SQLColAttribute()

– SQLDescribeCol()

– SQLDescribeParam()

– SQLNumParams()

– SQLNumResultCols()

v The functions SQLSetDescRec() and SQLGetDescRec() set or get the multiple
descriptor fields that affect the data type and storage of column or parameter
data. A single call to SQLSetDescRec() can be used to change the values used in
the binding of a column or parameter.

v The functions SQLSetStmtAttr() and SQLGetStmtAttr() modify or return
descriptor fields in some cases, depending on which statement attribute is
specified. Refer to the "Values Stored in a Descriptor" section of the descriptors
documentation for more information.

Chapter 9. Descriptors 141

142 Call Level Interface Guide and Reference Volume 1

Chapter 10. Catalog functions for querying system catalog
information in CLI applications

One of the first tasks an application often performs is to display a list of tables
from which one or more are selected by the user. Although the application can
issue its own queries against the database system catalog to get catalog
information for such a DB2 command, it is best that the application calls the CLI
catalog functions instead. These catalog functions, also called schema functions,
provide a generic interface to issue queries and return consistent result sets across
the DB2 family of servers. This allows the application to avoid server-specific and
release-specific catalog queries.

The catalog functions operate by returning to the application a result set through a
statement handle. Calling these functions is conceptually equivalent to using
SQLExecDirect() to execute a select against the system catalog tables. After calling
these functions, the application can fetch individual rows of the result set as it
would process column data from an ordinary SQLFetch(). The CLI catalog
functions are:
v SQLColumnPrivileges()

v SQLColumns()

v SQLExtendedProcedures() (Starting in DB2 Version 9.7 Fix Pack 1)
v SQLExtendedProcedureColumns() (Starting in DB2 Version 9.7 Fix Pack 1)
v SQLForeignKeys()

v SQLGetTypeInfo()

v SQLPrimaryKeys()

v SQLProcedureColumns()

v SQLProcedures()

v SQLSpecialColumns()

v SQLStatistics()

v SQLTablePrivileges()

v SQLTables()

The result sets returned by these functions are defined in the descriptions for each
catalog function. The columns are defined in a specified order. In future releases,
other columns might be added to the end of each defined result set, therefore
applications should be written in a way that would not be affected by such
changes.

Note: By default, IDS data servers return schema information (such as table
names, and column names) in the system catalog in lowercase. This is different
from DB2 data servers which return schema information in upper case.

Some of the catalog functions result in execution of fairly complex queries. It is
recommended that the application save the information returned rather than
making repeated calls to get the same information.

© Copyright IBM Corp. 2012 143

Input arguments on catalog functions in CLI applications
All of the catalog functions have CatalogName and SchemaName (and their
associated lengths) on their input argument list. Other input arguments may also
include TableName, ProcedureName, or ColumnName (and their associated lengths).
These input arguments are used to either identify or constrain the amount of
information to be returned.

Input arguments to catalog functions may be treated as ordinary arguments or
pattern value arguments. An ordinary argument is treated as a literal, and the case
of letters is significant. These arguments limit the scope of the query by identifying
the object of interest. An error results if the application passes a null pointer for the
argument.

Some catalog functions accept pattern values on some of their input arguments.
For example, SQLColumnPrivileges() treats SchemaName and TableName as ordinary
arguments and ColumnName as a pattern value. Refer to the "Function Arguments"
section of the specific catalog function to see if a particular input argument accepts
pattern values.

Inputs treated as pattern values are used to constrain the size of the result set by
including only matching rows as though the underlying query's WHERE clause
contained a LIKE predicate. If the application passes a null pointer for a pattern
value input, the argument is not used to restrict the result set (that is, there is no
corresponding LIKE in the WHERE clause). If a catalog function has more than one
pattern value input argument, they are treated as though the LIKE predicates of
the WHERE clauses in the underlying query were joined by AND; a row appears
in this result set only if it meets all the conditions of the LIKE predicates.

Each pattern value argument can contain:
v The underscore (_) character which stands for any single character.
v The percent (%) character which stands for any sequence of zero or more

characters. Note that providing a pattern value containing a single % is
equivalent to passing a null pointer for that argument.

v Characters with no special meaning which stand for themselves. The case of a
letter is significant.

These argument values are used on conceptual LIKE predicate(s) in the WHERE
clause. To treat the metadata characters (_, %) as themselves, an escape character
must immediately precede the _ or %. The escape character itself can be specified
as part of the pattern by including it twice in succession. An application can
determine the escape character by calling SQLGetInfo() with
SQL_SEARCH_PATTERN_ESCAPE.

For example, the following calls would retrieve all the tables that start with 'ST':
/* tbinfo.c */
/* ... */
struct
{ SQLINTEGER ind ;

SQLCHAR val[129] ;
} tbQualifier, tbSchema, tbName, tbType;

struct
{ SQLINTEGER ind ;

SQLCHAR val[255] ;
} tbRemarks;

144 Call Level Interface Guide and Reference Volume 1

SQLCHAR tbSchemaPattern[] = "
SQLCHAR tbNamePattern[] = "ST /* all the tables starting with ST */

/* ... */
sqlrc = SQLTables(hstmt, NULL, 0,

tbSchemaPattern, SQL_NTS,
tbNamePattern, SQL_NTS,
NULL, 0);

/* ... */

/* bind columns to variables */
sqlrc = SQLBindCol(hstmt, 1, SQL_C_CHAR, tbQualifier.val, 129,

&tbQualifier.ind) ;
STMT_HANDLE_CHECK(hstmt, sqlrc);
sqlrc = SQLBindCol(hstmt, 2, SQL_C_CHAR, tbSchema.val, 129,

&tbSchema.ind) ;
STMT_HANDLE_CHECK(hstmt, sqlrc);
sqlrc = SQLBindCol(hstmt, 3, SQL_C_CHAR, tbName.val, 129,

&tbName.ind) ;
STMT_HANDLE_CHECK(hstmt, sqlrc);
sqlrc = SQLBindCol(hstmt, 4, SQL_C_CHAR, tbType.val, 129,

&tbType.ind) ;
STMT_HANDLE_CHECK(hstmt, sqlrc);
sqlrc = SQLBindCol(hstmt, 5, SQL_C_CHAR, tbRemarks.val, 255,

&tbRemarks.ind) ;
STMT_HANDLE_CHECK(hstmt, sqlrc);

/* ... */
sqlrc = SQLFetch(hstmt);
/* ... */
while (sqlrc != SQL_NO_DATA_FOUND)
{ /* ... */

sqlrc = SQLFetch(hstmt);
/* ... */

}

Chapter 10. Querying system catalogs 145

146 Call Level Interface Guide and Reference Volume 1

Chapter 11. Programming hints and tips for CLI applications

This topic discusses the listed subjects:
v KEEPDYNAMIC support
v Common connection attributes
v Common statement attributes
v Reusing statement handles
v Binding and SQLGetData()
v Limiting use of catalog functions
v Column names of function generated result sets
v CLI-specific functions loaded from ODBC applications
v Global dynamic statement caching
v Data insertion and retrieval optimization
v Large object data optimization
v Case sensitivity of object identifiers
v SQLDriverConnect() versus SQLConnect()
v Turning off statement scanning
v Holding cursors across rollbacks
v Preparing compound SQL sub-statements
v User-defined types casting
v Deferred prepare to reduce network flow

KEEPDYNAMIC behavior refers to the server's ability to keep a dynamic statement
in a prepared state, even after a commit has been performed. This behavior
eliminates the need for the client to prepare the statement again, the next time the
statement is executed. Some CLI/ODBC applications on the client might improve
their performance by taking advantage of the KEEPDYNAMIC behavior on servers that
are DB2 for z/OS and OS/390 Version 7 and later. Complete the listed steps to
enable KEEPDYNAMIC behavior:
1. Enable the dynamic statement cache on the DB2 for z/OS and OS/390 server

(see the DB2 for z/OS and OS/390 server documentation).
2. Bind the db2clipk.bnd file on your DB2 Database for Linux, UNIX, and

Windows client with the KEEPDYNAMIC and COLLECTION options. The
example shows how to bind db2clipk.bnd, creating a collection named
KEEPDYNC:
v db2 connect to database_name user userid using password

v db2 bind db2clipk.bnd SQLERROR CONTINUE BLOCKING ALL
KEEPDYNAMIC YES COLLECTION KEEPDYNC GRANT PUBLIC

v db2 connect reset
3. Inform the client that the KEEPDYNAMIC bind option is enabled for your

collection by performing either of the listed examples:
v Set the CLI/ODBC configuration keywords in the db2cli.ini file:

KeepDynamic = 1, CurrentPackageSet = collection name created in Step 2.
For example:
[dbname]
KeepDynamic=1
CurrentPackageSet=KEEPDYNC

© Copyright IBM Corp. 2012 147

v Set the SQL_ATTR_KEEPDYNAMIC and
SQL_ATTR_CURRENT_PACKAGE_SET connection attributes in the
CLI/ODBC application. For example:
SQLSetConnectAttr(hDbc,

SQL_ATTR_KEEP_DYNAMIC,
(SQLPOINTER) 1,
SQL_IS_UINTEGER);

SQLSetConnectAttr(hDbc,
SQL_ATTR_CURRENT_PACKAGE_SET,
(SQLPOINTER) "KEEPDYNC",

SQL_NTS);

See the DB2 for z/OS and OS/390 server documentation for further information
about KEEPDYNAMIC behavior and configuration.

Common connection attributes

The listed connection attributes can be set by CLI applications:
v SQL_ATTR_AUTOCOMMIT - Generally this attribute should be set to

SQL_AUTOCOMMIT_OFF, because each commit request can generate extra
network flow. Only leave SQL_AUTOCOMMIT_ON on if specifically needed.

Note: The default is SQL_AUTOCOMMIT_ON.
v SQL_ATTR_TXN_ISOLATION - This connection attribute determines the

isolation level at which the connection or statement will operate. The isolation
level determines the level of concurrency possible, and the level of locking
required to execute the statement. Applications must choose an isolation level
that maximizes concurrency, yet ensures data consistency.

Common statement attributes

The listed statement attributes might be set by CLI applications:
v SQL_ATTR_MAX_ROWS - Setting this attribute limits the number of rows

returned to the application from query operations. This can be used to avoid
overwhelming an application with a very large result set generated
inadvertently, which is especially useful for applications on clients with limited
memory resources.
Setting SQL_ATTR_MAX_ROWS while connected to DB2 for z/OS and OS/390
Version 7 and later will add “OPTIMIZE FOR n ROWS” and “FETCH FIRST n
ROWS ONLY” clauses to the statement. For versions of DB2 for OS/390 before
Version 7 and any DBMS that does not support the “FETCH FIRST n ROWS
ONLY” clause, the full result set is still generated at the server using the
“OPTIMIZE FOR n ROWS” clause, however CLI will count the rows on the
client and only fetch up to SQL_ATTR_MAX_ROWS rows.

v SQL_ATTR_CURSOR_HOLD - This statement attribute determines if the cursor
for this statement will be declared by CLI using the WITH HOLD clause.
Resources associated with statement handles can be better utilized by the server
if the statements that do not require cursor-hold behavior have this attribute set
to SQL_CURSOR_HOLD_OFF. The efficiency gains obtained by the appropriate
use of this attribute are considerable on OS/390 and z/OS.

Note: Many ODBC applications expect a default behavior where the cursor
position is maintained after a commit.

v SQL_ATTR_TXN_ISOLATION - CLI allows the isolation level to be set at the
statement level, however, it is recommended that the isolation level be set at the

148 Call Level Interface Guide and Reference Volume 1

connection level. The isolation level determines the level of concurrency possible,
and the level of locking required to execute the statement.
Resources associated with statement handles can be better utilized by CLI if
statements are set to the required isolation level, rather than leaving all
statements at the default isolation level. This should only be attempted with a
thorough understanding of the locking and isolation levels of the connected
DBMS.
Applications should use the minimum isolation level possible to maximize
concurrency.

Reusing statement handles

Each time a CLI application declares a statement handle, the CLI driver allocates
and then initializes an underlying data structure for that handle. To increase
performance, CLI applications can reuse statement handles with different
statements, thereby avoiding the costs associated with statement handle allocation
and initialization.

Note: Before reusing statement handles, memory buffers and other resources used
by the previous statement might need to be released by calling the SQLFreeStmt()
function. Also, statement attributes previously set on a statement handle (for
example, SQL_ATTR_PARAMSET_SIZE) must be explicitly reset, otherwise they
might be inherited by all future statements using the statement handle.

Binding and SQLGetData()

Generally it is more efficient to bind application variables or file references to
result sets than to use SQLGetData(). When the data is in a LOB column, LOB
functions are preferable to SQLGetData() (see Large object data optimization for
more information). Use SQLGetData() when the data value is large variable-length
data that:
v must be received in pieces, or
v might not need to be retrieved.

Limiting use of catalog functions

Catalog functions, such as SQLTables(), force the CLI driver to query the DBMS
catalog tables for information. The queries issued are complex and the DBMS
catalog tables can be very large. In general, try to limit the number of times the
catalog functions are called, and limit the number of rows returned.

The number of catalog function calls can be reduced by calling the function once,
and having the application store (cache) the data.

The number of rows returned can be limited by specifying a:
v Schema name or pattern for all catalog functions
v Table name or pattern for all catalog functions other than SQLTables()

v Column name or pattern for catalog functions that return detailed column
information.

Remember that although an application might be developed and tested against a
data source with hundreds of tables, it might be run against a database with
thousands of tables. Consider this likelihood when developing applications.

Chapter 11. Programming hints and tips 149

Close any open cursors (call SQLCloseCursor() or SQLFreeStmt() with SQL_CLOSE
Option) for statement handles used for catalog queries to release any locks against
the catalog tables. Outstanding locks on the catalog tables can prevent CREATE,
DROP or ALTER statements from executing.

Column names of function generated result sets

The column names of the result sets generated by catalog and information
functions might change as the ODBC and CLI standards evolve. The position of the
columns, however, will not change.

Any application dependency might be based on the column position (iCol
parameter used in SQLBindCol(), SQLGetData(), and SQLDescribeCol()) and not the
name.

CLI-specific functions loaded from ODBC applications

The ODBC Driver Manager maintains its own set of statement handles which it
maps to the CLI statement handles on each call. When a CLI function is called
directly, it must be passed to the CLI driver statement handle, as the CLI driver
does not have access to the ODBC mapping.

Call SQLGetInfo() with the SQL_DRIVER_HSTMT option to obtain the CLI
statement handle (HSTMT). The CLI functions can then be called directly from the
shared library or DLL, passing the HSTMT argument where required.

Global dynamic statement caching

DB2 servers at version 5 or later for UNIX or Windows have a global dynamic
statement cache. This cache is used to store the most popular access plans for
prepared dynamic SQL statements.

Before each statement is prepared, the server automatically searches this cache to
see if an access plan has already been created for this exact SQL statement (by this
application or any other application or client). If so, the server does not need to
generate a new access plan, but will use the one in the cache instead. There is now
no need for the application to cache connections at the client unless connecting to a
server that does not have a global dynamic statement cache.

Data insertion and retrieval optimization

The methods that describe using arrays to bind parameters and retrieve data use
compound SQL to optimize network flow. Use these methods as much as possible.

Large object data optimization

Use LOB data types and the supporting functions for long strings whenever
possible. Unlike LONG VARCHAR, LONG VARBINARY, and LONG
VARGRAPHIC types, LOB data values can use LOB locators and functions such as
SQLGetPosition() and SQLGetSubString() to manipulate large data values at the
server.

LOB values can also be fetched directly to a file, and LOB parameter values can be
read directly from a file. This saves the resource utilization of the application
transferring data through application buffers.

150 Call Level Interface Guide and Reference Volume 1

Case sensitivity of object identifiers

All database object identifiers, such as table names, view names and column names
are stored in the catalog tables in uppercase unless the identifier is delimited. If an
identifier is created using a delimited name, the exact case of the name is stored in
the catalog tables.

When an identifier is referenced within an SQL statement, it is treated as case
insensitive unless it is delimited.

For example, if the listed two tables are created,
CREATE TABLE MyTable (id INTEGER)
CREATE TABLE "YourTable" (id INTEGER)

two tables will exist, MYTABLE and YourTable

Both of the statements are equivalent:
SELECT * FROM MyTable (id INTEGER)
SELECT * FROM MYTABLE (id INTEGER)

The second statement in the example will fail with TABLE NOT FOUND because there
is no table named YOURTABLE:

SELECT * FROM "YourTable" (id INTEGER) // executes without error
SELECT * FROM YourTable (id INTEGER) // error, table not found

All CLI catalog function arguments treat the names of objects as case sensitive, that
is, as if each name was delimited.

SQLDriverConnect() versus SQLConnect()

Using SQLDriverConnect() allows the application to rely on the dialog box
provided by CLI to prompt the user for the connection information.

If an application uses its own dialog boxes to query the connect information, the
user might be able to specify additional connect options in the connection string.
The string can also be stored and used as a default on subsequent connections.

Turning off statement scanning

CLI by default, scans each SQL statement searching for vendor escape clause
sequences.

If the application does not generate SQL statements that contain vendor escape
clause sequences, then the SQL_ATTR_NOSCAN statement attribute must be set to
SQL_NOSCAN_ON at the connection level so that CLI does not perform a scan for
vendor escape clauses.

Holding cursors across rollbacks

Applications that must deal with complex transaction management issues might
benefit from establishing multiple concurrent connections to the same database.
Each connection in CLI has its own transaction scope, so any actions performed on
one connection do not affect the transactions of other connections.

For example, all open cursors within a transaction get closed if a problem causes
the transaction to be rolled back. An application can use multiple connections to

Chapter 11. Programming hints and tips 151

the same database to separate statements with open cursors; because the cursors
are in separate transactions, a rollback on one statement does not affect the cursors
of the other statements.

However, using multiple connections might mean bringing some data across to the
client on one connection, and then sending it back to the server on the other
connection. For example:
v Suppose in connection #1 you are accessing large object columns and have

created LOB locators that map to portions of large object values.
v If in connection #2, you want to use (for example to insert) the portion of the

LOB values represented by the LOB locators, you must move the LOB values in
connection #1 first to the application, and then pass them to the tables that you
are working with in connection #2. This is because connection #2 does not know
anything about the LOB locators in connection #1.

v If you only had one connection, then you can just use the LOB locators directly.
However, the LOB locators are lost as soon as you rolled back your transaction.

Note: When multiple connections to a single database are used by an application,
the application must be careful to synchronize access to database objects or it
might experience various lock contention issues, as database locks are not shared
between transactions. Updates by one connection can easily force other connections
into a lock-wait state until the first connection releases the lock (through a
COMMIT or ROLLBACK).

Preparing compound SQL sub-statements

In order to maximize efficiency of the compound statement, sub-statements might
be prepared before the BEGIN COMPOUND statement, and then executed within
the compound statement.

This also simplifies error handling because prepare errors can be handled outside
of the compound statement.

User-defined types and casting

If a parameter marker is used in a predicate of a query statement, and the
parameter is a user defined type, the statement must use a CAST function to cast
either the parameter marker or the UDT.

For example, suppose the listed type and table is defined:
CREATE DISTINCT TYPE CNUM AS INTEGER WITH COMPARISONS

CREATE TABLE CUSTOMER (
Cust_Num CNUM NOT NULL,
First_Name CHAR(30) NOT NULL,
Last_Name CHAR(30) NOT NULL,
Phone_Num CHAR(20) WITH DEFAULT,
PRIMARY KEY (Cust_Num))

Suppose also that the listed SQL statement was then issued:
SELECT first_name, last_name, phone_num from customer
WHERE cust_num = ?

This statement fails because the parameter marker cannot be of type CNUM and
thus the comparison fails due to incompatible types.

152 Call Level Interface Guide and Reference Volume 1

Casting the column to integer (its base SQL type), allows the comparison to work
because a parameter can be provided for type integer:

SELECT first_name, last_name, phone_num from customer
where cast(cust_num as integer) = ?

Alternatively the parameter marker can be cast to INTEGER and the server can
then apply the INTEGER to CNUM conversion:

SELECT first_name, last_name, phone_num FROM customer
where cust_num = cast(? as integer)

Deferred prepare to reduce network flow

In CLI, deferred prepare is on by default. The PREPARE request is not sent to the
server until the corresponding execute request is issued. The two requests are then
combined into one command/reply flow (instead of two) to minimize network
flow and to improve performance. This is of greatest benefit when an application
generates queries with very small answer sets, because the resource utilization for
requests and replies flowing over the network represents a large percentage of the
processing time. In an environment where a DB2 Connect or DDCS gateway is
used, there is a greater opportunity for cost reduction because four request and
reply combinations are reduced to two.

Note: Functions such as SQLDescribeParam(), SQLDescribeCol(), SQLNumParams(),
and SQLNumResultCols() require that the statement has been prepared. If the
statement has not already been prepared, these functions trigger an immediate
PREPARE request to the server, and the benefit of deferred prepare does not occur.

Reduction of network flows with CLI array input chaining
CLI array input chaining is a feature that, when enabled, causes requests for the
execution of prepared statements to be held and queued at the client until the
chain is ended. Once the chain has been ended, all of the chained SQLExecute()
requests at the client are then sent to the server in a single network flow.

The following sequence of events (presented as pseudocode) is an example of how
CLI array input chaining can reduce the number of network flows to the server:
SQLPrepare (statement1)
SQLExecute (statement1)
SQLExecute (statement1)
/* the two execution requests for statement1 are sent to the server in
two network flows */

SQLPrepare (statement2)

/* enable chaining */
SQLSetStmtAttr (statement2, SQL_ATTR_CHAINING_BEGIN)

SQLExecute (statement2)
SQLExecute (statement2)
SQLExecute (statement2)

/* end chaining */
SQLSetStmtAttr (statement2, SQL_ATTR_CHAINING_END)

/* the three execution requests for statement2 are sent to the server
in a single network flow, instead of three separate flows */

If SQL_ERROR or SQL_SUCCESS_WITH_INFO is returned when setting
SQL_ATTR_CHAINING_END, then at least one statement in the chain of

Chapter 11. Programming hints and tips 153

statements returned SQL_ERROR or SQL_SUCCESS_WITH_INFO when it was
executed. Use the CLI diagnostic functions SQLGetDiagRec() and
SQLGetDiagField() to retrieve information about what has caused the error or
warning.

Restriction: DB2 CLI does not support array input chaining for compound SQL
(compiled) or compound SQL (inlined) statements.

154 Call Level Interface Guide and Reference Volume 1

Chapter 12. Unicode CLI applications

There are two main areas of support for DB2 CLI Unicode applications:
v The addition of a set of functions that accept Unicode string arguments in place

of ANSI string arguments.
v The addition of new C and SQL data types to describe Unicode data.

To be considered a Unicode application, the application must connect to the
database using either SQLConnectW() or SQLDriverConnectW(). This will ensure that
CLI will consider Unicode the preferred method of communication between itself
and the database.

ODBC adds types to the set of C and SQL types that already exist to accommodate
Unicode, and CLI uses these additional types accordingly. The new C type,
SQL_C_WCHAR, indicates that the C buffer contains Unicode data. The DB2
CLI/ODBC driver considers all Unicode data exchanged with the application to be
UCS-2 in native-endian format. The new SQL types, SQL_WCHAR,
SQL_WVARCHAR, and SQL_WLONGVARCHAR, indicate that a particular
column or parameter marker contains Unicode data. For DB2 Unicode databases,
graphic columns are described using the new types. Conversion is allowed
between SQL_C_WCHAR and SQL_CHAR, SQL_VARCHAR,
SQL_LONGVARCHAR and SQL_CLOB, as well as with the graphic data types.

Note: UCS-2 is a fixed-length character encoding scheme that uses 2 bytes to
represent each character. When referring to the number of characters in a UCS-2
encoded string, the count is simply the number of SQLWCHAR elements needed
to store the string.

Obsolete CLI/ODBC keyword values

Before Unicode applications were supported, applications that were written to
work with single-byte character data could be made to work with double-byte
graphic data by a series of CLI configuration keywords, such as Graphic=1,2 or 3,
Patch2=7. These workarounds presented graphic data as character data, and also
affected the reported length of the data. These keywords are no longer required for
Unicode applications, and should not be used due to the risk of potential side
effects. If it is not known if a particular application is a Unicode application, try
without any of the keywords that affect the handling of graphic data.

Literals in unicode databases

In non-Unicode databases, data in LONG VARGRAPHIC and LONG VARCHAR
columns cannot be compared. Data in GRAPHIC/VARGRAPHIC and
CHAR/VARCHAR columns can only be compared, or assigned to each other,
using explicit cast functions since no implicit code page conversion is supported.
This includes GRAPHIC/VARGRAPHIC and CHAR/VARCHAR literals where a
GRAPHIC/VARGRAPHIC literal is differentiated from a CHAR/VARCHAR literal
by a G prefix. For Unicode databases, casting between GRAPHIC/VARGRAPHIC
and CHAR/VARCHAR literals is not required. Also, a G prefix is not required in
front of a GRAPHIC/VARGRAPHIC literal. Provided at least one of the arguments
is a literal, implicit conversions occur. This allows literals with or without the G
prefix to be used within statements that use either SQLPrepareW() or

© Copyright IBM Corp. 2012 155

SQLExecDirect(). Literals for LONG VARGRAPHICs still must have a G prefix.

Unicode functions (CLI)
CLI Unicode functions accept Unicode string arguments in place of ANSI string
arguments. The Unicode string arguments must be in UCS-2 encoding
(native-endian format). ODBC API functions have suffixes to indicate the format of
their string arguments: those that accept Unicode end in W, and those that accept
ANSI have no suffix (ODBC adds equivalent functions with names that end in A,
but these are not offered by CLI). The following list of CLI functions are available
in both ANSI and Unicode versions:
v SQLBrowseConnect
v SQLColAttribute
v SQLColAttributes
v SQLColumnPrivileges
v SQLColumns
v SQLConnect
v SQLCreateDb
v SQLDataSources
v SQLDescribeCol
v SQLDriverConnect
v SQLDropDb
v SQLError
v SQLExecDirect
v SQLExtendedPrepare
v SQLExtendedProcedures
v SQLExtendedProcedureColumns
v SQLForeignKeys
v SQLGetConnectAttr
v SQLGetConnectOption
v SQLGetCursorName
v SQLGetDescField
v SQLGetDescRec
v SQLGetDiagField
v SQLGetDiagRec
v SQLGetInfo
v SQLGetPosition
v SQLGetStmtAttr
v SQLNativeSQL
v SQLPrepare
v SQLPrimaryKeys
v SQLProcedureColumns
v SQLProcedures
v SQLReloadConfig
v SQLSetConnectAttr
v SQLSetConnectOption
v SQLSetCursorName

156 Call Level Interface Guide and Reference Volume 1

v SQLSetDescField
v SQLSetStmtAttr
v SQLSpecialColumns
v SQLStatistics
v SQLTablePrivileges
v SQLTables

Unicode functions that have arguments which are always the length of strings
interpret these arguments as the number of SQLWCHAR elements needed to store
the string. For functions that return length information for server data, the display
size and precision are again described in terms of the number of SQLWCHAR
elements used to store them. When the length (transfer size of the data) can refer
to string or non-string data, it is interpreted as the number of bytes needed to store
the data.

For example, SQLGetInfoW() will still take the length as the number of bytes, but
SQLExecDirectW() will use the number of SQLWCHAR elements. Consider a single
character from the UTF-16 extended character set (UTF-16 is an extended character
set of UCS-2; Microsoft Windows 2000 and Microsoft Windows XP use UTF-16).
Microsoft Windows 2000 will use two SQL_C_WCHAR elements, which is
equivalent to 4 bytes, to store this single character. The character therefore has a
display size of 1, a string length of 2 (when using SQL_C_WCHAR), and a byte
count of 4. CLI will return data from result sets in either Unicode or ANSI,
depending on the application's binding. If an application binds to SQL_C_CHAR,
the driver will convert SQL_WCHAR data to SQL_CHAR. An ODBC driver
manager, if used, maps SQL_C_WCHAR to SQL_C_CHAR for ANSI drivers but
does no mapping for Unicode drivers.

ANSI to Unicode function mappings

The syntax for a CLI Unicode function is the same as the syntax for its
corresponding ANSI function, except that SQLCHAR parameters are defined as
SQLWCHAR. Character buffers defined as SQLPOINTER in the ANSI syntax can
be defined as either SQLCHAR or SQLWCHAR in the Unicode function. Refer to
the ANSI version of the CLI Unicode functions for ANSI syntax details.

Unicode function calls to ODBC driver managers
ODBC-compliant applications can access a DB2 database through the CLI/ODBC
driver in one of two ways: linking to the CLI/ODBC driver library or linking to
the ODBC driver manager library. This topic discusses CLI applications that link to
the ODBC driver manager library.
v Direct access - An application links to the CLI/ODBC driver library and makes

calls to exported CLI/ODBC functions. Unicode applications accessing the
CLI/ODBC driver directly should access and perform transactions against the
database using the CLI Unicode functions, and use SQLWCHAR buffers with the
understanding that all Unicode data is UCS-2. To identify itself as a Unicode
application, the application must connect to the database using either
SQLConnectW() or SQLDriverConnectW().

v Indirect access - An application links to an ODBC driver manager library and
makes calls to standard ODBC functions. The ODBC driver manager then loads
the CLI/ODBC driver and calls exported ODBC functions on behalf of the
application. The data passed to the CLI/ODBC driver from the application

Chapter 12. Unicode CLI applications 157

might be converted by the ODBC driver manager. An application identifies itself
to an ODBC driver manager as a Unicode application by calling SQLConnectW()
or SQLDriverConnectW().

When connecting to a data source, the ODBC driver manager checks to see if the
requested driver exports the SQLConnectW() function. If the function is supported,
the ODBC driver is considered a Unicode driver, and all subsequent calls in the
application to ODBC functions are routed to the functions' Unicode equivalents
(identified by the 'W' suffix; for example, SQLConnectW()) by the ODBC driver
manager. If the application calls Unicode functions, no string conversion is
necessary, and the ODBC driver manager calls the Unicode functions directly. If the
application calls ANSI functions, the ODBC driver manager converts all ANSI
strings to Unicode strings before calling the equivalent Unicode function.

If an application calls Unicode functions, but the driver does not export
SQLConnectW(), then the ODBC driver manager routes any Unicode function calls
to their ANSI equivalents. All Unicode strings are converted by the ODBC driver
manager to ANSI strings in the application's code page before calling the
equivalent ANSI function. This might result in data loss if the application uses
Unicode characters which cannot be converted to the application's code page.

Various ODBC driver managers use different encoding schemes for Unicode
strings, depending on the operating system:

Table 15. Unicode string encoding schemes by operating system

Driver manager

Operating system

Microsoft Windows Linux and UNIX

Microsoft ODBC Driver
Manager

UTF-16* not applicable

unixODBC Driver Manager UCS-2 UCS-2

DataDirect Connect for
ODBC Driver Manager

UTF-16* UTF-8

* UTF-16 is a superset of UCS-2 and therefore is compatible

158 Call Level Interface Guide and Reference Volume 1

Chapter 13. Multisite updates (two phase commit) in CLI
applications

A typical transaction scenario portrays an application which interacts with only
one database server in a transaction. Even though concurrent connections allow for
concurrent transactions, the different transactions are not coordinated.

With multisite updates, the two phase commit (2PC) protocol, and coordinated
distributed transactions, an application is able to update data in multiple remote
database servers with guaranteed integrity.

Note: Multisite update is also known as Distributed Unit of Work (DUOW).

A typical banking transaction is a good example of a multisite update. Consider
the transfer of money from one account to another in a different database server. In
such a transaction it is critical that the updates that implement the debit operation
on one account do not get committed unless the updates required to process the
credit to the other account are committed as well. Multisite update considerations
apply when data representing these accounts is managed by two different database
servers

Some multisite updates involve the use of a transaction manager (TM) to
coordinate two-phase commit among multiple databases. CLI applications can be
written to use various transaction managers:
v DB2 as transaction manager
v Process-based XA-compliant transaction program monitor
v Host and IBM Power Systems™ database servers

Note: There is no specific DB2 CLI/ODBC client configuration required when
connecting to a host or IBM Power Systems database server, although the
machine running DB2 Connect might require certain configuration settings to
enable running multisite update mode against the host.

ConnectType CLI/ODBC configuration keyword
Controls whether the application is to operate in a remote or distributed unit of
work.

db2cli.ini keyword syntax:
ConnectType = 1 | 2

Default setting:
Remote unit of work.

Equivalent environment or connection attribute:
SQL_ATTR_CONNECTTYPE

Usage notes:
This option allows you to specify the default connect type. The options are:
v 1 = Remote unit of work. Multiple concurrent connections, each with its

own commit scope. The concurrent transactions are not coordinated.
This is the default.

© Copyright IBM Corp. 2012 159

v 2= Distributed unit of work. Coordinated connections where multiple
databases participate under the same distributed unit of work.

The first connection determines the connect type for all other connections
that are allocated under the same environment handle.

This keyword takes precedence over the environment or connection
attribute.

DB2 as transaction manager in CLI applications
Configuration of DB2 as transaction manager

CLI/ODBC applications can use DB2 itself as the Transaction Manager (DB2 TM)
to coordinate distributed transactions against all IBM database servers.

The DB2 Transaction Manager must be set up according to the information in the
DB2 transaction manager configuration documentation.

To use DB2 as the transaction manager in CLI/ODBC applications, the following
configurations must be applied:
v The SQL_ATTR_CONNECTTYPE environment attribute must be set. This

attribute controls whether the application is to operate in a coordinated or
uncoordinated distributed environment. Commits or rollbacks among multiple
database connections are coordinated in a coordinated distributed environment.
The two possible values for this attribute are:
– SQL_CONCURRENT_TRANS - supports single database per transaction

semantics. Multiple concurrent connections to the same database and to
different databases are permitted. Each connection has its own commit scope.
No effort is made to enforce coordination of transactions. This is the default
and corresponds to a Type 1 CONNECT in embedded SQL.

– SQL_COORDINATED_TRANS - supports multiple databases per transaction
semantics. A coordinated transaction is one in which commits or rollbacks
among multiple database connections are coordinated. Setting
SQL_ATTR_CONNECTTYPE to this value corresponds to Type 2 CONNECT
in embedded SQL.

It is recommended that the application set this environment attribute with a call
to SQLSetEnvAttr(), if necessary, as soon as the environment handle has been
allocated. However, since ODBC applications cannot access SQLSetEnvAttr(),
they must set this using SQLSetConnectAttr() after each connection handle is
allocated, but before any connections have been established.
All connections on an environment handle must have the same
SQL_ATTR_CONNECTTYPE setting. An environment cannot have a mixture of
concurrent and coordinated connections. The type of the first connection will
determine the type of all subsequent connections. SQLSetEnvAttr() will return
an error if an application attempts to change the connect type while there is an
active connection.

v If SQL_ATTR_CONNECTTYPE is set to SQL_COORDINATED_TRANS,
two-phase commit is used to commit the work done by each database in a
multiple database transaction. This requires the use of a Transaction Manager to
coordinate two-phase commits amongst the databases that support this protocol.
Multiple readers and multiple updaters are allowed within a transaction.

v The function SQLEndTran() must be used in a multisite update environment
when DB2 is acting as the transaction manager.

160 Call Level Interface Guide and Reference Volume 1

Application flows in concurrent and coordinated transactions

Figure 9 shows the logical flow of an application executing statements on two
SQL_CONCURRENT_TRANS connections ('A' and 'B'), and indicates the scope of
the transactions.

Figure 10 on page 162 shows the same statements being executed on two
SQL_COORDINATED_TRANS connections ('A' and 'B'), and the scope of a
coordinated distributed transaction.

Transaction

Transaction

Transaction Transaction

Allocate Connect "A"
Connect "A"

Allocate Statement "A1"
Allocate Statement "A2"

Allocate Connect "B"
Connect "B"

Allocate Statement "B1"
Allocate Statement "B2"

Execute Statement "A1"
Execute Statement "A2"

Commit "A"

Execute Statement "B2"
Execute Statement "B1"

Commit "B"

Execute Statement "A1"

Execute Statement "A2"
Commit "A"

Execute Statement "B2"

Execute Statement "B2"

Execute Statement "B1"
Commit "B"

Initialize two connections.
Two statement handles
per connection.

Figure 9. Multiple connections with concurrent transactions

Chapter 13. Multisite updates (two phase commit) 161

Restrictions

Mixing embedded SQL and CLI/ODBC calls in a multisite update environment is
supported, but all the same restrictions of writing mixed applications are imposed.

Process-based XA-compliant Transaction Program Monitor (XA TP)
programming considerations for CLI applications

Process-based XA TPs, for example CICS®, start one application server per process.
In each application-server process, the connections are already established using
the XA API (xa_open). This section describes the environment configurations and
considerations for running CLI/ODBC applications under this environment.

Configuration

The XA Transaction Manager must be set up according to the configuration
considerations for XA transaction managers.

Figure 10. Multiple connections with coordinated transactions

162 Call Level Interface Guide and Reference Volume 1

Note: Setting the CLI/ODBC configuration keywords for connections is no longer
required when in an XA Transactional processing environment.

Programming considerations

CLI/ODBC applications written for this environment must complete the following
steps:
v The application must first call SQLConnect() or SQLDriverConnect() to associate

the TM-opened connections with the CLI/ODBC connection handle. The data
source name must be specified. User ID and Password are optional.

v The application must call the XA TM to do a commit or rollback. As a result,
since the CLI/ODBC driver does not know that the transaction has ended, the
application should do the following tasks before exiting:
– Drop all CLI/ODBC statement handles.
– Free up the connection handle by calling SQLDisconnect() and

SQLFreeHandle(). The actual database connection will not be disconnected
until the XA TM performs an xa_close.

Restrictions

Mixing embedded SQL and CLI/ODBC calls in a multisite update environment is
supported, but all the same restrictions of writing mixed applications are imposed.

Chapter 13. Multisite updates (two phase commit) 163

164 Call Level Interface Guide and Reference Volume 1

Chapter 14. Asynchronous execution of CLI functions

CLI can run a subset of CLI functions asynchronously. For these functions, the CLI
driver returns control to the application after calling the function but before that
function has finished executing.

Asynchronous execution is possible for those functions that normally send a
request to the server and then wait for a response. The functions return
SQL_STILL_EXECUTING each time they are called until they are finished running,
at which point they return a different value (for example, SQL_SUCCESS). Rather
than waiting for a response, a function executing asynchronously returns control to
the application. The application can then perform other tasks and poll the function
until a return code other than SQL_STILL_EXECUTING is returned. Refer to the
SQL_ATTR_ASYNC_ENABLE connection or statement attribute for a list of
functions that can be executed asynchronously.

In order for an application to run CLI functions asynchronously, the application
must include following function calls:
1. A call to the function SQLGetInfo() with the SQL_ASYNC_MODE option to

ensure support for asynchronous calls.
2. A call to SQLSetConnectAttr() or SQLSetStmtAttr() with the

SQL_ATTR_ASYNC_ENABLE attribute to enable asynchronous calls once it has
been established that there is support for asynchronous calls.

3. A call to a function that supports asynchronous execution and polling of the
asynchronous function. When the application calls a function that can be run
asynchronously, one of two things can happen:
v If the function will not benefit from being run asynchronously, CLI can

decide to run it synchronously and return the normal return code (other than
SQL_STILL_EXECUTING). In this case the application runs as it would if the
asynchronous mode had not been enabled.

v CLI will perform some minimal processing (such as checking the arguments
for errors), then pass the statement on to the server. Once this quick
processing is complete a return code of SQL_STILL_EXECUTING is returned
to the application.

Functions that can be called during asynchronous execution

Once a function has been called asynchronously, only the original function,
SQLAllocHandle(), SQLCancel(), SQLGetDiagField(), or SQLGetDiagRec() can be
called on the statement or the connection associated with StatementHandle, until the
original function returns a code other than SQL_STILL_EXECUTING. Any other
function called on StatementHandle or the connection associated with
StatementHandle returns SQL_ERROR with an SQLSTATE of HY010 (Function
sequence error.).

Diagnostic information while a function is running
asynchronously

SQLGetDiagField() returns the following values when it is called on a statement
handle that has an asynchronous function executing:

© Copyright IBM Corp. 2012 165

v The values of SQL_DIAG_CURSOR_ROW_COUNT,
SQL_DIAG_DYNAMIC_FUNCTION,
SQL_DIAG_DYNAMIC_FUNCTION_CODE, and SQL_DIAG_ROW_COUNT
header fields are undefined.

v SQL_DIAG_NUMBER header field returns 0.
v SQL_DIAG_RETURN_CODE header field returns SQL_STILL_EXECUTING.
v All record fields return SQL_NO_DATA.

SQLGetDiagRec() always returns SQL_NO_DATA when it is called on a statement
handle that has an asynchronous function executing.

Cancelling the asynchronous function call

The application can issue a request to cancel any function that is running
asynchronously by calling SQLCancel(). A function that has already finished
executing cannot be cancelled.

The return code from the SQLCancel() call indicates whether the cancel request
was received, not whether the execution of the asynchronous function was
stopped.

The only way to tell if the function was cancelled is to call it again, using the
original arguments.
v If the cancel was successful, the function will return SQL_ERROR and an

SQLSTATE of HY008 (Operation was Canceled.).
v If the cancel was not successful, the function will return a value other than

SQL_ERROR with an SQLSTATE of HY008. For example, the function might
return SQL_STILL_EXECUTING.

Executing functions asynchronously in CLI applications
Executing functions asynchronously in CLI applications is part of the larger task of
programming with CLI. The task of enabling asynchronous functions and working
with those functions involves ensuring that asynchronous execution is supported,
initializing the application for asynchronous execution, and working with the
functions to take advantage of asynchronous execution.

Before you begin

Before you begin setting up your CLI application for asynchronous execution, you
must allocate an environment handle and a connection handle. This is part of the
task of initializing your CLI application.

About this task

Note: Starting from Version 9.7, Fix Pack 4, this feature can also be used with the
CLI load processing feature.

An application can have at most 1 active function running in asynchronous mode
on any one connection. If asynchronous mode is enabled at the connection level,
all statements already allocated, as well as future statement handles allocated on
the connection will be enabled for asynchronous execution.

166 Call Level Interface Guide and Reference Volume 1

Procedure
1. Call SQLGetInfo() with InfoType SQL_ASYNC_MODE to ensure that functions

can be called asynchronously. For example:
/* See what type of Asynchronous support is available. */
rc = SQLGetInfo(hdbc, /* Connection handle */

SQL_ASYNC_MODE, /* Query the support available */
&ubuffer, /* Store the result in this variable */
4,
&outlen);

The call to the SQLGetInfo() function will return one of the following values:
v SQL_AM_STATEMENT: asynchronous execution can be turned on or off at a

statement level.
v SQL_AM_CONNECTION: asynchronous execution can be turned on or off at

a connection level.
v SQL_AM_NONE: asynchronous execution is not supported. Your application

cannot be set up for asynchronous execution. This will be returned for one of
two reasons:
– The datasource itself does not support asynchronous execution.
– The CLI/ODBC configuration keyword ASYNCENABLE has been

specifically set to disable asynchronous execution.
2. Set the SQL_ATTR_ASYNC_ENABLE attribute using SQLSetStmtAttr() or

SQLSetConnectAttr() to enable your application for asynchronous execution if
the return value from SQLGetInfo() is either SQL_AM_STATEMENT or
SQL_AM_CONNECTION.
v If the return value is SQL_AM_STATEMENT, set

SQL_ATTR_ASYNC_ENABLE to SQL_ASYNC_ENABLE_ON using
SQLSetStmtAttr(). For example:

/* Set statement level asynchronous execution on */
rc = SQLSetStmtAttr(hstmt, /* Statement handle */

SQL_ATTR_ASYNC_ENABLE,
(SQLPOINTER) SQL_ASYNC_ENABLE_ON,
0);

v If the return value is SQL_AM_CONNECTION, set the
SQL_ATTR_ASYNC_ENABLE to SQL_ASYNC_ENABLE_ON using
SQLSetConnectAttr(). For example:

/* Set connection level asynchronous execution on */
rc = SQLSetConnectAttr(hstmt, /* Connection handle */

SQL_ATTR_ASYNC_ENABLE,
(SQLPOINTER) SQL_ASYNC_ENABLE_ON,
0);

3. Call a function that supports asynchronous execution and poll the
asynchronous function. Refer to the SQL_ATTR_ASYNC_ENABLE connection
or statement attribute for a list of functions that can be executed
asynchronously.
The application determines whether the function has completed by calling it
repeatedly with the same arguments it used to call the function the first time. A
return code of SQL_STILL_EXECUTING indicates it is not yet finished, any
other value indicates it has completed. The value other than
SQL_STILL_EXECUTING is the same return code it would have returned if it
had executed synchronously.
The following example demonstrates a common while loop that takes both
possible outcomes into account:
while ((rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS)) == SQL_STILL_EXECUTING)
{

/* Other processing can be performed here, between each call to

Chapter 14. Asynchronous execution of CLI functions 167

* see if SQLExecDirect() has finished running asynchronously.
* This section will never run if CLI runs the function
* synchronously.
*/

}
/* The application continues at this point when SQLExecDirect() */
/* has finished running. */

168 Call Level Interface Guide and Reference Volume 1

Chapter 15. Multithreaded CLI applications

CLI supports concurrent execution of threads on the following platforms:
v AIX
v HP-UX
v Linux
v Solaris
v Windows

On any other platform that supports threads, CLI is guaranteed to be thread safe
by serializing all threaded access to the database. In other words, applications or
stored procedures that use CLI can be invoked multiple times and at the same
time.

Note: If you are writing applications that use CLI calls and either embedded SQL
or DB2 API calls, see the documentation for multithreaded mixed applications.

Concurrent execution means that two threads can run independently of each other
(on a multi-processor machine they may run simultaneously). For example, an
application could implement a database-to-database copy in the following way:
v One thread connects to database A and uses SQLExecute() and SQLFetch() calls

to read data from one connection into a shared application buffer.
v The other thread connects to database B and concurrently reads from the shared

buffer and inserts the data into database B.

In contrast, if CLI serializes all function calls, only one thread may be executing a
CLI function at a time. All other threads would have to wait until the current
thread is done before it would get a chance to execute.

When to use multiple threads

The most common reason to create another thread in a CLI application is so a
thread other than the one executing can be used to call SQLCancel() (to cancel a
long running query for example).

Most GUI-based applications use threads in order to ensure that user interaction
can be handled on a higher priority thread than other application tasks. The
application can simply delegate one thread to run all CLI functions (with the
exception of SQLCancel()). In this case there are no thread-related application
design issues since only one thread will be accessing the data buffers that are used
to interact with CLI.

Applications that use multiple connections, and are executing statements that may
take some time to execute, should consider executing CLI functions on multiple
threads to improve throughput. Such an application should follow standard
practices for writing any multi-threaded application, most notably, those concerned
with sharing data buffers.

Programming tips

Any resource allocated by CLI is guaranteed to be thread-safe. This is
accomplished by using either a shared global or connection specific semaphore. At

© Copyright IBM Corp. 2012 169

any one time, only one thread can be executing a CLI function that accepts an
environment handle as input. All other functions that accept a connection handle
(or a statement or descriptor allocated on that connection handle) will be serialized
on the connection handle.

This means that once a thread starts executing a function with a connection handle,
or child of a connection handle, any other thread will block and wait for the
executing thread to return. The one exception to this is SQLCancel(), which must
be able to cancel a statement currently executing on another thread. For this
reason, the most natural design is to map one thread per connection, plus one
thread to handle SQLCancel() requests. Each thread can then execute
independently of the others.

If an object is shared across threads, application timing issues may arise. For
example, if a thread is using a handle in one thread, and another thread frees that
handle between function calls, the next attempt to use that handle would result in
a return code of SQL_INVALID_HANDLE.

Note:

1. Thread safety for handles only applies for CLI applications. ODBC applications
may trap since the handle in this case is a pointer and the pointer may no
longer be valid if another thread has freed it. For this reason, it is best when
writing an ODBC application to follow the application model for multithreaded
CLI applications.

2. There may be platform or compiler specific link options required for
multi-threaded applications. Refer to your compiler documentation for further
details.

Application model for multithreaded CLI applications
The following model of a typical multithreaded CLI application is intended as an
example:
v Designate a master thread which allocates:

– m "child" threads
– n connection handles

v Each task that requires a connection is executed by one of the child threads, and
is given one of the n connections by the master thread.

v Each connection is marked as in use by the master thread until the child thread
returns it to the master thread.

v Any SQLCancel() request is handled by the master thread.

This model allows the master thread to have more threads than connections if the
threads are also used to perform non-SQL related tasks, or more connections than
threads if the application wants to maintain a pool of active connections to various
databases, but limit the number of active tasks.

Note: A multithreaded CLI stored procedure can only connect to the database
where the stored procedure is currently executing.

Most importantly, this ensures that two threads are not trying to use the same
connection handle at any one time. Although CLI controls access to its resources,
the application resources such as bound columns and parameter buffers are not
controlled by CLI, and the application must guarantee that a pointer to a buffer is

170 Call Level Interface Guide and Reference Volume 1

not being used by two threads at any one time. Any deferred arguments must
remain valid until the column or parameter has been unbound.

If it is necessary for two threads to share a data buffer, the application must
implement some form of synchronization mechanism. For example, in the
database-to-database copy scenario where one thread connects to database A and
reads data from one connection into a shared application buffer while the other
thread connects to database B and concurrently reads from the shared buffer and
inserts data into database B, the use of the shared buffer must be synchronized by
the application.

Application deadlocks

The application must be aware of the possibility of creating deadlock situations
with shared resources in the database and the application.

DB2 can detect deadlocks at the server and rollback one or more transactions to
resolve them. An application may still deadlock if:
v two threads are connected to the same database, and
v one thread is holding an application resource 'A' and is waiting for a database

resource 'B', and
v the other thread has a lock on the database resource 'B' while waiting for the

application resource 'A'.

In this case the DB2 server is only going to see a lock, not a deadlock, and unless
the database LockTimeout configuration keyword is set, the application will wait
forever.

The application model discussed earlier avoids this problem by not sharing
application resources between threads once a thread starts executing on a
connection.

Mixed multithreaded CLI applications
It is possible for a multi-threaded application to mix CLI calls with DB2 API calls
and embedded SQL. The type of the call executed earliest in the application
determines the best way to organize the application:

CLI Calls first

The CLI driver automatically calls the DB2 context APIs to allocate and manage
contexts for the application. This means that any application that calls
SQLAllocEnv() before calling any other DB2 API or embedded SQL will be
initialized with the context type set to SQL_CTX_MULTI_MANUAL.

In this case the application should allow CLI to allocate and manage all contexts.
Use CLI to allocate all connection handles and to perform all connections. Call the
SQLSetConnect() function in each thread before calling any embedded SQL. DB2
APIs can be called after any CLI function has been called in the same thread.

DB2 API or embedded SQL calls first

The CLI driver does not automatically call the DB2 context APIs if the application
calls any DB2 API or embedded SQL functions before a CLI function.

Chapter 15. Multithreaded CLI applications 171

This means that any thread that calls a DB2 API or embedded SQL function must
be attached to a context, otherwise the call will fail with an SQLCODE of
SQL1445N. This can be done by calling the DB2 API sqleAttachToCtx() which will
explicitly attach the thread to a context, or by calling any CLI function
(SQLSetConnection() for example). In this case, the application must explicitly
manage all contexts.

Use the context APIs to allocate and attach to contexts before calling CLI functions
(SQLAllocEnv() will use the existing context as the default context). Use the
SQL_ATTR_CONN_CONTEXT connection attribute to explicitly set the context
that each CLI connection should use.

Note: It is recommended that you do not use the default application stack size, but
instead increase the stack size to at least 256 000. DB2 requires a minimum
application stack size of 256 000 when calling a DB2 function. You must ensure
therefore, that you allocate a total stack size that is large enough for both your
application and the minimum requirements for a DB2 function call.

172 Call Level Interface Guide and Reference Volume 1

Chapter 16. Vendor escape clauses in CLI applications

The X/Open SQL CAE specification defined an escape clause as: “a syntactic
mechanism for vendor-specific SQL extensions to be implemented in the
framework of standardized SQL”. Both CLI and ODBC support vendor escape
clauses as defined by X/Open.

Currently, escape clauses are used extensively by ODBC to define SQL extensions.
CLI translates the ODBC extensions into the correct DB2 syntax. The
SQLNativeSql() function can be used to display the resulting syntax.

If an application is only going to access DB2 data sources, then there is no reason
to use the escape clauses. If an application is going to access other data sources
that offer the same support through a different syntax, then the escape clauses
increase the portability of the application.

CLI used both the standard and shorthand syntax for escape clauses. The standard
syntax has been deprecated (although CLI still supports it). An escape clause using
the standard syntax took the form:

--(*vendor(vendor-identifier),
product(product-identifier) extended SQL text*)--

Applications should now only use the shorthand syntax per current ODBC
standard.

Shorthand escape clause syntax

The format of an escape clause definition is:
{ extended SQL text }

to define the listed SQL extensions:
v Extended date, time, timestamp data
v Outer join
v LIKE predicate
v Stored procedure call
v Extended scalar functions

– Numeric functions
– String functions
– System functions

ODBC date, time, timestamp data

The ODBC escape clauses for date, time, and timestamp data are:
{d ’value’}
{t ’value’}
{ts ’value’}

v d indicates value is a date in the yyyy-mm-dd format,
v t indicates value is a time in the hh:mm:ss format
v ts indicates value is a timestamp in the yyyy-mm-dd hh:mm:ss[.f...] format.

© Copyright IBM Corp. 2012 173

For example, the SELECT * FROM EMPLOYEE WHERE HIREDATE={d ’1994-03-29’}
statement can be used to issue a query against the EMPLOYEE table.

CLI will translate the select statement to a DB2 format. SQLNativeSql() can be
used to return the translated statement.

The ODBC escape clauses for date, time, and timestamp literals can be used in
input parameters with a C data type of SQL_C_CHAR.

ODBC outer join

The ODBC escape clause for outer join is:
{oj outer-join}

where outer join is
table-name {LEFT | RIGHT | FULL} OUTER JOIN

{table-name | outer-join}
ON search-condition

For example, CLI will translate the statement:
SELECT * FROM {oj T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3}

WHERE T1.C2>20

to IBM's format, which corresponds to the SQL92 outer join syntax:
SELECT * FROM T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3 WHERE T1.C2>20

Note: Not all DB2 servers support outer join. To determine if the current server
supports outer joins, call SQLGetInfo() with the
SQL_SQL92_RELATIONAL_JOIN_OPERATORS and SQL_OJ_CAPABILITIES
options.

LIKE predicate

In a SQL LIKE predicate, the metacharacter % matches zero or more of any
character, and the metacharacter _ matches any one character. The SQL ESCAPE
clause allows the definition of patterns intended to match values that contain the
actual percent and underscore characters by preceding them with an escape
character. The escape clause ODBC uses to define the LIKE predicate escape
character is:
{escape ’escape-character’}

where escape-character is any character supported by the DB2 rules governing the
use of the SQL ESCAPE clause.

As an example of how to use an "escape" ODBC escape clause, suppose you had a
table Customers with the columns Name and Growth. The Growth column
contains data having the metacharacter '%'. The SELECT Name FROM Customers
WHERE Growth LIKE ’1_\%’{escape ’\’} statement would select all of the values
from Name that have values in Growth only between 10% and 19%.

Applications that are not concerned about portability across different vendor
DBMS products should pass an SQL ESCAPE clause directly to the data source. To
determine when LIKE predicate escape characters are supported by a particular
DB2 data source, an application can call SQLGetInfo() with the
SQL_LIKE_ESCAPE_CLAUSE information type.

174 Call Level Interface Guide and Reference Volume 1

Stored procedure call

The ODBC escape clause for calling a stored procedure is:
{[?=]call procedure-name[([parameter][,[parameter]]...)]}

where:
v [?=] indicates the optional parameter marker for the return value
v procedure-name specifies the name of a procedure stored at the data source
v parameter specifies a procedure parameter.

A procedure can have zero or more parameters.

ODBC specifies the optional parameter ?= to represent the procedure's return
value, which if present, will be stored in the location specified by the first
parameter marker as defined through SQLBindParameter(). CLI will return the
return code as the procedure's return value if ?= is present in the escape clause. If
?= is not present, and if the stored procedure return code is not SQL_SUCCESS,
then the application can retrieve diagnostics, including the SQLCODE, using the
SQLGetDiagRec() and SQLGetDiagField() functions. CLI supports literals as
procedure arguments, however vendor escape clauses must be used. For example,
the CALL storedproc (’aaaa’, 1) statement would not succeed, but {CALL
storedproc (’aaaa’, 1)} statement would. If a parameter is an output parameter,
it must be a parameter marker.

For example, CLI will translate the statement:
{CALL NETB94(?,?,?)}

To an internal CALL statement format:
CALL NEBT94(?, ?, ?)

ODBC scalar functions

Scalar functions such as string length, substring, or trim can be used on columns of
a result set and on columns that restrict rows of a result set. The ODBC escape
clause for scalar functions is:

{fn scalar-function}

Where, scalar-function can be any function listed in the list of extended scalar
functions.

For example, CLI will translate the statement:
SELECT {fn CONCAT(FIRSTNAME,LASTNAME)} FROM EMPLOYEE

to:
SELECT FIRSTNAME CONCAT LASTNAME FROM EMPLOYEE

SQLNativeSql() can be called to obtain the translated SQL statement.

To determine which scalar functions are supported by the current server referenced
by a specific connection handle, call SQLGetInfo() with the options:
SQL_NUMERIC_FUNCTIONS, SQL_STRING_FUNCTIONS,
SQL_SYSTEM_FUNCTIONS, and SQL_TIMEDATE_FUNCTIONS.

Chapter 16. Vendor escape clauses 175

Extended scalar functions for CLI applications

The following functions are defined by ODBC using vendor escape clauses. Each
function can be called using the escape clause syntax, or calling the equivalent DB2
function.

These functions are presented in the following categories:
v String functions
v Numeric functions
v Date and time functions
v System functions
v Conversion function

The tables in the following sections indicates for which servers (and the earliest
versions) that the function can be accessed, when called from an application using
CLI.

All errors detected by the following functions, when connected to a DB2 Version 5
or later server, will return SQLSTATE 38552. The text portion of the message is of
the form SYSFUN:nn where nn is one of the following reason codes:

01 Numeric value out of range

02 Division by zero

03 Arithmetic overflow or underflow

04 Invalid date format

05 Invalid time format

06 Invalid timestamp format

07 Invalid character representation of a timestamp duration

08 Invalid interval type (must be one of 1, 2, 4, 8, 16, 32, 64, 128, 256)

09 String too long

10 Length or position in string function out of range

11 Invalid character representation of a floating point number

String functions

The string functions in this section are supported by CLI and defined by ODBC
using vendor escape clauses.
v Character string literals used as arguments to scalar functions must be bounded

by single quotation marks.
v Arguments denoted as string_exp can be the name of a column, a string literal,

or the result of another scalar function, where the underlying data type can be
represented as SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR, or
SQL_CLOB.

v Arguments denoted as start, length, code or count can be a numeric literal or the
result of another scalar function, where the underlying data type is integer based
(SQL_SMALLINT, SQL_INTEGER).

v The first character in the string is considered to be at position 1.

176 Call Level Interface Guide and Reference Volume 1

Table 16. String scalar functions

String scalar function Description

Servers that
support the
function

ASCII(string_exp) Returns the ASCII code value of the leftmost character
of string_exp as an integer.

DB2 Database for
Linux, UNIX, and
Windows

CHAR(code) Returns the character that has the ASCII code value
specified by code. The value of code should be between 0
and 255; otherwise, the return value is null.

DB2 Database for
Linux, UNIX, and
Windows

CONCAT(string_exp1, string_exp2) Returns a character string that is the result of
concatenating string_exp2 to string_exp1.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

DIFFERENCE(string_exp1, string_exp2
)

Returns an integer value indicating the difference
between the values returned by the SOUNDEX function
for string_exp1 and string_exp2.

DB2 Database for
Linux, UNIX, and
Windows, IBM
DB2 for IBM i

INSERT(string_exp1, start, length,
string_exp2)

Returns a character string where length number of
characters beginning at start has been replaced by
string_exp2 which contains length characters.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

LCASE(string_exp) Converts all uppercase characters in string_exp to
lowercase.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE

LEFT(string_exp,count) Returns the leftmost count of characters of string_exp. DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

LENGTH(string_exp) Returns the number of characters in string_exp,
excluding trailing blanks and the string termination
character.
Note: Trailing blanks are included for DB2 Server for
VM and VSE.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

LOCATE(string_exp1, string_exp2 [
,start])

Returns the starting position of the first occurrence of
string_exp1 within string_exp2. The search for the first
occurrence of string_exp1 begins with first character
position in string_exp2 unless the optional argument,
start, is specified. If start is specified, the search begins
with the character position indicated by the value of
start. The first character position in string_exp2 is
indicated by the value 1. If string_exp1 is not found
within string_exp2, the value 0 is returned.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

Chapter 16. Vendor escape clauses 177

Table 16. String scalar functions (continued)

String scalar function Description

Servers that
support the
function

LTRIM(string_exp) Returns the characters of string_exp with the leading
blanks removed.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

REPEAT(string_exp, count) Returns a character string composed of string_exp
repeated count times.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

REPLACE(string_exp1, string_exp2,
string_exp3)

Replaces all occurrences of string_exp2 in string_exp1
with string_exp3.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS,

RIGHT(string_exp, count) Returns the rightmost count of characters of string_exp. DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

RTRIM(string_exp) Returns the characters of string_exp with trailing blanks
removed.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

SOUNDEX(string_exp1) Returns a four character code representing the sound of
string_exp1. Note that different data sources use different
algorithms to represent the sound of string_exp1.

DB2 Database for
Linux, UNIX, and
Windows, IBM
DB2 for IBM i

SPACE(count) Returns a character string consisting of count spaces. DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

SUBSTRING(string_exp, start, length) Returns a character string that is derived from string_exp
beginning at the character position specified by start for
length characters.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

UCASE(string_exp) Converts all lowercase characters in string_exp to
uppercase.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

178 Call Level Interface Guide and Reference Volume 1

Numeric functions

The numeric functions in this section are supported by CLI and defined by ODBC
using vendor escape clauses.
v Arguments denoted as numeric_exp can be the name of a column, the result of

another scalar function, or a numeric literal, where the underlying data type can
be either floating point based (SQL_NUMERIC, SQL_DECIMAL, SQL_FLOAT,
SQL_REAL, SQL_DOUBLE) or integer based (SQL_SMALLINT, SQL_INTEGER).

v Arguments denoted as double_exp can be the name of a column, the result of
another scalar functions, or a numeric literal where the underlying data type is
floating point based.

v Arguments denoted as integer_exp can be the name of a column, the result of
another scalar functions, or a numeric literal, where the underlying data type is
integer based.

Table 17. Numeric scalar functions

Numeric scalar function Description

Servers that
support the
function

ABS(numeric_exp) Returns the absolute value of numeric_exp DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

ACOS(double_exp) Returns the arccosine of double_exp as an angle,
expressed in radians.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

ASIN(double_exp) Returns the arcsine of double_exp as an angle, expressed
in radians.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

ATAN(double_exp) Returns the arctangent of double_exp as an angle,
expressed in radians.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

ATAN2(double_exp1, double_exp2) Returns the arctangent of x and y coordinates specified
by double_exp1 and double_exp2, as an angle expressed in
radians.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

CEILING(numeric_exp) Returns the smallest integer greater than or equal to
numeric_exp.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

COS(double_exp) Returns the cosine of double_exp, where double_exp is an
angle expressed in radians.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

Chapter 16. Vendor escape clauses 179

Table 17. Numeric scalar functions (continued)

Numeric scalar function Description

Servers that
support the
function

COT(double_exp) Returns the cotangent of double_exp, where double_exp is
an angle expressed in radians.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

DEGREES(numeric_exp) Returns the number of degrees converted from
numeric_exp radians.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

EXP(double_exp) Returns the exponential value of double_exp. DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

FLOOR(numeric_exp) Returns the largest integer less than or equal to
numeric_exp.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

LOG(double_exp) Returns the natural logarithm of double_exp. DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

LOG10(double_exp) Returns the base 10 logarithm of double_exp. DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

MOD(integer_exp1, integer_exp2) Returns the remainder (modulus) of integer_exp1 divided
by integer_exp2.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

PI() Returns the constant value of pi as a floating point
value.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

POWER(numeric_exp, integer_exp) Returns the value of numeric_exp to the power of
integer_exp.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

RADIANS(numeric_exp) Returns the number of radians converted from
numeric_exp degrees.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

180 Call Level Interface Guide and Reference Volume 1

Table 17. Numeric scalar functions (continued)

Numeric scalar function Description

Servers that
support the
function

RAND([integer_exp]) Returns a random floating point value using integer_exp
as the optional seed value.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

ROUND(numeric_exp, integer_exp.) Returns numeric_exp rounded to integer_exp places right
of the decimal point. If integer_exp is negative,
numeric_exp is rounded to | integer_exp | places to the
left of the decimal point.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

SIGN(numeric_exp) Returns an indicator or the sign of numeric_exp. If
numeric_exp is less than zero, -1 is returned. If
numeric_exp equals zero, 0 is returned. If numeric_exp is
greater than zero, 1 is returned.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

SIN(double_exp) Returns the sine of double_exp, where double_exp is an
angle expressed in radians.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

SQRT(double_exp) Returns the square root of double_exp. DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

TAN(double_exp) Returns the tangent of double_exp, where double_exp is an
angle expressed in radians.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

TRUNCATE(numeric_exp, integer_exp
)

Returns numeric_exp truncated to integer_exp places right
of the decimal point. If integer_exp is negative,
numeric_exp is truncated to | integer_exp | places to the
left of the decimal point.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

Date and time functions

The date and time functions in this section are supported by CLI and defined by
ODBC using vendor escape clauses.
v Arguments denoted as timestamp_exp can be the name of a column, the result of

another scalar function, or a time, date, or timestamp literal.
v Arguments denoted as date_exp can be the name of a column, the result of

another scalar function, or a date or timestamp literal, where the underlying
data type can be character based, or date or timestamp based.

v Arguments denoted as time_exp can be the name of a column, the result of
another scalar function, or a time or timestamp literal, where the underlying
data types can be character based, or time or timestamp based.

Chapter 16. Vendor escape clauses 181

Table 18. Date and time scalar functions

Date and time scalar function Description

Servers that
support the
function

CURDATE() Returns the current date as a date value. DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

CURTIME() Returns the current local time as a time value. DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

DAYNAME(date_exp) Returns a character string containing the name of the
day (Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday) for the day portion of date_exp.

DB2 Database for
Linux, UNIX, and
Windows

DAYOFMONTH (date_exp) Returns the day of the month in date_exp as an integer
value in the range of 1-31.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

DAYOFWEEK(date_exp) Returns the day of the week in date_exp as an integer
value in the range 1-7, where 1 represents Sunday.

DB2 Database for
Linux, UNIX, and
Windows, IBM
DB2 for IBM i

DAYOFWEEK_ISO(date_exp) Returns the day of the week in date_exp as an integer
value in the range 1-7, where 1 represents Monday. Note
the difference between this function and the
DAYOFWEEK() function, where 1 represents Sunday.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, IBM DB2
for IBM i

DAYOFYEAR(date_exp) Returns the day of the year in date_exp as an integer
value in the range 1-366.

DB2 Database for
Linux, UNIX, and
Windows, IBM
DB2 for IBM i

HOUR(time_exp) Returns the hour in time_exp as an integer value in the
range of 0-23.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

JULIAN_DAY(date_exp) Returns the number of days between date_exp and
January 1, 4712 B.C. (the start of the Julian date
calendar).

DB2 Database for
Linux, UNIX, and
Windows, IBM
DB2 for IBM i

MINUTE(time_exp) Returns the minute in time_exp as integer value in the
range of 0-59.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

182 Call Level Interface Guide and Reference Volume 1

Table 18. Date and time scalar functions (continued)

Date and time scalar function Description

Servers that
support the
function

MONTH(date_exp) Returns the month in date_exp as an integer value in the
range of 1-12.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

MONTHNAME(date_exp) Returns a character string containing the name of month
(January, February, March, April, May, June, July,
August, September, October, November, December) for
the month portion of date_exp.

DB2 Database for
Linux, UNIX, and
Windows

NOW() Returns the current date and time as a timestamp value. DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

QUARTER(date_exp) Returns the quarter in date_exp as an integer value in the
range of 1-4.

DB2 Database for
Linux, UNIX, and
Windows, IBM
DB2 for IBM i

SECOND(time_exp) Returns the second in time_exp as an integer value in the
range of 0-59.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

SECONDS_SINCE_MIDNIGHT(
time_exp)

Returns the number of seconds in time_exp relative to
midnight as an integer value in the range of 0-86400. If
time_exp includes a fractional seconds component, the
fractional seconds component will be discarded.

DB2 Database for
Linux, UNIX, and
Windows

Chapter 16. Vendor escape clauses 183

Table 18. Date and time scalar functions (continued)

Date and time scalar function Description

Servers that
support the
function

TIMESTAMPADD(interval,
integer_exp, timestamp_exp)

Returns the timestamp calculated by adding integer_exp
intervals of type interval to timestamp_exp. Valid values
of interval are:
v SQL_TSI_FRAC_SECOND
v SQL_TSI_SECOND
v SQL_TSI_MINUTE
v SQL_TSI_HOUR
v SQL_TSI_DAY
v SQL_TSI_WEEK
v SQL_TSI_MONTH
v SQL_TSI_QUARTER
v SQL_TSI_YEAR

where fractional seconds are expressed in 1/1000000000
second. If timestamp_exp specifies a time value and
interval specifies days, weeks, months, quarters, or years,
the date portion of timestamp_exp is set to the current
date before calculating the resulting timestamp. If
timestamp_exp is a date value and interval specifies
fractional seconds, seconds, minutes, or hours, the time
portion of timestamp_exp is set to 00:00:00.000000 before
calculating the resulting timestamp. An application
determines which intervals are supported by calling
SQLGetInfo() with the
SQL_TIMEDATE_ADD_INTERVALS option.

DB2 Database for
Linux, UNIX, and
Windows

TIMESTAMPDIFF(interval,
timestamp_exp1, timestamp_exp2)

Returns the integer number of intervals of type interval
by which timestamp_exp2 is greater than timestamp_exp1.
Valid values of interval are:
v SQL_TSI_FRAC_SECOND
v SQL_TSI_SECOND
v SQL_TSI_MINUTE
v SQL_TSI_HOUR
v SQL_TSI_DAY
v SQL_TSI_WEEK
v SQL_TSI_MONTH
v SQL_TSI_QUARTER
v SQL_TSI_YEAR

where fractional seconds are expressed in 1/1000000000
second. If either timestamp expression is a time value
and interval specifies days, weeks, months, quarters, or
years, the date portion of that timestamp is set to the
current date before calculating the difference between
the timestamps. If either timestamp expression is a date
value and interval specifies fractional seconds, seconds,
minutes, or hours, the time portion of that timestamp is
set to 0 before calculating the difference between the
timestamps. An application determines which intervals
are supported by calling SQLGetInfo() with the
SQL_TIMEDATE_DIFF_INTERVALS option.

DB2 Database for
Linux, UNIX, and
Windows

WEEK(date_exp) Returns the week of the year in date_exp as an integer
value in the range of 1-54.

DB2 Database for
Linux, UNIX, and
Windows, IBM
DB2 for IBM i

184 Call Level Interface Guide and Reference Volume 1

Table 18. Date and time scalar functions (continued)

Date and time scalar function Description

Servers that
support the
function

WEEK_ISO(date_exp) Returns the week of the year in date_exp as an integer
value in the range of 1-53. Week 1 is defined as the first
week of the year to contain a Thursday. Therefore,
Week1 is equivalent to the first week that contains Jan 4,
since Monday is considered to be the first day of the
week.

Note that WEEK_ISO() differs from the current
definition of WEEK(), which returns a value up to 54.
For the WEEK() function, Week 1 is the week containing
the first Saturday. This is equivalent to the week
containing Jan. 1, even if the week contains only one
day.

DB2 Database for
Linux, UNIX, and
Windows

YEAR(date_exp) Returns the year in date_exp as an integer value in the
range of 1-9999.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

For those functions that return a character string containing the name of the day of
week or the name of the month, these character strings will be National Language
Support enabled.

DAYOFWEEK_ISO() and WEEK_ISO() are automatically available in a database
created in DB2 Version 7 or later. If a database was created before Version 7, these
functions might not be available. To make DAYOFWEEK_ISO() and WEEK_ISO()
functions available in such a database, use the db2updb system command.

System functions

The system functions in this section are supported by CLI and defined by ODBC
using vendor escape clauses.
v Arguments denoted as exp can be the name of a column, the result of another

scalar function, or a literal.
v Arguments denoted as value can be a literal constant.

Table 19. System scalar functions

System scalar function Description

Servers that
support the
function

DATABASE() Returns the name of the database corresponding to the
connection handle (hdbc). (The name of the database is
also available via SQLGetInfo() by specifying the
information type SQL_DATABASE_NAME.)

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

Chapter 16. Vendor escape clauses 185

Table 19. System scalar functions (continued)

System scalar function Description

Servers that
support the
function

IFNULL(exp, value) If exp is null, value is returned. If exp is not null, exp is
returned. The possible data type(s) of value must be
compatible with the data type of exp.

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

USER() Returns the user's authorization name. (The user's
authorization name is also available via SQLGetInfo()
by specifying the information type SQL_USER_NAME.)

DB2 Database for
Linux, UNIX, and
Windows, DB2 for
z/OS, DB2 Server
for VM and VSE,
IBM DB2 for IBM i

Conversion function

The conversion function is supported by CLI and defined by ODBC using vendor
escape clauses.

Each driver and data source determines which conversions are valid between the
possible data types. As the driver translates the ODBC syntax into native syntax it
will reject the conversions that are not supported by the data source, even if the
ODBC syntax is valid.

Use the function SQLGetInfo() with the appropriate convert function masks to
determine which conversions are supported by the data source.

Table 20. Conversion Function

Conversion scalar function Description

Servers that
support the
function

CONVERT(expr_value, data_type) v data_type indicates the data type of the converted
representation of expr_value, and can be either
SQL_CHAR or SQL_DOUBLE.

v expr_value is the value to convert. It can be of various
types, depending on the conversions supported by the
driver and data source. Use the function
SQLGetInfo() with the appropriate convert function
masks to determine which conversions are supported
by the data source.

DB2 Database for
Linux, UNIX, and
Windows

186 Call Level Interface Guide and Reference Volume 1

Chapter 17. Non-Java client support for high availability on
IBM data servers

Client applications that connect to DB2 Database for Linux, UNIX, and Windows,
DB2 for z/OS, or IBM Informix can easily take advantage of the high availability
features of those data servers.

Client applications can use the following high availability features:
v Automatic client reroute

Automatic client reroute capability is available on all IBM data servers.
Automatic client reroute uses information that is provided by the data servers to
redirect client applications from a server that experiences an outage to an
alternate server. Automatic client reroute enables applications to continue their
work with minimal interruption. Redirection of work to an alternate server is
called failover.
For connections to DB2 for z/OS data servers, automatic client reroute is part of
the workload balancing feature. In general, for DB2 for z/OS, automatic client
reroute should not be enabled without workload balancing.

v Client affinities
Client affinities is a failover solution that is controlled completely by the client. It
is intended for situations in which you need to connect to a particular primary
server. If an outage occurs during the connection to the primary server, you use
client affinities to enforce a specific order for failover to alternate servers.
Client affinities is not applicable to a DB2 for z/OS data sharing environment,
because all members of a data sharing group can access data concurrently. Data
sharing is the recommended solution for high availability for DB2 for z/OS.

v Workload balancing
Workload balancing is available on all IBM data servers. Workload balancing
ensures that work is distributed efficiently among servers in an IBM Informix
high-availability cluster, DB2 for z/OS data sharing group, or DB2 Database for
Linux, UNIX, and Windows DB2 pureScale® instance.

The following table provides links to server-side information about these features.

Table 21. Server-side information about high availability

Data server Related topics

DB2 Database for Linux, UNIX, and Windows v DB2 pureScale: DB2 pureScale Feature roadmap
documentation

v Automatic client reroute: Automatic client reroute
roadmap

IBM Informix Manage Cluster Connections with the Connection
Manager

DB2 for z/OS Communicating with data sharing groups

Important: For connections to DB2 for z/OS, this information discusses direct
connections to DB2 for z/OS. For information about high availability for
connections through DB2 Connect server, see the DB2 Connect documentation.

© Copyright IBM Corp. 2012 187

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1210.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1210.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z9.doc.dshare/src/tpc/db2z_communicatedsgroups.htm

Non-Java client support for high availability for connections to DB2
Database for Linux, UNIX, and Windows

DB2 Database for Linux, UNIX, and Windows servers provide high availability for
client applications, through workload balancing and automatic client reroute. This
support is available for applications that use non-Java clients (ODBC, CLI, .NET,
OLE DB, PHP, Ruby, or embedded SQL), as well as Java clients (JDBC, SQLJ, or
pureQuery).

For non-Java clients, you must use one of the listed clients or client packages to
take advantage of high availability support:
v IBM Data Server Client
v IBM Data Server Runtime Client
v IBM Data Server Driver Package
v IBM Data Server Driver for ODBC and CLI

High availability support for connections to DB2 Database for Linux, UNIX, and
Windows servers includes:

Automatic client reroute
This support enables a client to recover from a failure by attempting to
reconnect to the database through an alternate server. Reconnection to another
server is called failover. Client support for automatic client reroute is enabled
by default for non-Java clients that connect to DB2 Database for Linux, UNIX,
and Windows.

Servers can provide automatic client reroute capability in any of the succeeding
ways:
v Several servers are configured in a DB2 pureScale instance. A connection to a

database is a connection to a member of that DB2 pureScale instance.
Failover involves reconnection to another member of the DB2 pureScale
instance. This environment requires that clients use TCP/IP to connect to the
DB2 pureScale instance.

v A DB2 pureScale instance and an alternate server that is defined for a
database. Failover first involves reconnection to another member of the DB2
pureScale instance. Failover to the server is attempted only if no member of
the DB2 pureScale instance is available.

v A DB2 pureScale instance is defined for the primary server, and another DB2
pureScale instance is defined for the server. Failover first involves
reconnection to another member of the primary DB2 pureScale instance.
Failover to the alternate DB2 pureScale instance is attempted only if no
member of the primary DB2 pureScale instance is available.

v A database is defined on a single server. The configuration for that database
includes specification of an alternate server. Failover involves reconnection
to the alternate server.

Alternate groups are an additional failover mechanism for automatic client
rerouting when connectivity to the current group cannot be re-established. A
group is a database that is created in a DB2 instance. In DB2 pureScale or
partitioned database environments, all the participant database servers for a
database are also considered a group. The database to which your application
explicitly connects to is called the primary group.

For CLI or .NET client applications, failover for automatic client reroute can be
seamless or non-seamless. With non-seamless failover, when the client application

188 Call Level Interface Guide and Reference Volume 1

reconnects to another server an error is always returned to the application to
indicate that failover (connection to the alternate server) occurred. With
seamless failover, the client does not return an error if a connection failure and
successful reconnection to an alternate server or alternate group occurs during
the execution of the first SQL statement in a transaction.

In a DB2 pureScale instance, you can use automatic client reroute support
without workload balancing or with workload balancing.

Workload balancing
Workload balancing can improve the availability of a DB2 pureScale instance.

With workload balancing, a DB2 pureScale instance ensures that work is
distributed efficiently among members.

Non-Java clients on any operating system support workload balancing. The
connection from the client to the DB2 pureScale instance must use TCP/IP.

When workload balancing is enabled, the client gets frequent status
information about the members of the DB2 pureScale instance through a server
list. The client caches the server list and uses the information in it to determine
the member to which the next transaction should be routed.

For non-Java clients, the server list is cached in the application process. It is
shared for workload balancing only by connections in that process.

DB2 Database for Linux, UNIX, and Windows supports two types of workload
balancing:

Connection-level workload balancing
Connection-level workload balancing is performed at connection
boundaries. It is supported only by non-Java clients. Client support for
connection-level workload balancing is enabled by default for non-Java
clients that connect to DB2 Database for Linux, UNIX, and Windows.

Connection-level load balancing is most effective for connections whose
duration is short.

Transaction-level workload balancing
Transaction-level workload balancing is performed at transaction
boundaries. Client support for transaction-level workload balancing is
disabled by default for clients that connect to DB2 Database for Linux,
UNIX, and Windows.

Transaction-level load balancing is most effective for connections whose
duration is long.

Client affinities
Client affinities is an automatic client reroute solution that is controlled
completely by the client. It is intended for situations in which you must
connect to a particular primary server. If an outage occurs during the
connection to the primary server, you use client affinities to enforce a specific
order for failover to alternate servers.

Configuration of DB2 Database for Linux, UNIX, and Windows
automatic client reroute support for non-Java clients

For connections to DB2 Database for Linux, UNIX, and Windows databases, the
process for configuration of automatic client reroute support on non-Java clients is
identical both within and outside of a DB2 pureScale environment.

Chapter 17. Non-Java client support for high availability on IBM data servers 189

Automatic client reroute capability is enabled at a non-Java client by default. You
must connect to the primary server in environments other than a DB2 pureScale
environment, or to a DB2 pureScale instance in a DB2 pureScale environment.

At the first successful connection to the server, the client obtains a list, which the
client stores in memory, from the server of all the available alternate servers. If the
first connection fails, the client looks for a list of alternate servers that are defined
in the db2dsdriver.cfg file, in the <acr> section, under the <alternateserverlist>
tag.

If the db2dsdriver.cfg file has no alternate servers that are defined in the <acr>
section , upon the first successful connection to the server, the client creates a local
cache file, srvrlst.xml. The client updates the file with the server's list of available
alternate servers. This file is refreshed whenever a new connection is made and the
server's list differs from the contents of the client srvrlst.xml file.

When a client uses the srvrlst.xml file to locate an alternate server, it writes a
record to the db2diag log files. You can monitor this log to determine how
frequently initial sever connections are failing.

The table 1 describes the basic settings to establish a connection for non-Java
applications.

Table 22. Basic settings to establish a connection to a DB2 Database for Linux, UNIX, and
Windows database in non-Java applications

Client setting
Value outside a DB2
pureScale environment

Value for a DB2 pureScale
environment

Connection address:

Database host1 The IP address of the
primary server.

The IP address of a member
of a DB2 pureScale instance.2

Database port1 The SQL port number of the
primary server.

The SQL port number of a
member of a DB2 pureScale
instance.2

Database name1 The database name. The database name.

190 Call Level Interface Guide and Reference Volume 1

Table 22. Basic settings to establish a connection to a DB2 Database for Linux, UNIX, and
Windows database in non-Java applications (continued)

Client setting
Value outside a DB2
pureScale environment

Value for a DB2 pureScale
environment

Note:

1. Depending on the client that you use, connection information is defined in one of several
possible sources:

v If you are using one of the data server drivers, a CLI, or an open source application
that uses IBM Data Server Client or IBM Data Server Runtime Client:

– If host, port, and database information is provided in the connection string in an
application, the DB2 database system uses that information.

– If host, port, and database information is not provided in the connection string in
an application, the driver uses a db2cli.ini file, and this information is provided in
the db2cli.ini file, the DB2 database system uses that information.

– If host, port, and database information is not provided in the connection string in
the application or the db2cli.ini file, the DB2 database system uses information in
the db2dsdriver configuration file.

v If you are using a .NET application or an application that uses embedded SQL with
the IBM Data Server Client or the IBM Data Server Runtime Client, connection
information comes a source that is not the db2dsdriver configuration file. Possible
sources include the database catalog, connection string, db2cli.ini file, or .NET object
properties.

2. Alternatively, you can use a distributor, such as Websphere Application Server Network
Deployment, or multihomed DNS to establish the initial connection to the database.

v For a distributor, you specify the IP address and port number of the distributor. The
distributor analyzes the current workload distribution, and uses that information to
forward the connection request to one of the members of the DB2 pureScale instance.

v For multihomed DNS, you specify an IP address and port number that can resolve to
the IP address and port number of any member of the DB2 pureScale instance.
Multihomed DNS processing selects a member based on criteria, such as simple
round-robin selection or member workload distribution.

You can set configuration keywords or registry variables in the db2dsdriver.cfg
file to refine automatic client reroute behavior. You can use the configuration
keywords in table 2 to control automatic client reroute. The keywords are
described for the case in which client affinities are not enabled.

In case of changes to the db2dsdriver.cfg file, your CLI application can start the
SQLReloadConfig function to validate the entries for all alternate servers within
the <acr> section.

Table 23. Settings to control automatic client reroute behavior

Element in the <acr> section of the
db2dsdriver configuration file Value

enableAcr parameter Specifies whether automatic client reroute is
in effect. The default is true.

enableSeamlessAcr parameter Specifies whether seamless failover can occur.
If enableAcr is set to true, the default for
enableSeamlessAcr is true.
enableSeamlessACR applies only to the
members within a group or cluster.

Chapter 17. Non-Java client support for high availability on IBM data servers 191

Table 23. Settings to control automatic client reroute behavior (continued)

Element in the <acr> section of the
db2dsdriver configuration file Value

enableAlternateGroupSeamlessACR
parameter

Specifies seamless or non-seamless failover
behavior across groups. The default is false.
You must define this parameter in the
<alternategroup> element in the <acr>
section. To set this parameter to true, you
must also set enableSeamlessACR to true.
Setting this parameter to true, does not affect
the setting of enableSeamlessACR. If a
successful connection is established to a
server in the alternategroup section, the rules
for seamless or non-seamless behavior still
apply.

acrRetryInterval parameter The number of seconds to wait between
consecutive connection retries. The registry
variable DB2_CONNRETRIES_INTERVAL overrides
this value. The valid range is 0 to MAX_INT.
The default is no wait (0), if
DB2_CONNRETRIES_INTERVAL is not set.

maxAcrRetries parameter The maximum number of connection retries
for automatic client reroute. The registry
variable DB2_MAX_CLIENT_CONNRETRIES
overrides this value. If
DB2_MAX_CLIENT_CONNRETRIES is not set, the
default is that the connection is tried again
for 10 minutes. A value of 0 means that one
attempt at reconnection is made.

enableAlternateServerListFirstConnect
parameter

Specifies whether there is an alternate server
list that is used only if a failure occurs on the
first connection to the data server. The
default is false. When the value of
enableAlternateServerListFirstConnect is true,
automatic client reroute with seamless
failover is implicitly enabled, regardless of
the other settings that are specified for
automatic client reroute in the db2dsdriver
configuration file. To use this feature, you
also require an <alternateserverlist> element
in the db2dsdriver configuration file.

<alternateserverlist> element Specifies a set of server names and port
numbers that identify alternate servers to
which a connection is attempted if a failure
occurs on the first connection to the database.
The alternate server list is not used after the
first connection. In a DB2 pureScale
environment, the entries in the list can be
members of a DB2 pureScale instance.In
environments other than a DB2 pureScale
environment, there is an entry for the
primary server and an entry for the high
availability disaster recovery (HADR)
standby server. The alternate server list is not
used after the first connection.

The registry variables in table 3 controls retry behavior of automatic client reroute.

192 Call Level Interface Guide and Reference Volume 1

Table 24. Registry variables to control automatic client reroute retry behavior

Registry variable Value

DB2_MAX_CLIENT_CONNRETRIES The maximum number of connection retries
for automatic client reroute. The default is 30
if DB2_CONNRETRIES_INTERVAL is set.

DB2_CONNRETRIES_INTERVAL The number of seconds between consecutive
connection retries. The default is 10 if
DB2_MAX_CLIENT_CONNRETRIES is set.

If neither registry variable is set, and maxAcrRetries and acrRetryInterval are also
not set, automatic client reroute processing tries the connection to a database again
for up to 10 minutes, with no wait between retries.

For CLI, OLE DB, and ADO.NET applications, you can set a connection timeout
value. That value specifies the number of seconds that the client application waits
for a connection to a database to be established. You must set the connection
timeout value to a value that is equal to or greater than the maximum time that it
takes to connect to the server. Otherwise, the connection might time out and be
rerouted to the alternate server by client reroute. For example, if on a normal day
it takes about 10 seconds to connect to the server, and on a busy day it takes about
20 seconds, you should set the connection timeout value t to at least 20 seconds.

Example of enabling DB2 Database for Linux, UNIX, and
Windows automatic client reroute support in non-Java clients

You can fine-tune non-Java client setup for DB2 Database for Linux, UNIX, and
Windows automatic client reroute (acr) support by setting values for several
keywords in the db2dsdriver.cfg configuration file.

Note that if you do not define a list of alternate servers in the db2dsdriver.cfg
configuration file, at the first successful connection to the server, the client obtains
from the server a list of all available alternate servers. The client stores the list in
memory and also creates a local cache file, srvrlst.xml that contains the server's
list of alternate servers. This file is refreshed whenever a new connection is made
and the server's list differs from the contents of the client srvrlst.xml file.

Suppose that database sample is a DB2 pureScale instance with two members, at
server db2luwa and port 446, and server db2luwb and port 446. The database has
alternate server db2luwc and port 446 defined.

You want to fine-tune default automatic client reroute support by modifying these
items:

Automatic client reroute
characteristic db2dsdriver.cfg configuration keyword Desired value

Number of times to retry the
connection to the alternate server

maxAcrRetries 10

Number of seconds to wait between
retries

acrRetryInterval 5

Whether to try another server if the
initial connection to the database fails

enableAlternateServerListFirstConnect true

Chapter 17. Non-Java client support for high availability on IBM data servers 193

Automatic client reroute
characteristic db2dsdriver.cfg configuration keyword Desired value

The host names and port numbers of
the servers to try if the initial
connection to the database fails

<alternateserverlist>

Note that if you do not define a list of
alternate servers in the db2dsdriver.cfg
configuration file, at the first successful
connection to the server, the client obtains
from the server a list of all available
alternate servers. The client stores the list
in memory and also creates a local cache
file, srvrlst.xml that contains the server's
list of alternate servers. This file is
refreshed whenever a new connection is
made and the server's list differs from the
contents of the client srvrlst.xml file. The
srvrlst.xml file is located under
CLIENT_CONFIG_DIR in the cfgcache
directory.

Host names and port numbers:
v db2luwa.luw.ibm.com, 446
v db2luwb.luw.ibm.com, 446
v db2luwc.luw.ibm.com, 446

Use the following db2dsdriver.cfg configuration file to implement these changes
to automatic reroute behavior:
<configuration>

<dsncollection>
<dsn alias="sample" name="sample" host="db2luw.luw.ibm.com" port="446">
</dsn>

</dsncollection>
<databases>

<database name="sample" host="db2luw.luw.ibm.com" port="446">
<acr>

<parameter name="enableAcr" value="true">
</parameter>
<parameter name=
<parameter name="maxAcrRetries" value="10">
</parameter>
<parameter name="acrRetryInterval" value="5">
</parameter>
<parameter name="enableAlternateServerListFirstConnect"

value="true"></parameter>
<alternateserverlist>

<server name="server1" hostname="db2luwa.luw.ibm.com" port="446">
</server>
<server name="server2" hostname="db2luwb.luw.ibm.com" port="446">
</server>
<server name="server3" hostname="db2luwc.luw.ibm.com" port="446">
</server>

</alternateserverlist>
</acr>

</database>
</databases>

</configuration>

Configuration of DB2 Database for Linux, UNIX, and Windows
workload balancing support for non-Java clients

For connections to DB2 Database for Linux, UNIX, and Windows data servers in a
DB2 pureScale instance, connection-level workload balancing is enabled at a
non-Java client by default. Transaction-level workload balancing capability must be
enabled explicitly.

194 Call Level Interface Guide and Reference Volume 1

The following table describes the basic settings to enable connection-level
workload balancing support for non-Java applications.

Table 25. Basic settings to enable DB2 Database for Linux, UNIX, and Windows
connection-level workload balancing support in non-Java applications

Client setting Value

Connection address:

database host1 The IP address of a member of a DB2
pureScale instance.2

database port1 The SQL port number of a member of a DB2
pureScale instance 2

database name1 The database name

Note:

1. Depending on the client that you use, connection information is defined in one of several
possible sources:

v If you are using one of the data server drivers or a CLI or open source application
that uses IBM Data Server Client or IBM Data Server Runtime Client:

– If host, port, and database information is provided in a connection string in an
application, DB2 uses that information.

– If host, port, and database information is not provided in the connection string in
an application, the driver uses a db2cli.ini file, and this information is provided in
the db2cli.ini file, DB2 uses that information.

– If host, port, and database information is not provided in the connection string in
the application or the db2cli.ini file, DB2 uses information in the db2dsdriver.cfg
configuration file.

v If you are using a .NET application or an application that uses embedded SQL with
the IBM Data Server Client or the IBM Data Server Runtime Client, connection
information comes a source that is not the db2dsdriver.cfg configuration file. Possible
sources include the database catalog, connection string, db2cli.ini file, or .NET object
properties.

2. Alternatively, you can use a distributor, such as WebSphere® Application Server Network
Deployment, or multihomed DNS to establish the initial connection to the database.

v For a distributor, you specify the IP address and port number of the distributor. The
distributor analyzes the current workload distribution, and uses that information to
forward the connection request to one of the members of the DB2 pureScale instance.

v For multihomed DNS, you specify an IP address and port number that can resolve to
the IP address and port number of any member of the DB2 pureScale instance.
Multihomed DNS processing selects a member based on some criterion, such as
simple round-robin selection or member workload distribution.

The following configuration keyword in the db2dsdriver.cfg file can be used to
change the connection-level workload balancing setting.

Table 26. Setting to control connection-level workload balancing behavior

Element in the db2dsdriver.cfg
configuration file Section Value

connectionLevelLoadBalancing
parameter

<database> Specifies whether connection-level load
balancing is in effect. It is true by default.

The following configuration keywords in the db2dsdriver.cfg file can be used to
enable and fine-tune transaction-level workload balancing.

Chapter 17. Non-Java client support for high availability on IBM data servers 195

Table 27. Settings to control transaction-level workload balancing behavior

Element in the db2dsdriver.cfg
configuration file Section Value

connectionLevelLoadBalancing
parameter

<database> Must be set to true if you want to use
transaction-level workload balancing.

enableWLB parameter <wlb> Specifies whether transaction-level workload
balancing is in effect. It is false by default.

maxTransportIdleTime <wlb> Specifies the maximum elapsed time in
number of seconds before an idle transport
is dropped. The default is 600. The
minimum supported value is 0.

maxTransportWaitTime <wlb> Specifies the number of seconds that the
client waits for a transport to become
available. The default is -1 (unlimited). The
minimum supported value is 0.

maxTransports <wlb> Specifies the maximum number of physical
connections can be made for each
application process that connects to the DB2
pureScale instance.

maxRefreshInterval <wlb> Specifies the maximum elapsed time in
number of seconds before the server list is
refreshed. The default is 10. The minimum
supported value is 0.

Example of enabling DB2 Database for Linux, UNIX, and
Windows workload balancing support in non-Java clients

DB2 Database for Linux, UNIX, and Windows workload balancing requires a DB2
pureScale environment. Before you can use DB2 Database for Linux, UNIX, and
Windows workload balancing support in CLI, .NET, or embedded SQL
applications, you need to update the db2dsdriver.cfg configuration file with the
appropriate settings, and connect to a member of the DB2 pureScale environment.

The following example demonstrates setting up a CLI client to take advantage of
DB2 Database for Linux, UNIX, and Windows workload balancing support.

Before you can set up the client, you need to configure a DB2 pureScale instance.

These steps demonstrate client setup:
1. Create a db2dsdriver.cfg file that enables transaction-level workload balancing.

In this example:
v If the first connection to the database fails, the connection needs to be tried

on alternate servers.
Note that if you do not define a list of alternate servers in the
db2dsdriver.cfg configuration file, at the first successful connection to the
server, the client obtains from the server a list of all available alternate
servers. The client stores the list in memory and also creates a local cache
file, srvrlst.xml that contains the server's list of alternate servers. This file is
refreshed whenever a new connection is made and the server's list differs
from the contents of the client srvrlst.xml file.

v For transaction-level workload balancing for this database, the maximum
number of physical connections needs to be 80.

196 Call Level Interface Guide and Reference Volume 1

v Connections can use the defaults for all other transaction-level workload
balancing parameters.

The db2dsdriver.cfg file looks like this:
<configuration>

<dsncollection>
<dsn alias="LUWDS1" name="LUWDS1" host="luw1ds.toronto.ibm.com"

port="50000">
</dsn>

</dsncollection>
<databases>

<!-- In this example, the host and port represent a member of a
DB2 pureScale instance -->

<database name="LUWDS1" host="luw.ds1.ibm.com" port="50000">
<!-- database-specific parameters -->
<wlb>

<!-- Enable transaction-level workload balancing -->
<parameter name="enableWLB" value="true" />
<!-- maxTransports represents the maximum number of physical

connections -->
<parameter name="maxTransports" value="80" />

</wlb>
<acr>

<!-- acr is already enabled by default -->
<!-- Enable server list for application first connect -->
<parameter name="enableAlternateServerListFirstConnect"

value="true" />
<alternateserverlist>

<!-- Alternate server 1 -->
<parameter name="server" value="luw2ds.toronto.ibm.com" />
<parameter name="port" value="50001" />
<!-- Alternate server 2 -->
<parameter name="server" value="luw3ds.toronto.ibm.com" />
<parameter name="port" value="50002" />
<!-- Alternate server 3 -->
<parameter name="server" value="luw4ds.toronto.ibm.com" />
<parameter name="port" value="50003" />

</alternateserverlist>
</acr>

</database>
</databases>

</configuration>

2. Suppose that the database name LUWDS1 represents a DB2 pureScale instance.
In a CLI application, use code like this to connect to the DB2 pureScale
instance:
...

SQLHDBC hDbc = SQL_NULL_HDBC;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *ConnStrIn =

"DSN=LUWDS1;PWD=mypass";
/* dsn matches the database name in the configuration file */

char ConnStrOut [200];
SQLSMALLINT cbConnStrOut;
int i;
char *token;

...
/***/
/* Invoke SQLDriverConnect */
/***/
RETCODE = SQLDriverConnect (hDbc ,

NULL ,
(SQLCHAR *)ConnStrIn ,
strlen(ConnStrIn) ,
(SQLCHAR *)ConnStrOut,

Chapter 17. Non-Java client support for high availability on IBM data servers 197

sizeof(ConnStrOut) ,
&cbConnStrOut ,
SQL_DRIVER_NOPROMPT);

...

Operation of automatic client reroute for connections to DB2
Database for Linux, UNIX, and Windows from non-Java clients

Automatic client reroute provides failover support when an IBM data server client
loses connectivity to the primary server for a DB2 Database for Linux, UNIX, and
Windows database. Automatic client reroute enables the client to recover from a
failure by attempting to reconnect to the database through an alternate server.

If automatic client reroute is enabled for a connection to a database, the following
process typically occurs when a client encounters a connection failure with an
existing connection:
1. The client attempts to execute an SQL statement using an existing connection

and encounters a failure.
2. The client uses the server list that is returned after the last successful

connection to identify the server to access, and attempts to reconnect to the
database.
In an environment that is not a DB2 pureScale environment, the server list
contains two entries: one for the primary server and one for the alternate
server.
In a DB2 pureScale environment, the server list contains an entry for each
member of the DB2 pureScale instance. In addition, if an alternate server is
defined for the database, the server list also contains an entry for that alternate
server. An entry for a member of the DB2 pureScale instance includes capacity
information. If connection-level workload balancing is enabled at the client, the
client uses that information to connect to the server with the highest unused
capacity. The entry for an alternate server has no capacity information. A
connection to the alternate server is attempted only if connections to all of the
DB2 pureScale members fail.

3. If the automatic client reroute process can reconnect the application to the
database, the client reconstructs the execution environment for the
newly-established connection. The client receives an updated copy of the server
list with updated server information. The error SQL30108N is returned to the
application to indicate that the failed database connection has been recovered
and that the transaction has been rolled back. The application is then
responsible for further recovery, including repeating any work that was rolled
back.
If the SQL statement that fails is the first SQL statement in the transaction,
automatic client reroute with seamless failover is enabled, and the client is CLI
or .NET, the driver replays the failed SQL operation as part of automatic client
reroute processing. If the connection is successful, no error is reported to the
application, and the transaction is not rolled back. The connectivity failure and
subsequent recovery are hidden from the application.

4. If automatic client reroute is unable to reconnect to the database, the error
SQL30081N is returned to the application. The application is then responsible
for recovering from the connection failure (for example, by attempting to
connect to the database by itself).

Automatic client reroute is also used when a client encounters a connection failure
with a new connection. In this case, however, if reconnection is successful, no error

198 Call Level Interface Guide and Reference Volume 1

is returned to the application to indicate that the failed database connection has
been recovered. If reconnection fails, the error SQL30081N is returned.

Operation of transaction-level workload balancing for
connections to DB2 Database for Linux, UNIX, and Windows

Transaction-level workload balancing for connections to DB2 Database for Linux,
UNIX, and Windows contributes to high availability by balancing work among
servers in a DB2 pureScale instance at the start of a transaction.

The following overview describes the steps that occur when a client connects to a
DB2 Database for Linux, UNIX, and Windows DB2 pureScale instance, and
transaction-level workload balancing is enabled:
1. When the client first establishes a connection to the DB2 pureScale instance, the

member to which the client connects returns a server list with the connection
details (IP address, port, and weight) for the members of the DB2 pureScale
instance.
The server list is cached by the client. The default lifespan of the cached server
list is 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to
identify a server that has unused capacity, and looks in the transport pool for
an idle transport that is tied to the under-utilized server. (An idle transport is a
transport that has no associated connection object.)
v If an idle transport is available, the client associates the connection object

with the transport.
v If, after a user-configurable timeout period

(db2.jcc.maxTransportObjectWaitTime for a Java client or
maxTransportWaitTime for a non-Java client), no idle transport is available in
the transport pool and no new transport can be allocated because the
transport pool has reached its limit, an error is returned to the application.

3. When the transaction runs, it accesses the server that is tied to the transport.
4. When the transaction ends, the client verifies with the server that transport

reuse is still allowed for the connection object.
5. If transport reuse is allowed, the server returns a list of SET statements for

special registers that apply to the execution environment for the connection
object.
The client caches these statements, which it replays in order to reconstruct the
execution environment when the connection object is associated with a new
transport.

6. The connection object is then dissociated from the transport, if the client
determines that it needs to do so.

7. The client copy of the server list is refreshed when a new connection is made,
or every 30 seconds, or the user-configured interval.

8. When transaction-level workload balancing is required for a new transaction,
the client uses the previously described process to associate the connection
object with a transport.

Chapter 17. Non-Java client support for high availability on IBM data servers 199

Alternate groups for connections to DB2 Database for Linux,
UNIX, and Windows from non-Java clients

To improve high availability for non-Java clients in Version 9.7 Fix Pack 5 or later
fix pack releases, use alternate groups as an additional failover mechanism for
automatic client rerouting when connectivity to the current group cannot be
re-established.

By default, non-Java clients have the automatic client reroute (ACR) enabled. This
capability provides automatic failover to alternate servers within the current group
when connectivity to a server cannot be re-established.

In addition to this ACR capability, you can define alternate groups as failover targets
when connectivity to the current group cannot be established. To define alternate
groups for non-Java clients:
v Define a <database> element for each alternate group inside the

<alternategroup> element in the <acr> section of the db2dsdriver.cfg file. Do
not specify <parameter> elements inside the <database> element, parameter
settings are inherited from the primary group. You can define multiple
<database> elements inside the <alternategroup> element. The order of the
<database> elements is the order that is used during failover.

v If you want to suppress error messages from failover connections to the alternate
group, set the enableAlternateGroupSeamlessACR parameter to true in
<alternategroup> element.

The default ACR retry time period is 10 minutes. When you define alternate
groups, that time period is reduced to 2 minutes.

When a non-Java client is connected to an alternate group, all the connection
settings and the parameter settings for the <database> element in the primary
group are inherited by the connection to the database in the alternate group.

After a non-Java client is connected to a database in the alternate group, no
failback to the primary group is provided. To connect to the primary group again,
the application or client must be restarted.

Alternate groups are only supported for ACR and workload balancing. If client
affinities is configured, alternate group definitions are ignored.

Examples

Here is an example of alternate group definitions in the db2dsdriver.cfg file:
<dsncollection>

<dsn alias=”mydsn2” name=”mydb2” host=”myserver2.ibm.com” port=”5912”>
...

</dsncollection>

<databases>
<database name="mydb2" host="myserver2.ibm.com" port="5912">
<parameter name=”IsolationLevel” value=”4”/>
...
<wlb>

<parameter name="enableWLB" value="true"/>
</wlb>
<acr>
... (ACR parameters definition)
<alternateserverlist>

<server name="server1" hostname="db2luwa.luw.ibm.com" port="5912">

200 Call Level Interface Guide and Reference Volume 1

</server>
<server name="server2" hostname="db2luwb.luw.ibm.com" port="5912">
</server>

</alternateserverlist>
<alternategroup>
<parameter name=”enableAlternateGroupSeamlessACR” value=”true”/>
<database name="mydb3" host="myserver3.ibm.com" port="5912">
</database>
<database name="mydb4" host="myserver4.ibm.com" port="5912">
</database>
</alternategroup> </acr>

</database>

<database name="mydb3" host="myserver3.ibm.com" port="5912">
<parameter name=”IsolationLevel” value=”2”/>
<acr>
<parameter name="enableACR" value="true"/>
<alternateserverlist>

<server name="server4" hostname="db2luwd.luw.ibm.com" port="5912">
</server>

</alternateserverlist>
<alternategroup>
<parameter name=”enableAlternateGroupSeamlessACR” value=”true”/>
<database name="mydb5" host="myserver5.ibm.com" port="5912">
</database>
</alternategroup> </acr>

...
</database>

</databases>

The following example scenarios demonstrate how automatic client rerouting
works for alternate groups. The details about ACR failover to the current group are
not covered in these scenarios to focus on the alternate groups failover details.
These scenarios use the db2dsdriver.cfg sample file that is described in the
previous paragraph.

First connection to the primary group fails
After a non-Java client fails to connect to the primary group on its first
attempt, automatic client reroute failover to alternate servers in the current
group also fails. In this example, the client performs the following actions:
1. The client fails to connect to mydb2.
2. The client fails to connect to server1.
3. The client fails to connect to server2.
4. The client tries to connect to an alternate group listed in the

<alternategroup> section of the db2dsdriver.cfg file in the order
specified in this file:
a. The client fails to connect to mydb3.
b. The client successfully connects to mydb4.

After connecting to mydb4, the rules for seamless or non-seamless behavior
still apply. If the client would not be able to connect to mydb4, it would
receive the SQL30081N error message.

Subsequent connection or existing connection to the primary server fails
After a non-Java client loses its connection to mydb2, automatic client
reroute failover to alternate servers in the current group also fails. In this
example, the client performs the following actions:
1. The client fails to connect to server1.
2. The client fails to connect to server2.

Chapter 17. Non-Java client support for high availability on IBM data servers 201

3. The client tries to connect to an alternate group listed in the
<alternategroup> section of the db2dsdriver.cfg file in the order
specified in this file:
a. The client successfully connects to mydb3.

After connecting to mydb3, the rules for seamless or non-seamless behavior
still apply.

Existing connection to an alternate group fails
A non-Java client fails to connect to mydb2, automatic client reroute failover
to alternate servers in the current group also fails, and then it successfully
connects to the mydb3 alternate group.

After the client loses its connection to mydb3, it attempts to connect to
mydb4. In this example, the client fails to connect to mydb4.

The client receives the SQL30081N error message. You must restart the
client or the application to try connecting to the primary group again.

Application programming requirements for high availability for
connecting to DB2 Database for Linux, UNIX, and Windows
servers

Failover for automatic client reroute can be seamless or non-seamless. If failover
for connections to DB2 Database for Linux, UNIX, and Windows is not seamless,
you need to add code to account for the errors that are returned when failover
occurs.

If failover is non-seamless, and a connection is reestablished with the server,
SQLCODE -4498 (for Java clients) or SQL30108N (for non-Java clients) is returned
to the application. All work that occurred within the current transaction is rolled
back. In the application, you need to:
v Check the reason code that is returned with the error. Determine whether special

register settings on the failing data sharing member are carried over to the new
(failover) data sharing member. Reset any special register values that are not
current.

v Execute all SQL operations that occurred during the previous transaction.

The following conditions must be satisfied for failover for connections to DB2
Database for Linux, UNIX, and Windows to be seamless:
v The application programming language is Java, CLI, or .NET.
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v If transaction-level load balancing is enabled, the data server allows transport

reuse at the end of the previous transaction.
v All global session data is closed or dropped.
v There are no open, held cursors.
v If the application uses CLI, the application cannot perform actions that require

the driver to maintain a history of previously called APIs in order to replay the
SQL statement. Examples of such actions are specifying data at execution time,
performing compound SQL, or using array input.

v The application is not a stored procedure.
v Autocommit is not enabled. Seamless failover can occur when autocommit is

enabled. However, the following situation can cause problems: Suppose that
SQL work is successfully executed and committed at the data server, but the

202 Call Level Interface Guide and Reference Volume 1

connection or server goes down before acknowledgment of the commit
operation is sent back to the client. When the client re-establishes the connection,
it replays the previously committed SQL statement. The result is that the SQL
statement is executed twice. To avoid this situation, turn autocommit off when
you enable seamless failover.

Client affinities for clients that connect to DB2 Database for
Linux, UNIX, and Windows

Client affinities is a client-only method for providing automatic client reroute
capability.

Client affinities is available for applications that use CLI, .NET, or Java (IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity). All rerouting is controlled
by the driver.

Client affinities is intended for situations in which you need to connect to a
particular primary server. If an outage occurs during the connection to the primary
server, you need to enforce a specific order for failover to alternate servers. You
should use client affinities for automatic client reroute only if automatic client
reroute that uses server failover capabilities does not work in your environment.

As part of configuration of client affinities, you specify a list of alternate servers,
and the order in which connections to the alternate servers are tried. When client
affinities is in use, connections are established based on the list of alternate servers
instead of the host name and port number that are specified by the application. For
example, if an application specifies that a connection is made to server1, but the
configuration process specifies that servers should be tried in the order (server2,
server3, server1), the initial connection is made to server2 instead of server1.

Failover with client affinities is seamless, if the following conditions are true:
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v There are no global temporary tables in use on the server.
v There are no open, held cursors.

When you use client affinities, you can specify that if the primary server returns to
operation after an outage, connections return from an alternate server to the
primary server on a transaction boundary. This activity is known as failback.

Configuration of client affinities for non-Java clients for DB2
Database for Linux, UNIX, and Windows connections
To enable support for client affinities in CLI and .NET applications, you set values
in the db2dsdriver.cfg configuration file to indicate that you want to use client
affinities, and to specify the primary and alternate servers.

The following table describes the settings in the db2dsdriver.cfg file for enabling
client affinities for CLI and .NET applications.

Table 28. Settings to enable client affinities for CLI and .NET applications

Element in the acr section of the
db2dsdriver configuration file Values

enableAcr parameter true

Chapter 17. Non-Java client support for high availability on IBM data servers 203

Table 28. Settings to enable client affinities for CLI and .NET applications (continued)

Element in the acr section of the
db2dsdriver configuration file Values

maxAcrRetries parameter The number of times that a connection to
each server in the list of alternate servers is
tried during automatic client reroute. The
valid range is 0 to MAX_INT. If the value is
0, the number of retries is 1. The default is 3.

acrRetryInterval parameter The number of seconds to wait between
retries. The valid range is 0 to MAX_INT.
The default is no wait (0).

affinityFailbackInterval parameter The number of seconds to wait after the first
transaction boundary to fail back to the
primary server. Set this value if you want to
fail back to the primary server. The default is
0, which means that no attempt is made to
fail back to the primary server.

alternateserverlist <server> elements that identify the host
name and port number for each server that is
used for automatic client reroute through
client affinities. One of the elements must
identify the primary server. The presence of
these elements does not activate automatic
client reroute.

affinitylist <list> elements with serverorder attributes.
The serverorder attribute value specifies a list
of servers, in the order that they should be
tried during automatic client reroute with
client affinities. The servers in <list>
elements must also be defined in <server>
elements in the <alternateserverlist>. You can
specify multiple <list> elements, each of
which has different server orders. The
presence of the <affinitylist> element does
not activate automatic client reroute.

204 Call Level Interface Guide and Reference Volume 1

Table 28. Settings to enable client affinities for CLI and .NET applications (continued)

Element in the acr section of the
db2dsdriver configuration file Values

client_affinity A <clientaffinitydefined> element or a
<clientaffinityroundrobin> element that
defines the order in which to try server
connections for each client. When you
include a <clientaffinitydefined> element,
you define the server order by defining
<client> elements, each of which specifies a
<list> element that defines the server order.
When you include a
<clientaffinityroundrobin> element, you also
specify <client> elements, but those <client>
elements do not specify a <list> element.
Instead, the order of the <client> elements,
defines the server order. All clients that
connect to a database must be specified
within a <clientaffinitydefined> or a
<clientaffinityroundrobin> element. In case of
multiple network interface cards on a given
client machine, client host name will be self
discovered and matched with the
configuration file entry, by CLI driver, to
compute the affinity list. CLI driver will get
all network interfaces and will try to match it
with the host names available in the
db2dsdriver configuration file. When a
hostname without domain name is specified
in db2dsdriver.cfg, CLI will try to resolve it
using the default domain and will try to
match with the discovered hostname. If the
IP address is defined under client affinity
section of the cfg file, the respective IP
address will be discovered and matched (for
hostname) with configuration file entry, by
CLI driver, to compute the affinity list.

clientaffinitydefined <client> elements that define the server order
for automatic client reroute for each client.
Each <client> element contains a listname
attribute that associates a client with a <list>
element from the <affinitylist> element.

clientaffinityroundrobin <client> elements whose order in the
<clientaffinityroundrobin> element defines
the first server that is chosen for automatic
client reroute. Each <client> element has an
index. The first <client> element in the
<clientaffinityroundrobin> element has index
0, the second <client> element has index 1,
and so on. Suppose that the number of
servers in the <alternateserverlist> element is
n and the index in the
<clientaffinityroundrobin> element of a
<client> element is i. The first server to be
tried is the server whose index in the
<alternateserverlist> element is i mod n. The
next server to be tried is the server whose
index in the <alternateserverlist> element is
(i +1) mod n), and so on.

Chapter 17. Non-Java client support for high availability on IBM data servers 205

The following restrictions apply to configuration of client affinities for CLI or .NET
clients:
v If the total number of qualifying alternate servers for a given client is greater

than 24, error SQL1042N occurs.
v Workload balancing cannot be enabled when client affinity is enabled. That is, if

enableWLB is set to true, and the client_affinity element is specified, error
SQL5162N occurs.

v If the required attributes are not specified in the <alternateserverlist>,
<affinitylist> or <client_affinity> elements, error SQL5163N occurs.

v If client affinity is enabled, and the <alternateserverlist> element is empty, error
SQL5164N occurs.

v If client affinity is enabled, and the host name for a client that is attempting to
connect to a server is not in one of the <client_affinity> subgroups
(<clientaffinitydefined> or <clientaffinityroundrobin>), or is in more than one of
the subgroups, error SQL5164N occurs.

v For each client machine, there should be only one entry, either in
<clientaffinitydefined> or <clientaffinityroundrobin> section. If there are entries
in db2dsdriver.cfg where the same client machine has been specified by different
host names, the error SQL5162N occurs.

Example of enabling client affinities for non-Java clients for DB2
Database for Linux, UNIX, and Windows connections
Before you can use client affinities for automatic client reroute in CLI or .NET
applications, you need to include elements in the <acr> section of the
db2dsdriver.cfg configuration file to indicate that you want to use client affinities,
and to identify the primary and alternate servers.

The following example shows how to enable client affinities for failover without
failback.

Suppose that your db2dsdriver configuration file looks like this:
<database name="SAMPLE" host="v33ec065.svl.ibm.com" port="446">

<acr>
<parameter name="enableAcr" value="true"/>
<parameter name="maxAcrRetries" value="1"/>
<parameter name="acrRetryInterval" value="2"/>
<alternateserverlist>

<server name="server1"
hostname="v33ec067.svl.ibm.com"
port="446">

</server>
<server name="server2"

hostname="v33ec066.svl.ibm.com"
port="446">

</server>
<server name="server3"

hostname="v33ec065.svl.ibm.com"
port="446">

</server>
</alternateserverlist>
<affinitylist>

<list name="list1" serverorder="server1,server2,server3">
</list>
<list name="list2" serverorder="server3,server2,server1">
</list>

</affinitylist>
<clientaffinitydefined>

206 Call Level Interface Guide and Reference Volume 1

<!- this section has specific defined affinities -->
<client name="client1"

hostname="appsrv1.svl.ibm.com"
listname="list2">

</client>
<client name="client2"

hostname="appsrv2.svl.ibm.com"
listname="list1">

</client>
</clientaffinitydefined>
<clientaffinityroundrobin>

<client name="client3" hostname="appsrv3.svl.ibm.com">
<!- This entry is index 0. The number of servers is 3.

0 mod 3 is 0, so the first that is tried
during automatic client reroute is the server whose
index in <alternateserverlist> is 0 (server1).
The next server has index 1 mod 3, which is 1
(server2). The final server has index 2 mod 3,
which is 2 (server3). -->

</client>
<client name="client4" hostname="appsrv4.svl.ibm.com">

<!- This entry is index 1. The number of servers is 3.
1 mod 3 is 1, so the first that is tried
during automatic client reroute is the server whose
index in <alternateserverlist> is 1 (server2).
The next server has index 2 mod 3, which is 2
(server3). The final server has index 3 mod 3,
which is 0 (server1). -->

</client>
</clientaffinityroundrobin>

</acr>
</database>

Suppose that a communication failure occurs during a connection from the client
with host name appsrv4.svl.ibm.com (client4) to the server that is identified by
v33ec065.svl.ibm.com:446. The following steps demonstrate the process that occurs
for automatic client reroute with client affinities.
1. The driver tries to connect to v33ec066.svl.ibm.com:446 (server2).
2. The connection to v33ec066.svl.ibm.com:446 fails.
3. The driver waits two seconds.
4. The driver tries to connect to v33ec065.svl.ibm.com:446 (server3).
5. The connection to v33ec065.svl.ibm.com:446 fails.
6. The driver waits two seconds.
7. The driver tries to connect to v33ec067.svl.ibm.com (server1).
8. The connection to v33ec067.svl.ibm.com fails.
9. The driver waits two seconds.

10. The driver returns error code SQL30081N.

The following example shows how to enable client affinities for failover with
failback.

Suppose that your db2dsdriver configuration file looks like this:
<database name="SAMPLE" host="v33ec065.svl.ibm.com" port="446">

<acr>
<parameter name="enableAcr" value="true"/>
<parameter name="maxAcrRetries" value="1"/>
<parameter name="acrRetryInterval" value="2"/>
<parameter name="affinityFailbackInterval" value="300"/>
<alternateserverlist>

<server name="server1"

Chapter 17. Non-Java client support for high availability on IBM data servers 207

hostname="v33ec067.svl.ibm.com"
port="446">

</server>
<server name="server2"

hostname="v33ec066.svl.ibm.com"
port="446">

</server>
<server name="server3"

hostname="v33ec065.svl.ibm.com"
port="446">

</server>
</alternateserverlist>
<affinitylist>

<list name="list1" serverorder="server1,server2,server3">
</list>
<list name="list2" serverorder="server3,server2,server1">
</list>

</affinitylist>
<clientaffinitydefined>
<!- this section has specific defined affinities -->

<client name="client1"
hostname="appsrv1.svl.ibm.com"
listname="list2">

</client>
<client name="client2"

hostname="appsrv2.svl.ibm.com"
listname="list1">

</client>
</clientaffinitydefined>
<clientaffinityroundrobin>

<client name="client3" hostname="appsrv3.svl.ibm.com">
<!- This entry is index 0. The number of servers is 3.

0 mod 3 is 0, so the first that is tried
during automatic client reroute is the server whose
index in <alternateserverlist> is 0 (server1).
The next server has index 1 mod 3, which is 1
(server2). The final server has index 2 mod 3,
which is 2 (server3). -->

</client>
<client name="client4" hostname="appsrv4.svl.ibm.com">

<!- This entry is index 1. The number of servers is 3.
1 mod 3 is 1, so the first that is tried
during automatic client reroute is the server whose
index in <alternateserverlist> is 1 (server2).
The next server has index 2 mod 3, which is 2
(server3). The final server has index 3 mod 3,
which is 0 (server1). -->

</client>
</clientaffinityroundrobin>

</acr>
</database>

Suppose that the database administrator takes the server that is identified by
v33ec065.svl.ibm.com:446 down for maintenance after a connection is made from
client appsrv2.svl.ibm.com (client2) to v33ec065.svl.ibm.com:446. The following
steps demonstrate failover to an alternate server and failback to the primary server
after maintenance is complete.
1. The driver successfully connects to v33ec065.svl.ibm.com:446 on behalf of client

appsrv1.svl.ibm.com.
2. The database administrator brings down v33ec065.svl.ibm.com:446.
3. The application tries to do work on the connection.
4. The driver successfully fails over to v33ec066.svl.ibm.com:446.
5. After 200 seconds, the work is committed.

208 Call Level Interface Guide and Reference Volume 1

6. The driver tests whether the failback interval (300 seconds) has elapsed. It has
not elaspsed, so no failback occurs.

7. The application does more work on the connection to v33ec066.svl.ibm.com:446.
8. After 105 seconds, the work is committed.
9. The driver tests whether the failback interval (300 seconds) has elapsed. It has

elapsed, so failback to v33ec065.svl.ibm.com:446 occurs.

Non-Java client support for high availability for connections to
Informix servers

High-availability cluster support on IBM Informix servers provides high
availability for client applications, through workload balancing and automatic
client reroute. This support is available for applications that use Java clients (JDBC,
SQLJ, or pureQuery), or non-Java clients (ODBC, CLI, .NET, OLE DB, PHP, Ruby,
or embedded SQL).

For Java clients, you need to use IBM Data Server Driver for JDBC and SQLJ type
4 connectivity to take advantage of IBM Informix high-availability cluster support.

For non-Java clients, you need to use one of the following clients or client
packages to take advantage of high-availability cluster support:
v IBM Data Server Client
v IBM Data Server Runtime Client
v IBM Data Server Driver Package
v IBM Data Server Driver for ODBC and CLI

Cluster support for high availability for connections to IBM Informix servers
includes:

Automatic client reroute
This support enables a client to recover from a failure by attempting to
reconnect to the database through any available server in a high-availability
cluster. Reconnection to another server is called failover. You enable automatic
client reroute on the client by enabling workload balancing on the client.

In an IBM Informix environment, primary and standby servers correspond to
members of a high-availability cluster that is controlled by a Connection
Manager. If multiple Connection Managers exist, the client can use them to
determine primary and alternate server information. The client uses alternate
Connection Managers only for the initial connection.

Failover for automatic client reroute can be seamless or non-seamless. With
non-seamless failover, when the client application reconnects to an alternate
server, the server always returns an error to the application, to indicate that
failover (connection to the alternate server) occurred.

For Java, CLI, or .NET client applications, failover for automatic client reroute
can be seamless or non-seamless. Seamless failover means that when the
application successfully reconnects to an alternate server, the server does not
return an error to the application.

Workload balancing
Workload balancing can improve availability of an IBM Informix
high-availability cluster. When workload balancing is enabled, the client gets
frequent status information about the members of a high-availability cluster.
The client uses this information to determine the server to which the next

Chapter 17. Non-Java client support for high availability on IBM data servers 209

transaction should be routed. With workload balancing, IBM Informix
Connection Managers ensure that work is distributed efficiently among servers
and that work is transferred to another server if a server has a failure.

Connection concentrator
This support is available for Java applications that connect to IBM Informix.
The connection concentrator reduces the resources that are required on IBM
Informix database servers to support large numbers of workstation and web
users. With the connection concentrator, only a few concurrent, active physical
connections are needed to support many applications that concurrently access
the database server. When you enable workload balancing on a Java client, you
automatically enable the connection concentrator.

Client affinities
Client affinities is an automatic client reroute solution that is controlled
completely by the client. It is intended for situations in which you need to
connect to a particular primary server. If an outage occurs during the
connection to the primary server, you use client affinities to enforce a specific
order for failover to alternate servers.

Configuration of Informix high-availability support for
non-Java clients

To configure non-Java client application that connects to an Informix
high-availability cluster for high availability, you need to connect to an address
that represents a Connection Manager, and set the properties that enable workload
balancing and the maximum number of connections.

Before you can enable IBM Data Server Driver for JDBC and SQLJ for high
availability for connections to IBM Informix, your installation must have one or
more Connection Managers, a primary server, and one or more alternate servers.

The following table describes the basic settings, for non-Java applications.

Table 29. Basic settings to enable Informix high availability support in non-Java applications

Client setting Value

Connection address:

database host1 The IP address of a Connection Manager. See
“Setting server and port properties for
connecting to a Connection Manager” on
page 212.

database port1 The SQL port number of a Connection
Manager. See “Setting server and port
properties for connecting to a Connection
Manager” on page 212.

database name1 The database name

210 Call Level Interface Guide and Reference Volume 1

Table 29. Basic settings to enable Informix high availability support in non-Java
applications (continued)

Client setting Value

Notes:

1. Depending on the client that you use, connection information is defined in one of several
possible sources:

v If you are using one of the data server drivers or a CLI or open source application
that uses IBM Data Server Client or IBM Data Server Runtime Client:

– If host, port, and database information is provided in a connection string in an
application, DB2 uses that information.

– If host, port, and database information is not provided in the connection string in
an application, the driver uses a db2cli.ini file, and this information is provided in
the db2cli.ini file, DB2 uses that information.

– If host, port, and database information is not provided in the connection string in
the application or the db2cli.ini file, DB2 uses information in the db2dsdriver
configuration file.

v If you are using a .NET application or an application that uses embedded SQL with
the IBM Data Server Client or the IBM Data Server Runtime Client, connection
information comes a source that is not the db2dsdriver configuration file. Possible
sources include the database catalog, connection string, db2cli.ini file, or .NET object
properties.

If you want to fine-tune the workload balancing function of Informix
high-availability support, additional properties are available. The additional
properties for non-Java applications are listed in the following table.

Table 30. Properties for fine-tuning workload balancing support for connections from non-Java applications to Informix
database server

Element in the db2dsdriver
configuration file

Section in
the
db2dsdriver
file Description

enableWLB <wlb> Specifies whether workload balancing is enabled. Set this value to
true to enable workload balancing.

maxTransportIdleTime <wlb> Specifies the maximum elapsed time in number of seconds before
an idle transport is dropped. The default is 600. The minimum
supported value is 0.

maxTransportWaitTime <wlb> Specifies the number of seconds that the client waits for a transport
to become available. The default is -1 (unlimited). The minimum
supported value is 0.

maxTransports <wlb> Specifies the maximum number of connections that the requester
can make to the high availability cluster. The default is -1
(unlimited). The minimum supported value is 1.

maxRefreshInterval <wlb> Specifies the maximum elapsed time in number of seconds before
the server list is refreshed. The default is 10. The minimum
supported value is 0.

If you need to use workload balancing, but your applications cannot handle the
errors that are returned for automatic client reroute processing, set the following
parameters in the db2dsdriver.cfg configuration file.

Chapter 17. Non-Java client support for high availability on IBM data servers 211

Table 31. Properties for enabling only Sysplex workload balancing for connections from non-Java applications to
Informix database server

Element in the db2dsdriver
configuration file

Section in the
db2dsdriver file Description Value to set

enableWLB <wlb> Specifies whether workload
balancing is enabled.

true. If enableAcr is True, the
connection manager retries
for server connection. This is
supported by DB2 for z/OS
Version 9.0 server. If
enableAcr and enableWLB
values are false, the server
connection fails.

enableAcr <acr> Specifies whether automatic
client reroute is enabled. For
CLI or .NET applications,
enabling automatic client
reroute automatically enables
seamless failover.

false

enableSeamlessAcr <acr> Specifies whether seamless
failover is enabled. Among
non-Java applications,
seamless failover is supported
only for CLI or .NET
applications. true is the
default.

If enableAcr is false, this
value is false, so you do not
need to set it.

Setting server and port properties for connecting to a
Connection Manager

To set the server and port number for connecting to a Connection Manager, follow
this process:
v If your high-availability cluster is using a single Connection Manager, set the

server name and port number to the server name and port number of the
Connection Manager.

v If your high-availability cluster is using more than one Connection manager:
1. Specify the server name and port number of the main Connection Manager

that you want to use.
2. Set the value of enableAlternateServerListFirstConnect to true in the <acr>

subsection in the database entry in the db2dsdriver.cfg configuration file.
3. Set the server names and port numbers of alternative Connection Managers

in alternateserverlist entries in the <acr> subsection of the db2dsdriver.cfg
configuration file.

Example of enabling IDS high availability support in non-Java
clients

Before you can use IDS high availability support in CLI, .NET, or embedded SQL
applications that connect directly to IDS servers, you need to update the
db2dsdriver configuration file with the appropriate settings, and connect to a
Connection Manager.

The following example demonstrates setting up a CLI client to take advantage of
IDS high availability support with one Connection Manager.

212 Call Level Interface Guide and Reference Volume 1

Before you can set up the client, you need to configure one or more high
availability clusters that are controlled by Connection Managers.

Follow these steps to set up the client:
1. Create a db2dsdriver.cfg file with the basic settings for IDS high availability

support. When you set enableWLB to true, you enable workload balancing and
automatic client reroute capability.
<configuration>

<dsncollection>
<dsn alias="IDSCM1" name="IDSCM1" host="ids.cm1.ibm.com" port="446">
</dsn>

</dsncollection>
<databases>

<database name="IDSCM1" host="ids.cm1.ibm.com" port="446">
<!-- database-specific parameters -->
<wlb>

<!-- Enable workload balancing to get
automatic client reroute
functionality -->
<parameter name="enableWLB" value="true" />
<!-- maxTransports represents the maximum number of transports -->
<parameter name="maxTransports" value="80" />

</wlb>
</database>

</databases>
<parameters>

<parameter name="connectionLevelLoadBalancing" value="true"/>
</parameters>

</configuration>

2. Suppose that the DSN definition for IDSCM1 provides connectivity information
for a Connection Manager for database IDSCM1. In a CLI application, use code
like this to connect to the Connection Manager:
...

SQLHDBC hDbc = SQL_NULL_HDBC;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *ConnStrIn =

"DSN=IDSCM1;PWD=mypass";
/* dsn matches the database name in the configuration file */

char ConnStrOut [200];
SQLSMALLINT cbConnStrOut;
int i;
char *token;

...
/***/
/* Invoke SQLDriverConnect */
/***/
RETCODE = SQLDriverConnect (hDbc ,

NULL ,
(SQLCHAR *)ConnStrIn ,
strlen(ConnStrIn) ,
(SQLCHAR *)ConnStrOut,
sizeof(ConnStrOut) ,
&cbConnStrOut ,
SQL_DRIVER_NOPROMPT);

...

Operation of automatic client reroute for connections to IDS
from non-Java clients

Automatic client reroute support provides failover support when an IBM data
server client loses connectivity to a server in an IBM Informix (IDS) high

Chapter 17. Non-Java client support for high availability on IBM data servers 213

availability cluster. Automatic client reroute enables the client to recover from a
failure by attempting to reconnect to the database through any available server in
the cluster.

Automatic client reroute is enabled by default when workload balancing is
enabled.

If automatic client reroute is enabled, the following process typically occurs when a
client encounters a connection failure with an existing connection:
1. The client attempts to execute an SQL statement using an existing connection

and encounters a failure.
2. The client uses the server list that is returned by the Connection Manager to

identify the server to access, and attempts to reconnect to the database.
3. If the automatic client reroute process can reconnect the application to the

database, the client reconstructs the execution environment for the
newly-established connection. The error SQL30108N is returned to the
application to indicate that the failed database connection has been recovered
and that the transaction has been rolled back. The application is then
responsible for further recovery, including repeating any work that was rolled
back.
If the SQL statement that fails is the first SQL statement in the transaction,
automatic client reroute with seamless failover is enabled, and the client is CLI
or .NET, the driver replays the failed SQL operation as part of automatic client
reroute processing. If the connection is successful, no error is reported to the
application, and the transaction is not rolled back. The connectivity failure and
subsequent recovery are hidden from the application.

4. If automatic client reroute is unable to reconnect to the database, the error
SQL30081N is returned to the application. The application is then responsible
for recovering from the connection failure (for example, by attempting to
connect to the database by itself).

Automatic client reroute is also used when a client encounters a connection failure
with a new connection. In this case, however, if reconnection is successful, no error
is returned to the application to indicate that the failed database connection has
been recovered. If reconnection fails, the error SQL30081N is returned.

Operation of workload balancing for connections to Informix
from non-Java clients

Workload balancing (also called transaction-level workload balancing) for
connections to IBM Informix contributes to high availability by balancing work
among servers in a high-availability cluster at the start of a transaction.

The following overview describes the steps that occur when a client connects to an
IBM Informix Connection Manager, and workload balancing is enabled:
1. When the client first establishes a connection using the IP address of the

Connection Manager, the Connection Manager returns the server list and the
connection details (IP address, port, and weight) for the servers in the cluster.
The server list is cached by the client. The default lifespan of the cached server
list is 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to
identify a server that has untapped capacity, and looks in the transport pool for
an idle transport that is tied to the under-utilized server. (An idle transport is a
transport that has no associated connection object.)

214 Call Level Interface Guide and Reference Volume 1

v If an idle transport is available, the client associates the connection object
with the transport.

v If, after a user-configurable timeout, no idle transport is available in the
transport pool and no new transport can be allocated because the transport
pool has reached its limit, an error is returned to the application.

3. When the transaction runs, it accesses the server that is tied to the transport.
4. When the transaction ends, the client verifies with the server that transport

reuse is still allowed for the connection object.
5. If transport reuse is allowed, the server returns a list of SET statements for

special registers that apply to the execution environment for the connection
object.
The client caches these statements, which it replays in order to reconstruct the
execution environment when the connection object is associated with a new
transport.

6. The connection object is then dissociated from the transport, if the client
determines that it needs to do so.

7. The client copy of the server list is refreshed when a new connection is made,
or every 30 seconds, or at the user-configured interval.

8. When workload balancing is required for a new transaction, the client uses the
previously described process to associate the connection object with a transport.

Application programming requirements for high availability for
connections from non-Java clients to Informix servers

Failover for automatic client reroute can be seamless or non-seamless. If failover
for connections to Informix is not seamless, you need to add code to account for
the errors that are returned when failover occurs.

If failover is non-seamless, and a connection is reestablished with the server,
SQLCODE -4498 (for Java clients) or SQL30108N (for non-Java clients) is returned
to the application. All work that occurred within the current transaction is rolled
back. In the application, you need to:
v Check the reason code that is returned with the error. Determine whether special

register settings on the failing data sharing member are carried over to the new
(failover) data sharing member. Reset any special register values that are not
current.

v Execute all SQL operations that occurred during the previous transaction.

The following conditions must be satisfied for seamless failover to occur during
connections to IBM Informix databases:
v The application programming language is Java, CLI, or .NET.
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v The data server must allow transport reuse at the end of the previous

transaction.
v All global session data is closed or dropped.
v There are no open held cursors.
v If the application uses CLI, the application cannot perform actions that require

the driver to maintain a history of previously called APIs in order to replay the
SQL statement. Examples of such actions are specifying data at execution time,
performing compound SQL, or using array input.

v The application is not a stored procedure.

Chapter 17. Non-Java client support for high availability on IBM data servers 215

v Autocommit is not enabled. Seamless failover can occur when autocommit is
enabled. However, the following situation can cause problems: Suppose that
SQL work is successfully executed and committed at the data server, but the
connection or server goes down before acknowledgment of the commit
operation is sent back to the client. When the client re-establishes the connection,
it replays the previously committed SQL statement. The result is that the SQL
statement is executed twice. To avoid this situation, turn autocommit off when
you enable seamless failover.

In addition, seamless automatic client reroute might not be successful if the
application has autocommit enabled. With autocommit enabled, a statement might
be executed and committed multiple times.

Client affinities for connections to Informix from non-Java
clients

Client affinities is a client-only method for providing automatic client reroute
capability.

Client affinities is available for applications that use CLI, .NET, or Java (IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity). All rerouting is controlled
by the driver.

Client affinities is intended for situations in which you need to connect to a
particular primary server. If an outage occurs during the connection to the primary
server, you need to enforce a specific order for failover to alternate servers. You
should use client affinities for automatic client reroute only if automatic client
reroute that uses server failover capabilities does not work in your environment.

As part of configuration of client affinities, you specify a list of alternate servers,
and the order in which connections to the alternate servers are tried. When client
affinities is in use, connections are established based on the list of alternate servers
instead of the host name and port number that are specified by the application. For
example, if an application specifies that a connection is made to server1, but the
configuration process specifies that servers should be tried in the order (server2,
server3, server1), the initial connection is made to server2 instead of server1.

Failover with client affinities is seamless, if the following conditions are true:
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v There are no global temporary tables in use on the server.
v There are no open, held cursors.

When you use client affinities, you can specify that if the primary server returns to
operation after an outage, connections return from an alternate server to the
primary server on a transaction boundary. This activity is known as failback.

Configuration of client affinities for non-Java clients for Informix
connections
To enable support for client affinities in CLI and .NET applications, you set values
in the db2dsdriver.cfg configuration file to indicate that you want to use client
affinities, and to specify the primary and alternate servers.

The following table describes the settings in the db2dsdriver.cfg file for enabling
client affinities for CLI and .NET applications.

216 Call Level Interface Guide and Reference Volume 1

Table 32. Settings to enable client affinities for CLI and .NET applications

Element in the acr section of the
db2dsdriver.cfg configuration file Values

enableAcr parameter true

maxAcrRetries parameter The number of times that a connection to
each server in the list of alternate servers is
tried during automatic client reroute. The
valid range is 0 to MAX_INT. If the value is
0, the number of retries is 1. The default is 3.

acrRetryInterval parameter The number of seconds to wait between
retries. The valid range is 0 to MAX_INT.
The default is no wait (0).

affinityFailbackInterval parameter The number of seconds to wait after the first
transaction boundary to fail back to the
primary server. Set this value if you want to
fail back to the primary server. The default is
0, which means that no attempt is made to
fail back to the primary server.

alternateserverlist <server> elements that identify the host
name and port number for each server that is
used for automatic client reroute through
client affinities. One of the elements must
identify the primary server. The presence of
these elements does not activate automatic
client reroute.

affinitylist <list> elements with serverorder attributes.
The serverorder attribute value specifies a list
of servers, in the order that they should be
tried during automatic client reroute with
client affinities. The servers in <list>
elements must also be defined in <server>
elements in the <alternateserverlist>. You can
specify multiple <list> elements, each of
which has different server orders. The
presence of the <affinitylist> element does
not activate automatic client reroute.

Chapter 17. Non-Java client support for high availability on IBM data servers 217

Table 32. Settings to enable client affinities for CLI and .NET applications (continued)

Element in the acr section of the
db2dsdriver.cfg configuration file Values

client_affinity A <clientaffinitydefined> element or a
<clientaffinityroundrobin> element that
defines the order in which to try server
connections for each client. When you
include a <clientaffinitydefined> element,
you define the server order by defining
<client> elements, each of which specifies a
<list> element that defines the server order.
When you include a
<clientaffinityroundrobin> element, you also
specify <client> elements, but those <client>
elements do not specify a <list> element.
Instead, the order of the <client> elements,
defines the server order. All clients that
connect to a database must be specified
within a <clientaffinitydefined> or a
<clientaffinityroundrobin> element. In case of
multiple network interface cards on a given
client machine, client host name will be self
discovered and matched with the
configuration file entry, by CLI driver, to
compute the affinity list. CLI driver will get
all network interfaces and will try to match it
with the host names available in the
db2dsdriver.cfg configuration file. When a
hostname without domain name is specified
in db2dsdriver.cfg, CLI will try to resolve it
using the default domain and will try to
match with the discovered hostname. If the
IP address is defined under client affinity
section of the db2dsdriver.cfg file, each IP
address will be discovered and matched (for
hostname) with configuration file entry, by
CLI driver, to compute the affinity list.

clientaffinitydefined <client> elements that define the server order
for automatic client reroute for each client.
Each <client> element contains a listname
attribute that associates a client with a <list>
element from the <affinitylist> element.

clientaffinityroundrobin <client> elements whose order in the
<clientaffinityroundrobin> element defines
the first server that is chosen for automatic
client reroute. Each <client> element has an
index. The first <client> element in the
<clientaffinityroundrobin> element has index
0, the second <client> element has index 1,
and so on. Suppose that the number of
servers in the <alternateserverlist> element is
n and the index in the
<clientaffinityroundrobin> element of a
<client> element is i. The first server to be
tried is the server whose index in the
<alternateserverlist> element is i mod n. The
next server to be tried is the server whose
index in the <alternateserverlist> element is
(i +1) mod n), and so on.

218 Call Level Interface Guide and Reference Volume 1

The following restrictions apply to configuration of client affinities for CLI or .NET
clients:
v If the total number of qualifying alternate servers for a given client is greater

than 128, error SQL1042N occurs.
v Workload balancing cannot be enabled when client affinity is enabled. That is, if

enableWLB is set to true, and the client_affinity element is specified, error
SQL5162N occurs.

v If the required attributes are not specified in the <alternateserverlist>,
<affinitylist> or <client_affinity> elements, error SQL5163N occurs.

v If client affinity is enabled, and the <alternateserverlist> element is empty, error
SQL5164N occurs.

v If client affinity is enabled, and the host name for a client that is attempting to
connect to a server is not in one of the <client_affinity> subgroups
(<clientaffinitydefined> or <clientaffinityroundrobin>), or is in more than one of
the subgroups, error SQL5164N occurs.

v For each client machine, there should be only one entry, either in
<clientaffinitydefined> or <clientaffinityroundrobin> section. If there are entries
in db2dsdriver.cfg where the same client machine has been specified by
different host names, the error SQL5162N occurs.

Example of enabling client affinities for non-Java clients for
Informix connections
Before you can use client affinities for automatic client reroute in CLI or .NET
applications, you need to include elements in the <acr> section of the
db2dsdriver.cfg configuration file to indicate that you want to use client affinities,
and to identify the primary and alternate servers.

The following example shows how to enable client affinities for failover without
failback.

Suppose that your db2dsdriver configuration file looks like this:
<database name="SAMPLE" host="v33ec065.svl.ibm.com" port="446">

<acr>
<parameter name="enableAcr" value="true"/>
<parameter name="maxAcrRetries" value="1"/>
<parameter name="acrRetryInterval" value="2"/>
<alternateserverlist>

<server name="server1"
hostname="v33ec067.svl.ibm.com"
port="446">

</server>
<server name="server2"

hostname="v33ec066.svl.ibm.com"
port="446">

</server>
<server name="server3"

hostname="v33ec065.svl.ibm.com"
port="446">

</server>
</alternateserverlist>
<affinitylist>

<list name="list1" serverorder="server1,server2,server3">
</list>
<list name="list2" serverorder="server3,server2,server1">
</list>

</affinitylist>
<clientaffinitydefined>

Chapter 17. Non-Java client support for high availability on IBM data servers 219

<!- this section has specific defined affinities -->
<client name="client1"

hostname="appsrv1.svl.ibm.com"
listname="list2">

</client>
<client name="client2"

hostname="appsrv2.svl.ibm.com"
listname="list1">

</client>
</clientaffinitydefined>
<clientaffinityroundrobin>

<client name="client3" hostname="appsrv3.svl.ibm.com">
<!- This entry is index 0. The number of servers is 3.

0 mod 3 is 0, so the first that is tried
during automatic client reroute is the server whose
index in <alternateserverlist> is 0 (server1).
The next server has index 1 mod 3, which is 1
(server2). The final server has index 2 mod 3,
which is 2 (server3). -->

</client>
<client name="client4" hostname="appsrv4.svl.ibm.com">

<!- This entry is index 1. The number of servers is 3.
1 mod 3 is 1, so the first that is tried
during automatic client reroute is the server whose
index in <alternateserverlist> is 1 (server2).
The next server has index 2 mod 3, which is 2
(server3). The final server has index 3 mod 3,
which is 0 (server1). -->

</client>
</clientaffinityroundrobin>

</acr>
</database>

Suppose that a communication failure occurs during a connection from the client
with host name appsrv4.svl.ibm.com (client4) to the server that is identified by
v33ec065.svl.ibm.com:446. The following steps demonstrate the process that occurs
for automatic client reroute with client affinities.
1. The driver tries to connect to v33ec066.svl.ibm.com:446 (server2).
2. The connection to v33ec066.svl.ibm.com:446 fails.
3. The driver waits two seconds.
4. The driver tries to connect to v33ec065.svl.ibm.com:446 (server3).
5. The connection to v33ec065.svl.ibm.com:446 fails.
6. The driver waits two seconds.
7. The driver tries to connect to v33ec067.svl.ibm.com (server1).
8. The connection to v33ec067.svl.ibm.com fails.
9. The driver waits two seconds.

10. The driver returns error code SQL30081N.

The following example shows how to enable client affinities for failover with
failback.

Suppose that your db2dsdriver configuration file looks like this:
<database name="SAMPLE" host="v33ec065.svl.ibm.com" port="446">

<acr>
<parameter name="enableAcr" value="true"/>
<parameter name="maxAcrRetries" value="1"/>
<parameter name="acrRetryInterval" value="2"/>
<parameter name="affinityFailbackInterval" value="300"/>
<alternateserverlist>

<server name="server1"

220 Call Level Interface Guide and Reference Volume 1

hostname="v33ec067.svl.ibm.com"
port="446">

</server>
<server name="server2"

hostname="v33ec066.svl.ibm.com"
port="446">

</server>
<server name="server3"

hostname="v33ec065.svl.ibm.com"
port="446">

</server>
</alternateserverlist>
<affinitylist>

<list name="list1" serverorder="server1,server2,server3">
</list>
<list name="list2" serverorder="server3,server2,server1">
</list>

</affinitylist>
<clientaffinitydefined>
<!- this section has specific defined affinities -->

<client name="client1"
hostname="appsrv1.svl.ibm.com"
listname="list2">

</client>
<client name="client2"

hostname="appsrv2.svl.ibm.com"
listname="list1">

</client>
</clientaffinitydefined>
<clientaffinityroundrobin>

<client name="client3" hostname="appsrv3.svl.ibm.com">
<!- This entry is index 0. The number of servers is 3.

0 mod 3 is 0, so the first that is tried
during automatic client reroute is the server whose
index in <alternateserverlist> is 0 (server1).
The next server has index 1 mod 3, which is 1
(server2). The final server has index 2 mod 3,
which is 2 (server3). -->

</client>
<client name="client4" hostname="appsrv4.svl.ibm.com">

<!- This entry is index 1. The number of servers is 3.
1 mod 3 is 1, so the first that is tried
during automatic client reroute is the server whose
index in <alternateserverlist> is 1 (server2).
The next server has index 2 mod 3, which is 2
(server3). The final server has index 3 mod 3,
which is 0 (server1). -->

</client>
</clientaffinityroundrobin>

</acr>
</database>

Suppose that the database administrator takes the server that is identified by
v33ec065.svl.ibm.com:446 down for maintenance after a connection is made from
client appsrv2.svl.ibm.com (client2) to v33ec065.svl.ibm.com:446. The following
steps demonstrate failover to an alternate server and failback to the primary server
after maintenance is complete.
1. The driver successfully connects to v33ec065.svl.ibm.com:446 on behalf of client

appsrv1.svl.ibm.com.
2. The database administrator brings down v33ec065.svl.ibm.com:446.
3. The application tries to do work on the connection.
4. The driver successfully fails over to v33ec066.svl.ibm.com:446.
5. After 200 seconds, the work is committed.

Chapter 17. Non-Java client support for high availability on IBM data servers 221

6. The driver tests whether the failback interval (300 seconds) has elapsed. It has
not elaspsed, so no failback occurs.

7. The application does more work on the connection to v33ec066.svl.ibm.com:446.
8. After 105 seconds, the work is committed.
9. The driver tests whether the failback interval (300 seconds) has elapsed. It has

elapsed, so failback to v33ec065.svl.ibm.com:446 occurs.

Non-Java client support for high availability for connections to DB2 for
z/OS servers

Sysplex workload balancing functionality on DB2 for z/OS servers provides high
availability for client applications that connect directly to a data sharing group.
Sysplex workload balancing functionality provides workload balancing and
automatic client reroute capability. This support is available for applications that
use Java clients (JDBC, SQLJ, or pureQuery), or non-Java clients (ODBC, CLI, .NET,
OLE DB, PHP, Ruby, or embedded SQL).

A Sysplex is a set of z/OS systems that communicate and cooperate with each
other through certain multisystem hardware components and software services to
process customer workloads. DB2 for z/OS subsystems on the z/OS systems in a
Sysplex can be configured to form a data sharing group. With data sharing,
applications that run on more than one DB2 for z/OS subsystem can read from
and write to the same set of data concurrently. One or more coupling facilities
provide high-speed caching and lock processing for the data sharing group. The
Sysplex, together with the Workload Manager (WLM), dynamic virtual IP address
(DVIPA), and the Sysplex distributor, allow a client to access a DB2 for z/OS
subsystem over TCP/IP with network resilience, and distribute transactions for an
application in a balanced manner across members within the data sharing group.

Central to these capabilities is a server list that the data sharing group returns on
connection boundaries and optionally on transaction boundaries. This list contains
the IP address and WLM weight for each data sharing group member. With this
information, a client can distribute transactions in a balanced manner, or identify
the member to use when there is a communication failure.

The server list is returned on the first successful connection to the DB2 for z/OS
data server. After the client has received the server list, the client directly accesses
a data sharing group member based on information in the server list.

DB2 for z/OS provides several methods for clients to access a data sharing group.
The access method that is set up for communication with the data sharing group
determines whether Sysplex workload balancing is possible. The following table
lists the access methods and indicates whether Sysplex workload balancing is
possible.

222 Call Level Interface Guide and Reference Volume 1

Table 33. Data sharing access methods and Sysplex workload balancing

Data sharing access
method1 Description

Sysplex
workload
balancing
possible?

Group access A requester uses the group's dynamic virtual IP
address (DVIPA) to make an initial connection
to the DB2 for z/OS location. A connection to
the data sharing group that uses the group IP
address and SQL port is always successful if at
least one member is started. The server list that
is returned by the data sharing group contains:

v A list of members that are currently active
and can do work.

v The WLM weight for each member.

The group IP address is configured by using the
z/OS Sysplex distributor. To clients that are
outside the Sysplex, the Sysplex distributor
provides a single IP address that represents a
DB2 location. In addition to providing fault
tolerance, you can configure the Sysplex
distributor to provide connection load balancing.

Yes

Member-specific access A requester uses a location alias to make an
initial connection to one of the members that is
represented by the alias. A connection to the
data sharing group that uses the group IP
address and alias SQL port is always successful
if at least one member is started. The server list
that is returned by the data sharing group
contains:

v A list of members that are currently active,
can do work, and have been configured as an
alias.

v The WLM weight for each member.

The requester uses this information to connect to
the member or members with the most capacity
that are also associated with the location alias.
Member-specific access is used when requesters
are required to take advantage of Sysplex
workload balancing among a subset of members
of a data sharing group.

Yes

Single-member access Single-member access is used when requesters
are required to access only one member of a
data sharing group. For single-member access,
the connection uses the member-specific IP
address.

No

Note:

1. For more information about data sharing access methods, see http://
publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z9.doc.dshare/src/
tpc/db2z_tcpipaccessmethods.htm.

Sysplex workload balancing includes automatic client reroute: Automatic client reroute
support enables a client to recover from a failure by attempting to reconnect to the
database through any available member of a Sysplex. Reconnection to another
member is called failover.

Chapter 17. Non-Java client support for high availability on IBM data servers 223

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z9.doc.dshare/src/tpc/db2z_tcpipaccessmethods.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z9.doc.dshare/src/tpc/db2z_tcpipaccessmethods.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z9.doc.dshare/src/tpc/db2z_tcpipaccessmethods.htm

Starting in Version 9.7 Fix Pack 5 or later fix pack releases, alternate groups are an
additional failover mechanism for automatic client rerouting when connectivity to
the current group cannot be re-established. A group is a database created in a
Sysplex data sharing environment. The database to which your application
explicitly connects to is called the primary group.

For Java, CLI, or .NET client applications, failover for automatic client reroute can
be seamless or non-seamless. Seamless failover means that when the application
successfully reconnects to an alternate server or alternate group, the server does
not return an error to the application.

Client direct connect support for high availability with a DB2 Connect server: Client
direct connect support for high availability requires a DB2 Connect license, but
does not require a DB2 Connect server. The client connects directly to DB2 for
z/OS. If you use a DB2 Connect server, but set up your environment for client
high availability, you cannot use some of the features that a direct connection to
DB2 for z/OS provides. For example, you cannot use the transaction-level
workload balancing or automatic client reroute capability that is provided by the
sysplex.

Do not use client affinities: You should not use client affinities as a high availability
solution for direct connections to DB2 for z/OS. Client affinities is not applicable to
a DB2 for z/OS data sharing environment, because all members of a data sharing
group can access data concurrently. A major disadvantage of client affinities in a
data sharing environment is that if failover occurs because a data sharing group
member fails, the member that fails might have retained locks that can severely
affect transactions on the member to which failover occurs.

Configuration of Sysplex workload balancing and automatic
client reroute for non-Java clients

To configure a client application other than a Java application that connects directly
to a DB2 for z/OS to use Sysplex workload balancing and automatic client reroute
(ACR), set keyword values in the db2dsdriver.cfg file.

These keyword values, specify a connection to an address that represents the data
sharing group (for group access) or a subset of the data sharing group (for
member-specific access), and that enables Sysplex workload balancing and
automatic client reroute.

Always configure Sysplex workload balancing and automatic client reroute
together. When you configure a client to use Sysplex workload balancing,
automatic client reroute is also enabled by default. Therefore, you need to change
keywords values that are related to automatic client reroute only to fine-tune
automatic client reroute operation.

For clients other than Java clients, use one of the listed clients or client packages to
take advantage of Sysplex workload balancing:
v IBM Data Server Client
v IBM Data Server Runtime Client
v IBM Data Server Driver Package
v IBM Data Server Driver for ODBC and CLI

224 Call Level Interface Guide and Reference Volume 1

Important: To establish direct connections to a DB2 for z/OS data sharing group
by using Sysplex feature, you need either a DB2 Connect server product
installation or DB2 Connect server license file placed in license directory of the
DB2 installation path.

The table 1 describes the basic configuration settings that are necessary to enable
Sysplex workload balancing for applications other than Java applications.

Table 34. Basic settings to enable Sysplex workload balancing in applications other than Java
applications

Data sharing
access
method Client setting Value

Group access enableWLB element in the <wlb>
section of the db2dsdriver.cfg
configuration file

true

Connection address:

database host1 The group IP address or domain
name of the data sharing group

database port1 The SQL port number for the DB2
location

database name1 The DB2 location name that is
defined during installation

Member-
specific access

enableWLB element in the <wlb>
section of the db2dsdriver.cfg
configuration file

true

Connection address:

database host1 The group IP address or domain
name of the data sharing group

database port1 The port number for the DB2
location alias

database name1 The name of the DB2 location alias
that represents a subset of the
members of the data sharing group

Chapter 17. Non-Java client support for high availability on IBM data servers 225

Table 34. Basic settings to enable Sysplex workload balancing in applications other than Java
applications (continued)

Data sharing
access
method Client setting Value

Notes:

1. Depending on the DB2 product and driver you use, connection information can be
defined in one of several possible sources.

v In scenario that involves CLI or open source application with IBM data server client,
connection information can be obtained from following sources:

– If host, port, and database information is provided in a connection string of an
application, CLI driver uses that information to establish a connection.

– Information from the database catalog.

– If host and port information is not provided in the connection string of an
application or database catalog, the driver searches for required information in the
db2cli.ini file, and this information provided in the db2cli.ini file is used by CLI
driver to establish a connection.

– If host and port information is not provided in the connection string of an
application, database catalog or the db2cli.ini file, CLI driver uses information in
the db2dsdriver.cfg configuration file.

v In scenario that involves CLI or open source application with IBM data server driver,
connection information can be obtained from following sources:

– If host, port, and database information is provided in a connection string of an
application, CLI driver uses that information to establish a connection.

– If host and port information is not provided in the connection string of an
application, the driver searches for required information in the db2cli.ini file, and
this information provided in the db2cli.ini file is used by CLI driver to establish a
connection.

– If host and port information is not provided in the connection string of the
application or the db2cli.ini file, CLI driver uses information in the
db2dsdriver.cfg configuration file.

v In scenario that involves .NET application with IBM data server client, connection
information can be obtained from following sources:

– If host, port, and database information is provided in a connection string of an
application, .NET data provider uses that information to establish a connection.

– If host, port and database information provided through .NET object properties,
.NET data provider uses that information to establish a connection.

– Information from the database catalog.

– If host and port information is not provided in the connection string of an
application or the database catalog, .NET data provider uses information in the
db2dsdriver.cfg configuration file.

v In scenario that involves .NET application with IBM data server driver, connection
information can be obtained from following sources:

– If host, port, and database information is provided in a connection string of an
application, .NET data provider uses that information to establish a connection.

– If host, port and database information provided through .NET object properties,
.NET data provider uses that information to establish a connection.

– If host and port information is not provided in the connection string of an
application or the database catalog, .NET data provider uses information in the
db2dsdriver.cfg configuration file.

226 Call Level Interface Guide and Reference Volume 1

If you want to fine-tune the Sysplex workload balancing, additional properties are
available. The additional properties for applications other than Java applications
are listed in the table 2.

Table 35. Properties for fine-tuning Sysplex workload balancing for direct connections from applications other than
Java applications to DB2 for z/OS

Element in the db2dsdriver.cfg
configuration file

Section in the
db2dsdriver.cfg file Description

maxTransportIdleTime <wlb> Specifies the maximum elapsed time in number of
seconds before an idle transport is dropped. The default
is 600. The minimum supported value is 0.

maxTransportWaitTime <wlb> Specifies the number of seconds that the client waits for
a transport to become available. The default value is -1,
specifying an unlimited wait time. The minimum
supported wait time is 0.

maxTransports <wlb> Specifies the maximum number of connections that the
requester can make to the data sharing group.

maxRefreshInterval <wlb> Specifies the maximum elapsed time in number of
seconds before the server list is refreshed. The default is
30. The minimum supported value is 0.

Automatic client reroute capability is enabled in a client other than a Java client by
default. At the first successful connection to the server, the client obtains a list of
all available alternate servers from the connected server. The client stores the list in
memory and also creates a local cache file, srvrlst.xml that contains the list of
alternate servers. This file is refreshed whenever a new connection is made and the
new list from a server differs from the contents of the client srvrlst.xml file.

When a client uses the srvrlst.xml file to locate an alternate server, it writes a
record to the db2diag log files. You can monitor this log to determine how
frequently initial sever connections are failing.

You can set configuration keywords or registry variables in the db2dsdriver.cfg
file to refine automatic client reroute behavior. The configuration keywords in the
db2dsdriver.cfg file can be used to control automatic client reroute. The keywords
are described for the case in which client affinities are not enabled.

If the db2dsdriver.cfg file changes, your CLI application can invoke the
SQLReloadConfig function to validate the entries for all alternate servers within
the <acr> section.

Table 36. Settings to control automatic client reroute behavior

Element in the <acr> section of the
db2dsdriver configuration file Value

enableAcr parameter Specifies whether automatic client reroute is
in effect. The default is true. When enabling
automatic client reroute to the DB2 for z/OS
data sharing group, this parameter needs to
be enabled only when enableWLB parameter
is in effect.

Chapter 17. Non-Java client support for high availability on IBM data servers 227

Table 36. Settings to control automatic client reroute behavior (continued)

Element in the <acr> section of the
db2dsdriver configuration file Value

enableSeamlessAcr parameter Specifies whether seamless failover can occur.
If enableAcr is set to true, the default for
enableSeamlessAcr is true. The
enableSeamlessACR parameter applies only to
the members within a group or cluster. When
enabling automatic client reroute to the DB2
for z/OS data sharing group, this parameter
needs to be enabled, when enableWLB
parameter is in effect and application can
handle the SQL30108N exception.

acrRetryInterval parameter The number of seconds to wait between
consecutive connection attempts. The registry
variable DB2_CONNRETRIES_INTERVAL overrides
this value. The valid range is 0 to MAX_INT.
The default is no wait (0), if
DB2_CONNRETRIES_INTERVAL is not set. When
enabling automatic client reroute to the DB2
for z/OS data sharing group, the default
value of no wait is recommended.

maxAcrRetries parameter The maximum number of connection
attempts for automatic client reroute. The
registry variable DB2_MAX_CLIENT_CONNRETRIES
overrides this value. If
DB2_MAX_CLIENT_CONNRETRIES is not set, the
default is that connection is attempted for 10
minutes. If alternate groups are defined, the
connection is tried for 2 minutes by default.
A value of 0 means that 1 reconnection
attempt is made. When enabling automatic
client reroute to theDB2 for z/OS data
sharing group, the maxAcrRetries is
recommended to be set to no higher than 5.

The registry variables in table 3 control retry behavior for automatic client reroute.

Table 37. Registry variables to control automatic client reroute retry behavior

Registry variable Value

DB2_MAX_CLIENT_CONNRETRIES The maximum number of connection retries
for automatic client reroute. The default is 30
if theDB2_CONNRETRIES_INTERVAL variable is
set.

DB2_CONNRETRIES_INTERVAL The number of seconds between consecutive
connection retries. The default is 10 if the
DB2_MAX_CLIENT_CONNRETRIES variable is set.

When enabling automatic client reroute to the DB2 for z/OS data sharing group,
set the maxAcrRetries keyword. If neither DB2_MAX_CLIENT_CONNRETRIES and
DB2_CONNRETRIES_INTERVAL or maxAcrRetries and acrRetryInterval are set,
automatic client reroute attempts to connect to a z/OS group for up to 10 minutes
(with no wait between attempts).

228 Call Level Interface Guide and Reference Volume 1

For CLI, OLE DB, and ADO.NET applications, there are three connection time-out
keywords: ConnectionTimeout, MemberConnectTimeout and
tcipipConnectionTimeout. The tcipipConnectionTimeout parameter is set at the
network layer, affecting all DB2 connections. Do not use this keyword with the
automatic client reroute. The ConnectionTimeout keyword specifies the number of
seconds that the client application waits for a connection to a DB2 for z/OS data
sharing group to be established. The MemberConnectTimeout keyword specifies the
number of seconds that client application wait before routing to the next IP
address in the server list. When you enable automatic client reroute for connections
to a DB2 for z/OS data sharing group, it is recommended that you use the
MemberConnectTimeout keyword to manage the time to wait before rerouting. The
default MemberConnectTimeout value is one second. This timeout determines how
long to wait for a member to accept the connection. In most cases, the default
value is adequate; but if running on a slow network, you need to adjust the value
higher to prevent unnecessary network timeouts.

If you need to use Sysplex workload balancing, but your applications cannot
handle the errors that are returned for automatic client reroute processing, set the
succeeding parameters in the db2dsdriver.cfg configuration file.

Table 38. Properties for enabling only Sysplex workload balancing for connections from applications other than Java
applications to DB2 for z/OS
Element in the db2dsdriver.cfg
configuration file

Section in the
db2dsdriver.cfg file Description Value to set

connectionLevelLoadBalancing <database> Specifies whether connection-level load balancing is in effect. By default,
if the enableWLB configuration parameter is set to true,
connectionLevelLoadBalancing is set to trueas well. Otherwise, the
default connectionLevelLoadBalancing value is false. It is
recommended to keep the default.

true

enableWLB <wlb> Specifies whether workload balancing is enabled. By default, it is set to
false.

true

enableAcr <acr> Specifies whether automatic client reroute is enabled. For CLI or .NET
applications, enabling automatic client reroute automatically enables
seamless failover. By default, if enableWLB is "true", enableAcr is set to
"true" as well; otherwise the default is "false". It is recommended to keep
the default unless applications cannot handle seamless failover exception
(SQL30108N), in which case enableAcr can be set to "false".

true

enableSeamlessAcr <acr> Specifies whether seamless failover is enabled. Among applications other
than Java applications, seamless failover is supported only for CLI or
.NET applications. By default, it is set to same value as the enableAcr
configuration parameter.

true

enableAlternateGroupSeamlessACR <acr> Specifies seamless or non-seamless failover behavior across groups. The
default is false. To set this parameter to true, you must also set the
enableSeamlessACR configuration parameter to true. Setting this
parameter to true, does not affect the setting of enableSeamlessACR. If a
successful connection is established to a server in the alternategroup
section, the rules for seamless or non-seamless behavior still apply.

true

Example of enabling DB2 for z/OS Sysplex workload
balancing and automatic client reroute in non-Java client
applications

Before you can use Sysplex workload balancing and automatic client reroute in
applications other than Java applications that connect directly to DB2 for z/OS
servers, you need to update the db2dsdriver.cfg configuration file with the
appropriate settings, and connect to a data sharing group.

Before you can set up the client, you need to configure the listed server software:
v WLM for z/OS

Chapter 17. Non-Java client support for high availability on IBM data servers 229

For workload balancing to work efficiently, DB2 work needs to be classified.
Classification applies to the first non-SET SQL statement in each transaction.
Among the areas by which you need to classify the work are:
– Authorization ID
– Client info properties
– Stored procedure name

The stored procedure name is used for classification only if the first statement
that is issued by the client in the transaction is an SQL CALL statement.

For a complete list of classification attributes, see the information about
classification attributes at the succeeding URL: http://publib.boulder.ibm.com/
infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.perf/src/tpc/
db2z_classificationattributes.htm

v DB2 for z/OS, set up for data sharing

At the first successful connection to the server, the client obtains a list of all
available alternate servers from the connected server. The client stores the list in
memory and also creates a local cache file, srvrlst.xml that contains the list of
alternate servers. This file is refreshed whenever a new connection is made and the
new list from a server differs from the contents of the client srvrlst.xml file.

You can fine-tune default automatic client reroute feature by modifying these
items:

Automatic client reroute
characteristic db2dsdriver.cfg configuration keyword Desired value

Number of times to try connecting to
the alternate server

maxAcrRetries < 6

Number of seconds to wait between
tries

acrRetryInterval 0 (default)

The example demonstrates how to set up a client application other than a Java
application to take advantage of Sysplex and automatic client reroute high
availability support.
1. Create a db2dsdriver.cfg file with the basic settings for Sysplex support and

automatic client reroute. When you set enableWLB and enableAcr to true, you
enable Sysplex workload balancing and automatic client reroute capabilities.
<configuration>

<dsncollection>
<dsn alias="DSGROUP1" name="DSGROUP1"

host="db2a.sysplex1.ibm.com" port="446">
</dsn>

</dsncollection>
<database name="DSGROUP1" host="db2a.sysplex1.ibm.com" port="446">
<!-- database-specific parameters -->
<wlb>

<!-- Enable Sysplex workload balancing to get
automatic client reroute
functionality -->
<parameter name="enableWLB" value="true" />
<!-- maxTransports represents the maximum number of transports -->
<parameter name="maxTransports" value="80" />

</wlb>
<acr>

<parameter name="enableAcr" value="true">
</parameter>
<parameter name="maxAcrRetries" value="5">
</parameter>

230 Call Level Interface Guide and Reference Volume 1

<parameter name="acrRetryInterval" value="0">
</parameter>

</acr>
</database>

</configuration>

2. Suppose that database name DSGROUP1 represents a data sharing group that
is set up for group access. In a CLI application, use code like the succeeding
code to connect to the data sharing group:
...

SQLHDBC hDbc = SQL_NULL_HDBC;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *ConnStrIn =

"DSN=DSGROUP1;PWD=mypass";
/* dsn matches the database name in the configuration file */

char ConnStrOut [200];
SQLSMALLINT cbConnStrOut;
int i;
char *token;

...
/***/
/* Invoke SQLDriverConnect */
/***/
RETCODE = SQLDriverConnect (hDbc ,

NULL ,
(SQLCHAR *)ConnStrIn ,
strlen(ConnStrIn) ,
(SQLCHAR *)ConnStrOut,
sizeof(ConnStrOut) ,
&cbConnStrOut ,
SQL_DRIVER_NOPROMPT);

...

Operation of Sysplex workload balancing for connections
from non-Java clients to DB2 for z/OS servers

Sysplex workload balancing (also called transaction-level workload balancing) for
connections to DB2 for z/OS contributes to high availability by balancing work
among members of a data sharing group at the start of a transaction.

The following overview describes the steps that occur when a client connects to a
DB2 for z/OS Sysplex, and Sysplex workload balancing is enabled:
1. When the client first establishes a connection using the sysplex-wide IP address

called the group IP address, or when a connection is reused by another
connection object, the server returns member workload distribution
information.
The default lifespan of the cached server list is 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to
identify a member that has untapped capacity, and looks in the transport pool
for an idle transport that is tied to the under-utilized member. (An idle
transport is a transport that has no associated connection object.)
v If an idle transport is available, the client associates the connection object

with the transport.
v If, after a user-configurable timeout, no idle transport is available in the

transport pool and no new transport can be allocated because the transport
pool has reached its limit, an error is returned to the application.

3. When the transaction runs, it accesses the member that is tied to the transport.
4. When the transaction ends, the client verifies with the server that transport

reuse is still allowed for the connection object.

Chapter 17. Non-Java client support for high availability on IBM data servers 231

5. If transport reuse is allowed, the server returns a list of SET statements for
special registers that apply to the execution environment for the connection
object.
The client caches these statements, which it replays in order to reconstruct the
execution environment when the connection object is associated with a new
transport.

6. The connection object is then disassociated from the transport.
7. The client copy of the server list is refreshed when a new connection is made,

or every 30 seconds.
8. When workload balancing is required for a new transaction, the client uses the

same process to associate the connection object with a transport.

Operation of automatic client reroute for connections from
non-Java clients to DB2 for z/OS servers

Automatic client reroute support provides failover support when an IBM data
server client loses connectivity to a member of a DB2 for z/OS Sysplex. Automatic
client reroute enables the client to recover from a failure by attempting to
reconnect to the database through any available member of the Sysplex.

Automatic client reroute is enabled by default when Sysplex workload balancing is
enabled.

Client support for automatic client reroute is available in IBM data server clients
that have a DB2 Connect license. The DB2 Connect server is not required to
perform automatic client reroute.

Automatic client reroute for connections to DB2 for z/OS operates in the following
way:
1. As part of the response to a COMMIT request from the client, the data server

returns:
v An indicator that specifies whether transports can be reused. Transports can

be reused if there are no resources remaining, such as held cursors.
v SET statements that the client can use to replay the connection state during

transport reuse.
2. If the first SQL statement in a transaction fails, and transports can be reused:

v No error is reported to the application.
v The failing SQL statement is executed again.
v The SET statements that are associated with the logical connection are

replayed to restore the connection state.
3. If an SQL statement that is not the first SQL statement in a transaction fails,

and transports can be reused:
v The transaction is rolled back.
v The application is reconnected to the data server.
v The SET statements that are associated with the logical connection are

replayed to restore the connection state.
v SQL error -30108 (for Java) or SQL30108N (for non-Java clients) is returned to

the application to notify it of the rollback and successful reconnection. The
application needs to include code to try the failed transaction again.

4. If an SQL statement that is not the first SQL statement in a transaction fails,
and transports cannot be reused:
v The logical connection is returned to its initial, default state.

232 Call Level Interface Guide and Reference Volume 1

v SQL error -30081 (for Java) or SQL30081N (for non-Java clients) is returned to
the application to notify it that reconnection was unsuccessful. The
application needs to reconnect to the data server, reestablish the connection
state, and try the failed transaction again.

5. If connections to all members of the data sharing member list have been tried,
and none have succeeded, a connection is tried using the URL that is associated
with the data sharing group, to determine whether any members are now
available.

Operation of transaction-level workload balancing for
connections to the DB2 for z/OS data sharing group

Transaction-level workload balancing for connections to the DB2 for z/OS database
contributes to high availability by balancing work among servers in a DB2 for
z/OS data sharing group at the start of a transaction.

When a client connects to a DB2 for z/OS server and transaction-level workload
balancing is enabled, the succeeding steps occur:
1. When the client first establishes a connection to the DB2 for z/OS data sharing

group that is using the distributed group IP address, the client returns a server
list with the connection details (IP address, port, and weight) for the members
of the DB2 for z/OS data sharing group.
The server list is cached by the client. The default life span of the cached server
list is 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to
identify a server that has unused capacity, and looks in the transport pool for
an idle transport that is tied to the under-utilized server. An idle transport is a
transport that has no associated connection object.
v If an idle transport is available, the client associates the connection object

with the transport.
v If, after a user-configurable timeout period

(db2.jcc.maxTransportObjectWaitTime for a Java client or
maxTransportWaitTime for other clients), no idle transport is available in the
transport pool and no new transport can be allocated because the transport
pool reached its limit, an error is returned to the application.

3. When the transaction runs, it accesses the server that is tied to the transport.
4. When the transaction ends, the client verifies with the server that transport

reuse is still allowed for the connection object.
5. If transport reuse is allowed, the server returns a list of SET statements for

special registers that apply to the execution environment for the connection
object.
The client caches these statements, which it replays in order to reconstruct the
execution environment when the connection object is associated with a new
transport.

6. The connection object is then dissociated from the transport, if the client
determines that it needs to do so.

7. The client copy of the server list is refreshed when a new connection is made,
every 30 seconds, or each user-configured interval.

8. When transaction-level workload balancing is required for a new transaction,
the client uses the previously described process to associate the connection
object with a transport.

Chapter 17. Non-Java client support for high availability on IBM data servers 233

Alternate groups for connections to DB2 for z/OS servers
from non-Java clients

To improve high availability for non-Java clients in Version 9.7 Fix Pack 5 or later
fix pack releases, use alternate groups as an additional failover mechanism for
automatic client rerouting when connectivity to the current group cannot be
re-established.

By default, non-Java clients have the automatic client reroute (ACR) enabled. This
capability provides automatic failover to alternate servers within the current group
when connectivity to a server cannot be re-established.

In addition to this ACR capability, you can define alternate groups as failover targets
when connectivity to the current group cannot be established. To define alternate
groups for non-Java clients:
v Define one <database> element inside the <alternategroup> element in the <acr>

section of the db2dsdriver.cfg file. Do not specify <parameter> elements inside
the <database> element, parameter settings are inherited from the primary
group.

v If you want to suppress error messages from failover connections to the alternate
group, set the enableAlternateGroupSeamlessACR parameter to true in
<alternategroup> element.

For DB2 for z/OS, you can define only one database in the alternate group. If you
define more than one DB2 for z/OS, the connection is terminated and the client
returns an error.

When a non-Java client is connected to an alternate group, all the connection
settings and the parameter settings for the <database> element in the primary
group are inherited by the connection to the database in the alternate group.

After a non-Java client is connected to a database in the alternate group, no
failback to the primary group is provided. To connect to the primary group again,
the application or client must be restarted.

Alternate groups are only supported for ACR and workload balancing. If client
affinities is configured, alternate group definitions are ignored.

Examples

Here is an example of alternate group definitions in the db2dsdriver.cfg file:
<dsncollection>

<dsn alias=”mydsn2” name=”mydb2” host=”myserver2.ibm.com” port=”5912”>
...

</dsncollection>

<databases>
<database name="mydb2" host="myserver2.ibm.com" port="5912">
<parameter name=”IsolationLevel” value=”4”/>
...
<wlb>

<parameter name="enableWLB" value="true"/>
</wlb>
<acr>
... (ACR parameters definition)
<alternateserverlist>

<server name="server1" hostname="db2zosa.luw.ibm.com" port="5912">
</server>

234 Call Level Interface Guide and Reference Volume 1

<server name="server2" hostname="db2zosb.luw.ibm.com" port="5912">
</server>

</alternateserverlist>
<alternategroup>
<parameter name=”enableAlternateGroupSeamlessACR” value=”true”/>
<database name="mydb3" host="myserver3.ibm.com" port="5912">
</database>
</alternategroup> </acr>

</database>

<database name="mydb3" host="myserver3.ibm.com" port="5912">
<parameter name=”IsolationLevel” value=”2”/>
<acr>
<parameter name="enableACR" value="true"/>
<alternateserverlist>

<server name="server4" hostname="db2zosd.luw.ibm.com" port="5912">
</server>

</alternateserverlist>
<alternategroup>
<parameter name=”enableAlternateGroupSeamlessACR” value=”true”/>
<database name="mydb4" host="myserver4.ibm.com" port="5912">
</database>
<database name="mydb5" host="myserver5.ibm.com" port="5912">
</database>
</alternategroup> </acr>

...
</database>

</databases>

The following example scenarios demonstrate how automatic client rerouting
works for alternate groups. The details about ACR failover to the current group are
not covered in these scenarios to focus on the alternate groups failover details.
These scenarios use the db2dsdriver.cfg sample that is described in the previous
paragraph.

First connection to the primary
After a non-Java client fails to connect to the primary group on its first
attempt. Automatic client reroute failover to alternate servers in the current
group also fails. In this example, the client performs the following actions:
1. The client fails to connect to mydb2.
2. The client fails to connect to server1.
3. The client fails to connect to server2.
4. The client tries to connect to an alternate group listed in the

<alternategroup> section of the db2dsdriver.cfg file in the order
specified in this file:
a. The client successfully connects to mydb3.

After connecting to mydb3, the rules for seamless or non-seamless behavior
still apply. If the client would not be able to connect to mydb3, it would
receive the SQL30081N error message.

Subsequent connection or existing connection to the primary server
After a non-Java client loses its connection to mydb3, automatic client
reroute failover to alternate servers in the current group also fails. In the
example, the client performs the following actions:
1. The client fails to connect to server4.
2. The client tries to connect to an alternate group listed in the

<alternategroup> section of the db2dsdriver.cfg file in the order
specified in this file:

Chapter 17. Non-Java client support for high availability on IBM data servers 235

a. The client connects to mydb4 and determines that there are multiple
<database> elements under the <alternategroup> section.

b. The client terminates the connection to mydb4 and returns the
SQL0866N error message.

Edit db2dsdriver.cfg file and remove the <database> element for mydb4 or
mydb5 and restart your application or client.

Existing connection to an alternate group
A non-Java client fails to connect to mydb2, automatic client reroute failover
to alternate servers in the current group also fails, and then it successfully
connects to the mydb3 alternate group. After the client loses its connection
to mydb3, the client receives the SQL30081N error message.

You must restart the client or the application to try connecting to the
primary group again.

Application programming requirements for high availability for
connections from non-Java clients to DB2 for z/OS servers

Failover for automatic client reroute can be seamless or non-seamless. If failover
for connections to DB2 for z/OS is not seamless, you need to add code to account
for the errors that are returned when failover occurs.

If failover is not seamless, and a connection is reestablished with the server,
SQLCODE -30108 (SQL30108N) is returned to the application. All work that
occurred within the current transaction is rolled back. In the application, you need
to:
v Check the reason code that is returned with the -30108 error to determine

whether special register settings on the failing data sharing member are carried
over to the new (failover) data sharing member. Reset any special register values
that are not current.

v Execute all SQL operations that occurred since the previous commit operation.

The following conditions must be satisfied for seamless failover to occur for direct
connections to DB2 for z/OS:
v The application language is Java, CLI, or .NET.
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v The data server allows transport reuse at the end of the previous transaction. An

exception to this condition is if transport reuse is not granted because the
application was bound with KEEPDYNAMIC(YES).

v All global session data is closed or dropped.
v There are no open, held cursors.
v If the application uses CLI, the application cannot perform actions that require

the driver to maintain a history of previously called APIs in order to replay the
SQL statement. Examples of such actions are specifying data at execution time,
performing compound SQL, or using array input.

v The application is not a stored procedure.
v The application is not running in a Federated environment.
v Two-phase commit is used, if transactions are dependent on the success of

previous transactions. When a failure occurs during a commit operation, the
client has no information about whether work was committed or rolled back at

236 Call Level Interface Guide and Reference Volume 1

the server. If each transaction is dependent on the success of the previous
transaction, use two-phase commit. Two-phase commit requires the use of XA
support.

Chapter 17. Non-Java client support for high availability on IBM data servers 237

238 Call Level Interface Guide and Reference Volume 1

Chapter 18. XA support for a Sysplex in non-Java clients

IBM data server clients and non-Java data server drivers that have a DB2 Connect
license can directly access a DB2 for z/OS Sysplex and use native XA support
without going through a middle-tier DB2 Connect server.

This type of client-side XA support is only available for transaction managers that
use a single-transport processing model. In a single-transport model, a transaction,
over a single transport (physical connection), is tied to a member from xa_start to
xa_end. The transaction end is followed immediately by xa_prepare(readonly),
xa_prepare plus xa_commit or xa_rollback, or xa_rollback. All of this must occur
within a single application process. Examples of transaction managers that use this
model include IBM TXSeries CICS, IBM WebSphere Application Server, and
Microsoft Distributed Transaction Coordinator.

Support for the single-transport processing model also includes indoubt transaction
recovery where member information for each recoverable transaction is retrieved
through xa_recover, which allows xa_commit or xa_rollback to be directed at the
specified member.

You enable XA support by using the SINGLE_PROCESS parameter in the xa_open
string, or by specifying settings for XA in the db2dsdriver configuration file.

XA support in non-Java clients has the following restrictions:
v The following transaction manager processing models are not supported:

– Dual-transport. In this model, a transaction, over transport A, is tied to a
member from xa_start to xa_end, but xa_prepare(readonly), xa_prepare plus
xa_commit or xa_rollback, or xa_rollback comes in over transport B, possibly
from another application process. Examples of transaction managers that use
this model are IBM WebSphere MQ and IBM Lotus® Domino®.

– Multi-transport. This model involves the use of multiple transports from
multiple application processes, for the same transaction.

v For XA transaction managers that use a multi-transport processing model, a
middle-tier DB2 Connect server is still required.

v When XA support is enabled at the client, seamless failover is automatically
disabled.

Important: DB2 for z/OS APAR PK69659 must be installed for direct XA support
(needed for transaction managers such as Microsoft Distributed Transaction
Coordinator). For more information, see APAR PK69659.

Enabling XA support for a Sysplex in non-Java clients
XA support for a DB2 for z/OS Sysplex can be enabled implicitly either by WLB
being enabled or Microsoft Distributed Transaction Coordinator or Microsoft
Component Services (COM+) being used for instance-less clients. To explicitly
enable XA support for clients that access a DB2 for z/OS Sysplex, you either
specify settings in the db2dsdriver configuration file or use the SINGLE_PROCESS
parameter in the xa_open string.

© Copyright IBM Corp. 2012 239

Before you begin

A DB2 Connect license is required to access the a DB2 for z/OS Sysplex.

The listed clients provide XA support for applications that access a DB2 for z/OS
Sysplex:
v IBM Data Server Client
v IBM Data Server Runtime Client
v IBM Data Server Driver Package
v IBM Data Server Driver for ODBC and CLI

Important: DB2 for z/OS APAR PK69659 must be installed for direct XA support
(needed for transaction managers such as Microsoft Distributed Transaction
Coordinator). For more information, see APAR PK69659.

About this task

This task describes how to explicitly enable XA support for IBM data server clients
and non-Java data server drivers.

Restrictions

XA support is only available for transaction managers that use a single-transport
processing model. For more information about this restriction, see the topic about
client Sysplex limitations.

Procedure
1. For instance-based clients (IBM data server clients), specify whether XA support

is on (true) or off (false) by setting the enableDirectXA parameter in the
db2dsdriver configuration file, or by using the SINGLE_PROCESS parameter in
the xa_open string.

2. For instance-less clients, (IBM data server drivers), XA support is enabled by
default for Microsoft Distributed Transaction Coordinator or Microsoft
Component Services (COM+). For all other supported transaction managers,
specify whether XA support is enabled by setting the SINGLE_PROCESS
keyword in the xa_open string. Settings for enableDirectXA in the db2dsdriver
configuration file are not applicable to instance-less clients.

Results

If XA support is enabled, an application can run a distributed transaction over a
single transport within a single application process without going through a
middle-tier DB2 Connect server.

Example

Enable single-transport XA support for the database SAMPLE.
<database name="SAMPLE" host="v33ec065.my.domain.com" port="446">

<!-- database-specific parameters -->
<!—directXA is disabled by default -->

<parameter name="enableDirectXA" value="true" />
</parameters>

</database>

240 Call Level Interface Guide and Reference Volume 1

Chapter 19. Configuring your development environment to
build and run CLI and ODBC applications

You can run CLI and ODBC applications against a DB2 database server using the
IBM Data Server Client, the IBM Data Server Runtime Client, or the IBM Data
Server Driver for ODBC and CLI. However, to compile CLI or ODBC applications,
you need the IBM Data Server Client.

Procedure

In order for a CLI application to successfully access a DB2 database:
1. Ensure the CLI/ODBC driver was installed during the DB2 client install.
2. For the IBM Data Server Client and Runtime Client only: If the database is

being accessed from a remote client, catalog the database and hostname of the
machine the database is on.
On Windows operating systems, you can use the CLI/ODBC Settings GUI to
catalog the DB2 database.

3. Optional: Explicitly bind the CLI /ODBC bind files to the database with the
command:
db2 bind ~/sqllib/bnd/@db2cli.lst blocking all sqlerror continue \

messages cli.msg grant public

On Windows operating systems, you can use the CLI/ODBC Settings GUI to
bind the CLI/ODBC bind files to the database.

4. Optional: Change the CLI /ODBC configuration keywords by editing the
db2cli.ini file. For information about the location of the db2cli.ini file, see
“db2cli.ini initialization file” in Call Level Interface Guide and Reference Volume 1.
On Windows operating systems, you can use the CLI/ODBC Settings GUI to
set the CLI/ODBC configuration keywords.

Results

Once you have completed steps 1 to 4, proceed to setting up your Windows CLI
environment, or setting up your Linux or UNIX ODBC environment if you are
running ODBC applications on Linux or UNIX.

Setting up the ODBC environment (Linux and UNIX)
This topic explains how to set up client access to DB2 databases for ODBC
applications in Linux and UNIX operating systems. If your application is a CLI
application, you are only required to perform the task in the Before you begin
section to set up your environment.

Before you begin

Before setting up the ODBC environment, ensure you have set up the CLI
environment.

Procedure

For ODBC applications on UNIX that need to access a DB2 database, perform the
following steps:

© Copyright IBM Corp. 2012 241

1. Ensure that an ODBC driver manager is installed and that each user that will
use ODBC has access to it. DB2 does not install an ODBC driver manager, so
you must use the ODBC driver manager that was supplied with your ODBC
client application or ODBC SDK in order to access DB2 data using that
application.

2. Set up .odbc.ini, the end-user's data source configuration. Each user ID has a
separate copy of this file in their home directory. Note that the file starts with a
dot. Although necessary files are usually updated automatically by the tools on
most platforms, users of ODBC on UNIX platforms will have to edit them
manually.
Using an ASCII editor, update the file to reflect the appropriate data source
configuration information. To register a DB2 database as an ODBC data source
there must be one stanza (section) for each DB2 database.
The .odbc.ini file must contain the following lines (examples refer to
configuration of the SAMPLE database data source):
v in the [ODBC Data Source] stanza:

SAMPLE=IBM DB2 ODBC DRIVER

which indicates that there is a data source called SAMPLE that uses the IBM
DB2 ODBC DRIVER;

v in the [SAMPLE] stanza:
on AIX, for example,

[SAMPLE]
Driver=/u/thisuser/sqllib/lib/libdb2.a
Description=Sample DB2 ODBC Database

on the Solaris operating system, for example,
[SAMPLE]
Driver=/u/thisuser/sqllib/lib/libdb2.so
Description=Sample DB2 ODBC Database

which indicates that the SAMPLE database is part of the DB2 instance
located in the directory /u/thisuser.
With the introduction of the 64-bit development environment, there have
been a number of inconsistencies among vendors regarding the interpretation
of the sizes of certain parameters. For example, the 64-bit Microsoft ODBC
Driver Manager treats SQLHANDLE and SQLLEN as both 64-bits in length,
whereas Data Direct Connect and open source ODBC driver managers treat
SQLHANDLE as 64-bit, but SQLLEN as 32-bit. The developer must therefore
pay careful attention to which version of the DB2 driver is required. Specify
the appropriate DB2 driver in the data source stanza, according to the
following information:

Type of application DB2 driver to specify

32-bit CLI libdb2.*

32-bit ODBC Driver Manager libdb2.*

64-bit CLI libdb2.*

64-bit ODBC Driver Manager libdb2o.* (db2o.o for AIX)

Note: The file extension of the DB2 driver to specify depends on the
operating system. The extensions are as follows:
– .a - AIX
– .so - Linux, Solaris, HP-IPF

242 Call Level Interface Guide and Reference Volume 1

– .sl - HP-PA
3. Ensure that the application execution environment has reference to the ODBC

driver manager by including the corresponding shared library in the
environment variable for the library path. The following table indicates the
library name by operating system

Operating system Environment variable Library name

AIX LIBPATH libodbc.a

HP-UX, Linux, and Solaris LD_LIBRARY_PATH libodbc.so

4. Enable a system-wide .odbc.ini file to be used by setting the ODBCINI
environment variable to the fully qualified pathname of the .ini file. Some
ODBC driver managers support this feature which allows for centralized
control. The following examples show how to set ODBCINI:
in the C shell,

setenv ODBCINI /opt/odbc/system_odbc.ini

in the Bourne or Korn shell,
ODBCINI=/opt/odbc/system_odbc.ini;export ODBCINI

5. Once the .odbc.ini file is set up, you can run your ODBC application and
access DB2 databases. Refer to the documentation that comes with your ODBC
application for additional help and information.

Sample build scripts and configurations for the unixODBC
Driver Manager

The unixODBC Driver Manager is an open source ODBC driver manager for use
on UNIX platforms. This driver manager is supported for ODBC applications on
supported DB2 platforms. This topic presents some examples of possible build
scripts and configurations you might want to use when using the unixODBC
Driver Manager.

Support statement

If you experience problems with the combination of the unixODBC Driver
Manager and the DB2 ODBC driver after they have been properly installed and
configured, you can contact DB2 Service (http://www.ibm.com/software/data/
db2/udb/support) for assistance in diagnosing the problem. If the source of the
problem lies with the unixODBC Driver Manager, then you can:
v Purchase a service contract for technical support from Easysoft, a commercial

sponsor of unixODBC (http://www.easysoft.com).
v Participate in any open source support channels at http://www.unixodbc.org.

Sample build scripts

The following examples are sample build scripts for setting up your environment
to use the unixODBC Driver Manager.

AIX
#! /bin/sh

echo "Unzipping and extracting"
gzip -d unixODBC-2.2.11.tar.gz
tar xf unixODBC-2.2.11.tar

cd unixODBC-2.2.11

Chapter 19. Configuring your development and runtime environment 243

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html
http://www.easysoft.com/
http://www.unixodbc.org/

#Comment this out if not AIX
export CC=xlc_r
export CCC=xlC_r

echo "Configuring, compiling and installing"
configure --prefix=$HOME --enable-gui=no --enable-drivers=no
make
make install

echo "Setting ini env vars."
export ODBCHOME=~/etc
export ODBCINI=~/odbc.ini

#Comment this out if not AIX
echo "Extracting unixODBC libraries"
cd ~/lib
ar -x libodbc.a
ar -x libodbcinst.a
ar -x libodbccr.a

echo "\n***Still need to set up your ini files"

UNIX (non-AIX)
#! /bin/sh

echo "Unzipping and extracting"
gzip -d unixODBC-2.2.11.tar.gz
tar xf unixODBC-2.2.11.tar

cd unixODBC-2.2.11

echo "Configuring, compiling and installing"
configure --prefix=$HOME --enable-gui=no --enable-drivers=no
make
make install

echo "Setting ini env vars."
export ODBCHOME=~/etc
export ODBCINI=~/odbc.ini

echo "\n***Still need to set up your ini files"

Sample INI file configurations

The following examples are sample user and system INI files for using the
unixODBC Driver Manager.

User INI file (odbc.ini)
[DEFAULT]
Driver = DB2

[SAMPLE]
DESCRIPTION = Connection to DB2
DRIVER = DB2

System INI file (odbcinst.ini)
[DEFAULT]
Description = Default Driver
Driver = /u/db2inst1/sqllib/lib/db2.o
fileusage=1
dontdlclose=1

[DB2]

244 Call Level Interface Guide and Reference Volume 1

Description = DB2 Driver
Driver = /u/db2inst1/sqllib/lib/db2.o
fileusage=1
dontdlclose=1

[ODBC]
Trace = yes
Tracefile = /u/user/trc.log

This system INI file has the ODBC trace enabled, with the trace log file set to
trc.log.

Note: If you encounter problems when closing the driver manager (such as during
SQLDisconnect()), set the value dontdlclose=1 in the odbcinst.ini file, as shown
in the example.

Setting up the Windows CLI environment
On Windows platforms, CLI driver must be registered with the Windows ODBC
Data Source Administrator (odbcad32.exe), before it can be used by an ODBC
application.

Before you begin

Before setting up the Windows CLI environment, ensure that the CLI environment
is set up.

About this task

The CLI driver implements both CLI application programming interface (API) and
the ODBC API. In Windows environment, CLI driver must be registered with the
Windows ODBC Data Source Administrator (odbcad32.exe) before it can be used
by an ODBC application. When using the ODBC Data Source Administrator on
Windows 64-bit platforms, by default ODBC data sources can be configured only
for 64-bit applications. ODBC data sources for 32-bit applications should be
configured by using the Microsoft 32-bit ODBC Data Source Administrator (32-bit
odbcad32.exe) that is included with the Windows 64-bit operating system.
v To set up Data Sources for 32-bit applications, you must use

%WINDIR%\SysWOW64\odbcad32.exe.
v To set up Data Sources for 64-bit applications, you must use

%WINDIR%\System32\odbcad32.exe.

Procedure

Before CLI and ODBC applications can successfully access a DB2 database from a
Windows client, perform the listed steps on the client system:
1. Verify that the Microsoft ODBC Driver Manager and the CLI/ODBC driver are

installed. On Windows operating systems, both drivers are installed with the
DB2 database products. If a newer version of the Microsoft ODBC Driver
Manager is already installed or you manually cleared the option to install it,
the Microsoft ODBC Driver Manager is not installed. To verify that both drivers
are installed perform the listed actions:
a. Double-click the Microsoft ODBC data sources icon in the Control Panel, or

run the odbcad32.exe command from the command line.
b. Click the Drivers tab.

Chapter 19. Configuring your development and runtime environment 245

c. Verify that the IBM DB2 ODBC DRIVER - DB2_Copy_Name is shown in the list.
DB2_Copy_Name is the DB2 copy name that you want to use.

If either the Microsoft ODBC Driver Manager or the IBM Data Server Driver
for ODBC and CLI is not installed, then rerun the DB2 installation and select
the ODBC component on Windows operating systems.

Note: The latest version of the Microsoft ODBC Driver Manager is included as
part of the Microsoft Data Access Components (MDAC) and can be
downloaded from www.microsoft.com.

2. Register the DB2 database with the ODBC driver manager as a data source. On
Windows operating systems, you can make the data source available to all
users of the system (a system data source), or only the current user (a user data
source). Use any of these methods to add the data source:
v Use the db2cli command with the registerdsn parameter:

– Issue the db2cli command for each data source that you want to add as
follows:
db2cli registerdsn –add data-source-name

v Use the Microsoft ODBC Administration tool, which you can access from the
Control Panel or by running the odbcad32.exe command from the command
line:
a. The list of user data sources is shown by default. If you want to add a

system data source click the System DSN button, or the System DSN tab
(depending on the platform).

b. Click Add.
c. Double-click the IBM DB2 ODBC DRIVER - DB2_Copy_Name in the list.

DB2_Copy_Name is the DB2 copy name that you want to use.
d. Select the DB2 database to add and click OK.

v Use the CATALOG command to register the DB2 database with the ODBC
driver manager as a data source. For example:

CATALOG [user | system] ODBC DATA SOURCE

Using this command, an administrator can create a command line processor
script to register the required databases. This script can then be run on all
computers that require access to DB2 databases through ODBC.

Results

After configuring the Windows CLI environment, you can now access DB2 data
source from Windows ODBC applications.

Selecting a different DB2 copy for your Windows CLI
application

By default, CLI applications running on Windows systems make use of the default
DB2 copy. However, applications can use any DB2 copy that is installed on the
system.

Before you begin

Ensure your Windows CLI environment is set up.

246 Call Level Interface Guide and Reference Volume 1

http://www.microsoft.com

Procedure

The following methods allow CLI applications to successfully access a different
DB2 copy on Windows operating systems:
v Using the DB2 command window from the Start > Programs > IBM DB2 >

DB2_Copy_Name > Command Line Tools > DB2 Command Window: the
command window is already set up with the correct environment variables for
the particular DB2 copy chosen.

v Using db2envar.bat from a command window:
1. Open a command window.
2. Run the db2envar.bat file using the fully qualified path for the DB2 copy

that you want the application to use:
DB2_Copy_install_dir\bin\db2envar.bat

3. Run the CLI application from the same command window.
This will set up all the environment variables for the selected DB2 copy in the
command window where the db2envar.bat was run. Once the command
window has been closed and a new one opened, the CLI application will run
against the default DB2 Copy unless the db2envar.bat for another DB2 copy is
run again.

v Using the db2SelectDB2Copy API: For applications that are dynamically linked,
you can call this API before loading any DB2 DLLs within your application
process. This API sets up the required environment for your application to use
the DB2 copy that you want to use. The /delayload linking option can be used
to delay the loading of any DB2 DLL. For example, if your CLI application links
db2api.lib, then you must use the /delayload option of your linker to delay the
load db2app.dll:
cl -Zi -MDd -Tp App.C /link /DELAY:nobind /DELAYLOAD:db2app.dll

advapi32.lib psapi.lib db2api.lib delayimp.lib

To use the API, you will need to include db2ApiInstall.h, which will force your
application to statically link in db2ApiInstall.lib.

v Using LoadLibraryEx: Instead of using LoadLibrary, you can call LoadLibraryEx
with the LOAD_WITH_ALTERED_SEARCH_PATH parameter to load the
db2app.dll that corresponds to the version of the DB2 copy you want to use.
For example:
HMODULE hLib = LoadLibraryEx("c:\\sqllib\\bin\\db2app.dll",

NULL, LOAD_WITH_ALTERED_SEARCH_PATH);

CLI bind files and package names
CLI packages are automatically bound to databases when the databases are created
or upgraded, or a fix pack is applied to either the client or the server. If a user has
intentionally dropped a package, then you must rebind db2cli.lst.

Rebind db2cli.lst by issuing the following command:

Linux and UNIX
db2 bind BNDPATH/@db2cli.lst blocking all grant public

Windows
db2 bind "%DB2PATH%\bnd\@db2cli.lst" blocking all grant public

The db2cli.lst file contains the names of the required bind files for CLI to connect
to DB2 servers on Linux, UNIX, and Windows (db2clipk.bnd and db2clist.bnd).

Chapter 19. Configuring your development and runtime environment 247

For host and IBM Power Systems servers use one of ddcsvm.lst, ddcsmvs.lst,
ddcsvse.lst, or ddcs400.lst bind list files.

Warnings that are generated when binding CLI packages (such as db2clist.bnd or
db2cli.lst) to workstation or host servers are expected. This is because DB2
database systems use generic bind files, but the bind file packages for CLI
packages contain sections that apply to specific platforms. Therefore, a DB2
database system might generate warnings during the binding against a server,
when it encounters a platform-specific section that does not apply to the server.

The following message is an example of a warning that can be ignored which
might occur when binding a CLI package (such as db2clist.bnd or db2cli.lst) to
a workstation server:
LINE MESSAGES FOR db2clist.bnd
------ --

235 SQL0440N No authorized routine named "POSSTR" of type
"FUNCTION" having compatible arguments was found.
SQLSTATE=42884

Table 39. CLI bind files and package names

Bind file name Package name

Needed by DB2
servers on

Linux, UNIX,
and Windows

Needed by host
servers Description

db2clipk.bnd SYSSHxyy Yes Yes dynamic
placeholders -
small package
WITH HOLD

SYSSNxyy Yes Yes dynamic
placeholders -
small Package

NOT WITH
HOLD

SYSLHxyy Yes Yes dynamic
placeholders -
large package
WITH HOLD

SYSLNxyy Yes Yes dynamic
placeholders -
large package
NOT WITH

HOLD

db2clist.bnd SYSSTAT Yes Yes common static
CLI functions

db2schema.bnd SQLL9vyy Yes No catalog function
support

248 Call Level Interface Guide and Reference Volume 1

Table 39. CLI bind files and package names (continued)

Bind file name Package name

Needed by DB2
servers on

Linux, UNIX,
and Windows

Needed by host
servers Description

Note:

v 'S' represents a small package and 'L' represents a large package

v 'H' represents WITH HOLD, and 'N' represents NOT WITH HOLD.

v 'v' represents the DB2 server version: for example, E=Version 8, F=Version 9

v 'x' is the isolation level: 0=NC, 1=UR, 2=CS, 3=RS, 4=RR

v 'yy' is the package iteration 00 through FF

v 'zz' is unique for each platform

For example, for the dynamic packages:

v SYSSN100 A small package (65 sections) where all cursor declarations are for non-held
cursors. Bound with isolation level UR. This is the first iteration of that package.

v SYSLH401 A large package (385 sections) where all cursor declarations are for held
cursors. Bound with isolation level RS. This is the second iteration of that package.

Previous versions of DB2 servers do not need all of the bind files and will therefore return
errors at bind time. Use the bind option SQLERROR CONTINUE so that the same package can
be bound on all platforms and errors will be ignored for any statements not supported
there.

db2schema.bnd bind file

The db2schema.bnd bind file is automatically bound when the database is created
or upgraded, or a fix pack is applied on DB2 servers on Linux, UNIX, and
Windows, and exists only on these types of servers. This bind file is located at the
server and should be bound manually (from the server), if the package was
intentionally dropped by a user or if an SQL1088W (+1088) warning is received
after database creation or upgrade.

Only the most recent version of this package is needed.

If the package is missing, it must be rebound locally on the server. Do not bind
this package against remote servers (for example, against a host database). The
bind file is found in the sqllib/bnd directory of the instance home directory, and is
rebound with the following command:
bind db2schema.bnd blocking all grant public

If an SQL1088W warning was received after database creation or upgrade, and the
db2schema.bnd package is missing, increase the applheapsz database configuration
parameter to 128 or greater, and attempt to rebind. No errors should be reported
during binding.

Bind option limitations for CLI packages

Some bind options might not take effect when binding CLI packages with any of
the following list files: db2cli.lst, ddcsmvs.lst, ddcs400.lst, ddcsvm.lst, or
ddcsvse.lst. Because CLI packages are used by CLI, ODBC, JDBC, OLE DB, .NET,
and ADO applications, any changes made to the CLI packages affect all
applications of these types. Only a subset of bind options are therefore supported

Chapter 19. Configuring your development and runtime environment 249

by default when binding CLI packages. The supported options are: ACTION,
COLLECTION, CLIPKG, OWNER, and REPLVER. All other bind options that
impact CLI packages are ignored.

To create CLI packages with bind options that are not supported by default,
specify the COLLECTION bind option with a collection ID that is different from
the default collection ID, NULLID. Any bind options specified are then accepted.
For example, to create CLI packages with the KEEPDYNAMIC YES bind option,
which is not supported by default, issue the following command:
db2 bind @db2cli.lst collection newcolid keepdynamic yes

In order for CLI/ODBC applications to access the CLI packages created in the new
collection, set the CurrentPackageSet CLI/ODBC keyword in the db2cli.ini
initialization file to the new collection ID.

To overwrite CLI packages that already exist under a particular collection ID,
perform either of the following actions:
v Drop the existing CLI package before issuing the bind command for this

collection ID.
v Specify the ACTION REPLACE bind option when issuing the bind command.

250 Call Level Interface Guide and Reference Volume 1

Chapter 20. Building CLI applications

Building CLI applications on UNIX
DB2 provides build scripts for compiling and linking CLI programs. These are
located in the sqllib/samples/cli directory, along with sample programs that can
be built with these files.

The script file bldapp contains the commands to build a CLI application. It takes
up to four parameters, represented inside the script file by the variables $1, $2, $3,
and $4. The parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for CLI applications that do not
contain embedded SQL. Building embedded SQL programs requires a connection
to the database so three optional parameters are also provided: the second
parameter, $2, specifies the name of the database to which you want to connect;
the third parameter, $3, specifies the user ID for the database, and $4 specifies the
password. If the program contains embedded SQL, indicated by the .sqc
extension, then the embprep script is called to precompile the program, producing a
program file with a .c extension.

About this task

The following examples show you how to build and run CLI applications. To build
the sample program tbinfo from the source file tbinfo.c, enter:

bldapp tbinfo

The result is an executable file, tbinfo. You can run the executable file by entering
the executable name:

tbinfo

Procedure
v Building and Running Embedded SQL Applications There are three ways to

build the embedded SQL application, dbusemx, from the source file dbusemx.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp dbusemx

2. If connecting to another database on the same instance, also enter the
database name:

bldapp dbusemx database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp dbusemx database userid password

The result is an executable file, dbusemx.
v There are three ways to run this embedded SQL application:

1. If accessing the sample database on the same instance, simply enter the
executable name:

dbusemx

2. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

© Copyright IBM Corp. 2012 251

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

AIX CLI application compile and link options
The compile and link options in this topic are recommended by DB2 for building
CLI applications with the AIX IBM C compiler. They are demonstrated in the
sqllib/samples/cli/bldapp build script.

Compile options:

xlc The IBM C compiler.

$EXTRA_CFLAG
Contains the value "-q64" for 64-bit environments; otherwise, contains no
value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link
steps.

Link options:

xlc Use the compiler as a front end for the linker.

$EXTRA_CFLAG
Contains the value "-q64" for 64-bit environments; otherwise, contains no
value.

-o $1 Specify the executable program.

$1.o Specify the object file.

utilcli.o
Include the utility object file for error checking.

-L$DB2PATH/$LIB
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/$LIB. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

HP-UX CLI application compile and link options
The compile and link options in this topic are recommended by DB2 for building
CLI applications with the HP-UX C compiler. They are demonstrated in the
sqllib/samples/cli/bldapp build script.

Compile options:

cc Use the C compiler.

$EXTRA_CFLAG
If the HP-UX platform is IA64 and 64-bit support is enabled, this flag
contains the value +DD64; if 32-bit support is enabled, it contains the value
+DD32.

252 Call Level Interface Guide and Reference Volume 1

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

-Ae Enables HP ANSI extended mode.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

cc Use the compiler as a front end for the linker.

$EXTRA_CFLAG
If the HP-UX platform is IA64 and 64-bit support is enabled, this flag
contains the value +DD64; if 32-bit support is enabled, it contains the value
+DD32.

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

-o $1 Specify the executable program.

$1.o Specify the object file.

utilcli.o
Include the utility object file for error checking.

$EXTRA_LFLAG
Specify the runtime path. If set, for 32-bit it contains the value
-Wl,+b$HOME/sqllib/lib32, and for 64-bit: -Wl,+b$HOME/sqllib/lib64. If
not set, it contains no value.

-L$DB2PATH/$LIB
Specify the location of the DB2 runtime shared libraries. For 32-bit:
$HOME/sqllib/lib32; for 64-bit: $HOME/sqllib/lib64.

-ldb2 Link with the database manager library.

Refer to your compiler documentation for additional compiler options.

Linux CLI application compile and link options
The compile and link options in this topic are recommended by DB2 for building
CLI applications with the GNU/Linux gcc compiler. They are demonstrated in the
sqllib/samples/cli/bldapp build script.

Compile options:

gcc The C compiler.

$EXTRA_C_FLAGS
Consists of one of the listed flags:
v -m31 on Linux for zSeries® only, to build a 32-bit library;
v -m32 on Linux for x86, x64 and POWER®, to build a 32-bit library;
v -m64 on Linux for zSeries, POWER, x64, to build a 64-bit library; or
v No value on Linux for IA64, to build a 64-bit library.

Chapter 20. Building CLI applications 253

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

gcc Use the compiler as a front end for the linker.

$EXTRA_C_FLAGS
Consists of one of the listed flags:
v -m31 on Linux for zSeries only, to build a 32-bit library;
v -m32 on Linux for x86, x64 and POWER, to build a 32-bit library;
v -m64 on Linux for zSeries, POWER, x64, to build a 64-bit library; or
v No value on Linux for IA64, to build a 64-bit library.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error checking.

$EXTRA_LFLAG
For 32-bit it contains the value "-Wl,-rpath,$DB2PATH/lib32", and for
64-bit it contains the value "-Wl,-rpath,$DB2PATH/lib64".

-L$DB2PATH/$LIB
Specify the location of the DB2 static and shared libraries at link-time. For
example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit:
$HOME/sqllib/lib64.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Solaris CLI application compile and link options
The compile and link options in this topic are recommended by DB2 for building
CLI applications with the Solaris C compiler. They are demonstrated in the
sqllib/samples/cli/bldapp build script.

Compile and link options for bldapp

Compile options:

cc Use the C compiler.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set as follows:
v "v8plusa" for 32-bit applications on Solaris SPARC
v "v9" for 64-bit applications on Solaris SPARC
v "sse2" for 32-bit applications on Solaris x64
v "amd64" for 64-bit applications on Solaris x64

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

254 Call Level Interface Guide and Reference Volume 1

-c Perform compile only; no link. This script has separate compile and link
steps.

Link options:

cc Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set to either
"v8plusa" for 32-bit, or "v9" for 64-bit.

-mt Link in multi-thread support to prevent problems calling fopen.

Note: If POSIX threads are used, DB2 applications also have to link with
-lpthread, whether or not they are threaded.

-o $1 Specify the executable program.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error checking.

-L$DB2PATH/$LIB
Specify the location of the DB2 static and shared libraries at link-time. For
example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit:
$HOME/sqllib/lib64.

$EXTRA_LFLAG
Specify the location of the DB2 shared libraries at run time. For 32-bit it
contains the value "-R$DB2PATH/lib32", and for 64-bit it contains the
value "-R$DB2PATH/lib64".

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Building CLI multi-connection applications on UNIX
DB2 Database for Linux, UNIX, and Windows provides build scripts for compiling
and linking CLI programs. These are located in the sqllib/samples/cli directory,
along with sample programs that can be built with these files.

About this task

The build file, bldmc, contains the commands to build a DB2 multi-connection
program, requiring two databases. The compile and link options are the same as
those used in bldapp.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the first database to which you want to
connect. The third parameter, $3, specifies the second database to which you want
to connect. These are all required parameters.

Note: The makefile hardcodes default values of "sample" and "sample2" for the
database names ($2 and $3) so if you are using the makefile, and accept these
defaults, you only have to specify the program name (the $1 parameter). If you are
using the bldmc script, you must specify all three parameters.

Chapter 20. Building CLI applications 255

Optional parameters are not required for a local connection, but are required for
connecting to a server from a remote client. These are: $4 and $5 to specify the
user ID and password for the first database; and $6 and $7 to specify the user ID
and password for the second database.

For the multi-connection sample program, dbmconx, you require two databases. If
the sample database is not yet created, you can create it by entering db2sampl on
the command line. The second database, here called sample2, can be created with
one of the following commands:

Procedure
v If creating the database locally:

db2 create db sample2

v If creating the database remotely:
db2 attach to node_name
db2 create db sample2
db2 detach
db2 catalog db sample2 as sample2 at node node_name

where node_name is the database partition where the database resides.
v Multi-connection also requires that the TCP/IP listener is running. To ensure

that the TCP/IP listener is running, follow the listed steps:
1. Set the environment variable DB2COMM to TCP/IP as follows:

db2set DB2COMM=TCPIP

2. Update the database manager configuration file with the TCP/IP service
name as specified in the services file:

db2 update dbm cfg using SVCENAME TCP/IP_service_name

Each instance has a TCP/IP service name listed in the services file. Ask your
system administrator if you cannot locate it or do not have the file
permission to read the services file. On UNIX and Linux systems, the
services file is located in: /etc/services

3. Stop and restart the database manager in order for these changes to take
effect:

db2stop
db2start

The dbmconx program consists of five files:

dbmconx.c
Main source file for connecting to both databases.

dbmconx1.sqc
Source file for creating a package bound to the first database.

dbmconx1.h
Header file for dbmconx1.sqc included in dbmconx.sqc for accessing
the SQL statements for creating and dropping a table to be bound to
the first database.

dbmconx2.sqc
Source file for creating a package bound to the second database.

dbmconx2.h
Header file for dbmconx2.sqc included in dbmconx.sqc for accessing
the SQL statements for creating and dropping a table to be bound to
the second database.

256 Call Level Interface Guide and Reference Volume 1

v To build the multi-connection sample program, dbmconx, enter:
bldmc dbmconx sample sample2

The result is an executable file, dbmconx.
v To run the executable file, enter the executable name:

dbmconx

The program demonstrates a two-phase commit to two databases.

Building CLI applications on Windows
DB2 provides batch files for compiling and linking CLI programs. These are
located in the sqllib\samples\cli directory, along with sample programs that can
be built with these files.

About this task

The batch file bldapp.bat contains the commands to build a CLI program. It takes
up to four parameters, represented inside the batch file by the variables %1, %2, %3,
and %4.

The parameter, %1, specifies the name of your source file. This is the only required
parameter, and the only one needed for CLI programs that do not contain
embedded SQL. Building embedded SQL programs requires a connection to the
database so three optional parameters are also provided: the second parameter, %2,
specifies the name of the database to which you want to connect; the third
parameter, %3, specifies the user ID for the database, and %4 specifies the password.

If the program contains embedded SQL, indicated by the .sqc or .sqx extension,
then the embprep.bat batch file is called to precompile the program, producing a
program file with either a .c or a .cxx extension.

The following examples show you how to build and run CLI applications.

To build the sample program tbinfo from the source file tbinfo.c, enter:

bldapp tbinfo

The result is an executable file tbinfo. You can run the executable file by entering
the executable name:

tbinfo

Building and running embedded SQL applications

There are three ways to build the embedded SQL application, dbusemx,
from the source file dbusemx.sqc:

Procedure
1. If connecting to the sample database on the same instance, enter:

bldapp dbusemx

2. If connecting to another database on the same instance, also enter the database
name:

bldapp dbusemx database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

Chapter 20. Building CLI applications 257

bldapp dbusemx database userid password

The result is an executable file, dbusemx.
There are three ways to run this embedded SQL application:
a. If accessing the sample database on the same instance, simply enter the

executable name:
dbusemx

b. If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

c. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

Windows CLI application compile and link options
The compile and link options in this topic are recommended by DB2 for building
CLI applications with the Microsoft Visual C++ compiler. They are demonstrated in
the sqllib\samples\cli\bldapp.bat batch file.

Compile options:

%BLDCOMP%
Variable for the compiler. The default is cl, the Microsoft Visual C++
compiler. It can be also set to icl, the Intel C++ Compiler for 32-bit and
64-bit applications, or ecl, the Intel C++ Compiler for Itanium 64-bit
applications.

-Zi Enable debugging information.

-Od Disable optimizations. It is easier to use a debugger with optimization off.

-c Perform compile only; no link.

-W2 Set warning level.

-DWIN32
Compiler option necessary for Windows operating systems.

-J Compiler option. When using this option, any Visual Studio application
compiled with the -J option, the char members in the lconv structure will
be equal to the UCHAR_MAX value when it is not supported in the
current locale.

Link options:

link Use the linker.

-debug Include debugging information.

-out:%1.exe
Specify the executable.

%1.obj Include the object file.

utilcli.obj
Include the utility object file for error checking.

db2api.lib
Link with the DB2 API library.

258 Call Level Interface Guide and Reference Volume 1

/delayload:db2app.dll
Used to ensure that db2app.dll is not loaded until the first call to a DB2
API. This is required when using the db2SelectDB2Copy API.

db2ApiInstall.lib
Library to statically link in your application if you need to select a
particular DB2 copy that is installed on the computer using the
db2SelectDB2Copy API. Note: to use this functionality, you need to either
dynamically load db2app.dll or use the /delayload:db2app.dll option of
your compiler and call the db2SelectDB2Copy API before running any
other DB2 API's.

Refer to your compiler documentation for additional compiler options.

Building CLI multi-connection applications on Windows
DB2 provides batch files for compiling and linking CLI programs. These are
located in the sqllib\samples\cli directory, along with sample programs that can
be built with these files.

About this task

The batch file, bldmc.bat, contains the commands to build a DB2 multi-connection
program requiring two databases. The compile and link options are the same as
those used in bldapp.bat.

The first parameter, %1, specifies the name of your source file. The second
parameter, %2, specifies the name of the first database to which you want to
connect. The third parameter, %3, specifies the second database to which you want
to connect. These are all required parameters.

Note: The makefile hardcodes default values of "sample" and "sample2" for the
database names (%2 and %3) so if you are using the makefile, and accept these
defaults, you only have to specify the program name (the %1 parameter). If you are
using the bldmc.bat file, you must specify all three parameters.

Optional parameters are not required for a local connection, but are required for
connecting to a server from a remote client. These are: %4 and %5 to specify the
user ID and password for the first database; and %6 and %7 to specify the user ID
and password for the second database.

For the multi-connection sample program, dbmconx, you require two databases. If
the sample database is not yet created, you can create it by entering db2sampl on
the command line. The second database, here called sample2, can be created with
one of the following commands:

Procedure
v If creating the database locally:

db2 create db sample2

v If creating the database remotely:
db2 attach to <node_name>
db2 create db sample2
db2 detach
db2 catalog db sample2 as sample2 at node <node_name>

where <node_name> is the database partition where the database resides.

Chapter 20. Building CLI applications 259

v Multi-connection also requires that the TCP/IP listener is running. To ensure
that the TCP/IP listener is running, follow the listed steps:
1. Set the environment variable DB2COMM to TCP/IP as follows:

db2set DB2COMM=TCPIP

2. Update the database manager configuration file with the TCP/IP service
name as specified in the services file:

db2 update dbm cfg using SVCENAME <TCP/IP service name>

Each instance has a TCP/IP service name listed in the services file. Ask your
system administrator if you cannot locate it or do not have the file
permission to read the services file.

3. Stop and restart the database manager in order for these changes to take
effect:

db2stop
db2start

The dbmconx program consists of five files:

dbmconx.c
Main source file for connecting to both databases.

dbmconx1.sqc
Source file for creating a package bound to the first database.

dbmconx1.h
Header file for dbmconx1.sqc included in dbmconx.sqc for accessing the
SQL statements for creating and dropping a table to be bound to the
first database.

dbmconx2.sqc
Source file for creating a package bound to the second database.

dbmconx2.h
Header file for dbmconx2.sqc included in dbmconx.sqc for accessing the
SQL statements for creating and dropping a table to be bound to the
second database.

v To build the multi-connection sample program, dbmconx, enter:
bldmc dbmconx sample sample2

The result is an executable file, dbmconx.
v To run the executable file, enter the executable name:

dbmconx

The program demonstrates a two-phase commit to two databases.

Building CLI applications with configuration files
The configuration file, cli.icc, in sqllib/samples/cli allows you to build CLI
programs.

Procedure

To use the configuration file to build the CLI sample program tbinfo from the
source file tbinfo.c:
1. Set the CLI environment variable:

export CLI=tbinfo

260 Call Level Interface Guide and Reference Volume 1

2. If you have a cli.ics file in your working directory, produced by building a
different program with the cli.icc file, delete the cli.ics file with this
command:

rm cli.ics

An existing cli.ics file produced for the same program you are going to build
again does not have to be deleted.

3. Compile the sample program by entering:
vacbld cli.icc

Note: The vacbld command is provided by VisualAge® C++.
The result is an executable file, tbinfo. You can run the program by entering
the executable name:

tbinfo

Results

Building and running embedded SQL applications

You use the configuration file after the program is precompiled with the
embprep file. The embprep file precompiles the source file and binds the
program to the database. You use the cli.icc configuration file to compile
the precompiled file.

There are three ways to precompile the embedded SQL application,
dbusemx, from the source file dbusemx.sqc:
v If connecting to the sample database on the same instance, enter:

embprep dbusemx

v If connecting to another database on the same instance, also enter the
database name:

embprep dbusemx database

v If connecting to a database on another instance, also enter the user ID
and password of the database instance:

embprep dbusemx database userid password

The result is a precompiled C file, dbusemx.c.

After it is precompiled, the C file can be compiled with the cli.icc file as
follows:
1. Set the CLI environment variable to the program name by entering:

export CLI=dbusemx

2. If you have a cli.ics file in your working directory, produced by
building a different program with the cli.icc or cliapi.icc file, delete
the cli.ics file with this command:

rm cli.ics

An existing cli.ics file produced for the same program you are going
to build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld cli.icc

There are three ways to run this embedded SQL application:
v If accessing the sample database on the same instance, simply enter the

executable name:
dbusemx

Chapter 20. Building CLI applications 261

v If accessing another database on the same instance, enter the executable
name and the database name:

dbusemx database

v If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

dbusemx database userid password

Building CLI stored procedures with configuration files
The configuration file, clis.icc, in sqllib/samples/cli, allows you to build CLI
stored procedures.

Procedure

To use the configuration file to build the CLI stored procedure spserver from the
source file spserver.c:
1. Set the CLIS environment variable to the program name by entering:

export CLIS=spserver

2. If you have a clis.ics file in your working directory, produced by building a
different program with the clis.icc file, delete the clis.ics file with this
command:

rm clis.ics

An existing clis.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld clis.icc

Note: The vacbld command is provided by VisualAge C++.
4. The stored procedure is copied to the server in the path sqllib/function

Next, catalog the stored procedures by running the spcreate.db2 script on the
server. First, connect to the database with the user ID and password of the
instance where the database is located:

db2 connect to sample userid password

If the stored procedures were previously cataloged, you can drop them with
this command:

db2 -td@ -vf spdrop.db2

Then catalog them with this command:
db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.
Once you build the stored procedure spserver, you can build the CLI client
application spclient that calls the stored procedure. You can build spclient by
using the configuration file, cli.icc.
To call the stored procedure, run the sample client application by entering:
spclient database userid password

where

262 Call Level Interface Guide and Reference Volume 1

database
Is the name of the database to which you want to connect. The name
could be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

Chapter 20. Building CLI applications 263

264 Call Level Interface Guide and Reference Volume 1

Chapter 21. Building CLI routines

Building CLI routines on UNIX
DB2 Database for Linux, UNIX, and Windows provides build scripts for compiling
and linking DB2 Call Level Interface (CLI) programs.

These are located in the sqllib/samples/cli directory, along with sample
programs that can be built with these files. The script file bldrtn contains the
commands to build CLI routines (stored procedures and user-defined functions).
bldrtn creates a shared library on the server. It takes a parameter for the source
file name, represented inside the script file by the variable $1.

Procedure

To build the sample program spserver from the source file spserver.c:
1. Enter the build script name and program name:

bldrtn spserver

The script file copies the shared library to the sqllib/function directory.
2. Next, catalog the routines by running the spcat script on the server:

spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by calling
spcreate.db2, and finally disconnects from the database. You can also call the
spdrop.db2 and spcreate.db2 scripts individually.

3. Then, unless this is the first time the shared library was built, stop and restart
the database to allow the new version of the shared library to be recognized. If
necessary, set the file mode for the shared library so the DB2 instance can
access it.

Results

Once you build the shared library, spserver, you can build the CLI client
application, spclient, that calls the routines within the shared library.

The client application can be built like any other CLI client application by using
the script file, bldapp.

To access the shared library, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name could
be sample, or its alias, or another database name.

userid Is a valid user ID.

© Copyright IBM Corp. 2012 265

password
Is a valid password.

The client application accesses the shared library, spserver, and executes the
routines on the server database. The output is returned to the client application.

AIX CLI routine compile and link options
The compile and link options in this topic are recommended by DB2 for building
CLI routines (stored procedures and user-defined functions) with the AIX IBM C
compiler. They are demonstrated in the sqllib/samples/cli/bldrtn build script.

Compile options:

xlc_r Use the multi-threaded version of the IBM C compiler, needed as the
routines may run in the same process as other routines (THREADSAFE) or
in the engine itself (NOT FENCED).

$EXTRA_CFLAG
Contains the value "-q64" for 64-bit environments; otherwise, contains no
value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

xlc_r Use the multi-threaded version of the compiler as a front end for the
linker.

$EXTRA_CFLAG
Contains the value "-q64" for 64-bit environments; otherwise, contains no
value.

-qmkshrobj
Create the shared library.

-o $1 Specify the executable program.

$1.o Specify the object file.

utilcli.o
Include the utility object file for error checking.

-L$DB2PATH/$LIB
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/$LIB. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

-ldb2 Link with the DB2 library.

-bE:$.exp
Specify an export file. The export file contains a list of routines.

Refer to your compiler documentation for additional compiler options.

266 Call Level Interface Guide and Reference Volume 1

HP-UX CLI routine compile and link options
The compile and link options in this topic are recommended by DB2 for building
CLI routines with the HP-UX C compiler. They are demonstrated in the
sqllib/samples/cli/bldrtn build script.

Compile options:

cc The C compiler.

$EXTRA_CFLAG
If the HP-UX platform is IA64 and 64-bit support is enabled, this flag
contains the value +DD64; if 32-bit support is enabled, it contains the value
+DD32.

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

+u1 Allow unaligned data access. Use only if your application uses unaligned
data.

+z Generate position-independent code.

-Ae Enables HP ANSI extended mode.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-D_POSIX_C_SOURCE=199506L
POSIX thread library option that ensures _REENTRANT is defined, needed
as the routines may run in the same process as other routines
(THREADSAFE) or in the engine itself (NOT FENCED).

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

ld Use the linker to link.

-b Create a shared library rather than a normal executable.

-o $1 Specify the executable.

$1.o Specify the object file.

utilcli.o
Link in the error-checking utility object file.

$EXTRA_LFLAG
Specify the runtime path. If set, for 32-bit it contains the value
+b$HOME/sqllib/lib32, and for 64-bit: +b$HOME/sqllib/lib64. If not set, it
contains no value.

-L$DB2PATH/$LIB
Specify the location of the DB2 runtime shared libraries. For 32-bit:
$HOME/sqllib/lib32; for 64-bit: $HOME/sqllib/lib64.

-ldb2 Link with the DB2 library.

-lpthread
Link with the POSIX thread library.

Refer to your compiler documentation for additional compiler options.

Chapter 21. Building CLI routines 267

Linux CLI routine compile and link options
The compile and link options in this topic are recommended by DB2 for building
CLI routines with the GNU/Linux gcc compiler. They are demonstrated in the
sqllib/samples/cli/bldrtn build script.

Compile options:

gcc The C compiler.

$EXTRA_C_FLAGS
Consists of one of the listed flags:
v -m31 on Linux for zSeries only, to build a 32-bit library;
v -m32 on Linux for x86, x64 and POWER, to build a 32-bit library;
v -m64 on Linux for zSeries, POWER, x64, to build a 64-bit library; or
v No value on Linux for IA64, to build a 64-bit library.

-fpic Allows position independent code.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

-D_REENTRANT
Defines _REENTRANT, needed as the routines may run in the same
process as other routines (THREADSAFE) or in the engine itself (NOT
FENCED).

Link options:

gcc Use the compiler as a front end for the linker.

$EXTRA_C_FLAGS
Consists of one of the listed flags:
v -m31 on Linux for zSeries only, to build a 32-bit library;
v -m32 on Linux for x86, x64 and POWER, to build a 32-bit library;
v -m64 on Linux for zSeries, POWER, x64, to build a 64-bit library; or
v No value on Linux for IA64, to build a 64-bit library.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error-checking.

-shared
Generate a shared library.

$EXTRA_LFLAG
Specify the location of the DB2 shared libraries at run time. For 32-bit it
contains the value "-Wl,-rpath,$DB2PATH/lib32". For 64-bit it contains the
value "-Wl,-rpath,$DB2PATH/lib64".

-L$DB2PATH/$LIB
Specify the location of the DB2 static and shared libraries at link-time. For
example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit:
$HOME/sqllib/lib64.

-ldb2 Link with the DB2 library.

268 Call Level Interface Guide and Reference Volume 1

-lpthread
Link with the POSIX thread library.

Refer to your compiler documentation for additional compiler options.

Solaris CLI routine compile and link options
The compile and link options in this topic are recommended by DB2 for building
CLI routines with the Solaris C compiler. They are demonstrated in the
sqllib/samples/cli/bldrtn build script.

Compile options:

cc The C compiler.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set as follows:
v "v8plusa" for 32-bit applications on Solaris SPARC
v "v9" for 64-bit applications on Solaris SPARC
v "sse2" for 32-bit applications on Solaris x64
v "amd64" for 64-bit applications on Solaris x64

-mt Allow multi-threaded support, needed as the routines may run in the same
process as other routines (THREADSAFE) or in the engine itself (NOT
FENCED).

-DUSE_UI_THREADS
Allows Sun's "UNIX International" threads APIs.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

cc Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set to either
"v8plusa" for 32-bit, or "v9" for 64-bit.

-mt Allow multi-threaded support, needed as the routines may run in the same
process as other routines (THREADSAFE) or in the engine itself (NOT
FENCED).

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o
Include the utility object file for error-checking.

Chapter 21. Building CLI routines 269

-L$DB2PATH/$LIB
Specify the location of the DB2 static and shared libraries at link-time. For
example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit:
$HOME/sqllib/lib64.

$EXTRA_LFLAG
Specify the location of the DB2 shared libraries at run time. For 32-bit it
contains the value "-R$DB2PATH/lib32", and for 64-bit it contains the
value "-R$DB2PATH/lib64".

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Building CLI routines on Windows
DB2 Database for Linux, UNIX, and Windows provides batch files for compiling
and linking CLI programs.

These are located in the sqllib\samples\cli directory, along with sample
programs that can be built with these files. The batch file bldrtn.bat contains the
commands to build CLI routines (stored procedures and user-defined functions).
bldrtn.bat creates a DLL on the server. It takes one parameter, represented inside
the batch file by the variable %1, which specifies the name of your source file. The
batch file uses the source file name for the DLL name.

Procedure

To build the spserver DLL from the source file spserver.c:
1. Enter the batch file name and program name:

bldrtn spserver

The batch file uses the module definition file spserver.def, contained in the
same directory as the CLI sample programs, to build the DLL. The batch file
then copies the DLL, spserver.dll, to the server in the path sqllib\function.

2. Next, catalog the routines by running the spcat script on the server:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by calling
spcreate.db2, and finally disconnects from the database. You can also call the
spdrop.db2 and spcreate.db2 scripts individually.

3. Then, unless this is the first time the shared library was built, stop and restart
the database to allow the new version of the shared library to be recognized. If
necessary, set the file mode for the shared library so the DB2 instance can
access it.

Results

Once you build the DLL spserver, you can build the CLI client application
spclient that calls the routines within it.

You can build spclient by using the script file, bldapp.

To call the routines, run the sample client application by entering:

spclient database userid password

270 Call Level Interface Guide and Reference Volume 1

where

database
Is the name of the database to which you want to connect. The name could
be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the DLL, spserver, which executes the routines on
the server database. The output is returned to the client application.

Windows CLI routine compile and link options
The compile and link options in this topic are recommended by DB2 for building
CLI routines with the Microsoft Visual C++ compiler. They are demonstrated in the
sqllib\samples\cli\bldrtn.bat batch file.

Compile options:

%BLDCOMP%
Variable for the compiler. The default is cl, the Microsoft Visual C++
compiler. It can be also set to icl, the Intel C++ Compiler for 32-bit and
64-bit applications, or ecl, the Intel C++ Compiler for Itanium 64-bit
applications.

-Zi Enable debugging information

-Od Disable optimizations. It is easier to use a debugger with optimization off.

-c Perform compile only; no link. The batch file has separate compile and link
steps.

-W2 Set warning level.

-DWIN32
Compiler option necessary for Windows operating systems.

-MD Link using MSVCRT.LIB

Link options:

link Use the 32-bit linker.

-debug Include debugging information.

-out:%1.dll
Build a .DLL file.

%1.obj Include the object file.

utilcli.obj
Include the utility object file for error-checking.

db2api.lib
Link with the DB2 API library.

-def:%1.def
Use the module definition file.

/delayload:db2app.dll
Used to ensure that db2app.dll is not loaded until the first call to a DB2
API. This is required when using the db2SelectDB2Copy API.

Chapter 21. Building CLI routines 271

db2ApiInstall.lib
Library to statically link in your application if you need to select a
particular DB2 copy that is installed on the computer using the
db2SelectDB2Copy API. Note: to use this functionality, you need to either
dynamically load db2app.dll or use the /delayload:db2app.dll option of
your compiler and call the db2SelectDB2Copy API before running any
other DB2 API's.

Refer to your compiler documentation for additional compiler options.

272 Call Level Interface Guide and Reference Volume 1

Appendix A. Overview of the DB2 technical information

DB2 technical information is available in multiple formats that can be accessed in
multiple ways.

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command-line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2
technical issue that the documentation does not resolve, contact your local IBM
service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 10.1 manuals in PDF format can be
downloaded from www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 2012 273

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 40. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-3864-00 Yes April, 2012

Administrative Routines
and Views

SC27-3865-00 No April, 2012

Call Level Interface
Guide and Reference
Volume 1

SC27-3866-00 Yes April, 2012

Call Level Interface
Guide and Reference
Volume 2

SC27-3867-00 Yes April, 2012

Command Reference SC27-3868-00 Yes April, 2012

Database Administration
Concepts and
Configuration Reference

SC27-3871-00 Yes April, 2012

Data Movement Utilities
Guide and Reference

SC27-3869-00 Yes April, 2012

Database Monitoring
Guide and Reference

SC27-3887-00 Yes April, 2012

Data Recovery and High
Availability Guide and
Reference

SC27-3870-00 Yes April, 2012

Database Security Guide SC27-3872-00 Yes April, 2012

DB2 Workload
Management Guide and
Reference

SC27-3891-00 Yes April, 2012

Developing ADO.NET
and OLE DB
Applications

SC27-3873-00 Yes April, 2012

Developing Embedded
SQL Applications

SC27-3874-00 Yes April, 2012

Developing Java
Applications

SC27-3875-00 Yes April, 2012

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-3876-00 No April, 2012

Developing User-defined
Routines (SQL and
External)

SC27-3877-00 Yes April, 2012

Getting Started with
Database Application
Development

GI13-2046-00 Yes April, 2012

274 Call Level Interface Guide and Reference Volume 1

Table 40. DB2 technical information (continued)

Name Form Number Available in print Last updated

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI13-2047-00 Yes April, 2012

Globalization Guide SC27-3878-00 Yes April, 2012

Installing DB2 Servers GC27-3884-00 Yes April, 2012

Installing IBM Data
Server Clients

GC27-3883-00 No April, 2012

Message Reference
Volume 1

SC27-3879-00 No April, 2012

Message Reference
Volume 2

SC27-3880-00 No April, 2012

Net Search Extender
Administration and
User's Guide

SC27-3895-00 No April, 2012

Partitioning and
Clustering Guide

SC27-3882-00 Yes April, 2012

pureXML Guide SC27-3892-00 Yes April, 2012

Spatial Extender User's
Guide and Reference

SC27-3894-00 No April, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-3896-00 Yes April, 2012

SQL Reference Volume 1 SC27-3885-00 Yes April, 2012

SQL Reference Volume 2 SC27-3886-00 Yes April, 2012

Text Search Guide SC27-3888-00 Yes April, 2012

Troubleshooting and
Tuning Database
Performance

SC27-3889-00 Yes April, 2012

Upgrading to DB2
Version 10.1

SC27-3881-00 Yes April, 2012

What's New for DB2
Version 10.1

SC27-3890-00 Yes April, 2012

XQuery Reference SC27-3893-00 No April, 2012

Table 41. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Personal Edition

SC27-3861-00 Yes April, 2012

DB2 Connect Installing
and Configuring DB2
Connect Servers

SC27-3862-00 Yes April, 2012

DB2 Connect User's
Guide

SC27-3863-00 Yes April, 2012

Appendix A. Overview of the DB2 technical information 275

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
Documentation for other versions of DB2 products is found in separate information
centers on ibm.com®.

About this task

For DB2 Version 10.1 topics, the DB2 Information Center URL is
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1.

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 10.1 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

276 Call Level Interface Guide and Reference Volume 1

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates update existing Information Center features and languages.

One benefit of automatic updates is that the Information Center is unavailable
for a shorter time compared to during a manual update. In addition, automatic
updates can be set to run as part of other batch jobs that run periodically.

v Manual updates can be used to update existing Information Center features and
languages. Automatic updates reduce the downtime during the update process,
however you must use the manual process when you want to add features or
languages. For example, a local Information Center was originally installed with
both English and French languages, and now you want to also install the
German language; a manual update will install German, as well as, update the
existing Information Center features and languages. However, a manual update
requires you to manually stop, update, and restart the Information Center. The
Information Center is unavailable during the entire update process. In the
automatic update process the Information Center incurs an outage to restart the
Information Center after the update only.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V10.1
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 10.1 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Appendix A. Overview of the DB2 technical information 277

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system by using a machine that is connected to the internet
and has the DB2 Information Center installed. If many users on your network
will be installing the documentation updates, you can reduce the time required
for individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv10 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 10.1 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

278 Call Level Interface Guide and Reference Volume 1

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
/opt/ibm/db2ic/V10.1 directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check that the selections you want to install,
then click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the doc\bin directory within the installation
directory, and run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the doc/bin directory within the installation directory,
and run the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv10 start

Results

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 database products.
Lessons provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/.

Appendix A. Overview of the DB2 technical information 279

http://publib.boulder.ibm.com/infocenter/db2luw/10r1/

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center, which contains:
v Information about how to isolate and identify problems with DB2

diagnostic tools and utilities.
v Solutions to some of the most common problem.
v Advice to help solve other problems you might encounter with your

DB2 database products.

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows

Terms and conditions
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

280 Call Level Interface Guide and Reference Volume 1

http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks: IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at www.ibm.com/legal/copytrade.shtml

Appendix A. Overview of the DB2 technical information 281

http://www.ibm.com/legal/copytrade.shtml

282 Call Level Interface Guide and Reference Volume 1

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2012 283

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

284 Call Level Interface Guide and Reference Volume 1

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Celeron, Intel SpeedStep, Itanium,

and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 285

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

286 Call Level Interface Guide and Reference Volume 1

Index

A
about this book

Call Level Interface Guide and Reference, Volume 1 vii
ACOS scalar function

vendor escape clause 176
acrRetryInterval IBM Data Server Driver configuration

parameter
Linux, UNIX, and Windows 190

acrRetryInterval IBM Data Server Driver configuration
parameterDB2 for z/OS 224

alternate groups
automatic client rerouting

DB2 Database for Linux, UNIX, and Windows 200
DB2 for z/OS 234

alternateserverlist IBM Data Server Driver configuration
parameter

Linux, UNIX, and Windows 190
AltHostName CLI/ODBC keyword 30
ALTHOSTNAME variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

AltPort CLI/ODBC keyword 30
ALTPORT variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

APD (application parameter descriptor) 133
application parameter descriptor (APD) 133
application programming for high availability

connections to DB2 Database for Linux, UNIX, and
Windows 202

connections to Informix 215
direct connections to DB2 for z/OS 236

application row descriptor (ARD) 133
ARD (application row descriptor) 133
arrays

input
column-wise 74
row-wise 75

output 101
ASCII scalar function

vendor escape clauses 176
ASIN scalar function

vendor escape clauses 176
asynchronous function execution

CLI 165, 166
ATAN scalar function

vendor escape clauses 176
ATAN2 scalar function

vendor escape clauses 176
Authentication CLI/ODBC keyword 30
AUTHENTICATION variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

automatic client reroute
alternate groups

DB2 Database for Linux, UNIX, and Windows 200
DB2 for z/OS 234

client applications 187
client configuration

DB2 Database for Linux, UNIX, and Windows 190

automatic client reroute (continued)
client-side

DB2 Database for Linux, UNIX, and Windows
server 198

Informix Dynamix Server server 214
server 232

DB2 Database for Linux, UNIX, and Windows server
client-side 198

Informix Dynamic Server server
client-side 214

server
client-side 232

B
BIDI CLI/ODBC keyword 31
BIDI variable 16
binary large objects (BLOBs)

CLI applications 60
bind files

package names 247
binding

application variables 71, 104
column bindings 94, 104
packages

limitations for CLI 249
parameter markers

column-wise 74
details 71
row-wise 75

BLOB data type
CLI applications 60

bookmarks in CLI
deleting bulk data 114
details 90
inserting bulk data 108
result set terminology 89

C
call level interface (CLI)

AIX
application compiler options 252
routine compiler options 266

applications
ABS scalar function 176
building (UNIX) 251
building (Windows) 257
building multi-connection (UNIX) 255
building multi-connection (Windows) 259
building with configuration files 260
DB2 Transaction Manager 160
initializing 53
issuing SQL statements 70
locators 106
multithreaded 171
terminating 125
XML data 68

array data
retrieving using column-wise binding 103

© Copyright IBM Corp. 2012 287

call level interface (CLI) (continued)
array data (continued)

retrieving using row-wise binding 103
array input chaining 153
binding parameter markers 73
bookmarks

deleting bulk data 114
inserting bulk data 108
retrieving bulk data 101
retrieving data 99
updating bulk data 113

bulk data
deleting 114
inserting 108
retrieving 101
updating 113

compound SQL (CLI) statements
executing 83

cursors 85, 88
deferred prepare 82
deleting data 113, 114
descriptors

consistency checks 136
overview 133

drivers
overview 7
registering XA library with DTC 17

environment setup 241, 245
functions

executing asynchronously 165, 166
Unicode 156

handles
allocating 70
details 55
freeing 123

HP-UX
application compiler options 252
routine compiler options 267

IBM Data Server Driver for ODBC and CLI
CLI and ODBC functions 35
configuring 11, 15, 18, 19
connecting to databases 20
DB2 registry variables 16
deploying with applications 46
environment variables 16
installing 8, 9, 10
LDAP support 36
license requirements 47
obtaining 8
overview 7
problem determination 37
restrictions 36
running database applications 34
XA functions 35

initializing 53, 54
Linux

application compiler options 253
routine compiler options 268

LOB locators 61
long data 65
multithreaded applications model 170
overview 1
performance improvement 153
query results 92
routines

building (UNIX) 265
building (Windows) 270

call level interface (CLI) (continued)
routines (continued)

building with configuration files 262
Solaris operating system

application compiler options 254
routine compiler options 269

SQL statements
executing 81
issuing 70
preparing 81

SQL/XML functions 68
static profiling 118
stored procedures

calling 115
commit behavior 117

trusted connections 127
Unicode

applications 155
functions 156
ODBC driver managers 157

updating data 113
Windows

application compiler options 258
routine compiler options 271

XML data
changing default type 68
handling 68
inserts 111
retrieval 107
updates 111

XQuery expressions 68
capture file 121
case sensitivity

cursor name arguments 58
catalog functions

overview 143
catalogs

querying 143
CEILING scalar function

CLI applications 176
CHAR scalar function

CLI applications 176
character strings

interpreting 58
length 58

CICS (Customer Information Control System)
running applications 162

CLI/ODBC
static profiling

creating static SQL 118
CLI/ODBC keywords

AltHostName 30
AltPort 30
Authentication 30
BIDI 31
ConnectType 159
DiagLevel 39
DiagPath 40
FileDSN 31
initialization file 12
Instance 32
Interrupt 32
KRBPlugin 32
MapXMLCDefault 68
MapXMLDescribe 68
NotifyLevel 39
Protocol 33

288 Call Level Interface Guide and Reference Volume 1

CLI/ODBC keywords (continued)
PWDPlugin 33
SaveFile 34

CLI/ODBC/JDBC
static profiling

capture file 121
client affinities

.NET 203, 216
CLI 203, 216
CLI clients.NET clients for Informix connections

examples of enabling 219
CLI or .NET application connection to DB2 Database for

Linux, UNIX, and Windows
example of enabling 206

example of enabling
CLI or .NET application connection to DB2 Database for

Linux, UNIX, and Windows 206
examples of enabling

CLI clients.NET clients for Informix connections 219
IBM Data Server Driver for JDBC and SQLJ 203, 216
non-Java clients 203, 216

client applications
automatic client reroute 187
high availability 187
transaction-level load balancing 187

client configuration
automatic client reroute

DB2 Database for Linux, UNIX, and Windows 190
workload balancing support

DB2 Database for Linux, UNIX, and Windows 195
client configuration, automatic client reroute

DB2 for z/OS 224
client configuration, high-availability support

Informix 210
client configuration, Sysplex workload balancing

DB2 for z/OS 224
clients

automatic client reroute, IDS server 214
automatic client reroute, server 232
enabling XA support 240

CLOB data type
CLI applications 60

column binding offsets 104
column-wise binding 103
columns

binding in CLI 94
commits

CLI stored procedures 117
transactions

CLI 79
compiler options

AIX
CLI applications 252
CLI routines 266

HP-UX
CLI applications 252
CLI routines 267

Linux
CLI applications 253
CLI routines 268

Solaris
CLI applications 254
CLI routines 269

Windows
CLI applications 258
CLI routines 271

compound SQL (CLI) statement
executing 83

CONCAT scalar function
CLI applications 176

concise descriptor functions 141
connectionLevelLoadBalancing IBM Data Server Driver

configuration parameter
z/OS 224

connections
multiple 147
SQLDriverConnect function 25

ConnectType CLI/ODBC configuration keyword 159
conversion

CLI applications
overview 57

CONVERT scalar function 176
coordinated transactions

distributed 159
establishing 160

core level functions
ODBC 1

COS scalar function
CLI applications 176

COT scalar function
CLI applications 176

CURDATE scalar function 176
cursors

call level interface (CLI)
bookmarks 90
details 85
selection 88

dynamic scrollable 85
holding across rollbacks 147
scrollable

retrieving data in CLI 98
CURTIME scalar function 176
Customer Information Control System (CICS)

running applications 162

D
data representation

deleting
CLI applications 114

inserting 108
retrieving

CLI 105
data sources

connecting to
SQLDriverConnect function 25

DATABASE scalar function 176
DAYNAME scalar function

CLI applications 176
DAYOFMONTH scalar function 176
DAYOFWEEK scalar function

CLI applications 176
DAYOFWEEK_ISO scalar function

CLI applications 176
DAYOFYEAR scalar function

CLI applications 176
DB2 copies

CLI/ODBC applications 246
DB2 Database for Linux, UNIX, and Windows

client configuration
automatic client reroute support 190
workload balancing support 195

Index 289

DB2 Database for Linux, UNIX, and Windows (continued)
connections

application programming for high availability 202
high-availability support 188
workload balancing, operation 199

DB2 Database for Linux, UNIX, and Windows high availability
support, example of enabling

non-Java clients 193, 196
DB2 for z/OS

client configuration, automatic client reroute support 224
client configuration, Sysplex workload balancing 224
direct connections

application programming for high availability 236
direct connections, operation 231
Sysplex workload balancing 222
workload balancing, operation 233

DB2 Information Center
updating 276, 278
versions 276

DB2_DIAGPATH variable
IBM Data Server Driver for ODBC and CLI environment

variable 16
DB2_ENABLE_LDAP variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

DB2_FORCE_NLS_CACHE registry variable
IBM Data Server Driver for ODBC and CLI environment

variable 16
DB2_NO_FORK_CHECK registry variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

DB2ACCOUNT registry variable
IBM Data Server Driver for ODBC and CLI environment

variable 16
DB2BIDI registry variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

db2cli.ini file
details 12

DB2CLIINIPATH variable
IBM Data Server Driver for ODBC and CLI environment

variable 16
DB2CODEPAGE registry variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

DB2DOMAINLIST variable
IBM Data Server Driver for ODBC and CLI environment

variable 16
DB2GRAPHICUNICODESERVER registry variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

DB2LDAP_BASEDN variable
IBM Data Server Driver for ODBC and CLI environment

variable 16
DB2LDAP_CLIENT_PROVIDER registry variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

DB2LDAP_KEEP_CONNECTION registry variable
IBM Data Server Driver for ODBC and CLI environment

variable 16
DB2LDAP_SEARCH_SCOPE variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

DB2LDAPHOST variable
IBM Data Server Driver for ODBC and CLI environment

variable 16

DB2LOCALE registry variable
IBM Data Server Driver for ODBC and CLI environment

variable 16
DB2NOEXITLIST registry variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

db2oreg1.exe utility 17
DB2SORCVBUF variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

DB2SOSNDBUF variable
IBM Data Server Driver for ODBC and CLI environment

variable 16
DB2TCP_CLIENT_RCVTIMEOUT registry variable

IBM Data Server Driver for ODBC and CLI environment
variable 16

DB2TERRITORY registry variable
IBM Data Server Driver for ODBC and CLI environment

variable 16
DBCLOB data type

details 60
deferred arguments 71
deferred prepares 82
DEGREES scalar function

CLI applications 176
descriptor handles

details 133
descriptors

allocating 137
concise functions 141
consistency checks 136
copying

CLI applications 139
overview 139

freeing 137
overview 133

DiagLevel CLI/ODBC keyword 39
DiagPath CLI/ODBC keyword 40
DIFFERENCE scalar function

CLI applications 176
distinct types

CLI applications 67
Distributed Transaction Coordinator (DTC)

registering XA library by using db2oreg1.exe utility 17
distributed transactions

client support for XA 239
distributed units of work

CICS 162
Encina 162
overview 159
transaction managers

DB2 160
process-based 162

documentation
overview 273
PDF files 273
printed 273
terms and conditions of use 280

driver managers
DataDirect ODBC 51
Microsoft ODBC 51
overview 49
unixODBC 49

drivers
CLI 2, 7
ODBC 2, 7

290 Call Level Interface Guide and Reference Volume 1

DTC (Distributed Transaction Coordinator)
registering XA library by using db2oreg1.exe utility 17

E
embedded SQL applications

C/C++
combining CLI and embedded SQL 122

CLI
combining CLI and embedded SQL 122

enableACR IBM Data Server Driver configuration parameter
Linux, UNIX, and Windows 190, 224

enableACR IBM Data Server Driver configuration
parameterDB2 for z/OS 224

enableAlternateGroupSeamlessACR IBM Data Server Driver
configuration parameter

Linux, UNIX, and Windows 190, 224
enableAlternateGroupSeamlessACR IBM Data Server Driver

configuration parameterDB2 for z/OS 224
enableAlternateServerListFirstConnect IBM Data Server Driver

configuration parameter
Linux, UNIX, and Windows 190

enableDirectXA 240
enableSeamlessACR IBM Data Server Driver configuration

parameter
Linux, UNIX, and Windows 190, 224

enableSeamlessACR IBM Data Server Driver configuration
parameterDB2 for z/OS 224

enableWLB IBM Data Server Driver configuration parameter
Linux, UNIX, and Windows 224

Encina environmental configuration 162
ESCAPE clauses

vendor 173
Example of enabling DB2 for z/OS Sysplex workload

balancing and automatic client reroute in
non-Java clients 229

examples
distinct types

CLI applications 67
EXP scalar function

CLI applications 176

F
fetching

LOB data in CLI 106
File DSN

protocol used 33
file input/output for LOB data in CLI 63
FileDSN CLI/ODBC keyword 31
FLOOR function

CLI applications 176
freeing CLI handles

overview 123
freeing statement resources in CLI 122

H
handles

descriptor 133
freeing

methods 123
types 55

help
SQL statements 276

high availability
client application 187

high-availability cluster support
Informix 209

high-availability support
DB2 Database for Linux, UNIX, and Windows 188

HOUR scalar function
CLI applications 176

I
IBM data server clients

automatic client reroute support, DB2 Database for Linux,
UNIX, and Windows server 198

automatic client reroute support, IDS server 214
automatic client reroute support, server 232

IBM Data Server Driver configuration parameters 224
acrRetryInterval

Linux, UNIX, and Windows 190
acrRetryIntervalDB2 for z/OS 224
alternateserverlist

Linux, UNIX, and Windows 190
connectionLevelLoadBalancing

z/OS 224
enableACR

Linux, UNIX, and Windows 190, 224
enableACRDB2 for z/OS 224
enableAlternateGroupSeamlessACR

Linux, UNIX, and Windows 190, 224
enableAlternateGroupSeamlessACRDB2 for z/OS 224
enableAlternateServerListFirstConnect

Linux, UNIX, and Windows 190
enableSeamlessACR

Linux, UNIX, and Windows 190, 224
enableSeamlessACRDB2 for z/OS 224
enableWLB

Linux, UNIX, and Windows 224
maxAcrRetries

Linux, UNIX, and Windows 190
maxAcrRetriesDB2 for z/OS 224
maxRefreshInterval

Linux, UNIX, and Windows 224
maxTransportIdleTime

z/OS 224
maxTransports

z/OS 224
maxTransportWaitTime

z/OS 224
IBM Data Server Driver for ODBC and CLI

applications 34
CLI functions 35
CLI trace 37
configuring

environment variables 15
Microsoft DTC 18
Microsoft ODBC driver manager 19
procedure 11
registering ODBC data sources 22

connecting to databases 20
db2diag log files 37
db2support utility 37
db2trc utility 37
deploying with applications 46
environment variables 16
installing 8, 9, 10
LDAP support 36
license requirements 47

Index 291

IBM Data Server Driver for ODBC and CLI (continued)
obtaining 8
ODBC functions 35
overview 7
problem determination 37
registering ODBC data sources 22
restrictions 36
security plug-ins 24
XA functions 35

IBM data server drivers
automatic client reroute support, DB2 Database for Linux,

UNIX, and Windows server 198
automatic client reroute support, IDS server 214
automatic client reroute support, server 232

IDS high availability support, example of enabling
non-Java clients 212

IFNULL scalar function 176
implementation parameter descriptor (IPD) 133
implementation row descriptor (IRD) 133
importing

data 109
Informix

client configuration, high-availability support 210
high-availability cluster support 209
workload balancing, operation 214

Informix, connections
application programming for high availability 215

INI file 12
INSERT scalar function 176
inserting data

XML
details 111

Instance CLI/ODBC keyword 32
INSTANCE variable 16
Interrupt CLI/ODBC keyword 32
IPD (implementation parameter descriptor)

CLI applications 133
IRD (implementation row descriptor)

CLI applications 133
isolation levels

ODBC 2

J
JULIAN_DAY scalar function

details 176

K
keysets 89
KRBPlugin CLI/ODBC keyword 32
KRBPLUGIN variable 16

L
large objects (LOBs)

CLI applications 60, 63, 106
CLI file input and output 63
direct file input in CLI applications 63
direct file output in CLI applications 63
fetching

locators in CLI applications 106
locators

CLI applications 61
LongDataCompat CLI/ODBC keyword 64
ODBC applications 64

LCASE (locale sensitive) scalar function
details 176

LDAP
IBM Data Server Driver for ODBC and CLI 36

LEFT scalar function
CLI applications 176

LENGTH scalar function
CLI applications 176

license policies
IBM Data Server Driver for ODBC and CLI 47

Linux
ODBC environment 241

load utility
CLI applications 109

LOCATE scalar function
CLI applications 176

LOG scalar function 176
LOG10 scalar function

CLI applications 176
long data

CLI 65
retrieving data in pieces 78
sending data in pieces 78

LongDataCompat CLI/ODBC configuration keyword
accessing LOB columns 64

lowercase conversion scalar function 176
LTRIM scalar function

CLI applications 176

M
maxAcrRetries IBM Data Server Driver configuration

parameter
DB2 for z/OS 224
Linux, UNIX, and Windows 190

maxRefreshInterval IBM Data Server Driver configuration
parameter

Linux, UNIX, and Windows 224
maxTransportIdleTime IBM Data Server Driver configuration

parameter
z/OS 224

maxTransports IBM Data Server Driver configuration
parameter

z/OS 224
maxTransportWaitTime IBM Data Server Driver configuration

parameter
z/OS 224

metadata
characters 144

Microsoft DTC
configuring IBM Data Server Driver for ODBC and

CLI 18
Microsoft ODBC driver manager

CLI comparison 2
configuring IBM Data Server Driver for ODBC and

CLI 19
MINUTE scalar function

CLI applications 176
MOD function

CLI applications 176
MONTH scalar function

CLI applications 176
MONTHNAME scalar function

CLI applications 176
multi-threaded applications

CLI applications 169, 170

292 Call Level Interface Guide and Reference Volume 1

multisite updates
CLI applications 159

N
non-Java clients

automatic client reroute, DB2 Database for Linux, UNIX,
and Windows server 198

notices 283
NotifyLevel CLI/ODBC keyword 39
NOW scalar function 176
null-terminated strings in CLI applications 58

O
ODBC

CLI 1, 2
core level functions 1
driver managers

unixODBC 49, 243
drivers

overview 7
IBM Data Server Driver for ODBC and CLI

CLI functions 35
configuring 11, 15, 18, 19
connecting to databases 20
DB2 registry variables 16
deploying with applications 46
installing 8, 9, 10
LDAP support 36
license requirements 47
obtaining 8
ODBC functions 35
overview 7
problem determination 37
registering ODBC data sources 22
restrictions 36
running database applications 34
XA functions 35

IBM DB2 Driver for ODBC and CLI
environment variables 16

isolation levels 2
registering ODBC data sources 22
registering XA library with DTC 17
setting up environment (Linux and UNIX) 241
vendor escape clauses 173

offsets
binding columns 104
changing parameter bindings 77

P
packages

bind option limitations 249
names

binding 247
parameter markers

binding
changing 77
CLI applications 71, 73
column-wise array input in CLI 74
row-wise array input in CLI 75

parameter status arrays 76
parameters

CLI applications 76

parsing
explicit

CLI applications 111
implicit

CLI applications 111
pattern values 144
percent signs

catalog functions 144
LIKE predicates 144

performance
CLI array input chaining 153

PI scalar function 176
POWER scalar function

details 176
prepared SQL statements

CLI applications
creating 81

problem determination
information available 280
tutorials 280

process-based transaction manager 162
Protocol CLI/ODBC configuration keyword 33
PROTOCOL variable 16
PWDPlugin CLI/ODBC keyword 33
PWDPLUGIN variable 16

Q
QUARTER scalar function

CLI applications 176
queries

system catalog information 143

R
RADIANS scalar function

CLI applications 176
RAND scalar function

CLI applications 176
reentrance 169
REPEAT scalar function

overview 176
REPLACE scalar function

overview 176
result sets

CLI
specifying rowset returned from 95
terminology 89

retrieving data
arrays

column-wise binding 103
row-wise binding 103

CLI
arrays 101
bookmarks 99, 101
pieces 105
query results 92
row sets 91
scrollable cursors 98

XML
CLI applications 107

RIGHT scalar function
vendor escape clauses 176

rollbacks
transactions 79

Index 293

ROUND scalar function
vendor escape clauses 176

row sets
CLI functions

retrieval examples 91
specifying 95

terminology in CLI applications 89
row-wise binding 101, 103
RTRIM scalar function

vendor escape clauses 176

S
SaveFile CLI/ODBC keyword 34
search conditions

input to catalog functions 144
SECOND scalar function

CLI applications 176
SECONDS_SINCE_MIDNIGHT scalar function 176
security

plug-ins
IBM Data Server Driver for ODBC and CLI 24

serialization
explicit

CLI applications 107
implicit

CLI applications 68, 107
SIGN scalar function

overview 176
SIN scalar function

overview 176
SOUNDEX scalar function

CLI applications 176
SPACE scalar function

CLI applications 176
SQL

parameter markers 71
SQL Access Group 1
SQL statements

CLI applications 70
freeing resources in CLI 122
help

displaying 276
SQL_ATTR_

CONNECTION_POOLING environment attribute 40
CONNECTTYPE 160

ConnectType CLI/ODBC configuration keyword 159
environment attribute 40

CP_MATCH environment attribute 40
DIAGLEVEL environment attribute 40
DIAGPATH environment attribute 40
INFO_ACCTSTR

environment attribute 40
INFO_APPLNAME

environment attribute 40
INFO_USERID

environment attribute 40
INFO_WRKSTNNAME

environment attribute 40
LONGDATA_COMPAT 64
MAXCONN

environment attribute 40
NOTIFYLEVEL environment attribute 40
ODBC_VERSION environment attribute 40
OUTPUT_NTS 40
PROCESSCTRL

environment attribute 40

SQL_ATTR_ (continued)
RESET_CONNECTION

environment attribute 40
SYNC_POINT

environment attribute 40
TRACE

environment attribute 40
TRACENOHEADER environment attribute 40
TRUSTED_CONTEXT_PASSWORD

switching users on a trusted connection through
CLI 129

TRUSTED_CONTEXT_USERID
switching users on a trusted connection through

CLI 129
USE_2BYTES_OCTET_LENGTH environment attribute 40
USE_LIGHT_INPUT_SQLDA environment attribute 40
USE_LIGHT_OUTPUT_SQLDA environment attribute 40
USE_TRUSTED_CONTEXT

creating trusted connection through CLI 128
USER_REGISTRY_NAME

environment attribute 40
SQL_CONCURRENT_TRANS value of

SQL_ATTR_CONNECTTYPE environment attribute 160
SQL_COORDINATED_TRANS value of

SQL_ATTR_CONNECTTYPE environment attribute 160
SQL_NTS 58
SQL_ONEPHASE 160
SQL_TWOPHASE 160
SQLBindCol CLI function

position in typical order of function calls 69
SQLBindParameter CLI function

parameter marker binding 71
SQLBrowseConnect CLI function

Unicode version 156
SQLBrowseConnectW CLI function 156
SQLBulkOperations CLI function

deleting bulk data 114
inserting bulk data 108
retrieving bulk data 101
updating bulk data 113

SQLColAttribute CLI function
Unicode version 156

SQLColAttributes CLI function
Unicode version 156

SQLColAttributesW CLI function 156
SQLColAttributeW CLI function 156
SQLColumnPrivileges CLI function

Unicode version 156
SQLColumnPrivilegesW CLI function 156
SQLColumns CLI function

Unicode version 156
SQLColumnsW CLI function 156
SQLConnect CLI function

Unicode version 156
SQLConnectW CLI function 156
SQLCreateDbW CLI function 156
SQLDataSources CLI function

Unicode version 156
SQLDataSourcesW CLI function 156
SQLDescribeCol CLI function

position in typical order of function calls 69
Unicode version 156

SQLDescribeColW CLI function 156
SQLDriverConnect CLI function

details 25
Unicode version 156

SQLDriverConnectW CLI function 156

294 Call Level Interface Guide and Reference Volume 1

SQLDropDbW CLI function 156
SQLEndTran CLI function

need for 80
SQLError deprecated CLI function

Unicode version 156
SQLErrorW CLI function 156
SQLExecDirect CLI function

position in typical order of function calls 69
Unicode version 156

SQLExecDirectW CLI function 156
SQLExecute CLI function

position in typical order of function calls 69
SQLExtendedPrepare CLI function

Unicode version 156
SQLExtendedPrepareW CLI function 156
SQLExtendedProcedureColumns

Unicode version 156
SQLExtendedProcedureColumnsW CLI function 156
SQLExtendedProcedures

Unicode version 156
SQLExtendedProceduresW CLI function 156
SQLFetch CLI function

position in typical order of function calls 69
SQLForeignKeys CLI function

Unicode version 156
SQLForeignKeysW CLI function 156
SQLGetConnectAttr CLI function

Unicode version 156
SQLGetConnectAttrW CLI function 156
SQLGetConnectOption deprecated CLI function

Unicode version 156
SQLGetConnectOptionW CLI function 156
SQLGetCursorName CLI function

Unicode version 156
SQLGetCursorNameW CLI function 156
SQLGetData CLI function

position in typical order of function calls 69
SQLGetDescField CLI function

Unicode version 156
SQLGetDescFieldW CLI function 156
SQLGetDescRec CLI function

Unicode version 156
SQLGetDescRecW CLI function 156
SQLGetDiagField CLI function

Unicode version 156
SQLGetDiagFieldW CLI function 156
SQLGetDiagRec CLI function

Unicode version 156
SQLGetDiagRecW CLI function 156
SQLGetInfo CLI function

Unicode version 156
SQLGetInfoW CLI function 156
SQLGetPosition CLI function

Unicode version 156
SQLGetStmtAttr CLI function

Unicode version 156
SQLGetStmtAttrW CLI function 156
SQLNativeSql CLI function

Unicode version 156
SQLNativeSqlW CLI function 156
SQLNumResultCols CLI function

position in typical order of function calls 69
SQLPrepare CLI function

position in typical order of function calls 69
Unicode version 156

SQLPrepareW CLI function 156

SQLPrimaryKeys CLI function
Unicode version 156

SQLPrimaryKeysW CLI function 156
SQLProcedureColumns CLI function

Unicode version 156
SQLProcedureColumnsW CLI function 156
SQLProcedures CLI function

Unicode version 156
SQLProceduresW CLI function 156
SQLReloadConfig CLI function

Unicode version 156
SQLReloadConfigW CLI function 156
SQLRowCount CLI function

position in typical order of function calls 69
SQLSetConnectAttr CLI function

Unicode version 156
SQLSetConnectAttrW CLI function 156
SQLSetConnectOption deprecated CLI function

Unicode version 156
SQLSetConnectOptionW CLI function 156
SQLSetCursorName CLI function

Unicode version 156
SQLSetCursorNameW CLI function 156
SQLSetDescField CLI function

Unicode version 156
SQLSetDescFieldW CLI function 156
SQLSetStmtAttr CLI function

Unicode version 156
SQLSetStmtAttrW CLI function 156
SQLSpecialColumns CLI function

Unicode version 156
SQLSpecialColumnsW CLI function 156
SQLStatistics CLI function

Unicode version 156
SQLStatisticsW CLI function 156
SQLTablePrivileges CLI function

Unicode version 156
SQLTablePrivilegesW CLI function 156
SQLTables CLI function

Unicode version 156
SQLTablesW CLI function 156
SQRT scalar function

CLI applications 176
statement handles

allocating 70
stored procedures

calling
CLI applications 115

ODBC escape clause 173
strings

input arguments 58
length in CLI applications 58

SUBSTRING scalar function
CLI applications 176

Sysplex workload balancing
DB2 for z/OS 222

Sysplex workload balancing, operation
direct connections to DB2 for z/OS 231

system catalogs
querying 143

T
TAN scalar function

CLI applications 176
termination

CLI applications 125

Index 295

termination (continued)
task 54

terms and conditions
publications 280

threads
multiple

CLI applications 169
TIMESTAMPDIFF scalar function

CLI applications 176
transaction managers

CLI applications
configuring 160
programming considerations 162

transaction-level load balancing
client application 187

transactions
commits 79
ending in CLI 80
rollbacks 79

troubleshooting
online information 280
tutorials 280

TRUNC scalar function
CLI applications 176

TRUNCATE scalar function
CLI applications 176

truncation
output strings 58

trust relationships
DB2 Connect 127

trusted connections
CLI/ODBC 128
DB2 Connect 127
switching users through CLI/ODBC 129

trusted contexts
CLI/ODBC support 128
DB2 Connect support 127

tutorials
list 279
problem determination 280
pureXML 279
troubleshooting 280

two-phase commit
CLI 159

U
UCASE scalar function

CLI applications 176
UDTs

CLI applications 66
distinct types

CLI applications 67
underscores

catalog functions 144
LIKE predicates 144

Unicode UCS-2 encoding
CLI

applications 155
functions 156
ODBC driver managers 157

units of work
distributed 79

UNIX
ODBC environment setup 241

unixODBC driver manager
build scripts 243

unixODBC driver manager (continued)
configurations 243
setting up 49

updates
bulk data with bookmarks in CLI 113
data

CLI applications 113
DB2 Information Center 276, 278

USER scalar function 176

V
vendor escape clauses 173

W
WEEK scalar function

CLI applications 176
WEEK_ISO scalar function

CLI applications 176
Windows

CLI environment setup 245
workload balancing

client configuration
DB2 Database for Linux, UNIX, and Windows 195

workload balancing operation
connections to DB2 Database for Linux, UNIX, and

Windows 199
connections to DB2 for z/OS 233
connections to Informix 214

X
X/Open Company 1
X/Open SQL CLI 1
XA

client-side support 239
IBM Data Server Driver for ODBC and CLI 35
registering XA library with DTC 17
trusted connections 127

XA support
enabling for clients 240

XML
parsing

CLI applications 111
serialization

CLI applications 68, 107
XML data

CLI applications
inserting 111
overview 68
retrieval 107
updating 111

XML data retrieval
CLI applications 107

XML data type
CLI applications 68

Y
YEAR scalar function

CLI applications 176

296 Call Level Interface Guide and Reference Volume 1

����

Printed in USA

SC27-3866-00

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

10
.1

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Ca
ll

Le
ve

lI
nt

er
fa

ce
Gu

id
e

an
d

Re
fe

re
nc

e
Vo

lu
m

e
1

�
�

�

	Contents
	About this book
	Chapter 1. Introduction to DB2 Call Level Interface and ODBC
	Comparison of CLI and ODBC

	Chapter 2. IBM Data Server CLI and ODBC drivers
	IBM Data Server Driver for ODBC and CLI overview
	Obtaining the IBM Data Server Driver for ODBC and CLI
	Installing the IBM Data Server Driver for ODBC and CLI
	Installing multiple copies of the IBM Data Server Driver for ODBC and CLI on the same machine
	Installing the IBM Data Server Driver for ODBC and CLI on a machine with an existing DB2 client

	Configuring the IBM Data Server Driver for ODBC and CLI
	db2cli.ini initialization file
	Configuring environment variables for the IBM Data Server Driver for ODBC and CLI
	db2oreg1.exe overview
	Registering the IBM Data Server Driver for ODBC and CLI with the Microsoft DTC
	Registering the IBM Data Server Driver for ODBC and CLI with the Microsoft ODBC driver manager

	Connecting to databases with the IBM Data Server Driver for ODBC and CLI
	Registering ODBC data sources for applications that use the IBM Data Server Driver for ODBC and CLI
	Using security plugins with the IBM Data Server Driver for ODBC and CLI
	SQLDriverConnect function (CLI) - (Expanded) Connect to a data source
	CLI/ODBC keywords for file DSN or DSN-less connections

	Running CLI and ODBC applications using the IBM Data Server Driver for ODBC and CLI
	CLI and ODBC API support in the IBM Data Server Driver for ODBC and CLI
	XA API support in the IBM Data Server Driver for ODBC and CLI
	LDAP support in the IBM Data Server Driver for ODBC and CLI
	Restrictions of the IBM Data Server Driver for ODBC and CLI
	Diagnostic support in the IBM Data Server Driver for ODBC and CLI

	Deploying the IBM Data Server Driver for ODBC and CLI with database applications
	License requirements for the IBM Data Server Driver for ODBC and CLI

	Chapter 3. ODBC driver managers
	unixODBC driver manager
	Setting up the unixODBC driver manager

	Microsoft ODBC driver manager
	DataDirect ODBC driver manager

	Chapter 4. Initializing CLI applications
	Initialization and termination in CLI overview
	Handles in CLI

	Chapter 5. Data types and data conversion in CLI applications
	String handling in CLI applications
	Large object usage in CLI applications
	LOB locators in CLI applications
	Direct file input and output for LOB handling in CLI applications
	LOB usage in ODBC applications

	Long data for bulk inserts and updates in CLI applications
	User-defined type (UDT) usage in CLI applications
	Distinct type usage in CLI applications

	XML data handling in CLI applications - Overview
	Changing of default XML type handling in CLI applications

	Chapter 6. Transaction processing in CLI overview
	Allocating statement handles in CLI applications
	Issuing SQL statements in CLI applications
	Parameter marker binding in CLI applications
	Binding parameter markers in CLI applications
	Binding parameter markers in CLI applications with column-wise array input
	Binding parameter markers in CLI applications with row-wise array input
	Parameter diagnostic information in CLI applications
	Changing parameter bindings in CLI applications with offsets
	Specifying parameter values at execute time for long data manipulation in CLI applications

	Commit modes in CLI applications
	When to call the CLI SQLEndTran() function
	Preparing and executing SQL statements in CLI applications
	Deferred prepare in CLI applications
	Executing compound SQL (CLI) statements in CLI applications

	Cursors in CLI applications
	Cursor considerations for CLI applications

	Result set terminology in CLI applications
	Bookmarks in CLI applications
	Rowset retrieval examples in CLI applications

	Retrieving query results in CLI applications
	Column binding in CLI applications
	Specifying the rowset returned from the result set
	Retrieving data with scrollable cursors in a CLI application
	Retrieving data with bookmarks in a CLI application
	Retrieving bulk data with bookmarks using SQLBulkOperations() in CLI applications

	Result set retrieval into arrays in CLI applications
	Retrieving array data in CLI applications using column-wise binding
	Retrieving array data in CLI applications using row-wise binding
	Changing column bindings in a CLI application with column binding offsets

	Data retrieval in pieces in CLI applications
	Fetching LOB data with LOB locators in CLI applications
	XML data retrieval in CLI applications

	Inserting data
	Inserting bulk data with bookmarks using SQLBulkOperations() in CLI applications
	Importing data with the CLI LOAD utility in CLI applications
	XML column inserts and updates in CLI applications

	Updating and deleting data in CLI applications
	Updating bulk data with bookmarks using SQLBulkOperations() in CLI applications
	Deleting bulk data with bookmarks using SQLBulkOperations() in CLI applications

	Calling stored procedures from CLI applications
	CLI stored procedure commit behavior

	Creating static SQL with CLI/ODBC Static Profiling
	Capture file for CLI/ODBC/JDBC Static Profiling
	Considerations for mixing embedded SQL and CLI

	Freeing statement resources in CLI applications
	Handle freeing in CLI applications

	Chapter 7. Terminating a CLI application
	Chapter 8. Trusted connections through DB2 Connect
	Creating and terminating a trusted connection through CLI
	Switching users on a trusted connection through CLI

	Chapter 9. Descriptors in CLI applications
	Consistency checks for descriptors in CLI applications
	Descriptor allocation and freeing
	Descriptor manipulation with descriptor handles in CLI applications
	Descriptor manipulation without using descriptor handles in CLI applications

	Chapter 10. Catalog functions for querying system catalog information in CLI applications
	Input arguments on catalog functions in CLI applications

	Chapter 11. Programming hints and tips for CLI applications
	Reduction of network flows with CLI array input chaining

	Chapter 12. Unicode CLI applications
	Unicode functions (CLI)
	Unicode function calls to ODBC driver managers

	Chapter 13. Multisite updates (two phase commit) in CLI applications
	ConnectType CLI/ODBC configuration keyword
	DB2 as transaction manager in CLI applications
	Process-based XA-compliant Transaction Program Monitor (XA TP) programming considerations for CLI applications

	Chapter 14. Asynchronous execution of CLI functions
	Executing functions asynchronously in CLI applications

	Chapter 15. Multithreaded CLI applications
	Application model for multithreaded CLI applications
	Mixed multithreaded CLI applications

	Chapter 16. Vendor escape clauses in CLI applications
	Extended scalar functions for CLI applications

	Chapter 17. Non-Java client support for high availability on IBM data servers
	Non-Java client support for high availability for connections to DB2 Database for Linux, UNIX, and Windows
	Configuration of DB2 Database for Linux, UNIX, and Windows automatic client reroute support for non-Java clients
	Example of enabling DB2 Database for Linux, UNIX, and Windows automatic client reroute support in non-Java clients
	Configuration of DB2 Database for Linux, UNIX, and Windows workload balancing support for non-Java clients
	Example of enabling DB2 Database for Linux, UNIX, and Windows workload balancing support in non-Java clients
	Operation of automatic client reroute for connections to DB2 Database for Linux, UNIX, and Windows from non-Java clients
	Operation of transaction-level workload balancing for connections to DB2 Database for Linux, UNIX, and Windows
	Alternate groups for connections to DB2 Database for Linux, UNIX, and Windows from non-Java clients
	Application programming requirements for high availability for connecting to DB2 Database for Linux, UNIX, and Windows server
	Client affinities for clients that connect to DB2 Database for Linux, UNIX, and Windows
	Configuration of client affinities for non-Java clients for DB2 Database for Linux, UNIX, and Windows connections
	Example of enabling client affinities for non-Java clients for DB2 Database for Linux, UNIX, and Windows connections

	Non-Java client support for high availability for connections to Informix servers
	Configuration of Informix high-availability support for non-Java clients
	Example of enabling IDS high availability support in non-Java clients
	Operation of automatic client reroute for connections to IDS from non-Java clients
	Operation of workload balancing for connections to Informix from non-Java clients
	Application programming requirements for high availability for connections from non-Java clients to Informix servers
	Client affinities for connections to Informix from non-Java clients
	Configuration of client affinities for non-Java clients for Informix connections
	Example of enabling client affinities for non-Java clients for Informix connections

	Non-Java client support for high availability for connections to DB2 for z/OS servers
	Configuration of Sysplex workload balancing and automatic client reroute for non-Java clients
	Example of enabling DB2 for z/OS Sysplex workload balancing and automatic client reroute in non-Java client applications
	Operation of Sysplex workload balancing for connections from non-Java clients to DB2 for z/OS servers
	Operation of automatic client reroute for connections from non-Java clients to DB2 for z/OS servers
	Operation of transaction-level workload balancing for connections to the DB2 for z/OS data sharing group
	Alternate groups for connections to DB2 for z/OS servers from non-Java clients
	Application programming requirements for high availability for connections from non-Java clients to DB2 for z/OS servers

	Chapter 18. XA support for a Sysplex in non-Java clients
	Enabling XA support for a Sysplex in non-Java clients

	Chapter 19. Configuring your development environment to build and run CLI and ODBC applications
	Setting up the ODBC environment (Linux and UNIX)
	Sample build scripts and configurations for the unixODBC Driver Manager

	Setting up the Windows CLI environment
	Selecting a different DB2 copy for your Windows CLI application

	CLI bind files and package names
	Bind option limitations for CLI packages

	Chapter 20. Building CLI applications
	Building CLI applications on UNIX
	AIX CLI application compile and link options
	HP-UX CLI application compile and link options
	Linux CLI application compile and link options
	Solaris CLI application compile and link options
	Building CLI multi-connection applications on UNIX

	Building CLI applications on Windows
	Windows CLI application compile and link options
	Building CLI multi-connection applications on Windows

	Building CLI applications with configuration files
	Building CLI stored procedures with configuration files

	Chapter 21. Building CLI routines
	Building CLI routines on UNIX
	AIX CLI routine compile and link options
	HP-UX CLI routine compile and link options
	Linux CLI routine compile and link options
	Solaris CLI routine compile and link options

	Building CLI routines on Windows
	Windows CLI routine compile and link options

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and conditions

	Appendix B. Notices
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

